

US011622314B2

(12) United States Patent

Segal et al.

(54) SYSTEM, METHOD, AND APPARATUS FOR DETECTING AND PREVENTING WIRELESS CONNECTIONS

(71) Applicant: Cell Detect, Inc, New Port Richey, FL (US)

(72) Inventors: **David Segal**, Palm Harbor, FL (US); **Chris Defant**, New Port Richey, FL (US); **Judd Sheets**, St. Petersburg, FL (US)

(73) Assignee: Detection Innovation Group, Inc.,

New Port Richey, FL (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 293 days.

(21) Appl. No.: 17/123,297

(22) Filed: **Dec. 16, 2020**

(65) Prior Publication Data

US 2021/0201651 A1 Jul. 1, 2021

Related U.S. Application Data

- (60) Provisional application No. 62/954,825, filed on Dec. 30, 2019.
- Int. Cl. (51)(2006.01)H04M 1/66 H04M 1/68 (2006.01)H04M 3/16 (2006.01)H04K 3/00 (2006.01)H04W 48/02 (2009.01)H04W 52/02 (2009.01)H04W 60/00 (2009.01)H04W 4/029 (2018.01)

(52) **U.S. Cl.**

CPC *H04W 48/02* (2013.01); *H04W 4/029* (2018.02); *H04W 52/0274* (2013.01); *H04W 60/00* (2013.01)

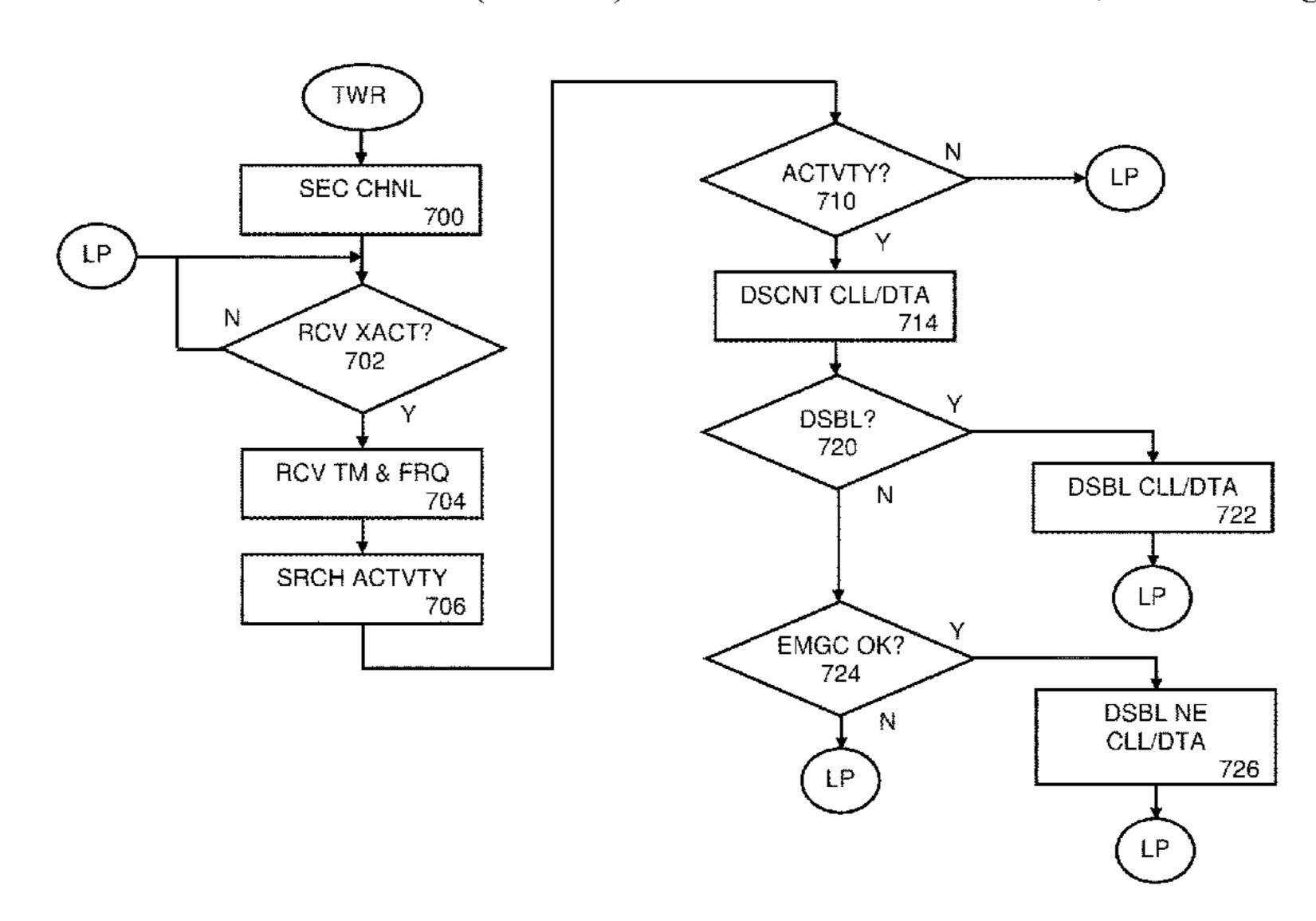
(10) Patent No.: US 11,622,314 B2

(45) **Date of Patent:** Apr. 4, 2023

(58) Field of Classification Search

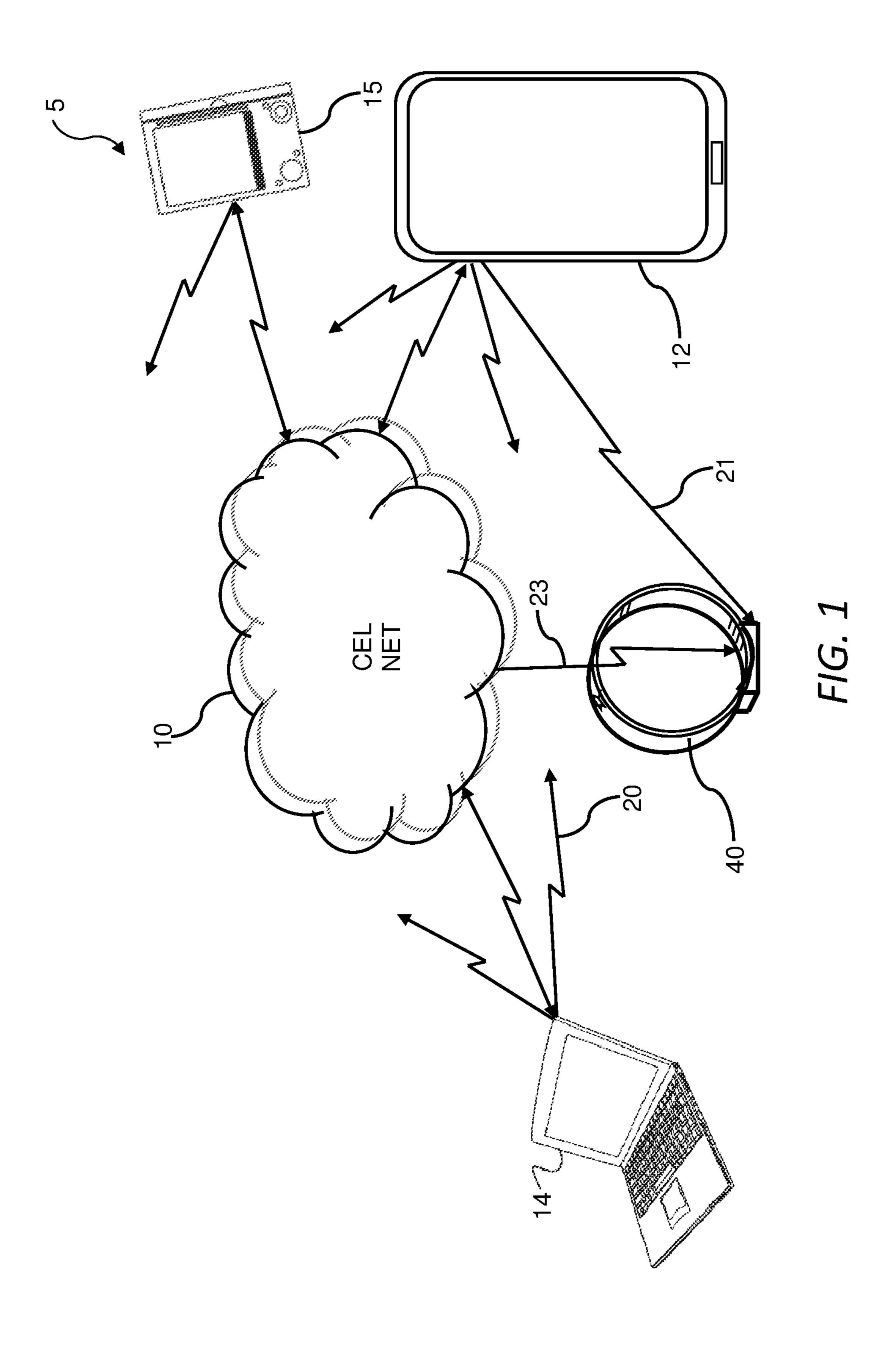
(56) References Cited

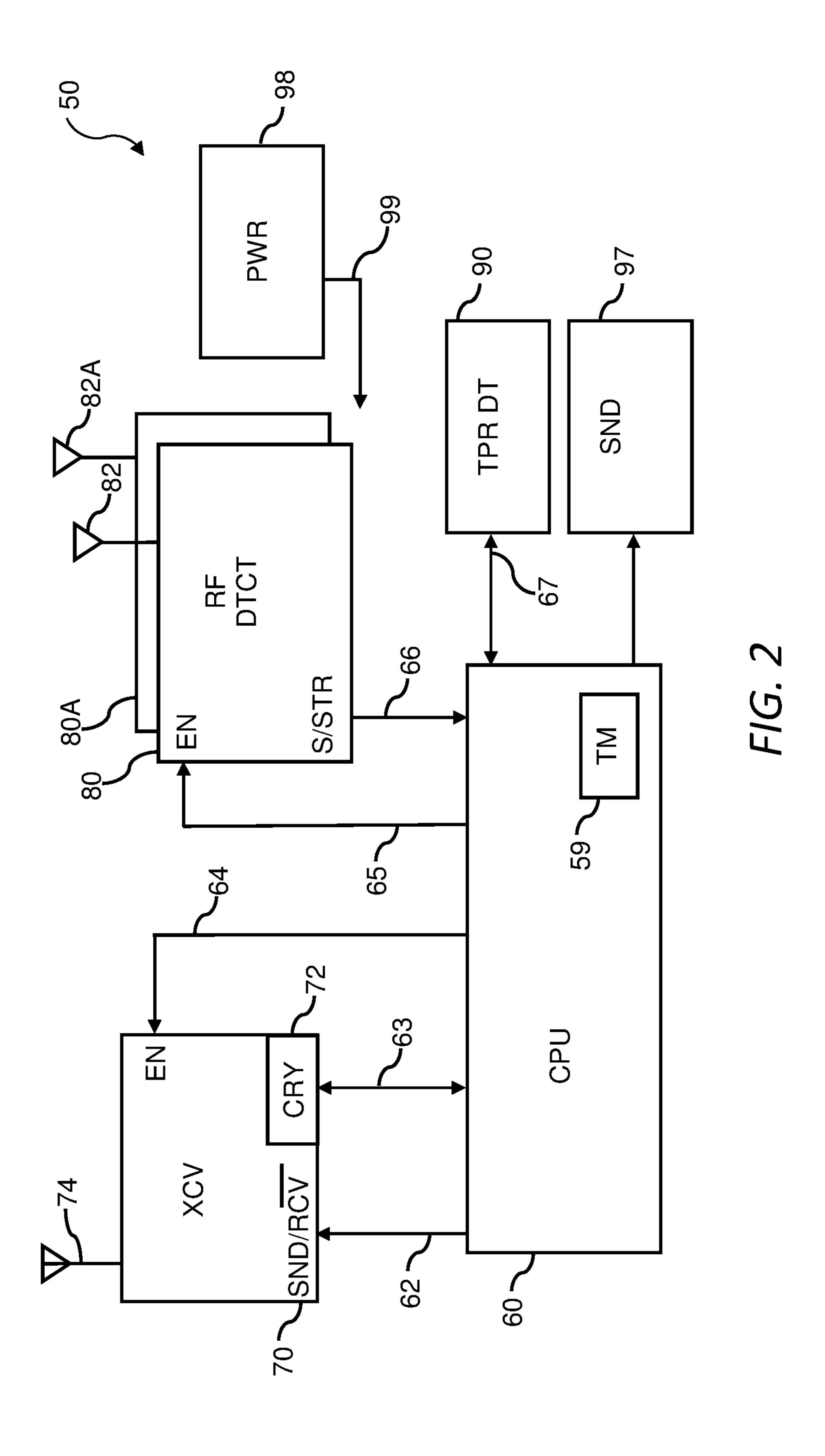
U.S. PATENT DOCUMENTS

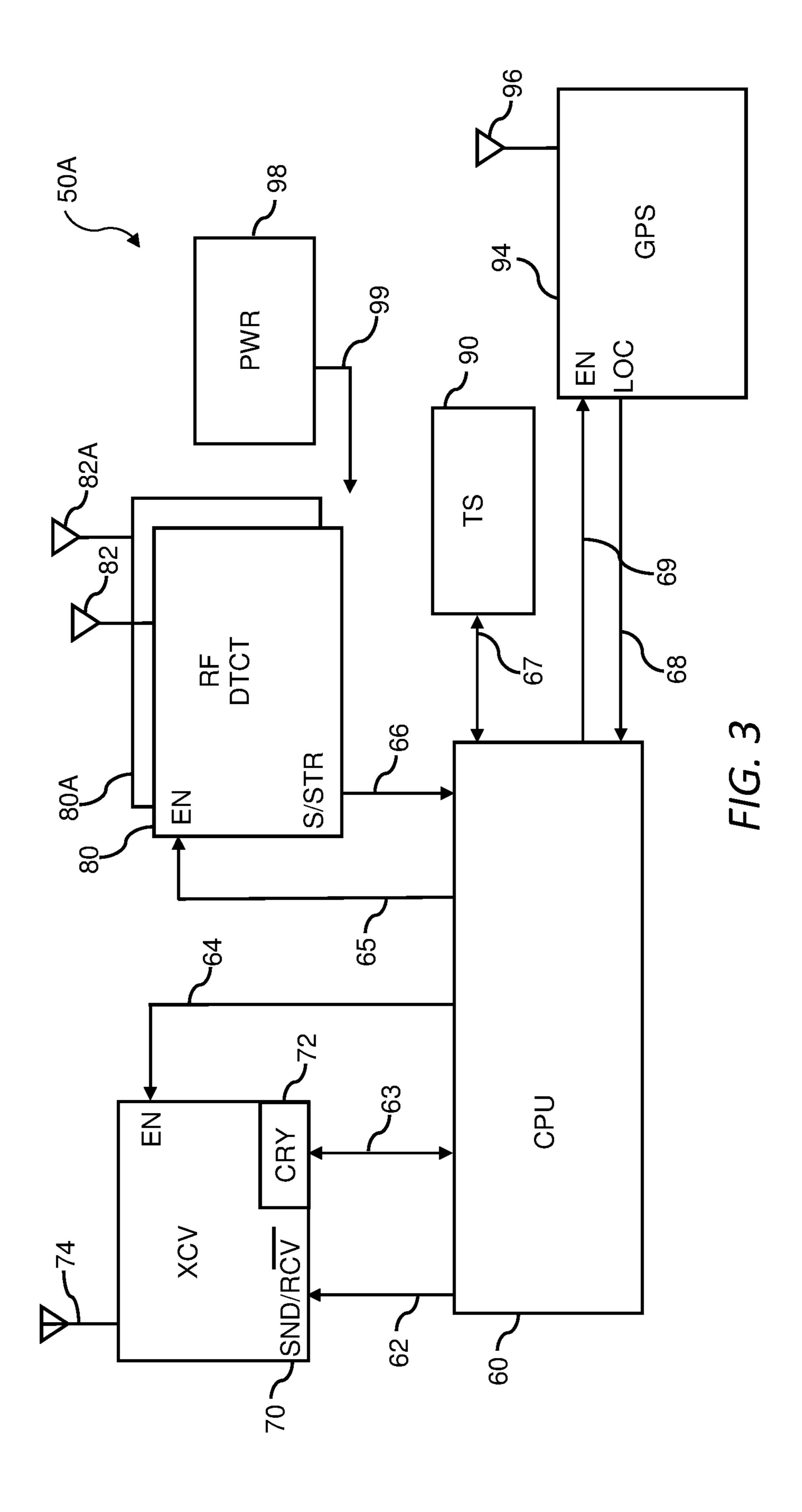

5,218,716	Λ	6/1003	Comroe et al.			
, ,						
5,295,180	\mathbf{A}	3/1994	Vendetti et al.			
5,515,042	\mathbf{A}	5/1996	Nelson			
5,959,533	\mathbf{A}	9/1999	Layson et al.			
6,011,973	\mathbf{A}	1/2000	Valentine et al.			
6,195,529	B1	2/2001	Linz et al.			
6,222,458	B1	4/2001	Harris			
6,381,533	B1	4/2002	Crane et al.			
		(Continued)				

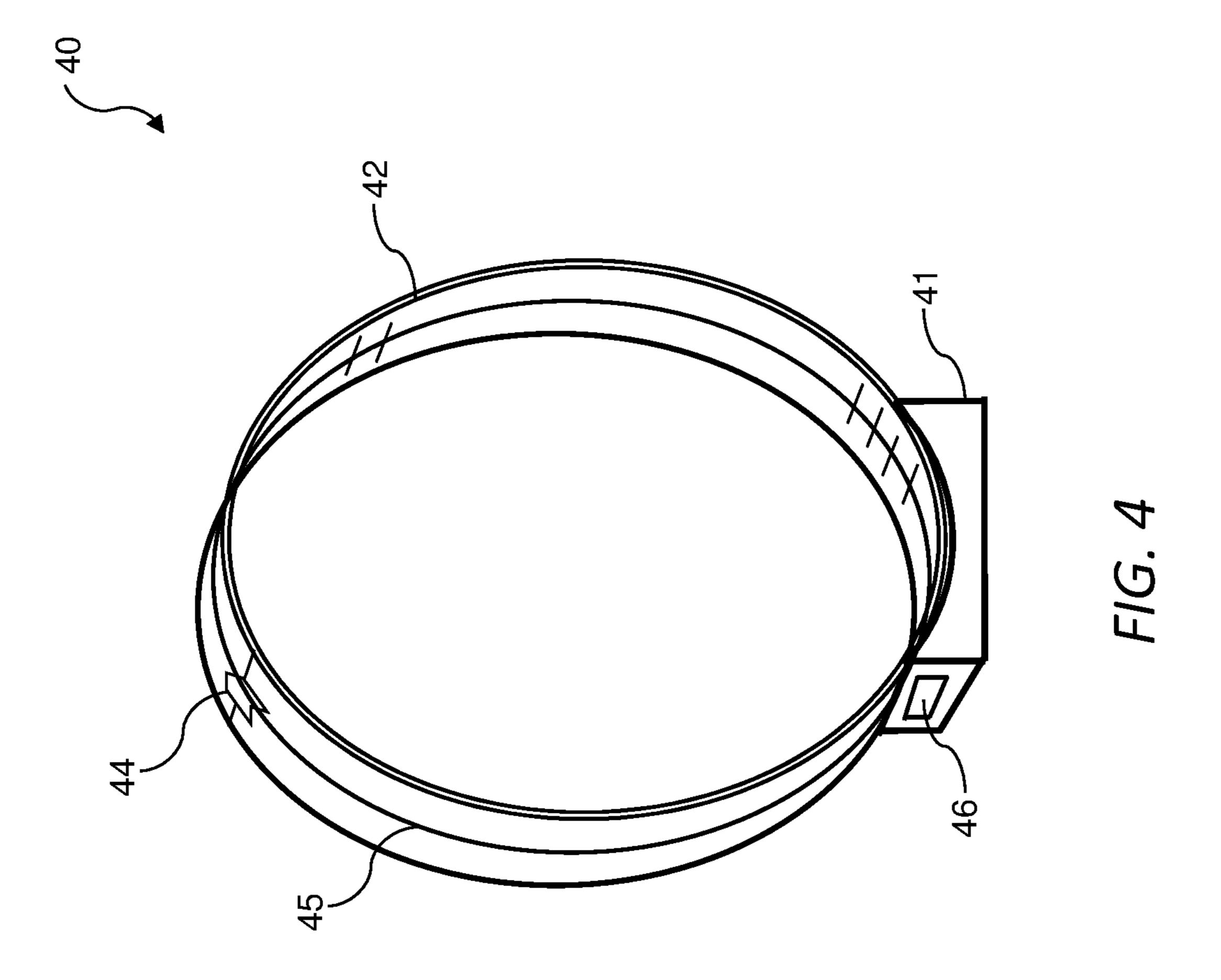
Primary Examiner — Mark G. Pannell (74) Attorney, Agent, or Firm — Larson & Larson, P.A.; Frank Liebenow; Justin P. Miller

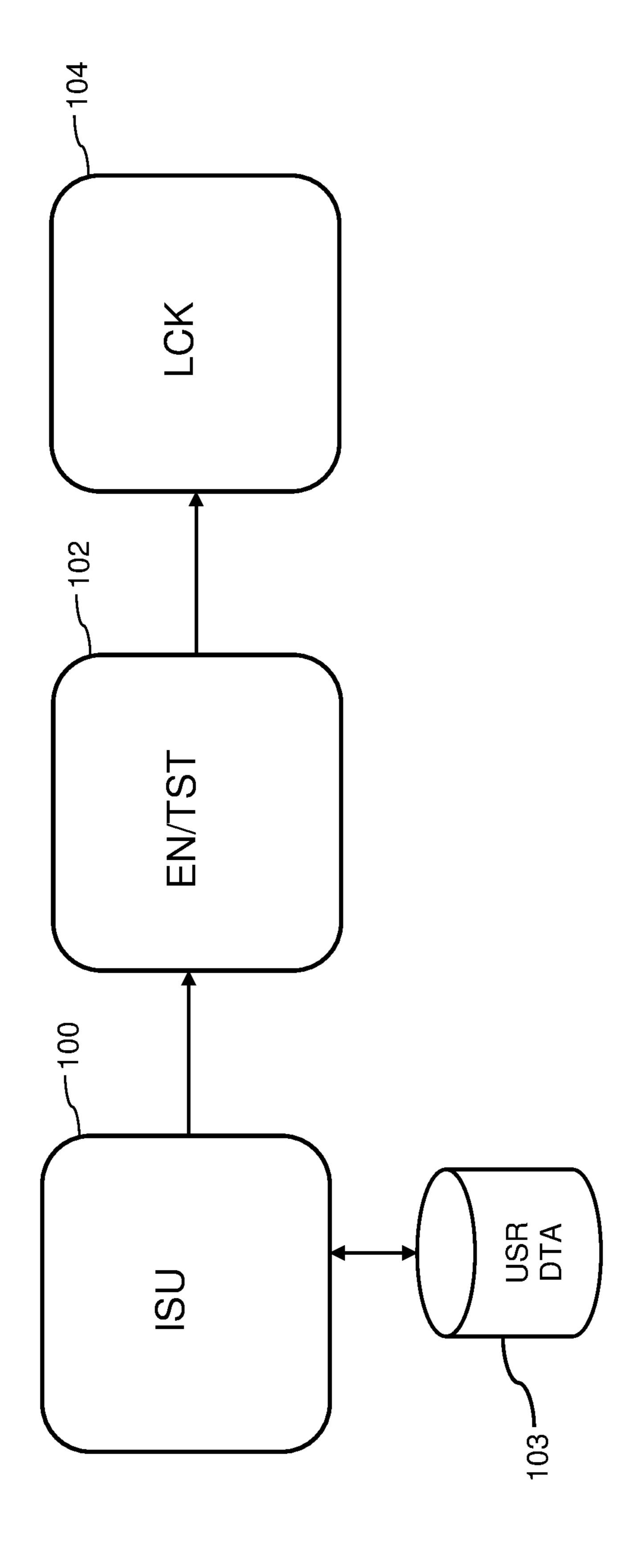
(57) ABSTRACT

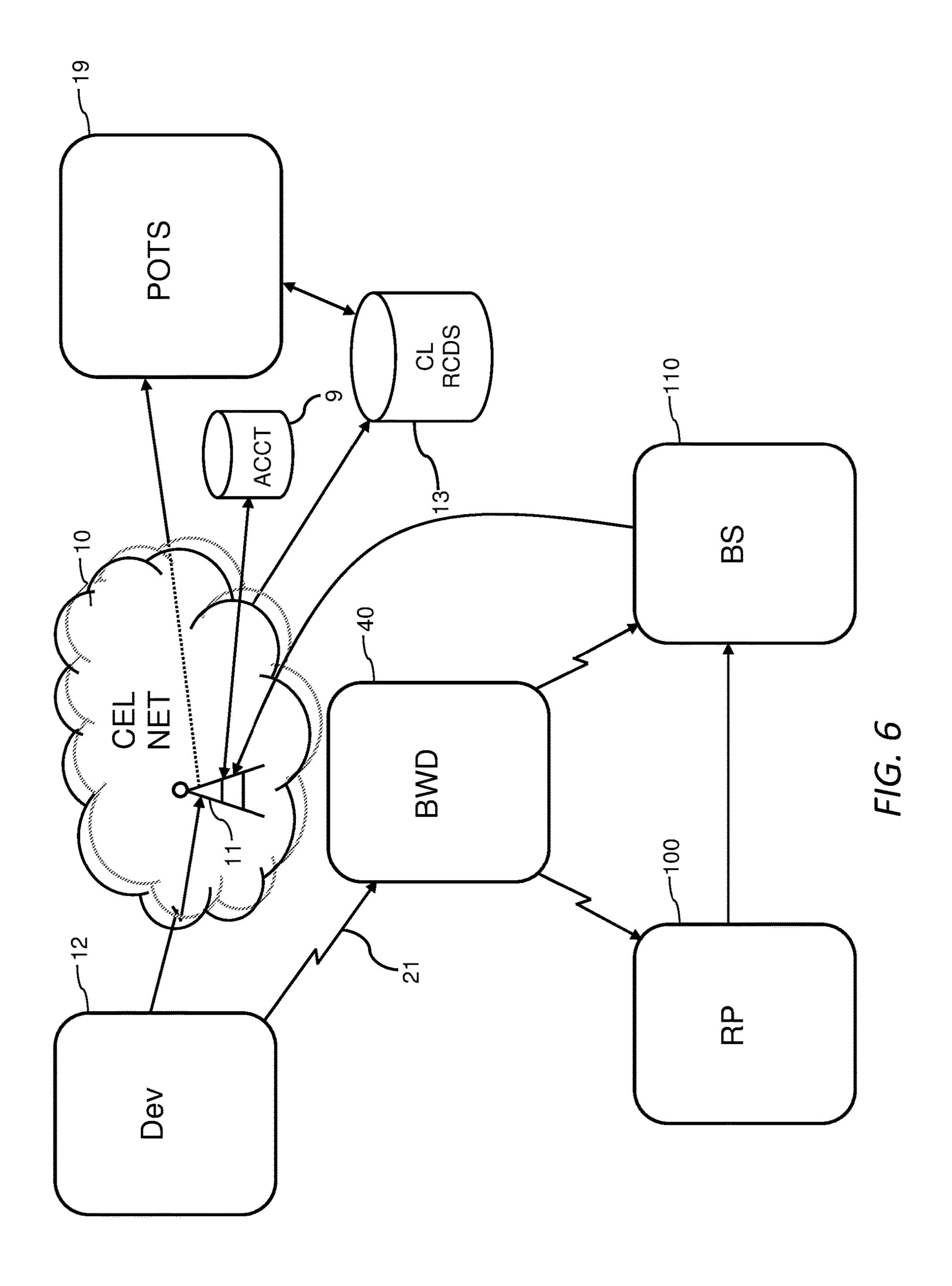

A method of detecting and disabling offending devices includes monitoring for a radio frequency signal. When an offending device initializes and registers with a cell tower, it emits the radio frequency signal. After the radio frequency signal is detected, a message including an identification of the radio frequency signal is transmitted to a receiver of a base station. Responsive to receiving the message, the base station sends a secure transaction that includes an indication of the radio frequency signal to a processor of a cellular carrier system. Responsive to receiving the secure transaction, the processor of the cellular carrier system correlates a time and the radio frequency signal with an account associated with the registration of the offending device, disconnects from the offending device, and disables an account associated with the offending device.

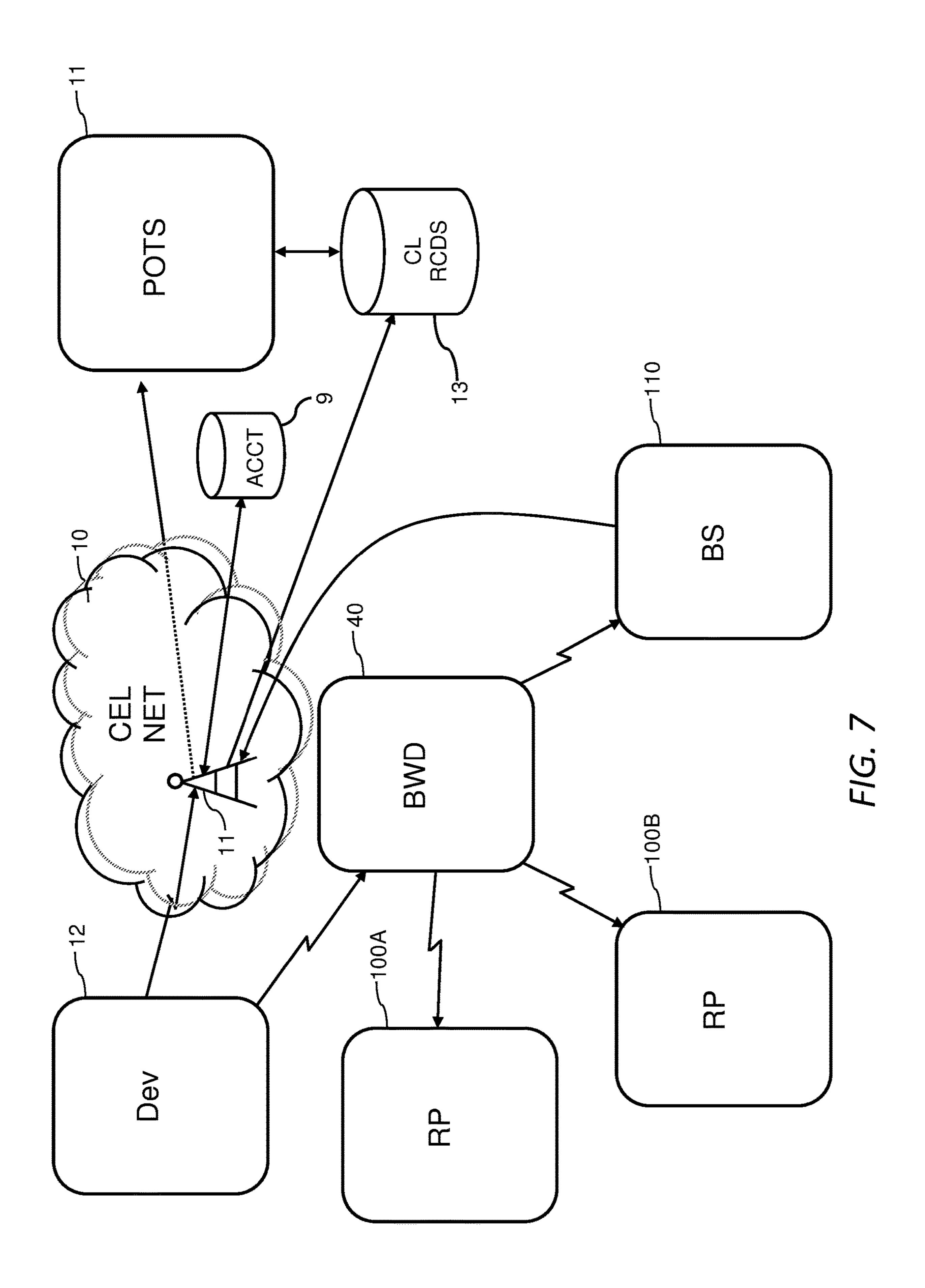

20 Claims, 18 Drawing Sheets

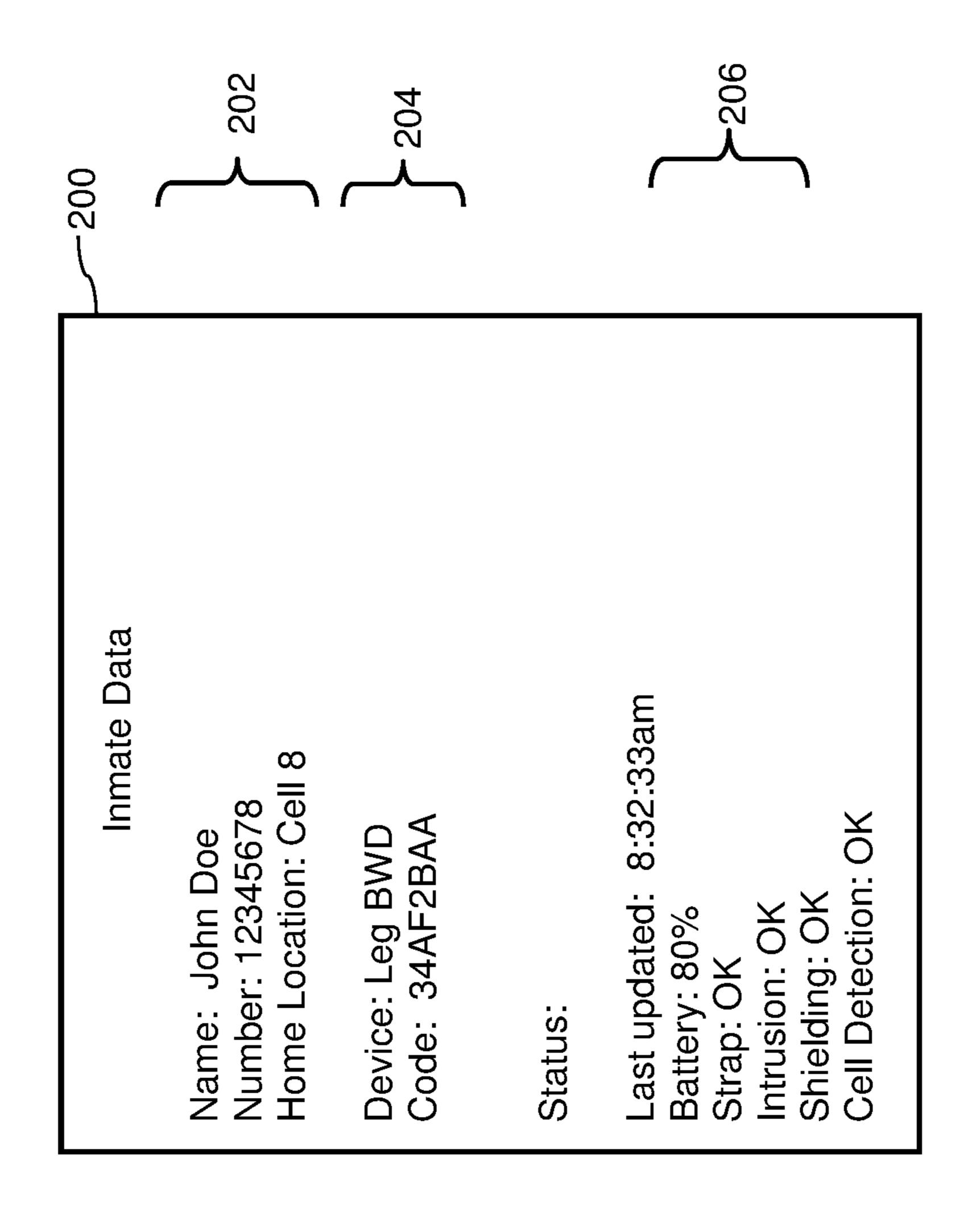


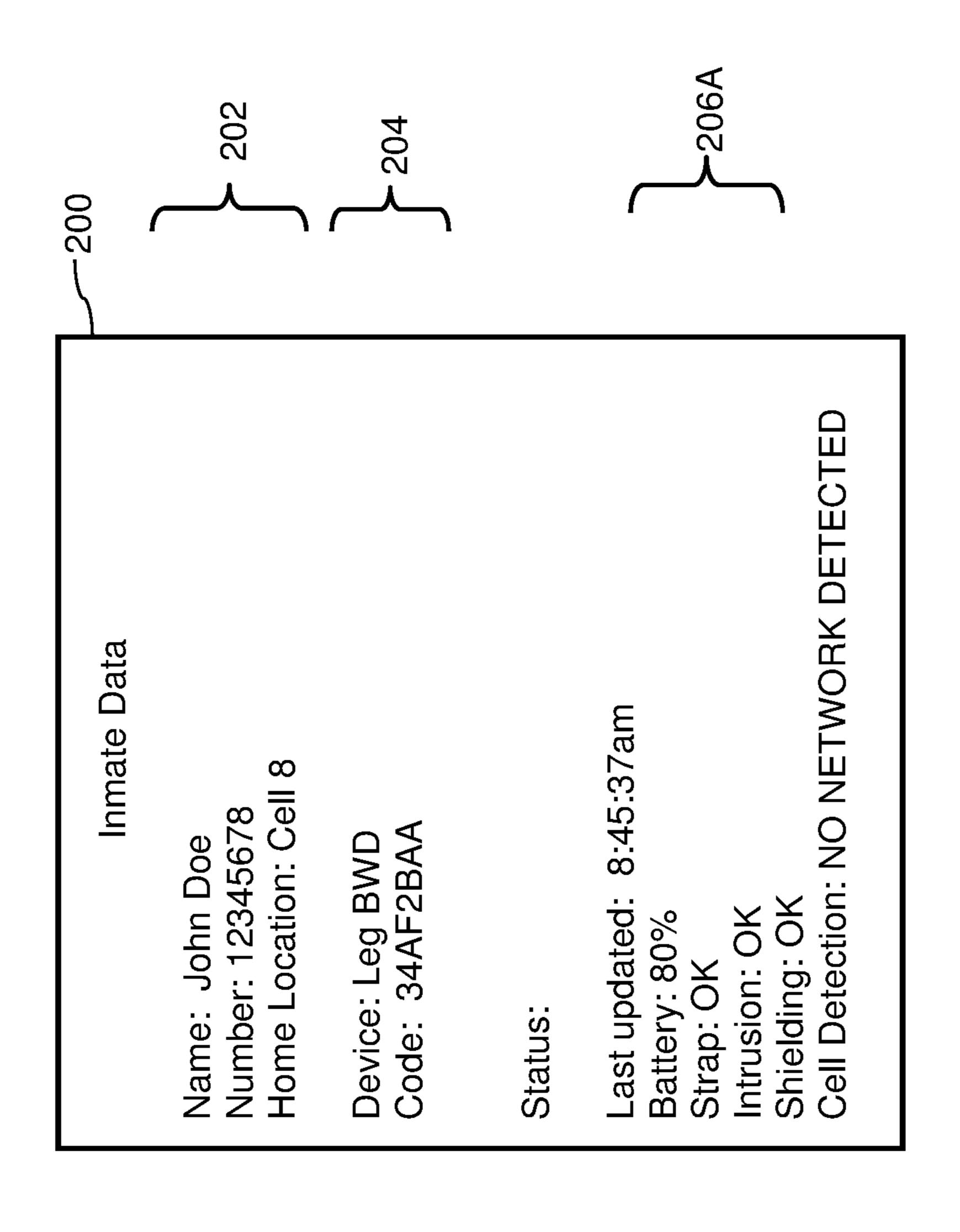

US 11,622,314 B2 Page 2


(56)		Referen	ces Cited	8,019,384		9/2011	
				8,089,923			Ito et al.
	U.S.	PATENT	DOCUMENTS	8,131,205		3/2012	
				8,981,925			Chapin et al.
	6,393,254 B1	5/2002	PousadaCarballo et al.	2001/0050614		12/2001	.~
	6,490,455 B1	12/2002	Park et al.	2003/0137408			Breiner
	6,502,022 B1	12/2002	Chastain et al.	2004/0077339	A1		Martens
	6,542,730 B1	4/2003	Hosain	2004/0198306	A1	10/2004	Singh et al.
	6,556,810 B2	4/2003	Suzuki	2004/0246139	A 1	12/2004	Harris
	6,643,517 B1	11/2003	Steer	2005/0222933	A1	10/2005	Wesby
	6,687,497 B1	2/2004	Parvulescu et al.	2006/0099940	A 1	5/2006	Pfleging et al.
	6,687,506 B1	2/2004	Girod	2006/0105701	A 1	5/2006	Cornwell
	6,701,158 B2	3/2004	Moreth	2006/0252432	A1	11/2006	Gruchala et al.
	6,728,542 B2	4/2004		2006/0286930	A1	12/2006	Rathus et al.
	6,771,946 B1	8/2004	•	2007/0026850	A 1	2/2007	Keohane et al.
	6,832,093 B1	12/2004		2007/0035384	A 1	2/2007	Belcher et al.
	7,027,619 B2		Pavlidis et al.	2007/0171047	A1		Goodman et al.
	7,123,874 B1		Brennan	2007/0254632			Beadle et al.
	, ,		Owens et al.	2007/0281603			Nath et al.
	7,181,229 B2		Singh et al.	2008/0043993		2/2008	
	7,187,952 B2	3/2007		2009/0215387			Brennan et al.
	7,187,953 B2		Bauchot et al.	2011/0059688			Noonan et al.
	7,292,848 B2		Mazzara, Jr. et al.	2011/0033000			Tran et al.
	7,653,385 B2			2012/0242301		12/2012	
	7,715,854 B2		Bogart Cotton et al	2012/0309288		6/2013	
	7,876,205 B2		Catten et al.				
	7,949,296 B2		Arend et al.	2013/0316638			Jang et al.
	8,019,354 B2	9/2011	Rae et al.	2017/0026147	ΑI	1/201/	Smith et al.









F1G. 5

F1G. 9

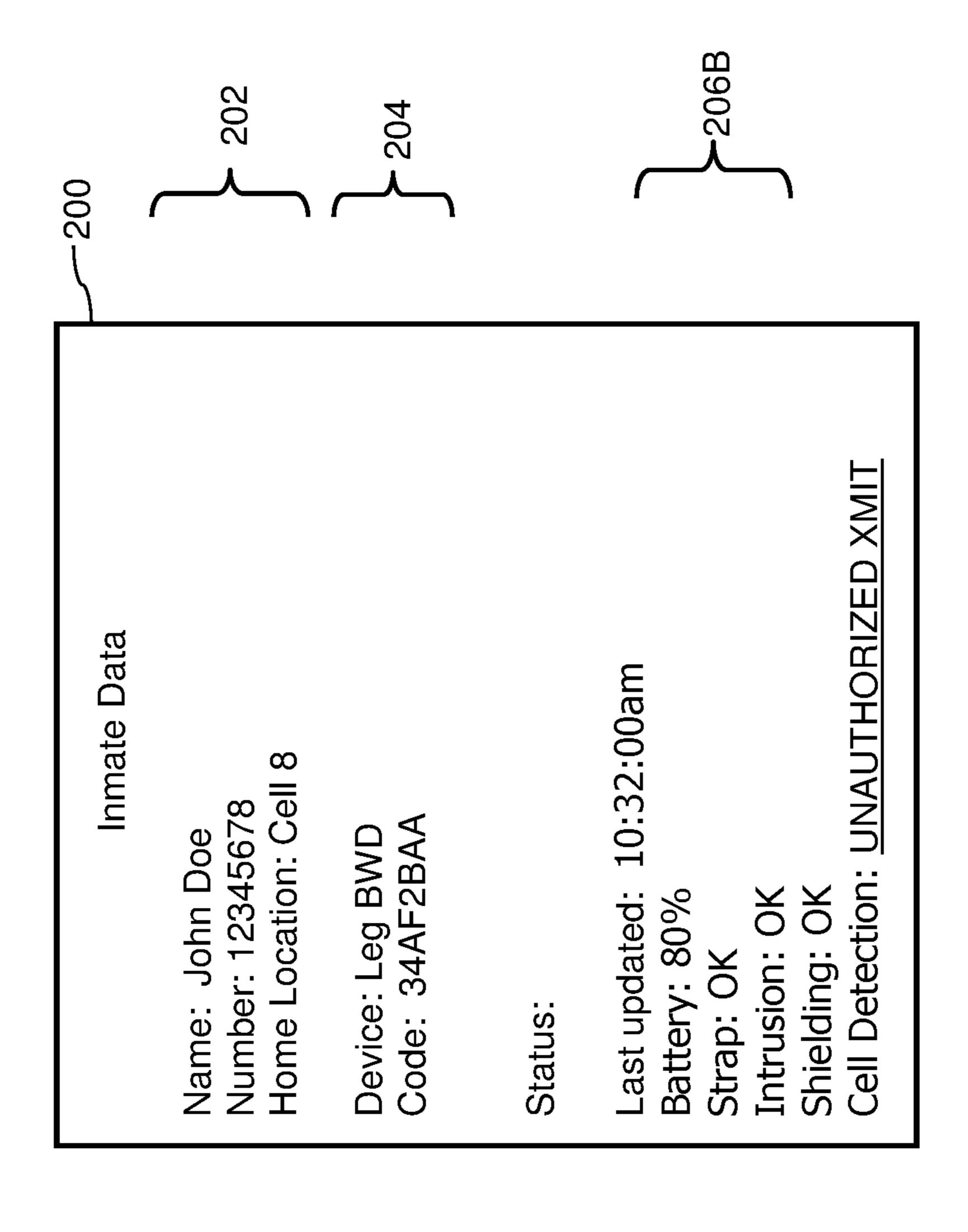
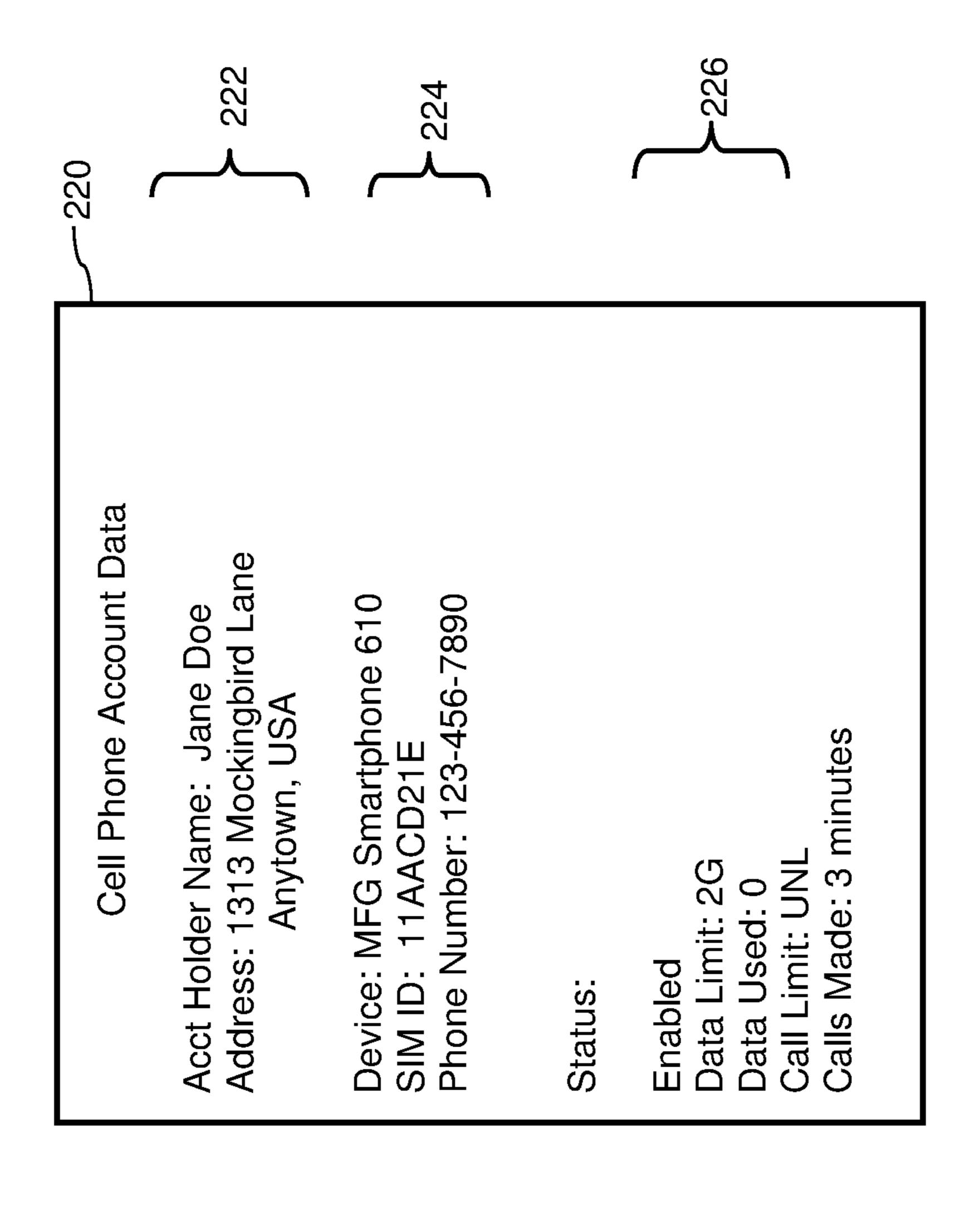
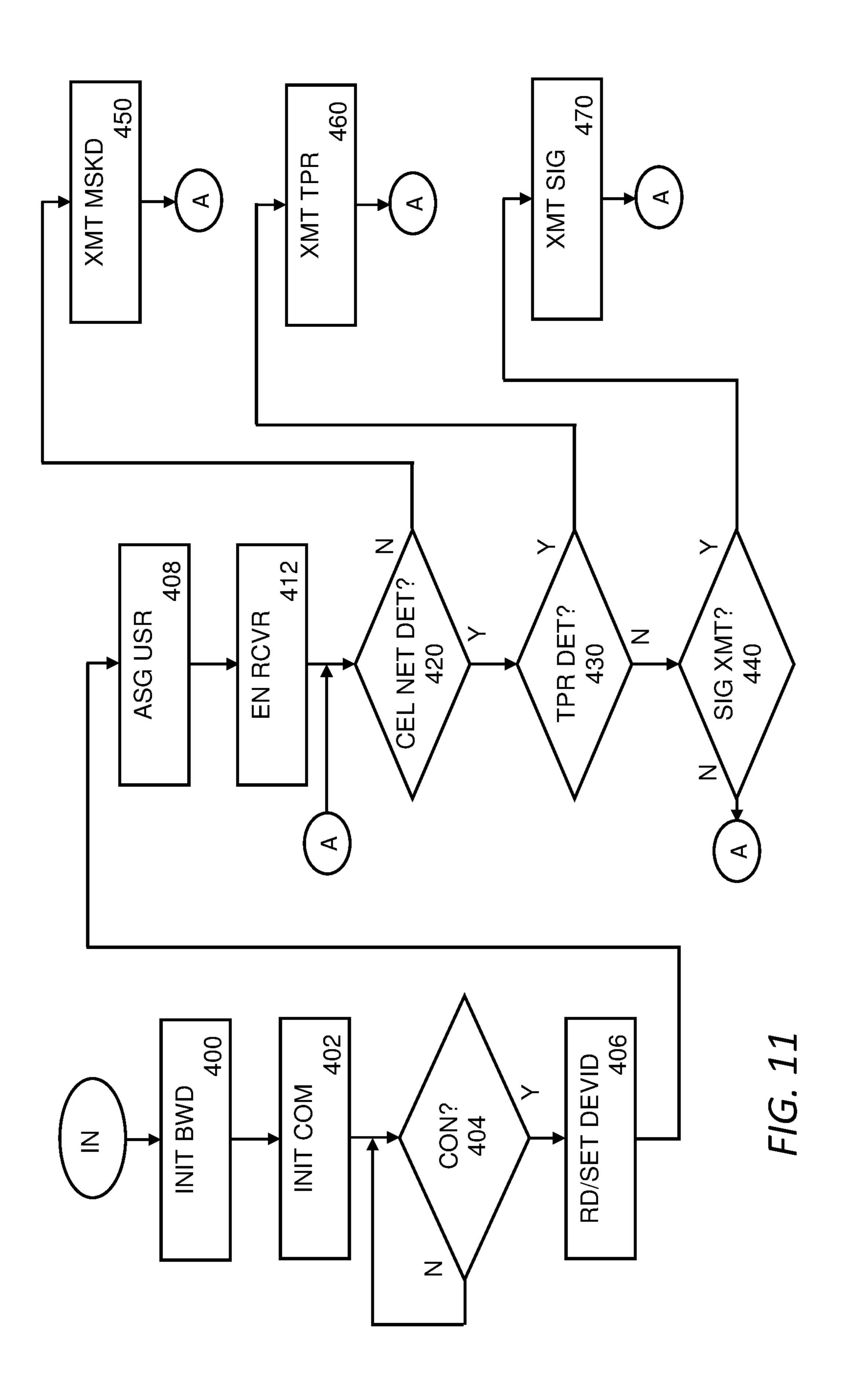
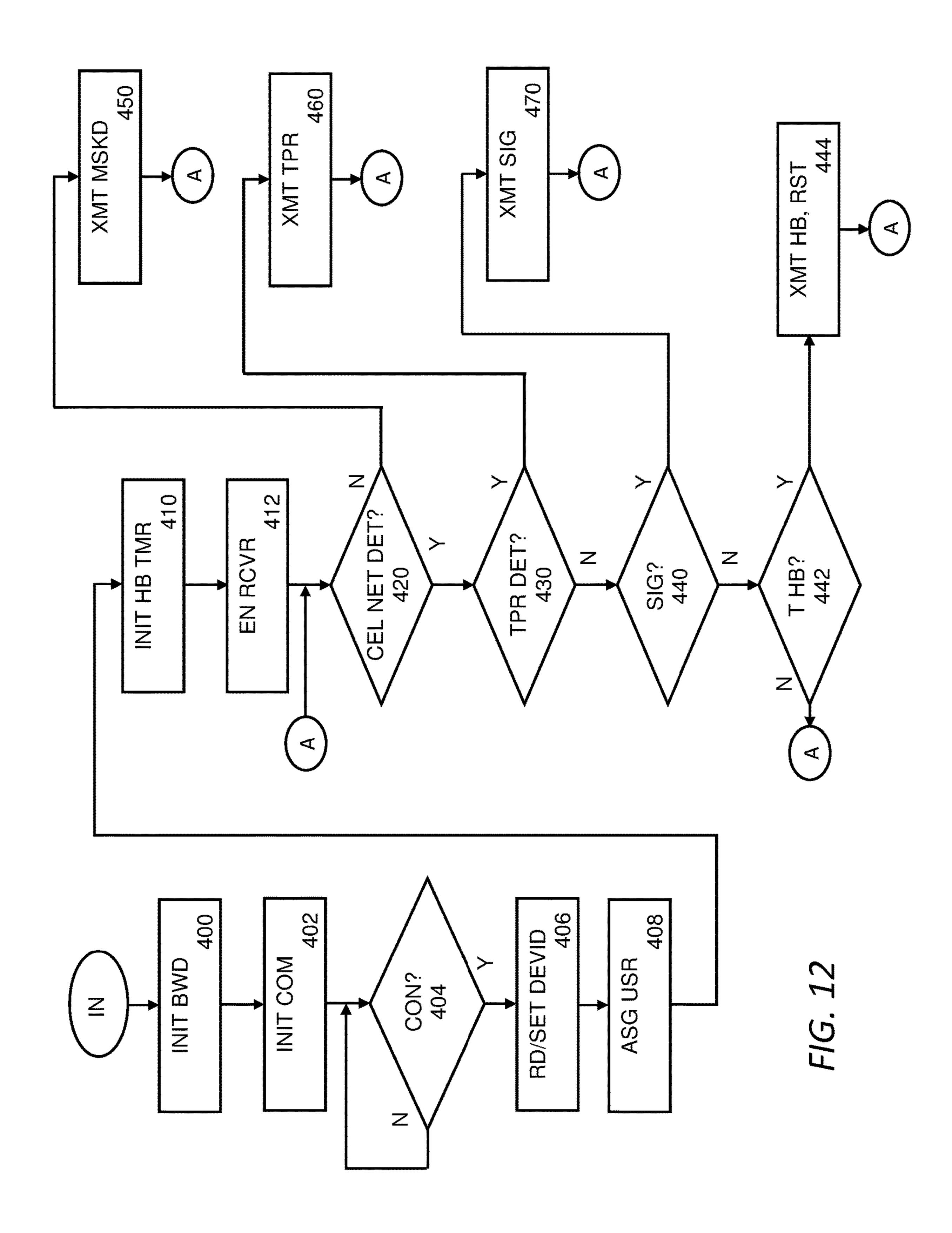
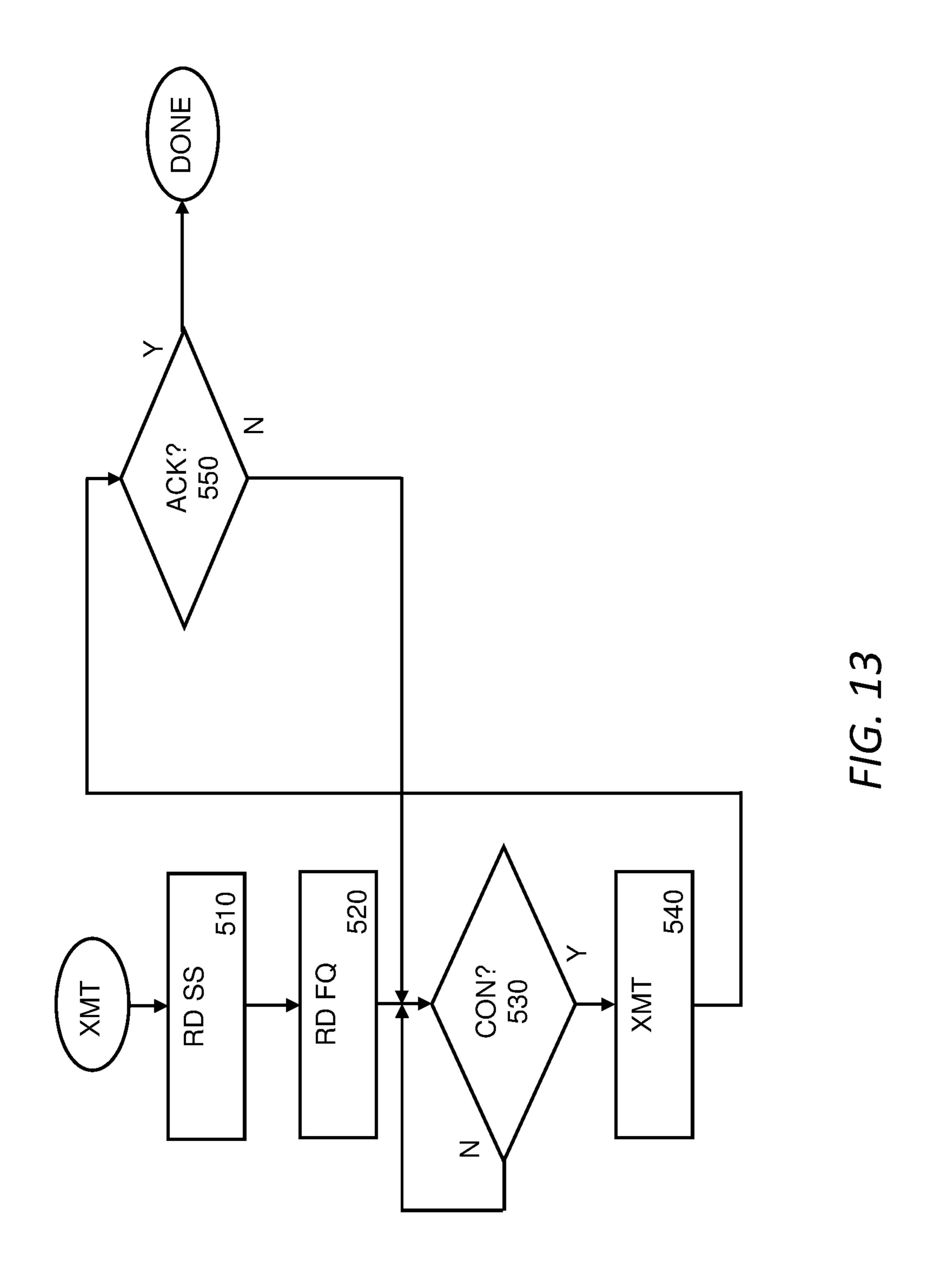
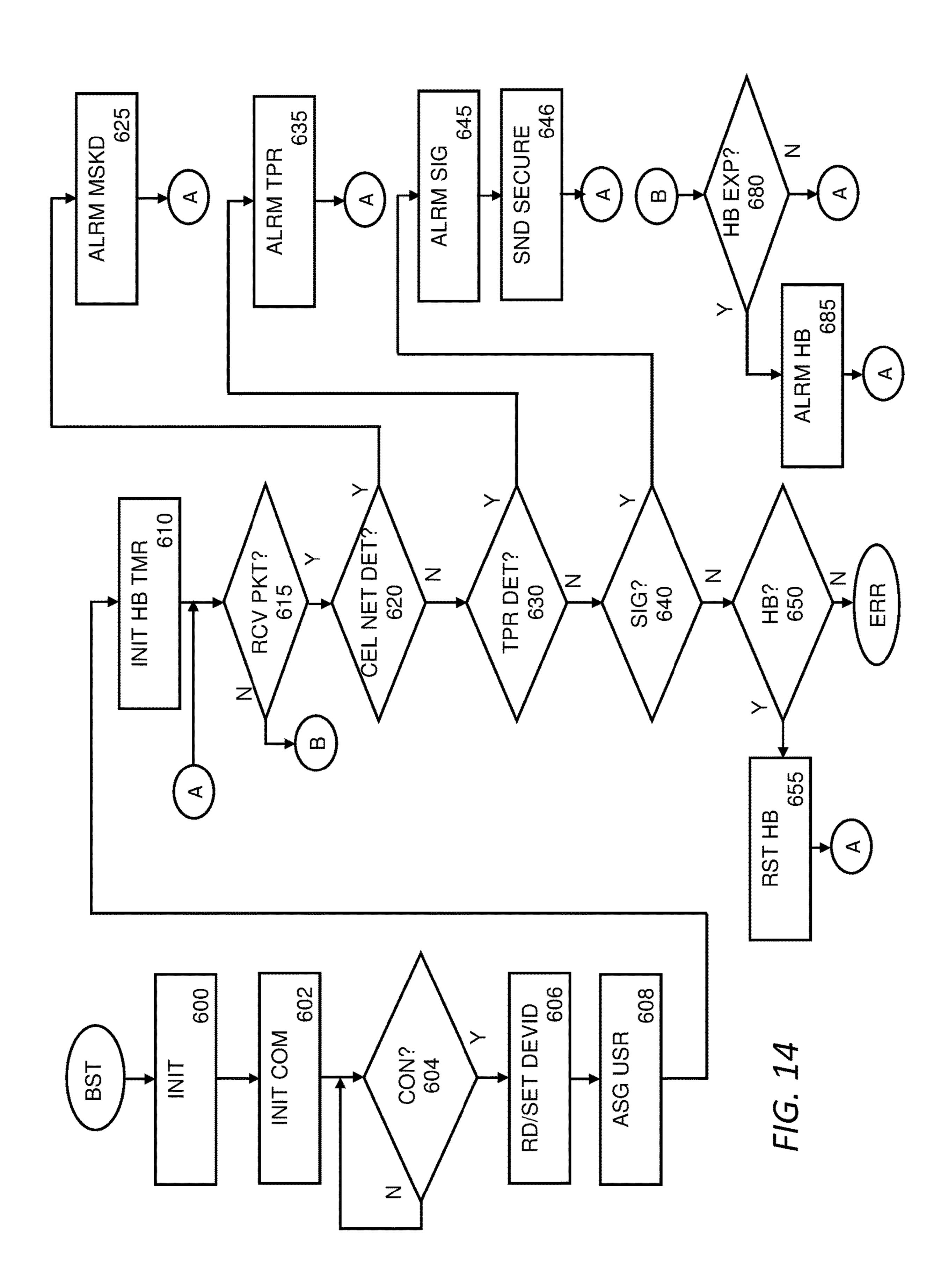
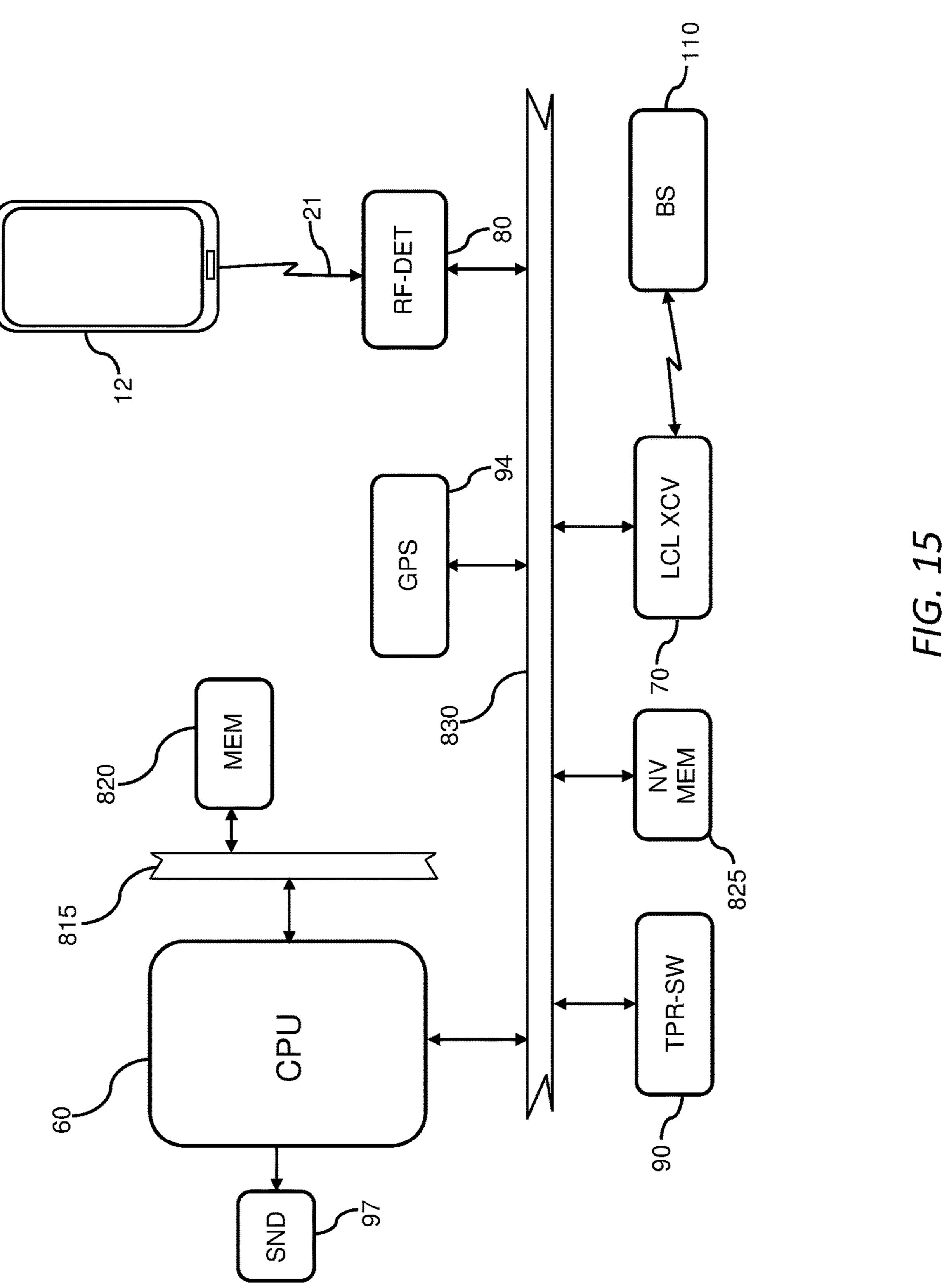
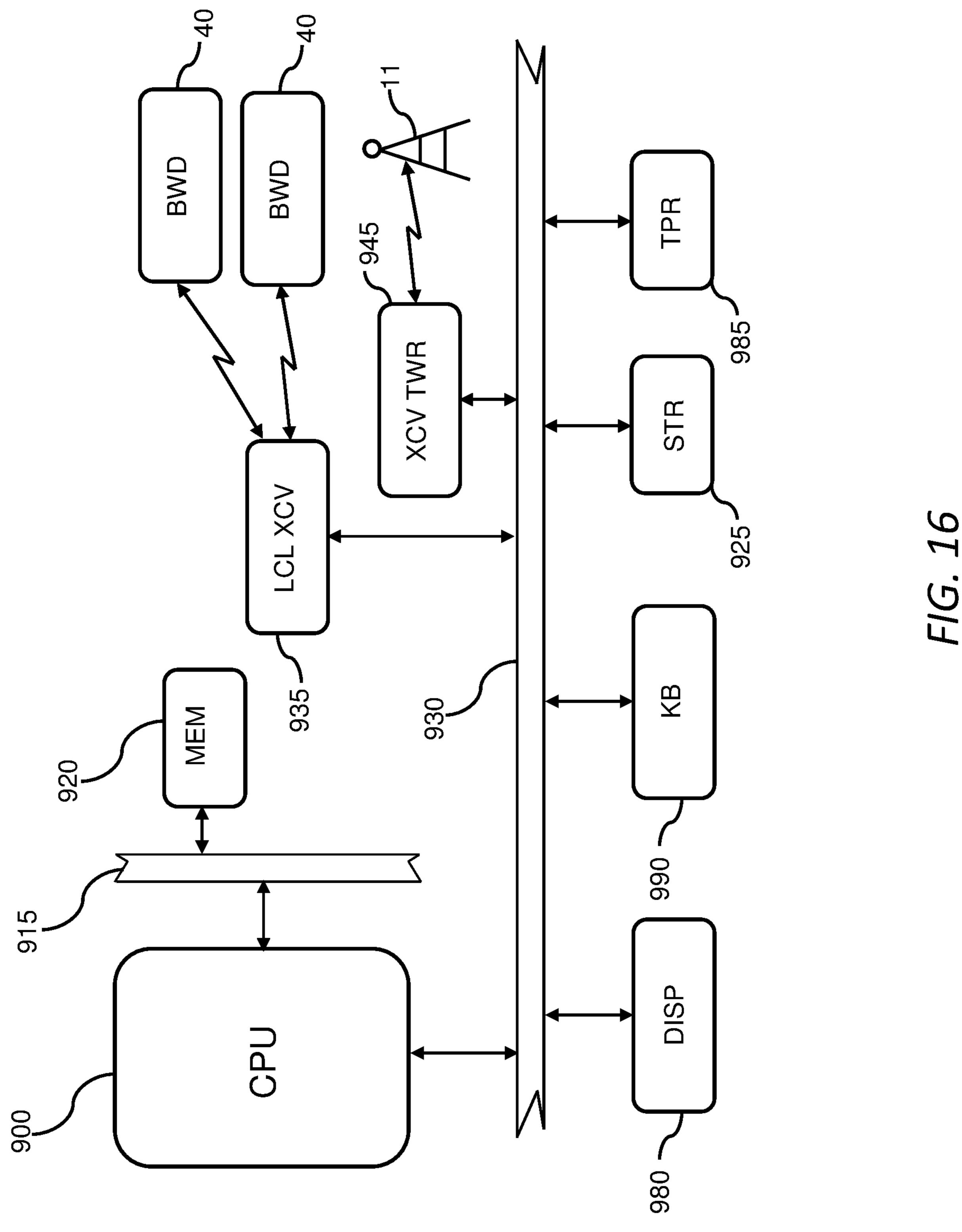
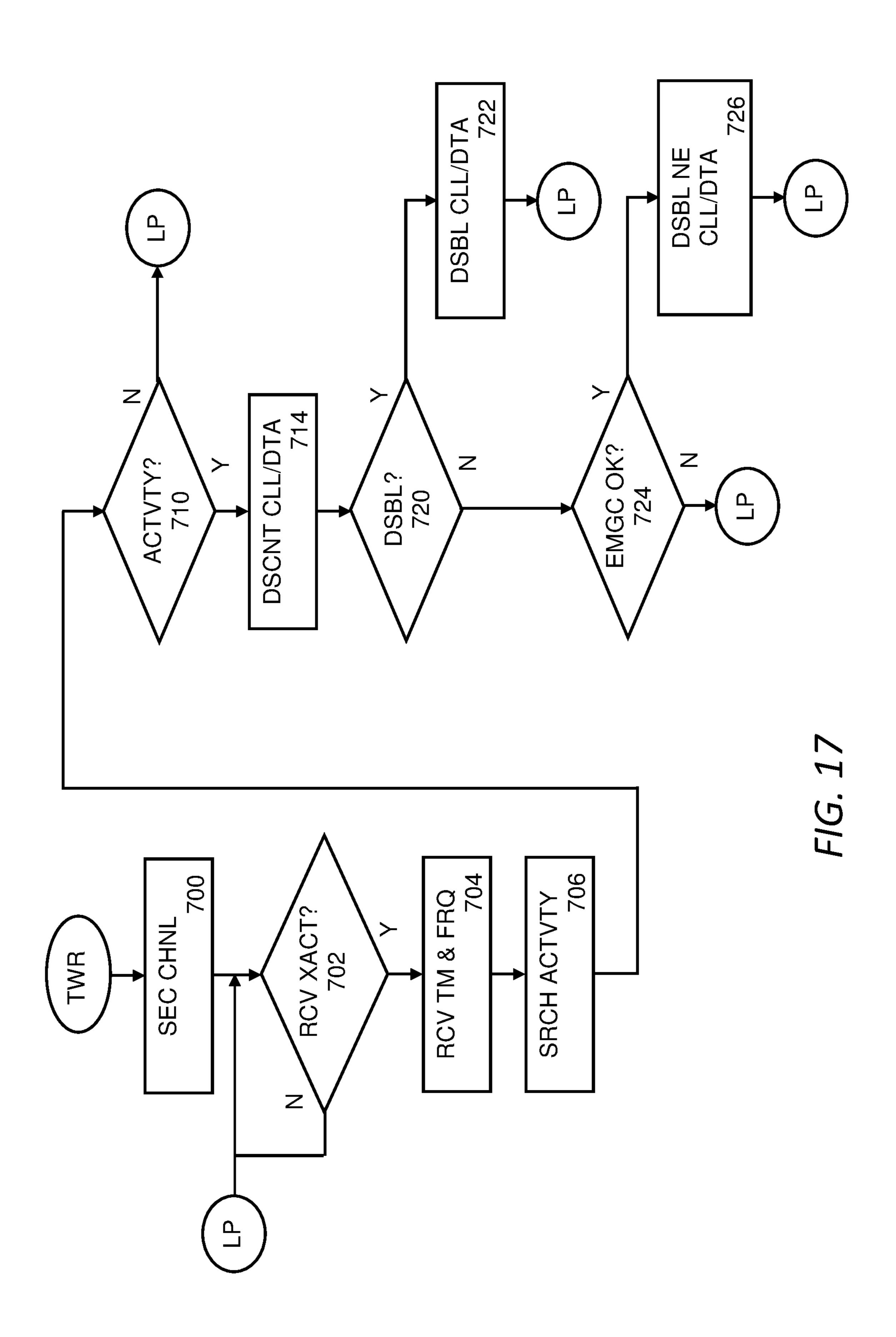


FIG. 10


FIG. 10A





SYSTEM, METHOD, AND APPARATUS FOR DETECTING AND PREVENTING WIRELESS CONNECTIONS

FIELD

This invention relates to the field of wireless and more particularly to a system for detecting a wireless device then requesting that the device be disconnected and disabled from a cellular tower.

BACKGROUND

There are many situations when it is either not desired or not legal to utilize certain types of wireless communications. 15 One good example is in the corrections environment, where the correctional institution forbids wireless communication by inmates because such communications are difficult or impossible to monitor and/or control. Law enforcement entities monitor telephone conversations conducted by 20 inmates within correctional facilities for various reasons. The telecommunications equipment available for use by inmates/detainees within the corrections environment meet various requirements of governments and police by allowing monitoring and/or recording of telephone conversations as 25 needed.

Cellular technology has progressed in form and size to a point that inmates in the corrections environment find ways to hide and smuggle cellular phones into corrections facilities. For example, some inmates have had cellular phones delivered by drones. These phones are then used by inmates to circumvent the required monitoring and/or recording and are often used to communicate amongst themselves to coordinate unauthorized or dangerous activities within the corrections facility.

In correctional facilities, inmates have a limit of a small number of individuals that the inmate is permitted to call by way of an approval process in which the inmate petitions for the ability to call, for example, a family member. The list of allowable contacts often includes family members, lawyers, 40 and certain friends. All such calls take place in a very controlled environment, facilitating monitoring and recording, as necessary and legal. Normally, inmates are not permitted to make calls to certain individuals such as judges, jury members, witnesses, known accomplices, etc., to pre- 45 vent harassing or other unwanted calls. Some correctional facilities also restrict the time of day and length of calls. Such monitoring is typically computer controlled at the correctional facility and/or at remote locations, at times, including human monitoring and/or control. Additionally, 50 certain laws and privacy norms prohibit recording of certain conversations such as conversations between an inmate and his/her attorney.

The penetration of communications capable devices such as cellular phones into many correctional facilities has 55 become alarming. Imagine the harm that results in a purported killer having a smuggled cellular phone and calling judges and jury members every night with threats against them and their families; or being able to continue with unlawful activity such as drug dealing through the use of a 60 cellular phone. Yet, cellular phones still find their way into such institutions and are well hidden. To avoid detection and to extend battery life, often the cellular phones are powered completely off when not in use, thereby not emitting any type of radio frequency signal until the inmate desires to 65 make a call or data connection. Such devices are so small that they are easily hidden and, because there is no radio

2

frequency emissions when powered off, such devices cannot be detected by radio frequency sweeps of the inmate areas (e.g. cells, common areas, etc.).

In the past, attempts at detecting cellular activity within correctional facilities typically consisted of fixed antenna systems, in which, antennas are strategically located throughout the correctional facility. In this, radio frequency bands used by cellular phones are monitored and detection of any transmission is reported to a central location. Such systems require an expensive, fixed infrastructure within the correctional facility and only determine that a cellular phone is in use, without being capable of pinpointing the actual user.

Other systems utilize one or more fixed antenna within the facility that terminate the unwanted cellular calls, acting as the cellular phone network, thereby making it difficult or impossible to initiate a call from a cellular phone within the facility. As with the prior attempts, this too does not pinpoint the actual inmate making the call. Furthermore, because signals from this system may extend beyond the prison walls, this system is capable of inadvertently blocking a valid call which could be disastrous if such a call was an emergency call. Tests have found that such blocking inadvertently captures cell phone signals from neighboring areas and cell phones in automobiles driving nearby, blocking innocent communications. There are also questions as to whether such a system would be approved for operation by government agencies such as the FCC in the United States. Similarly, jamming devices are available to prevent connections between these cellular phones and the cellular network/ towers, but it is also difficult to assure that such jamming devices will not interfere with legitimate calls, especially emergency calls and, again, there are questions related to approval by government agencies.

In the United States, the Federal Communications Commission controls usage of radio frequencies. In general, there are radio frequencies (or bands) that are licensed, military, police, unlicensed, etc. Each band has regulations as to who can emit radio frequencies in that band as well as how much power emission is allowed, etc. In general, the cellular bands are licensed to the cell carriers and only transmissions by devices provided or approved by the cell carriers are allowed to transmit radio frequencies in those licensed bands. This makes it difficult to get approval to perform any sort of jamming on these licensed bands, even within a correctional institution. Note that without changes in legislation, it is currently illegal in the United States to transmit a signal (especially a jamming signal) on licensed cellular bands.

Another prior attempt to find cellular phones includes portable detection devices that monitor and detect radio frequency emissions in the cellular range. Such devices have been found to be less reliable because, in a prison environment, often there is a tight inmate communication system (e.g. signaling by making certain noises, etc.) that alerts the inmate who is using the cellular phone that a guard is coming in sufficient time as to power down and/or hide the phone before the guard can pinpoint the radio frequency signal. The use of phone (electronics) sniffing dogs faces similar issues when used as the primary means of cell phone detection.

What is needed is a system that will detect and pinpoint radio frequency usage for locating and confiscating of unauthorized communications equipment; report any detected devices; and prevent connections and/or disable such devices from making a future connection.

SUMMARY

The basic system provides for radio frequency detection of a device within a specific range of a body worn device.

Upon detection of a targeted radio frequency signal, the body worn device communicates to an infrastructure (base station) to alert of the presence of the targeted radio frequency signal. In such, the user and/or location of the body worn device is/are revealed and the source of the radio 5 frequency signal is readily determined for confiscation of the offending device. The base station then communicates immediately with computers of the cellular providers and instruct them to disconnect and/or disables the offending device. In some embodiments, other features include locating/tracking of the body worn device (and wearer) detection of tampering with or removal of the body worn device, detection of cloaking of the body worn device (e.g. submerging in water or covering with aluminum foil, etc.), and various internal diagnostics.

Although there are many applications of the described body worn device(s), one exemplary use is within correctional facilities. As noted above, various communications devices are often smuggled into correctional facilities and are easily hidden. The use of such devices is not allowed, but 20 still happens. By equipping at least a subset of the inmate population with the disclosed body worn devices, the correctional facility staff is provided the ability to disable and locate any covered radio frequency emitting device within the correctional facility. Guards and staff are alerted when 25 the inmate wearing the body worn device or someone close to that inmate uses an offending wireless device, such as a cellular phone. Once alerted, the guards know the exact identification of the inmate and, therefore, the location of the illegal device enabling confiscation of the illegal device.

In one embodiment, a system for detecting and disabling radio frequency emitting devices is disclosed including at least one base station that has a processor and a base station transceiver that is operatively coupled to the base station processor. There are one or more body worn devices, each 35 having a processor, a transceiver operatively coupled to the processor, a radio frequency detector operatively coupled to the processor, and a source of power. When an offending device is present, software running on the processor of the body worn device communicates with the radio frequency 40 detector and, if a target radio frequency and/or protocol from the offending device is detected by the radio frequency detector (indicating an attempt by the offending device to register with a cell tower), the software initiates a communication from the transceiver to the base station transceiver 45 indicating that the target radio signal was detected. Upon receipt of the communication indicating that the target radio signal was detected at the base station transceiver, software running on the base station processor sends a secure transaction to a processor of the cellular carrier system; the secure 50 transaction including an indication of the target radio signal that was detected. Upon receipt of the communication indicating that the target radio signal was detected, software running on the processor of the cellular carrier system correlates a time and the target radio frequency with an 55 account of a cellular phone. account associated with a recent registration of the offending device and if the cellular carrier system correlates the time and target radio signal to the account associated with the recent registration, the software running on the processor of the cellular carrier system disconnects with the offending 60 device and disables the account associated with the offending device.

In another embodiment, a method of detecting and disabling offending devices is disclosed. The method includes (a) monitoring a predetermined radio frequency at a body 65 puter-based body worn device system. worn device. When the (b) offending device initializes and registers with a cell tower, it emits a predetermined radio

frequency and/or energy pattern. (c) After the predetermined radio signal is detected at the body worn device, a message is transmitted from a transmitter of the body worn device to a receiver of a base station. The message includes an identification of the body worn device and the predetermined radio frequency that was detected. (d) Responsive to receiving the message, the base station sends a secure transaction to a processor of the cellular carrier system, the secure transaction includes an indication of the predetermined radio frequency and/or timing information. (e) Responsive to receiving the secure transaction, the processor of the cellular carrier system correlates a time and the predetermined radio signal with an account associated with the registration of the offending device and if the processor of the cellular carrier system correlates the time and predetermined radio frequency to the account associated with the registration, in some embodiments, the software running on the processor of the cellular carrier system disconnects from the offending device and disables the account associated with the offending device. In some embodiments, the software running on the processor of the cellular carrier system legally records some or all of the data and/or communications before disconnecting from the offending device and disabling the account associated with the offending device.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be best understood by those having ordinary skill in the art by reference to the following detailed description when considered in conjunction with the accompanying drawings in which:

FIG. 1 illustrates a schematic view of a typical wireless communication system and body worn device.

FIG. 2 illustrates a block diagram of a body worn device.

FIG. 3 illustrates a block diagram of a second body worn device.

FIG. 4 illustrates a perspective view of an exemplary body worn device.

FIG. 5 illustrates a block diagram of communications used to initialize a body worn device.

FIG. 6 illustrates a block diagram of a body worn device detecting wireless activity.

FIG. 7 illustrates a block diagram of a body worn device detecting wireless activity and location derivation of the body worn device.

FIG. 8 illustrates an exemplary user interface showing the status of a body worn device.

FIG. 9 illustrates an exemplary user interface showing the status of a body worn device when the body worn device has been cloaked.

FIG. 10 illustrates an exemplary user interface showing the status of a body worn device upon detection of unauthorized communications.

FIG. 10A illustrates an exemplary account record of an

FIG. 11 illustrates a flow chart of an exemplary body worn device controller.

FIG. 12 illustrates a second flow chart of a second exemplary body worn device controller.

FIG. 13 illustrates a third flow chart of a typical transmission by a body worn device controller.

FIG. 14 illustrates a flow chart of an exemplary base station controller.

FIG. 15 illustrates a schematic view of a typical com-

FIG. 16 illustrates a schematic view of an exemplary system of a base station.

FIG. 17 illustrates a partial flow chart of an exemplary processor of a cellular carrier system.

DETAILED DESCRIPTION

Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Throughout the following detailed description, the same reference numerals refer to the same elements in all figures.

The described system pertains to a collection of hardware devices for monitoring the location and environment of any target person. Throughout this description, the target person is typically a detained person such as an inmate in a correctional facility, but there is no restriction to any particular type of target person, nor that the target be a human being, in that the described body worn device functions the same for any type of movable object. The described system is equally applicable to any other type of scenario. For example, the target person is a teen child and the body worn device is worn by the teen child to monitor, for example, cell phone usage while driving.

For simplicity purposes, the following description uses, as an example, the inmate as the target person. In general, depending upon security and policies at a prison, the popu- 25 lation (inmates) is not allowed to communicate with those inside or outside the prison without using approved forms of communication that are easily monitored by prison authorities. In such, the inmate population is not allowed to use pagers, cellular phones, cordless phones, wireless Internet 30 access, walkie-talkies, etc., to communicate with anybody, within or outside of the prison. Attempts to keep devices capable of such communications out of the hands of inmates has proved ineffective, in that inmates have long periods of time to think of ways to smuggle communications devices 35 into the prison and, to hide those devices once the devices are within the prison. This is further exacerbated by potential corruption within the prison staff and guards.

Jamming devices are well known in the industry. Typically, jamming devices emit random radio frequency noise, 40 random pulse, stepped tones, warbler tones, pulses, or sweep through a range of radio frequencies. Such radio frequency emissions in the proper bands are capable of jamming other radio frequency devices, such as cellular phones, Citizen Band (CB) devices, etc.

Some jamming devices recognize digital modulation techniques and, upon recognizing the presence of a cell-phone utilizing the digital modulation technique, such jamming devices continuously attempts to connect with the cellphone, aborting the connection before it is complete, 50 then starting over again.

As discussed above, the FCC does not readily permit unauthorized emission of radio frequency energy in certain licensed bands such as those used by cellphones, even in a prison environment. If such is permitted, then a jamming 55 signal can be used, but if not permitted, no jamming is allowed.

If jamming is allowed, the body worn device described will be able to emit jamming signals, but having limited power (e.g. from a rechargeable battery), reduction of power 60 consumption is critical. Therefore, continuous emission of a series of jamming signals is less desirable as such will consume too much of the precious battery power.

Throughout this description, a body worn device is used as an embodiment that is easy to understand and is understood in the field of law enforcement and corrections. There is no limitation placed upon the type of device that the

6

disclosed system for detecting and disabling radio frequency emitting devices be embodied, as it is fully anticipated that the disclosed system for detecting and disabling radio frequency emitting devices be embodied in stationary housings, both hidden or visible, such as wall-mounted devices, devices placed in drop ceilings, ceiling-mounted devices, devices mounted beneath tables, etc.

Throughout this description, the term cellular carrier system or cellular carrier refers to a collection of hardware and software that provides cellular phone service to a plurality of cellular phones and includes cell towers, computers, and software that operates the cell towers, maintains accounts for authorized cellular phones, connects cellular phones to each other and non-cellular phones, etc.

Referring to FIG. 1, a schematic view of a typical wireless communication system 5 is shown, in which a body worn device 40 is present. The overall structure, communication paths, and connection relationships shown are one example of a wireless communication system 5 and are not meant to limit this disclosure in any way. Many different organizations, protocols, operating frequencies (bands), and architectures are anticipated and all of which are included here within. The body worn device 40 is intended to operate with any known network, including the cellular network 10, for example, all known and future wireless networks or pointto-point systems. Wireless networks, are for example, the cellular phone network (e.g., GSM, 4G, 5G, CDMA, AMPS), wireless Internet (e.g. WiFi-802.11x), etc. Pointto-point systems include Bluetooth, citizen band radios, walkie-talkie radios, and any other licensed or unlicensed forms of wireless communications. These communication systems enable any number of devices 12/14/15 (e.g. cellular phones 12, personal computers 14, tablet computers 15) to communicate wirelessly with each other or through a network such as the cellular network 10 as shown. In the system shown in FIG. 1, devices 12/14/15 communicate with each other or to other devices (not shown; for example land-line phones), either through the cellular network 10 or directly between each other using, for example, a point-topoint protocol such as Bluetooth. As known in the industry, the cellular network 10 often consists of one or more devices such as cellular towers, repeaters, wireless network adapters, etc., which are not shown in FIG. 1 for brevity reasons.

Throughout this description, a cellular network 10 is used as an example, though this example is not to be interpreted as limiting in any way. In the example of the cellular network 10, each device 12/14/15 communicates with cellular towers utilizing a pre-defined protocol and a predefined frequency or set of frequencies. As known in the industry, cellular networks 10 are assigned a set of frequencies in which they are allowed to operate (in the US the assignment is made by the Federal Communications Commission or FCC), and, depending upon the protocol, the frequencies are allocated for certain parts of the protocol such as signaling (e.g. indicating the desire to make a connection), voice communications, data communications, etc. It is also known, based upon the protocol, how to process/avoid collisions (e.g. two cellular phones 12 attempt to initiate a call at the same time), how to handle varying distances from the cellular towers (e.g. measuring signal strength and signaling a request for increases or decreases in power output), and how to hand off a cellular phone call from one cellular tower to the next, etc.

Throughout this description, a single device 12/14/15 is used for clarity and brevity reasons, that being called the offending device 12 which, is by example, a cell phone, though the present invention is in no way limited to detect-

ing and thwarting cell phones, as any device capable of communicating wirelessly is anticipated including, but not limited to any type of cell phone 12, personal computers 14, tablet computers 15, smart watches, smart televisions, etc.

Whatever the wireless communication technology is 5 being used, every device 12/14/15 must, at some time, emit a radio frequency signal 20/21 that is then received by one or more receivers within the cellular network 10 (e.g. cell towers). Although it is desired to communicate such radio frequency signals 20/21 directionally to a remote entity (e.g. cell tower) within the cellular network 10 (or other device in a point-to-point system), the laws of physics do not cooperate and the radio frequency signal 20 radiates in multiple directions from an antenna, the antenna being associated with (internal, external, or connected) the transmitting 15 device (e.g. devices 12/14/15. For example, when an offending device 12 (e.g. cell phone) initializes, the offending device 12 communicates with the cellular network 10 to register with the cellular carrier system 11, some portion of the radio frequency signal 21 reaches an antenna 82/82A 20 (see FIG. 2) within the body worn device 40. Likewise, when the cellular network 10 communicates to the offending device 12, some portion of the radio frequency signal 23 also reaches the antenna 82/82A within the body worn device 40. In this way, the body worn device 40 receives some portion 25 of the radio frequency energy emitted from any devices 12/14/15 or cellular network 10 that is within range (e.g. the signal strength of the radio frequency is sufficient for the body worn device to detect that signal).

Within the body worn device 40 is circuitry 50/50A (see 30 FIGS. 2 and 3) that implements the various features of the body worn device 40, including some or all of radio frequency detection, communications with a base station 110, tamper detection, positioning, and powering of the above.

Referring to FIG. 2, a block diagram of the circuitry 50 of 35 the body worn device 40 is shown. The various communications paths 62/63/64/65/66/67 are examples and any number, type, and directionality of communications paths that are anticipated to accomplish the functionality described here within. In some embodiments, a bus architecture is used 40 to implement the communications paths 62/63/64/65/66/67, while in other embodiments, direct connections, serial links, input output pins/ports, etc., are used to signal between the various subsystems 60/70/80/90 as known in the industry.

The circuitry 50 of the body worn device 40 includes a 45 source of power 98. It is well known how to power such devices ranging from miniature body worn devices such as watches to more complicated devices that are often specialized worn devices such as house-arrest tracking devices. Any source(s) of power are anticipated, including, but not 50 limited to, batteries, rechargeable batteries, solar cells, radio frequency parasitic extraction, capacitors, super capacitors, fuel cells, etc., including combinations of such. The source of power 98 includes circuitry to condition and regulate the power which is then distributed to the various subsystems 55 60/70/80/90 by power distribution 99 which are any known conductors as used in the industry, including, but not limited to, wires, printed circuit paths, etc. In some embodiments, the source of power 98 further includes circuitry to control charging as well as a connection or interface to a source of 60 charging power (e.g. a wall-wart, base station, etc.).

In this example, two radio frequency receiver/detection circuits 80/80A are shown interfaced to the processor 60, though any number of radio frequency receiver/detection circuits 80/80A is anticipated, including one. The processor 65 controls the operation of the radio frequency receiver/detection circuits 80/80A by sending commands 65 to the

8

radio frequency receiver/detection circuits 80/80A and receiving status and data back 66 in a similar manner (e.g. signal frequency, signal strength, signal content). The radio frequency receiver/detection circuits 80/80A include one or more antenna 82/82A as needed, either internal or external to an enclosure 41 of the body worn device 40 (see FIG. 4). Again, although, for completeness, two radio frequency receiver/detection circuits 80/80A are shown, each detecting a specific frequency range or band of radio frequency energy, any number of radio frequency receiver/detection circuits 80/80A are anticipated (including a single radio frequency receiver/detection circuit 80), each having as many antenna 82/82A as needed to properly detect the targeted radio frequency or radio frequency spectrum. For example, in some embodiments, there is a single radio frequency receiver/detection circuit 80 having a single antenna 82. In another exemplary embodiment, there is a single radio frequency receiver/detection circuit 80 having two antennas 82/82A which are switched or mixed as known in the industry. In another exemplary embodiment, there are two radio frequency receiver/detection circuits 80/80A, each having one antenna 82/82A. Again, any number of radio frequency receiver/detection circuits 80/80A with any number of antenna 82/82A are anticipated with any type of antenna 82/82A.

In some embodiments, the radio frequency receiver/detection circuits 80/80A operate independently of the processor 60, notifying the processor 60 of the detection of any of the targeted radio frequencies (e.g. cellular band frequencies, etc.). In some embodiments, the processor 60 performs some of the radio frequency detection, such as setting or sweeping the detection frequency and comparing the received radio frequency power levels at each frequency to a predetermined acceptable value. For example, the processor 60 instructs the first radio frequency receiver/detection circuit **80** to monitor three specific frequencies, such as 900 MHz, 1.8 GHz and 1.9 Ghz, and then reads back a signal strength from the radio frequency receiver/detection circuit 80, comparing the signal strength to an internal threshold, signaling an alert if the threshold is exceeded. There are many divisions of the detection functionality anticipated and the disclosed system is not limited in any way to any particular implementation of the disclosed functionality. In some embodiments, there is a threshold for each frequency or range of frequencies; while in other embodiments there is a single threshold that applies to all frequencies. In some embodiments, the radio frequency receiver/detection circuits 80/80A analyze the radio frequency signatures to determine the type of signal in addition to the signal strength (e.g. is it a random radio frequency signal or is it encoded with cellular packets?).

The tamper detection subsystem 90 is also interfaced to the processor 60. The processor 60 controls the operation of the tamper detection subsystem 90 by sending commands and/or signals to the tamper detection subsystem 90 and receiving status and data back in a similar manner 67 (e.g. "intact" or "device removed from body," etc.). It is anticipated that the body worn device 40 is issued to a particular individual (e.g. inmate) and is locked onto that person by, for example, a leg cuff, arm cuff, neck cuff, belt, etc. Although the body worn device 40 is secured to the person and not easily removed, it is important that any tampering with the body worn device 40 be detected (and reported). There are many methods of detecting tampering or removal of a body worn device 40 known in the industry, all of which are anticipated and included here within. For example, in some embodiments, a conduction path fully encircles the body

appendage to which the body worn device 40 is attached such that, if the enclosure 41 (see FIG. 4) is cut, the circuit opens and the open circuit is detected by the tamper detection subsystem 90. This is a somewhat simple method that is used as an example; in that, a clever person can expose the conductor in two locations, attach an end of a wire to the conductor in each location, then cut through the strap in between the two locations without detection. In some embodiments, more elaborate measurements are used to detect the added resistance (or change in resistance) of the 10 external wire. In some embodiments, an optical light pipe connected at both ends to the body worn device 40 encircles the appendage and a particular wavelength(s) of light or an encoded light wave signal is emitted into one end of the light 15 pipe. If the signal is detected at the other end, then it is believed that no tampering has occurred, but if the signal is not detected, then tampering is detected and an appropriate alert is transmitted as will be described. There are many types of tamper detection devices anticipated including the 20 above and/or any other type of tamper detection including, but not limited to, motion sensors and accelerometers (e.g. if no movement is detected for a long period of time it is assumed that the body worn device 40 has been removed from the body).

In some embodiments, the tamper detection subsystem 90 also includes intrusion detection to determine if the enclosure 41 (see FIG. 4) around the electronics has been penetrated. Again, there are many ways to detect such intrusion as known in the industry, all of which are included here within. For example, a simple method includes a micro switch that detects opening of a cover of the enclosure, or the detection of light within the enclosure 41 (see FIG. 4). Normally, there is no light being that the enclosure 41 is made of a non-light transmitting material and completely sealed with no openings, but when the enclosure 41 is compromised, light is allowed to enter the enclosure 41 and triggers the tamper detection subsystem 90. In other embodiments, there is an internal detector that detects one or more 40 materials or physical state normally present in the atmosphere (e.g. change in pressure, humidity, oxygen, nitrogen, etc.) and the enclosure 41 is either evacuated or filled with some other gas (e.g. helium). In this, normally, the detector measures presence or absence of the material, but when the 45 enclosure 41 is cut, atmosphere enters the housing, the gain or loss of the material is detected, and the tamper detection subsystem **90** is triggered.

In some embodiments, the circuitry **50** of the body worn device 40 communicates with the land based system (e.g. base stations 110) through a wireless transceiver 70, preferably having an antenna 74, though in some embodiments, the wireless transceiver 70 utilizes the antenna 82 used in radio frequency detection, for example, using a splitter or antenna switch (not shown). The wireless transceiver 70 is 55 interfaced to the processor 60 and the processor 60 communicates with and controls the operation of the wireless transceiver 70 by sending commands 62 and data 63 to the wireless transceiver 70 and receiving status and data back in a similar manner. Because such transceivers often consume 60 significant power, in some embodiments, the processor 60 has an enable interface 64 to power down the wireless transceiver 70 (or any other subsystem) when not in use. Any appropriate signaling protocol is anticipated, as transmission collisions with other body worn devices 40, lost 65 packets, out-of-order packets, noise, etc., must be overcome. The data and signaling is modulated onto a radio frequency

10

using any modulation format such as frequency modulation, amplitude modulation, pulse code modulation, pulse width modulation, etc.

It is anticipated that the wireless transceiver 70 be any type of transceiver, operating over any known frequency or group of frequencies, any known power level(s), and either half-duplex or full-duplex. When the wireless transceiver 70 is half-duplex, the processor 60 controls whether the wireless transceiver 70 is receiving or it is transmitting by a mode control 62.

Data is transferred between the processor 60 and the wireless transceiver 70 in any way known in the industry including, but not limited to, shared memory (not shown), serial transfer, parallel transfer, any combination, etc. In some embodiments, though not required, data from the processor 60 is encrypted before transmission. In such, the data is either encrypted by instructions running on the processor 60, or, in some embodiments, by an encryption module 72 within or external to the wireless transceiver 70. Also, in a preferred embodiment, though not required, data from the base station 110 (see FIG. 6) is encrypted before transmission. In such, the encrypted data is received by the wireless transceiver 70, and then the encrypted data is either decrypted by instructions running on the processor **60**, or, in some embodiments, by the hardware encryption module 72 within or external to the wireless transceiver 70.

Any band, frequency, wavelength, set of wavelengths, protocols, protocol stacks are anticipated for use by the wireless transceiver 70 (and base station transceiver 935 in FIG. 16). There are many protocols and protocol options that provide various transmission capabilities to improve reliability of communications, reduction or elimination of transmission errors, and/or efficiencies in both spectrum usage as 35 well as power consumption. For example, especially in systems that include heartbeat transmissions, it is known to provide each body worn device 40 with a predetermined back-off period or, instead, a random back-off period is created by the processor 60 such that timing of transmissions are controlled to reduce collisions between multiple body worn devices 40. In such, for example, if there are 600 body worn devices 40 and each emits a heartbeat every hour, it is preferred that the heartbeat transmissions are distributed either sequentially or randomly over that hour, such that, for example, during any given minute, 10 of these body worn devices 40 transmit heartbeats and, preferably, these 10 transmissions are distributed either sequentially or randomly over that minute, to further reduce collisions.

In some embodiments, a piezoelectric or other sound emitting device 97 is included. In some such embodiments, the sound emitting device 97 emits a sound as an audible alert when an event such as tampering or a targeted RF signal is detected. The audible alert from the sound emitting device is used to augment the wireless delivery of the alert information or as an alternative. For example, if a wireless communication fails, the audible alert is initiated.

In some embodiments, a clock or timekeeper 59 is included, either as a subsystem of the processor 60 or a separate, discrete timing device that is interface to the processor 60. In such embodiments, the body worn device 40 has the ability to record the time and/or date of any event and to transmit the time and/or date to the base station 110 along with any alert and/or heartbeat transmission.

After the processor 60 detects an offending radio frequency signal (e.g. after the processor 60 receives indication of a specific signal strength of a specific wavelength and optionally a specific protocol packet from one of the radio

frequency receiver/detection circuits 80/80A), the processor initiates a transaction from the wireless transceiver 70 to the base station 110.

Although jamming of the transmission is possible and desirable, laws in certain countries do not allow emission of 5 radio frequency signals on certain bands without proper licenses. As the offending device 12 is likely initiating communications with a cellular carrier system 11 (see FIG. 6), a different approach is taken other than jamming.

For covert operations (e.g. as done in prisons), the offending devices 12 are often turned completely off when not attempting a call so as not to be detectable by radio frequency sniffers, etc. Therefore, once the offending device 12 is turned on, the offending device 12 attempts to register with a cell tower by emitting a relatively high power radio 15 frequency signal at a specific frequency (with the requisite protocol). After the processor 60 detects this specific radio frequency signal (and possibly a specific protocol), the processor 60 initiates a transaction from the wireless transceiver 70 to the base station 110, including the specific 20 frequency of the radio frequency signal. The base station 110 immediately sends a secure transaction to the cellular carrier system 11, including the specific frequency. As the cellular carrier system 11 has knowledge of which devices are initializing at what time, the cellular carrier system 11 25 correlates the specific frequency of the attempt to register the offending device 12 with the cellular carrier system 11. Now the cellular carrier system 11 takes an agreed upon action to thwart the offending device's 12 attempt to register and send data or make a phone call by, for example, 30 disconnecting from the offending device 12, disabling certain features for the offending device 12 (e.g., disabling data transmission, disabling calls, disabling calls except for emergency calls). The net results is the offending device 12 is unable to send/receive data and unable to make illegal 35 phone calls. Further, as each offending device 12 is provisioned by a cellular company (e.g. has an account), it is anticipated that further steps be taken to lock the account, and in some embodiments, details of the account holder are provided to law enforcement personnel (e.g. under a sub- 40 poena) to determine what party is registering the offending devices 12.

Referring to FIG. 3, a block diagram of a second exemplary circuit 50A of the body worn device 40 is shown that includes Global Positioning. The various communications 45 paths 62/63/64/65/66/67/68/69 are examples and any number, type, and directionality of communications paths are anticipated to accomplish the functionality described here within. In some embodiments, a bus architecture is used to implement the communications paths 62/63/64/65/66/67/68/50, while in other embodiments, direct connections, serial links, input output pins/ports, etc., are used to signal between the various subsystems 60/70/80/90/94.

The second exemplary circuit **50**A of the body worn device **40** includes a source of power **98**. It is well known bow to power such devices ranging from simple body worn devices such as watches to more complicated devices that are often body worn such as cellular phones, to specialized worn devices such as house-arrest tracking devices. Any source(s) of power are anticipated, including, but not limited to, batteries, rechargeable batteries, solar cells, radio frequency parasitic extraction, capacitors, super capacitors, fuel cells, etc., including combinations of such. The source of power **98** includes circuitry to condition and regulate the power which is then distributed to the various subsystems for through the detection.

In some worn devices that are often body worn devices that are often body worn such as cellular phones, to specialized the device industry for and mechanical samples body worn devices that are often body worn such as cellular phones, to specialized the device industry for and mechanical samples body worn devices that are often body worn devices. Any source(s) of power are anticipated, including, but not limited and mechanical samples body worn devices that are often body worn devices that are often body worn devices. Any source(s) of power are anticipated, including, but not limited and mechanical samples body worn devices that are often body worn devices that are often body worn devices. Any source(s) of power are anticipated, including, but not limited and mechanical samples body worn devices that are often body worn devices that are often body worn devices. Any source(s) of power are anticipated, including of the devices and mechanical samples body worn devices. Any source(s) of power are anticipated, including of the devices and mechanical samples body worn devices. Any source(s) of power are anticipated, including of the devices and mechanical samples body worn devices. Any source(s) of power are anticipated, including of the device and mechanical samples body worn devices.

12

including, but not limited to, wires, printed circuit paths, etc. In some embodiments, the source of power 98 further includes circuitry to control charging as well as a connection or interface to a source of charging power.

The radio frequency receiver/detection circuits 80/80A are interfaced to the processor 60. The processor controls the operation of the radio frequency receiver/detection circuit 80/80A by sending commands 65 to the radio frequency receiver/detection circuits 80/80A and receiving status and data back 66 in a similar manner (e.g. signal frequency and strength). The radio frequency receiver/detection circuits 80/80A include one or more antenna 82/82A as needed, either internal or external to an enclosure 41 (see FIG. 4) of the body worn device 40. Although, for completeness, two radio frequency receiver/detection circuits 80/80A are shown, each detecting a specific frequency range or band of radio frequency energy, any number of radio frequency receiver/detection circuits 80/80A are anticipated, each having as many antenna 82/82A as needed to properly receive and detect the targeted radio frequency or radio frequency spectrum. For example, in some embodiments, there is a single radio frequency receiver/detection circuit 80 having a single antenna 82. In another exemplary embodiment, there is a single radio frequency receiver/detection circuit 80 having two antennas 82/82A which are switched or mixed as known in the industry. In another exemplary embodiment, there are two radio frequency receiver/detection circuits 80/82, each having one antenna 82/82A. Again, any number of radio frequency receiver/detection circuits 80/82 with any number of antenna 82/82A are anticipated with any type of antenna.

The tamper detection subsystem 90 is also interfaced to the processor 60. The processor 60 controls the operation of the tamper detection subsystem 90 by sending commands and/or signals to the tamper detection subsystem 90 and receiving status and data back in a similar manner 67 (e.g. intact or "device removed from body," etc.). It is anticipated that the body worn device 40 is issued to a particular individual (e.g. inmate) and is to be locked onto that person by, for example, a leg cuff, arm cuff, neck cuff, belt, etc. Although the body worn device 40 is secured to the person and not easily removed, it is important that any tampering with the body worn device **40** be detected. There are many methods of detecting tampering or removal of a body worn device 40 known in the industry, all of which are anticipated and included here within. For example, in some embodiments, a conduction path fully encircles the body appendage to which the body worn device 40 is attached such that, if the strap 42 (see FIG. 4) is cut, the circuit opens and is detected by the tamper detection subsystem 90. This is a somewhat simple method that is used as an example; in that, a clever person can expose the conductor in two locations, attach ends of a wire to the conductor in each location, then cut through the strap 42 in between the two locations without

In some embodiments, a method of determining the body worn device's proximity to the body is used to determine if the device has been removed. Some methods known in the industry for detecting proximity include continuity sensors and mechanical switches that determine if the device is no longer in contact with the body. Such continuity sensors and mechanical switches are prone to false positives and nuisance alerts and can be defeated more easily than other methods.

In some embodiments, measurements are used to detect the added resistance (or change in resistance) of the external wire. In some embodiments, an optical light pipe embedded

in a strap encircles the body part to which the body worn device 40 is attached and a specific wavelength an encoded light wave signal is emitted or periodically emitted into one end of the light pipe. If the same signal is detected at the other end, then it is believed that no tampering has been 5 done, but if the signal is not detected, then tampering is detected.

In some embodiments, the tamper detection subsystem 90 also includes intrusion detection to determine if the enclosure 41 around the electronics has been penetrated. Again, there are many ways to detect such intrusion as known in the industry, all of which are included here within. For example, a simple method includes the detection of light within the enclosure 41. Normally, there is no light being that the enclosure 41 is completely sealed with no openings, but when the enclosure 41 is penetrated, light is allowed to enter and triggers the tamper detection subsystem 90. In other embodiments, there is an internal detector that detects one or more materials or physics typically present in the atmo- 20 sphere (e.g., atmospheric pressure, humidity, oxygen, nitrogen, etc.) and the enclosure 41 is either evacuated or filled with some other gas (e.g. helium). In this, normally, the detector measures little or no presence of the material, but when the enclosure 41 is cut, atmosphere enters the enclosure 41, the material is detected, and the tamper detection subsystem 90 is triggered.

There are many tamper detection mechanisms known in the industry, all of which are anticipated for use with the body worn device **40**. Further examples include the use of a 30 motion sensor or accelerometer to determine if the device experiences long periods of time with no motion, indicating that the device has been removed and has been placed somewhere in a static mode.

nicates with the land based system (e.g. base stations 110) through a wireless transmitter or wireless transceiver 70, preferably a transceiver having an antenna 74, though in some embodiments, the wireless transmitter or wireless transceiver 70 utilizes the antenna 82 used in radio fre- 40 quency detection through, for example, a splitter or antenna switch (not shown). The wireless transmitter or wireless transceiver 70 is interfaced to the processor 60 and the processor 60 communicates with and controls the operation of the wireless interface and wireless transmitter or wireless 45 transceiver 70 by sending commands 62 and data 63 to the wireless transmitter or wireless transceiver 70 and receiving status and data back in a similar manner. Because such transceivers often consume significant power, in some embodiments, the processor 60 has an enable interface 64 to 50 power down the wireless transmitter or wireless transceiver 70 (or any other subsystem such as the positioning subsystem 94) when not in use.

Throughout this description, the wireless transmitter or wireless transceiver 70 is the preferred form of communi- 55 cations with the base station 110. The wireless transmitter or wireless transceiver 70 transmits a wireless signal to the base station and (for transceivers) receives a wireless signal back, either on the same band/wavelength/frequency or a different band/wave/frequency utilizing any protocol or 60 stack of protocols. For example, if a signal/message from the wireless transmitter or wireless transceiver 70 of the body worn device 40 is not received and acknowledged by the base station transceiver 935 (see FIG. 16) within a protocol timeout period or if it is received with errors and negatively 65 acknowledged, the signal/message is retransmitted. In some embodiments in which the wireless transmitter or wireless

14

transceiver 70 is a transmit-only device, there is no acknowledgement possible and no mechanism to determine if the transmission succeeded.

It is anticipated that the wireless transceiver 70 be any type of transceiver, operating over any known frequency or group of frequencies, using any known modulation technique, at any known power level(s), and either half-duplex or full-duplex. When the wireless transceiver 70 is halfduplex, the processor 60 controls whether the transceiver is receiving or it is transmitting by a mode control 62.

Data is transferred between the processor 60 and the wireless transceiver 70 in any way known in the industry including, but not limited to, shared memory (not shown), serial transfer, parallel transfer, any combination, etc. In a 15 preferred embodiment, though not required, data from the processor 60 is encrypted before transmission. In such, the data is either encrypted by instructions running on the processor 60, or, in some embodiments, by an encryption module 72 within or external to the wireless transceiver 70. Also in a preferred embodiment, though not required, data from the base station 110 (see FIG. 6) is encrypted before transmission. In such, the encrypted data is received by the wireless transceiver 70, and then the encrypted data is either decrypted by instructions running on the processor 60, or, in some embodiments, by a encryption module 72 within or external to the wireless transceiver 70.

In the embodiment of FIG. 3, positioning capability is included. For example, a Global Positioning Satellite Receiver 94 is interfaced to the processor 60. In such, the processor controls the Global Positioning Satellite Receiver **94** operation by sending commands **69** to the Global Positioning Satellite Receiver 94 and receiving status and data 68 from the Global Positioning Satellite Receiver 94 (e.g. latitude and longitude). Typically, the Global Positioning In some embodiments, the body worn device 40 commu- 35 Satellite Receiver 94 has a specialized antenna 96 or array of antenna 96. Any known type of positioning system is anticipated for use with the body worn device 40. Data from the Global Positioning Satellite Receiver 94 is used by the processor to determine if the body worn device 40 is at a location that is not permitted or has not moved for a certain period of time (for example, if the body worn device 40 has been removed from an inmate).

> Upon detecting an offending radio frequency signal (e.g. after the processor 60 receives indication of a specific signal strength of a specific wavelength from one of the radio frequency receiver/detection circuits 80/82), the processor initiates transmission of a packet of information to the base station 110.

> After the processor 60 detects an offending radio frequency signal (e.g. after the processor 60 receives indication of a specific signal strength of a specific wavelength and optionally a specific protocol packet from one of the radio frequency receiver/detection circuits 80/80A), the processor initiates a transaction from the wireless transceiver 70 to the base station 110.

> Although jamming of the transmission is possible and desirable, laws in certain countries do not allow emission of radio frequency signals on certain bands without proper licenses. As the offending device 12 is likely initiating communications with a cellular carrier system 11 (FIG. 6), a different approach is taken other than jamming.

> For covert operations (e.g. as done in prisons), the offending devices 12 are often turned completely off when not attempting a call so as not to be detectable by radio frequency sniffers, etc. Therefore, once the offending device 12 is turned on, the offending device 12 attempts to register with a cell tower by emitting a relatively high-power radio

frequency signal at a specific frequency (with the requisite protocol). After the processor 60 detects this specific radio frequency signal (and possibly a specific protocol), the processor 60 initiates a transaction from the wireless transceiver 70 to the base station 110, including the specific 5 frequency of the radio frequency signal. The base station 110 immediately sends a secure transaction to the cellular carrier system 11, including the specific frequency. As the cellular carrier system 11 knows which devices are initializing at what time, the cellular carrier system 11 correlates the 10 specific frequency of the attempt to register the offending device 12 with the cell tower. Now the cellular carrier system 11 takes an agreed upon action to thwart the offending device's 12 attempt to register and send data or make a phone call by, for example, disconnecting from the offend- 15 ing device 12, disabling certain features for the offending device 12 (e.g., disabling data transmission, disabling calls, disabling calls except for emergency calls). The net results is the offending device 12 is unable to send/receive data and unable to make illegal phone calls. Further, as each offending device 12 is provisioned by a cellular company (e.g. has an account), it is anticipated that further steps be taken to lock the account, and in some embodiments, details of the account holder are provided to law enforcement personnel (e.g. under a subpoena) to determine what party is register- 25 ing the offending devices 12.

Referring to FIG. 4, a perspective view of an exemplary body worn device 40 is shown. In this example, the body worn device 40 is a collar, such as a leg collar, arm collar, or neck collar, while in other embodiments; the body worn 30 device 40 is of slightly different forms for attachment to the body in different ways such as by a belt-like system. In the exemplary body worn device 40 shown in FIG. 4, some or all of the circuitry 50/50A are located within an enclosure 41 that is made as part of the strap 42 or affixed to the strap 42 35 so as to resist removal and/or intrusion. The strap 42 is locked closed after placing around the person's appendage, for example by a tamper-proof lock 44. In some embodiments, the lock 44 is part of the enclosure 41. In some embodiments, the tamper-proof lock includes a one-way 40 closure system in which, the strap 42 is tightened around an appendage by capturing more of the strap 42 through the one-way closure system, then cutting off any excess of the strap 42. In some embodiments, especially those with electronics, conductors, and/or light pipes within the strap 42, 45 the strap 42 is of fixed length and locks into the enclosure 41, completing the tamper detection circuit. In the industry of inmate or release monitoring (e.g. house arrest), it is well known how to attach a body worn device 40 to a person and to detect tampering and/or removal, all of which are antici- 50 pated and included here within.

Although any form of attachment mechanism is anticipated for the body worn device 40, in some embodiments, the attachment mechanisms and enclosure 41 are designed to prevent removal under normal wear and impact that often 55 occurs during the wearing of such device such as, during exercise, walking, running, etc. Furthermore, in some embodiments, the attachment mechanisms and enclosure 41 are designed to resist penetration by substances that normally contact the wearer such as during showering, rain, etc. 60 Although any suitable material is anticipated, it is preferred that at least the surface of the strap 42 and/or enclosure 41 be made from a hypoallergenic material such as Santoprene, being that the body worn device 40 will be worn for long periods of time. It is also preferred that the strap 42 be made 65 from materials that will not significantly stretch, even when heated. Stretching is not desired because, in some cases,

16

stretching enables easy removal without detection of tampering. In some embodiments, the enclosure 41 is made of an impact resistant polycarbonate that is rugged, tamper resistant, and seals the electronics from the surrounding environment.

As previously described, in some embodiments, the body worn device 40 includes a perimeter detection loop 45 that consists of a conductor (either light or electrical signal) that helps detect tampering. For example, if the strap 42 is cut, the perimeter detection loop 45 is broken and a tamper signal is sent from the wireless transceiver 70 of the body worn device 40 to the base station 110.

In some embodiments, an RFID 46 is mounted in/on the enclosure 41 and/or in the strap 42. This optional RFID (or other readable mechanism such as a bar code, QR code, etc.) is available for use to interment facility for many uses such as head counts, usage accounting, commissary expense charges, etc.

Referring to FIG. 5, a block diagram of communications used to initialize a body worn device 40 is shown. For example, a body worn device 40 is issued 100 to a user (e.g. an inmate). In some embodiments, user data 103 is captured and/or linked to the body worn device 40 as each body worn device 40 is identifiable, for example, by a serial number stored in the non-volatile memory 825. In this, either the body worn device 40 has an embedded serial number that is then linked to the user data 103 or some part of the user data 103 is uploaded and stored in the non-volatile memory 825 (see FIG. 15) of the body worn device 40 such as the name of the wearer. In this way, either the serial number or that part of the user data 103 is later used as part of the communications between the body worn device 40 and the base station 110 to identify the wearer (e.g. inmate). Once the user data 103 is captured/linked and the issuance is complete, this body worn device 40 is enabled and tested 102. For example, communications are established and test messages sent/received between the wireless transceiver 70 of the body worn device 40 and the base station 110 to insure proper operation. If the enablement and testing 102 is successful, the body worn device 40 is then locked 104, for example, locked around the wearer's (e.g., inmate's) appendage (e.g. leg or arm).

In some embodiments, it is anticipated that software updates for the processor within the body worn device 40 are performed, as necessary, through the wireless interface between the wireless transceiver 70 and the base station transceiver 935.

In some embodiments, the condition of the battery in the body worn device 40 is also reported during some or all transmissions. In some embodiments, diagnostics or self-tests are performed during initialization and/or periodically and any anomalies are reported through the wireless interface between the wireless transceiver 70 and the base station transceiver 935.

Referring to FIG. 6, a block diagram of a body worn device 40 detecting wireless activity is shown. In this example, an offending device 12 (e.g. a cellular phone) is activated to establish a call through the cellular network 10, and for example, eventually through the plain-old-telephone system (POTS) 19 to another person (not shown). Note that call records 13 are created to record the call, origination, destination, length of call, etc. In this example, the origination is recorded for the offending device 12 (e.g. cellular phone) at a certain geographic area. Such records are useful in after-the-fact tracking, but are not very helpful in finding the offending device 12. In this scenario, the circuitry 50/50A within the body worn device 40 detects the radio

frequency signal 21 from the offending device 12. Upon detection, the circuitry 50/50A compiles a message including, for example, the frequency of the radio frequency signal 21, the signal strength of the radio frequency signal 21, any known protocol data from the radio frequency signal 2, an 5 identification of the body worn device 40 (e.g. a serial number or name/identification of the wearer), the time and/or date of the event, and, if available from a positioning subsystem 94, the latitude and longitude of the body worn device 40. This message is optionally encrypted then transmitted from the wireless transceiver 70 of the body worn device 40. The message is then received by either or both of an optional repeater 100 and/or a base station 110 where the message is detected, decrypted if it was encrypted and the data is analyzed to determine the wearer (e.g. inmate) 15 associated with the body worn device 40, the type of offending device 12, and, optionally the location of the body worn device 40 and, therefore, the location of the wearer (e.g. inmate). An exemplary alert report screen that is displayed after reception of such a message by the base 20 station 110 is shown in FIG. 8.

Although not required, the transmission of the signal/ message is performed using an end-to-end protocol that assures proper reception of the signal/message. All forms of reliable transmissions are anticipated, including automatic 25 retransmission of unacknowledged attempts, retransmission of signals/messages that were received with errors, error correcting protocols, etc. In such embodiments, once an event occurs, transmission is continually attempted until it is properly received at the base station or, in some embodi- 30 ments, until it is deemed futile to continue such transmissions. In some embodiments, if a second event occurs during the transmission and/or retransmission of a first event is underway, the second event (and subsequent events as storage permits) is captured in memory (e.g. non-volatile 35 memory **825** (see FIG. **15**) until a second (and subsequent) signal/message is sent.

In some embodiments, the circuit **50**A within the body worn device **40** includes a positioning system **94** and the message includes, for example, the latitude and longitude of the body worn device **40**. In some embodiments, the circuitry **50** within the body worn device **40** lacks a positioning system **94** and/or positioning signals are not being received and the message cannot include a location of the body worn device **40**. In such, triangulation is used to determine the 45 location of the body worn device **40** as is described along with FIG. **7**.

As previously discussed, to avoid detection and to extend battery life, often the offending devices 12 are powered completely off when not in use, thereby not emitting any 50 type of radio frequency signal until the user (e.g. inmate) desires to make a call or data connection. Such devices are so small that they are easily hidden and, because there is no radio frequency emissions when powered off, such devices cannot be detected by radio frequency sweeps of the inmate 5: areas (e.g. cells, common areas, etc.). Therefore, the likely scenario is that the radio frequency transmission that is being detected by the body worn device 40 is that of a registration event of the offending device 12. In this, before the offending device 12 is able to send/receive data or make 60 phone calls through the cellular network 10, the cellular network 10 must recognize the secure identification of the offending device 12. This registration occurs when the offending device 12 is initially powered (turned on). Therefore, once the base station 110 received the transmission of 65 the signal/message, the base station 110 sends a secure transaction to the cellular carrier system 11 reporting the

18

frequency of the registration signal from the offending device. As the frequency of registration signals is very low (not very many users power-on their devices during a short period of time), the cellular carrier system 11 reliably associates the secure transaction with the attempt to register the offending device 12. Responsive to the secure transaction, the cellular carrier system 11 disconnects from the offending device 12. In some embodiments, the cellular carrier system 11 also disable an account 9 associated with the offending device 12. By disabling the account 9 associated with the offending device 12, no future calls or data transmission is allowed by the offending device 12 until the account 9 is enabled. In some embodiments, the cellular carrier system 11 disables the account 9 associated with the offending device 12, allowing only emergency calls, but no non-emergency calls and no data transmission is allowed by the offending device 12 until the account 9 is enabled. In some embodiments, the cellular carrier system 11 and cellular network 10 reports the account 9 to authorities, as someone had to create the account 9 and may have created other similar accounts.

Referring to FIG. 7, a block diagram of a body worn device 40 detecting wireless activity is shown in which a location of the body worn device is determined through triangulation. In this example, an offending device 12 (e.g. a cellular phone) is activated (powered on) to establish a call through the cellular network 10, and for example, from the cellular network 10 through the plain-old-telephone system (POTS) 19 to another person (not shown). Note that call records 13 are created to record the call, origination, destination, length of call, etc. In this example, the origination is recorded as the offending device 12 is at a certain geographic area. Such records are useful in after-the-fact tracking, but are not very helpful in finding and confiscating the offending device 12. In this scenario, the circuit 50A within the body worn device 40 detects the radio frequency signal 21 from the offending device 12. Upon detection, the circuitry 50/50A compiles a message including, for example, the frequency of the radio frequency signal 21, the signal strength of the radio frequency signal 21, any known protocol data from the radio frequency signal 2, an identification of the body worn device 40 (e.g. a serial number or name/identification of the wearer), the time and/or date of the event, and, if available from a positioning subsystem 94, the latitude and longitude of the body worn device **40**. This message is optionally encrypted then transmitted from the wireless transceiver 70 of the body worn device 40. The message is then received by either or both of an optional repeater 100 and/or a base station 110 where the message is detected, decrypted if it was encrypted and the data is analyzed to determine the wearer (e.g. inmate) associated with the body worn device 40, the type of offending device 12, and, optionally the location of the body worn device 40 and, therefore, the location of the wearer (e.g. inmate). An exemplary alert report screen that is displayed after reception of such a message by the base station 110 is shown in FIG. **8**.

Although not required, the transmission of the signal/message is performed using an end-to-end protocol that assures proper reception of the signal/message. All forms of reliable transmissions are anticipated, including automatic retransmission of unacknowledged attempts, retransmission of signals/messages that were received with errors, error correcting protocols, etc. In such embodiments, once an event occurs, transmission is continually attempted until it is properly received at the base station or, in some embodiments, until it is deemed futile to continue such transmis-

sions. In some embodiments, if a second event occurs during the transmission and/or retransmission of a first event is underway, the second event (and subsequent events as storage permits) is captured in memory (e.g. non-volatile memory 825 (see FIG. 15) until a second (and subsequent) 5 signal/message is sent.

In some embodiments, the circuit **50**A within the body worn device **40** includes a positioning system **94** and the message includes, for example, the latitude and longitude of the body worn device **40**. In some embodiments, the circuitry **50** within the body worn device **40** lacks a positioning system **94** and/or positioning signals are not being received and the message cannot include a location of the body worn device **40**. In such, triangulation is used to determine the location of the body worn device **40** as is described along 15 with FIG. **7**. In some embodiments, the processor **60** monitors signal strength and/or timing of signals from multiple repeaters **100**A/**100**B and the base station **110** to determine a relative location of the body worn device **40** (e.g. a location of the body worn device within a correctional 20 institution).

As previously discussed, to avoid detection and to extend battery life, often the offending devices 12 are powered completely off when not in use, thereby not emitting any type of radio frequency signal until the user (e.g. inmate) 25 desires to make a call or data connection. Such devices are so small that they are easily hidden and, because there is no radio frequency emissions when powered off, such devices cannot be detected by radio frequency sweeps of the inmate areas (e.g. cells, common areas, etc.). Therefore, the likely 30 scenario is that the radio frequency transmission that is being detected by the body worn device 40 is that of a registration event of the offending device 12. In this, before the offending device 12 is able to send/receive data or make phone calls through the cellular network 10, the cellular 35 network 10 must recognize the secure identification of the offending device 12. This registration occurs when the offending device 12 is initially powered (turned on). Therefore, once the base station 110 receives the transmission of the signal/message, the base station 110 sends a secure 40 transaction to the cellular carrier system 11 reporting the frequency of the registration signal from the offending device. As the frequency of registration signals is very low (not very many users power-on their devices during a short period of time), the cellular carrier system 11 reliably 45 associates the secure transaction with the attempt to register the offending device 12. Responsive to the secure transaction, the cellular carrier system 11 disconnects from the offending device 12. In some embodiments, the cellular carrier system 11 also disable an account 9 associated with 50 the offending device 12. By disabling the account 9 associated with the offending device 12, no future calls or data transmission is allowed by the offending device 12 until the account 9 is enabled. In some embodiments, the cellular carrier system 11 disables the account 9 associated with the 55 offending device 12, allowing only emergency calls, but no non-emergency calls and no data transmission is allowed by the offending device 12 until the account 9 is enabled. In some embodiments, the cellular carrier system 11 and cellular network 10 reports the account 9 to authorities, as 60 someone had to create the account 9 and may have created other similar accounts.

In some embodiments, the processor 60 determines the location of the body worn device 40 and encodes the location into the message. This message is optionally 65 encrypted then transmitted from the wireless transceiver 70 of the body worn device 40. The message is then received by

20

any of a plurality of repeaters 100A/100B and/or a base station 110 where the message is decoded, decrypted (if encrypted) and the data is analyzed to determine the wearer (e.g. inmate) associated with the body worn device 40, and the type of offending device 12. In some examples, the body worn device 40 has no capability of determining a location of the body worn device 40. In some such embodiments, the location of the wearer (e.g. inmate) is derived from the radio frequency signal as it is received by the plurality of repeaters 100A/100B and base stations 110. It is known how to determine the origin of a radio frequency signal through triangulation of the radio frequency signal. Triangulation is typically performed by measuring the time at which the stations 100A/100B/110 receive the signal (e.g. if the repeater 100A receives the signal first and the repeater 100B and base station 110 receive the signal at the same time a few milliseconds later, the body worn device is closer to repeater 100A and midway between the repeater 100B and the base station 110). Triangulation systems are known to accurately translate these reception times into latitude and longitude values given the latitudes and longitudes of each of the triangulating receivers 100A/100B/110. In some triangulation systems, signal strength is used either separately or in conjunction with signal timing to determine the location of the body worn device **40**.

An exemplary alert report screen that is displayed after reception of such a message and triangulation by the base station 110 is shown in FIG. 8.

The following examples use a fictitious inmate, John Doe, as an example of a person assigned and wearing a body worn device 40. Note that the disclosed inventions are in any way limited to prisons or correctional facilities.

Referring to FIG. 8, an exemplary user interface 200 showing the status of a body worn device 40 is shown. In this example, data pertaining to the person 202 includes an inmate name (John Doe), an inmate number (12345678), and a home location (Cell 8). Data 204 pertaining to the body worn device 40 assigned to this inmate includes a description of the device (Leg BWD) and a code (34AF2BAA) which is, for example, a serial number of this body worn device 40. Next, status 206 of the assigned body worn device 40 is shown/displayed, including an indication that the device has been enabled, a condition of the battery, whether the body worn device 40 has detected any radio frequency transmissions (No Transmissions Detected), whether the body worn device 40 detects the cellular network (Detected), and the latitude and longitude of the body worn device 40. Note that, in some embodiments, more or less information is included.

Referring to FIG. 9, an exemplary user interface 200 showing the status of a body worn device 40 when the body worn device has been cloaked is shown. Cloaking is performed when the body worn device 40 is shielded from radio waves so that no radio waves are exchanged between the body worn device 40 and, for example, a cellular carrier system 11 or base station 110.

In this example, data pertaining to the person 202 includes an inmate name (John Doe), an inmate number (12345678), and a home location (Cell 8). Data 204 pertaining to the body worn device 40 assigned to this inmate includes a description of the device (Leg BWD) and a code (34AF2BAA) which is, for example, a serial number of this body worn device 40. Next, status 206A of the assigned body worn device 40 is shown, including an indication that the device has been enabled, a condition of the battery, a time/date of the event, whether the body worn device 40 has detected any radio frequency transmissions (No Transmis-

sions Detected), whether the body worn device 40 detects the cellular network (No Network Detected), and the latitude and longitude of the body worn device 40. In this case, the device is not detecting any signal from a cellular network (e.g. local tower) and, therefore, it is believed that the body 5 worn device 40 has been cloaked by, for example, submerging the body worn device 40 in water or encapsulating the body worn device 40 in metal foil, etc. In an alternate embodiment, as will be described, heartbeat monitors are implemented to make sure each body worn device 40 is 10 operating and hasn't been cloaked. For example, the base station 110 polls each body worn device 40 every 30 seconds and if no response is received, the status of the body worn device 40 that hasn't responded is updated and appropriate alarms are issued. In an alternate heartbeat embodiment, the 15 timing is performed in both the base station 110 and the body worn device 40. In this, the body worn device 40 transmits a heartbeat signal or packet at a scheduled interval such as every 30 seconds. The base station 110 has a timer for each body worn device 40 that is set to an interval just longer than 20 this schedule interval, for example 40 seconds. Each time the base station 110 receives the heartbeat signal/packet, the timer is reset to the interval (e.g. 40 seconds) and never expires. If the heartbeat is not received within the allotted time (e.g. 40 seconds), the status is updates and alarms 25 issued as appropriate. Since there are reasons besides cloaking that a single heartbeat transmission might get lost, it is anticipated that more complicated algorithms are used to manage heartbeats and to perform other communication tests when one is missed before initiating status changes 30 and/or alarms. Note that, in some embodiments, more or less information is included. In some embodiments, the body worn device 40 has circuitry that will detect shielding such as wrapping the body worn device 40 in foil, and will report the alarm once the shielding is removed as there is no way 35 to report the alarm while the body worn device 40 is shielded.

Referring to FIG. 10, an exemplary user interface 200 showing the status of a body worn device 40 upon detection of a radio frequency signal 21 is shown (e.g. a radio 40 frequency signal 21 from an offending device 12). In this example, data pertaining to the person 202 includes an inmate name (John Doe), an inmate number (12345678), and a home location (Cell 8). Data **204** pertaining to the body worn device 40 assigned to this inmate includes a 45 description of the device (Leg BWD) and a code (34AF2BAA) which is, for example, a serial number of this body worn device 40. Next, status 206B of the assigned body worn device 40 is shown, including an indication that the device has been enabled, a condition of the battery, a 50 time/date of the event, whether the body worn device 40 has detected any radio frequency transmissions (UNAUTHOR-IZED Transmissions Detected), whether the body worn device 40 detects the cellular network (Detected), and the latitude and longitude of the body worn device 40. In this 55 example, the associated body worn device 40 has detected an unauthorized radio frequency transmission. Note that, in some embodiments, more or less information is included.

The user interface shown is an overly simplified interface for understanding purposes. It is anticipated that the Location (latitude and longitude) be used to pin point the user (e.g. inmate) within a floor map of the building to quickly find that user (e.g. inmate) and confiscate the infringing transmitting device. Furthermore, other information regarding the radio frequency signal 21 that was detected by the 65 body worn device 40, when available, are displayed, for example, frequencies and signal strength for each frequency

22

received, durations of signals, etc. In some embodiments, such information is further analyzed to classify the transmission device so that after confiscation, it is known whether the correct device has been confiscated. For example, if a cellular signal is detected but, after searching, only a tablet computer 15 is found, authorities know to keep searching until they find the offending device 12 (cellular phone).

Referring to FIG. 10A, an exemplary account record 220 of an account 9 is shown. The data in the account record 220 is similar to data in most people's cellular phone account records, though the data in the account record 220 is shown greatly abbreviated for clarity and brevity reasons. In this abbreviated example, the account record 220 has information regarding the account owner 222 such as the account owner's name and address. The account record 220 also has information regarding the device (or devices) 224 associated with the account record 220. In this case there is one device associated with the account record 220 that is a "MFG 610" (fictitious) smartphone that has a SIM ID of 11AACD21E and is associated with a phone number 123-456-7890.

The account record 220 also has information regarding status and billing 226 that includes whether the device is enabled, data and call limits, billing data (e.g. total call duration has been 3 minutes), etc.

As discussed previously, when the offending device 12 is turned on, the offending device 12 attempts to register with a cell tower by emitting a relatively high-power radio frequency signal at a specific frequency (with the requisite protocol). The cellular carrier system 11 receives a packet of information from the offending device 12 that includes the SIM ID of the offending device 12. The cellular carrier system 11 utilizes the SIM ID (and in some embodiment, other data) to locate the account record 220 associated with the offending device 12. The cellular carrier system 11 makes sure that the offending device 12 is enabled and has sufficient credentials and payments to operate and, once certain, the cellular carrier system 11 allows the offending device 12 to send/receive data and make cellular calls.

Now, as previously described, the processor **60** and radio frequency receiver/detection circuit(s) 80/82 detect this specific radio frequency signal (and possibly a specific protocol). Responsive to such, the processor **60** initiates a transaction from the wireless transceiver 70 to the base station 110, including the specific frequency of the radio frequency signal. The base station 110 immediately sends a secure transaction to the cellular carrier system 11, including the specific frequency. As the cellular carrier system 11 knows which devices are initializing and at what time, the cellular carrier system 11 correlates the specific frequency of the attempt to register the offending device 12 with the cellular carrier system 11. Now the cellular carrier system 11 takes an agreed upon action to thwart the offending device's 12 attempt to register and send data or make a phone call by, for example, disconnecting from the offending device 12, disabling certain features for the offending device 12 (e.g., disabling data transmission, disabling calls, disabling calls except for emergency calls). The net results is the offending device 12 is unable to send/receive data and unable to make illegal phone calls. Further, in some embodiments, the account record 220 is locked (status changed to disabled or locked), and in some embodiments, information regarding the account owner 222 such as the account owner's name and address are provided to law enforcement personnel (e.g. under a subpoena) to determine what party is registering the offending devices 12.

Referring to FIG. 11, a flow chart of exemplary software of the body worn device 40 is shown. When power is

initially applied to the body worn device 40, the processor 60 initializes 400 and then initializes communications 402. For example, communications with a base station 110 is initialized 402. The system repeatedly attempts to communicate with the base station 110 until a connection is detected 5 404, at which time the body worn device identification is established 406. This is performed by either reading a hard or soft serial number of the body worn device 40 and transmitting that serial number to the base station 110 or by determining a unique serial number by the base station 110 10 and transmitting that serial number to the body worn device 40 where the serial number is then stored in non-volatile memory 825. Next, a user (e.g. inmate) is assigned 408 to that serial number so that, any future communications containing that serial number will be identifiable with that user 15 (e.g. inmate). Now the radio frequency receiver/detection circuit **80** is enabled **412** to monitor radio frequency transmissions in the local of the body worn device 40.

Until reset, the circuitry 50 of the body worn device continuously loops, each time through the loop accessing the 20 radio frequency receiver/detection circuit 80 to determine if the signal from the cellular network 10 has been blocked or masked 420 (e.g. is the body worn device being cloaked?), accessing the tamper detection subsystem 90 to determine if tampering has been detected 430, and accessing the radio 25 frequency receiver/detection circuit 80 to determine if there has been any unauthorized radio frequency transmission **440**. If it is determined that the signal from the cellular network 10 has been blocked or masked 420 (e.g., a signal from the cellular network 10 is not received), a signal or 30 packet indicating that this particular body worn device 40 has been cloaked or masked 450 is sent to the base station 110. If tampering has been detected 430, a signal or packet indicating that this particular body worn device 40 has been tampered (e.g. removed, broke) 460 is sent to the base 35 station 110. If there has been any unauthorized radio frequency transmission 440, a signal or packet indicating that this particular body worn device 40 has detected such radio frequencies is transmitted 470 is sent to the base station 110.

Referring to FIG. 12, a flow chart of a second exemplary processor **60** of the body worn device **40** is shown. This flow is similar to that shown in FIG. 11, except implementing a heartbeat monitor to determine if the body worn device 40 has been cloaked. When power is initially applied to the body worn device 40, the processor 60 initializes 400. Next, 45 communication is initialized 402, in a preferred embodiment with a base station 110. The system repeatedly attempts to communicate with the base station 110 until a connection is detected 404, at which time the body worn device identification is established **406**. This is performed by either reading 50 a hard or soft serial number of the body worn device 40 and transmitting that serial number to the base station 110 or by determining a unique serial number by the base station 110 and transmitting that serial number to the body worn device 40 where the serial number is then stored in non-volatile 55 memory 825. Next, a user (e.g. inmate) is assigned 408 to that serial number so that, any future communications containing that serial number will be identifiable with that user (e.g. inmate). For embodiments with a heartbeat method of There are many ways to implement heartbeat monitoring, this being one of them. The basic operation has two timers, one in the base station and one in the body worn device 40. The timer in the base station is set somewhat longer than one or two periods of the timer in the body worn device 40, for 65 example, the timer in the base station is set to 40 second and the timer in the body worn device 40 is set to 30 seconds (or

15 seconds to receive two heartbeats before the base station timer expires). Each time the heartbeat is received by the base station 110, the base station timer is reset (e.g. to 40) seconds). If no heartbeats signals/packets are receive within the base station timer interval, the base station timer expires and it is declared that the body worn device 40 has lost communications and is possibly being cloaked.

Next the radio frequency receiver/detection circuit 80 is enabled 412 to monitor radio frequency transmissions in the local of the body worn device 40.

Until reset, the circuitry 50 of the body worn device 40 continuously loops, each time through the loop accessing the radio frequency receiver/detection circuit 80 to determine if the cellular network 10 is present 420 (e.g. is the body worn device being cloaked?), accessing the tamper detection subsystem 90 to determine if tampering has been detected 430, accessing the radio frequency receiver/detection circuit 80 to determine if there has been any unauthorized radio frequency transmission 440, and checking the heartbeat timer in the body worn device 40 to determine if a heartbeat needs to be transmitted 442. If the cellular network 10 is not present 420, a signal or packet indicating that this particular body worn device 40 has been cloaked or masked 450 is sent to the base station 110. If tampering has been detected 430, a signal or packet indicating that this particular body worn device 40 has been tampered (e.g. removed, broke) 460 is sent to the base station 110. If there has been any unauthorized radio frequency transmission 440, a signal or packet indicating that this particular body worn device 40 has detected such radio frequencies is transmitted 470 is sent to the base station 110. If a heartbeat needs to be transmitted 442, the heartbeat signal/packet is transmitted and the heartbeat timer is reset to schedule the next heartbeat transmission 444. FIG. 13 shows an exemplary flow for transmitting these signals or packets while FIG. 14 shows an exemplary flow in the base station 110 for processing receipt of these signals or packets.

Referring to FIG. 13, a third flow chart of a typical transmission by a processor 60 of the body worn device 40 is shown. In this, if available, the signal strength **510** and the signal frequency 520 are read from the radio frequency receiver/detection circuit 80. Note that in some embodiments, the signal content is also detected, for example, signal energy patterns and decoded data content. Next, communications are attempted with the base station 110 until a connection is established **530**. Once communication is established 530 with the base station 110, the signal or packet(s) is transmitted 540, typically including the reason for the transmission (e.g. heartbeat, radio frequency detected, loss of cellular signal, tamper detected, battery low, etc.), the identification (serial number) of the body worn device 40, optionally, the frequency and/or signal strength of the radio frequency signal, optionally the duration of the radio frequency signal and time, and optionally the latitude and longitude of the body worn device 40. Next, to assure that the packet/signal was received by the base station 110, the body worn device software waits for an acknowledgement 550. If an acknowledgement 550 is received, the transmission process is complete (e.g. returns to the loops of detecting cloaking, the heartbeat timer is initialized 410. 60 FIG. 11 or FIG. 12. If an acknowledgement 550 is not received (e.g. within an expected time frame), the transmission process is repeated from step 530.

> The simplified example of transmitting between the body worn device 40 and the base station 110 as described is but an example as reliable data transmission is well known and many methods and protocols exist to perform such transmissions. The exemplary program flows described here

within are but examples and one skilled in the art will readily be able to produce a transmission mechanism capable of such communication.

Referring to FIG. 14, a flow chart of a base station (see FIG. 16) is shown. The described flow generally operates on 5 a processor within, for example the base station 110. As known in the industry, this control flow is often implemented as an application that runs, along with other applications, on a dedicated or multi-purpose computer system, an example of which is shown in FIG. 16. The described application is 10 threaded to monitor one single body worn device 40, though it is anticipated that many body worn devices 40 are present and monitored by a similar application or multiple instantiations of this exemplary process flow.

many body worn device 40, though the same is anticipated for multiple body worn devices 40. When the application starts running, general initialization is performed 600, communications is initialized 602, and then communication with the body worn device(s) 40 is established 604, looping until 20 communication is made. Once communications are established 604, the identification of the body worn device 40 is read or set 606 (as described with FIGS. 11 and 12), establishing an identifier (e.g., serial number) of the body worn device 40 and a user (e.g. inmate) is assigned to that 25 identifier 608. In systems in which there is a heartbeat, a heartbeat timer is initialized 610 as described previously.

Now a loop is entered. The first step of the loop is to determine if a packet or signal has been received 615 from the body worn device 40. If no packet or signal has been 30 received 615, the heartbeat timer is checked for expiration 680 (e.g. the timer expires if no heartbeats are received within the heartbeat timer interval). If the heartbeat timer expired 680, an appropriate indication/alarm is made 685 (e.g. message display, flashing light, etc.) and the loop 35 continues.

If a packet or signal has been received **615** from the body worn device 40, a determination of the type of packet or signal is made. If the packet/signal indicates that the body worn device 40 has lost presence of a cellular network signal 40 620 (e.g. it is cloaked), an appropriate indication/alarm is made 625 (e.g. message display, flashing light, etc.) and the loop continues.

If the packet/signal indicates that the body worn device 40 has been tampered with 630 (e.g. it has been removed from 45 the user/inmate), an appropriate indication/alarm is made 635 (e.g. message display, flashing light, etc.) and the loop continues.

If the packet/signal indicates that the body worn device 40 detected an unauthorized radio frequency transmission 640, an appropriate indication/alarm is made 645 (e.g. message display, flashing light, etc.—hopefully alerting staff/guards to confiscate the offending device); a secure message is sent 646 to the cellular carrier system 11; and the loop continues.

If the packet/signal indicates that the body worn device 40 55 is sending a heartbeat signal 650, the heartbeat timer is reset 655 and the loop continues.

If none of the above (e.g., an unknown packet/signal was received), an error is recorded and appropriate actions taken to restore the system to level of operation such as a complete 60 reset, etc.

Referring to FIG. 15, a schematic view of an exemplary circuitry 50/50A of the body worn device 40 is shown. The example system represents an exemplary processor-based system housed in a body worn device 40. Although, through- 65 out this description, a processor-based system is described, it is known to implement the same or similar functionality in

26

a system of logic or analog components providing similar functionality in an equivalent system. The source of power 98 (e.g., battery, power management, charge control, etc.) is not shown for clarity reasons.

The exemplary system of the body worn device 40 is shown in its simplest form, having a single processor 60 (e.g., controller, microcontroller, microprocessor, etc.). Many different computer architectures are known that accomplish similar results in a similar fashion and the present invention is not limited in any way to any particular processing element. In exemplary circuitry of the body worn device 40, a processor 60 executes or runs stored programs that are generally stored for execution within a memory 820. The processor 60 is any processor, for example an ARM The following relates to communications with one or 15 Coretex single chip processor or the like. The memory 820 is connected to the processor by a memory bus **815** and is any memory 820 suitable for connection with the selected processor 60, such as SRAM, DRAM, SDRAM, RDRAM, DDR, DDR-2, etc. Also connected to the processor 60 is a system bus 830 for connecting to peripheral subsystems. In general, the non-volatile memory 825 is interfaced to the processor 60 through the system bus 830 and is used to store programs, executable code and data persistently. Examples of persistent storage include core memory, FRAM, flash memory, etc.

> In embodiments in which Global Positioning is included, a positioning system 94 (e.g. GPS) is interfaced to the processor 60 by the system bus 830. In such, the processor controls the positioning system 94 operation by sending commands to the positioning system **94** over the system bus 830 and receiving status and data back in a similar manner (e.g. latitude and longitude).

> The radio frequency receiver/detection circuit 80 (only one is shown) is also interfaced to the processor 60 by the system bus 830. In such, the processor controls the operation of the radio frequency receiver/detection circuit 80 by sending commands to the radio frequency receiver/detection circuit 80 over the system bus 830 and receiving status and data back in a similar manner (e.g. signal frequency and strength).

> The tamper detection subsystem 90 is also interfaced to the processor 60 by, for example, the system bus 830 (or through an input/output port, etc.). In such, the processor controls the operation of the tamper detection subsystem 90 by sending commands to the tamper detection subsystem 90 over the system bus 830 and receiving status and data back in a similar manner (e.g. intact or "device removed from body," etc.).

> The circuitry 50 of the body worn device 40 communicates with the land based system (e.g. base stations 110) through a wireless interface and wireless transceiver 70. The wireless interface and wireless transceiver 70 is also interfaced to the processor 60 by, for example, the system bus 830 (or through an input port, etc.). In such, the processor communicates with and controls the operation of the wireless interface and wireless transceiver 70 by sending commands and data to the wireless interface and wireless transceiver 70 over the system bus 830 and receiving status and data back in a similar manner.

> Although a specific architecture is shown connecting the various subsystems 94/80/90/825/70 to the processor 60, any known interface is anticipated including, but not limited to, parallel bus architectures, serial bus architectures, parallel/serial bus architectures, input/output port interfaces, Inter-Integrated Circuit links (I²C—two-wire interface), etc.

> In some embodiments, a sound emitting device 97 (not shown) is interfaced to the processor 60, in this example,

through an output pin, though any form of connection is anticipated, including an interface to the system bus 830. Any type of sound emitting device 97 is anticipated such as a piezoelectric element, speaker, electromechanical vibrator, indirect sound emitter, etc. In some embodiments, the sound emitting device is driven directly by the processor 60; while in other embodiments, the sound emitting device includes driver circuitry such as an oscillator and/or power amplifier.

Referring to FIG. 16, a schematic view of an exemplary system of the base station 110 is shown. The example system 10 represents an exemplary processor-based system. Although, throughout this description, a processor-based system is described, it is known to implement the same or similar functionality in a system of logic or analog components providing similar functionality in an equivalent system.

The exemplary base station 110 as shown in its simplest form has a single processor for the base station controller 900 (e.g., controller, microcontroller, microprocessor, etc.). Many different computer architectures are known that accomplish similar results in a similar fashion and the 20 present invention is not limited in any way to any particular processing element 900. In exemplary systems, a processor (the base station controller 900) executes or runs stored programs that are generally stored for execution within a memory **920**. The processor (the base station controller **900**) 25 is any processor. The memory 920 is connected to the processor by a memory bus 915 and is any memory 920 suitable for connection with the selected processor 900, such as SRAM, DRAM, SDRAM, RDRAM, DDR, DDR-2, etc. Also connected to the processor 900 is a system bus 930 for 30 connecting to peripheral subsystems. In general, the secondary storage 925 is interfaced to the processor 900 through the system bus 930 and is used to store programs, executable code and data persistently. Examples of secondary storage **925** include semiconductor disks, rotating media, hard disks, 35 CD-ROM, DVD-RW, CD-RW, flash memory, etc.

The base station 110 communicates with the body worn devices 40 through a wireless interface and base station transceiver 935. The wireless interface and base station transceiver 935 is preferably interfaced to the processor 900 40 by, for example, the system bus 930 but alternately interfaces through an input port, etc. The processor 900 communicates with and controls the operation of the wireless interface and base station transceiver 935 by sending commands and data to the wireless interface and base station 45 transceiver 935 over the system bus 930 and receiving status and data back in a similar manner.

For completeness, optional input and output devices 991/993 are shown such as a display 991 and a keyboard 993, though many different back end architectures are anticipated 50 including one or more processors/computer systems, linked together for distribution and/or redundancy reasons along with a variety of input and output devices optionally including any or all of card readers, badge readers, indicator lights, lighting control systems, audible alarms, interfaces to cell 55 locking systems, interfaces to door locking systems, camera systems, motion detection systems, door open/closed detection systems, etc.

In some embodiments, the base station 110 also includes tamper detection 985 similar or different from the tamper 60 detection subsystem 90 of the body worn device 40. In such, intrusion into the base station 110 and/or relocation of the base station outside of a given allowed area is determined, recorded, and/or alerted. For example, in one embodiment, the tamper detection 985 includes a positioning device (e.g., 65 GPS) that constantly monitors the location of the base station 110. If the base station 110 is moved to a new

28

location that is outside of a predetermined area, alerts are made such as transmitting an alert to other base stations 110 or repeaters 100, locking/encrypting data, etc. Other types of base station tamper detectors 985 are anticipated, including, but not limited to, motion sensors, accelerometers, etc. It is also anticipated that the base station 110 be physically affixed to furniture to reduce chances of removal.

In some embodiments, the base station 110 (and/or the repeaters 100) is/are mobile devices, allowing for the base station 110 to be portable and carried by guards, staff, etc.

Referring to FIG. 17, a partial flow chart of an exemplary cellular carrier system 11 is shown. The cellular carrier system 11 opens a secure channel 700 with the base station 110. This channel must be secure so that others (e.g. hackers) 15 are not able to impede legitimate communications. This portion of the cellular carrier system software loops, waiting 702 for reception of any activity on the secure channel. Once activity on the secure channel is detected 702, the time and specific frequency of the registration attempt is received 704 from the base station 110. As discussed previously, when the offending device 12 is turned on, the offending device 12 attempts to register with a cell tower by emitting a radio frequency signal at a specific frequency (with the requisite protocol). It is anticipated that this registration event has already occurred and the cellular carrier system 11 has already received a packet of information from the offending device 12 that includes the SIM ID of the offending device 12. The cellular carrier system 11 has already utilized the SIM ID (and in some embodiment, other data) to locate the account record 220 associated with the offending device 12 to makes sure that the offending device 12 is enabled and has sufficient credentials and payments to operate. In some embodiments, the cellular carrier system 11 has already allowed the offending device 12 to start sending/receiving data and/or initiated a cellular call.

Armed with the time that the base station 110 and the body worn device 40 detected the offending device 12 initiating the registration as well as, in some embodiments, the specific frequency (in some embodiments, there are multiple frequencies upon which the offending device 12 is able to register), recent activity is searched 706 to make sure a registration occurred at the given time and, in some embodiments, using the specific frequency. If such activity was not detected 710, the loop continues. Perhaps another cellular carrier system 11 processed the registration.

If such activity was not detected 710, any data or voice call currently underway is disconnected/canceled 714. Now, if the strategy is to disable 720 the account record 220, the status of the account record 220 is set to disabled 722 and the loop continues. if the strategy is to disable 724 the account record 220 but allow emergency calls (e.g. calls to 911), the status of the account record 220 is set to disabled/allow emergency calls 726 and the loop continues.

Equivalent elements can be substituted for the ones set forth above such that they perform in substantially the same manner in substantially the same way for achieving substantially the same result.

It is believed that the system and method as described and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely exemplary and explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.

29

What is claimed is:

- 1. A system for detecting and disabling radio frequency emitting devices, the system comprising:
 - at least one base station, the base station including a base station processor and a base station transceiver, the base station transceiver operatively coupled to the base station processor;
 - at least one device, each of the at least one device comprising a device-processor, a transceiver operatively coupled to the device-processor, a radio frequency detector operatively coupled to the device-processor, and a source of power, the source of power providing operational power to the device-processor, to the transceiver and to the radio frequency detector;

an offending device;

- software running on the device-processor of each device monitors the radio frequency detector and when a target radio signal from the offending device is detected by the radio frequency detector indicating an attempt by the offending device to register with a cell tower, the radio frequency detector signals the processor with an indication of the target radio signal that was detected and the software reads the indication of the target radio signal and controls the transceiver to send a transaction to the base station transceiver, the transaction includes the indication of the target radio signal that was detected;
- upon receipt of the transaction at the base station transceiver, software running on the base station processor
 reads the transaction and sends a secure transaction to
 a cellular carrier system, the secure transaction including the indication of the target radio signal that was
 detected; and
- upon receipt of the secure transaction, software running on a computer of the cellular carrier system correlates a time and the target radio signal with an account associated with a recent registration of the offending device and when the computer of the cellular carrier system correlates the time and the indication of the target radio signal to the account associated with the recent registration, the computer of the cellular carrier system disconnects the offending device.
- 2. The system for detecting and disabling radio frequency emitting devices of claim 1, wherein when the computer of the cellular carrier system correlates the time and the indication of the target radio signal to the account associated with the recent registration, the computer of the cellular 50 carrier system further disables the account associated with the offending device.
- 3. The system for detecting and disabling radio frequency emitting devices of claim 1, wherein the device is a body worn device.
- 4. The system for detecting and disabling radio frequency emitting devices of claim 1, wherein the offending device is a cellular phone.
- **5**. The system for detecting and disabling radio frequency emitting devices of claim **1**, wherein the indication of the target radio signal comprises a cellular band frequency on which the offending device has transmitted.
- 6. The system for detecting and disabling radio frequency emitting devices of claim 1, wherein the indication of the 65 target radio signal comprises a frequency on which the offending device has transmitted.

30

- 7. A method of detecting and disabling offending devices, the method comprising:
 - (a) at a portable device, when an offending device is initializing and registering with a cell tower, detecting a radio frequency transmission from the offending device;
 - (b) responsive to detecting, the portable device transmitting a message from a transmitter of the portable device to a receiver of a base station, the message comprising an identification of a radio frequency signal used by the offending device;
 - (c) responsive to receiving the message, the base station sending a secure transaction to a cellular carrier system that is associated with the cell tower, the secure transaction including the identification of the radio frequency signal used by the offending device; and
 - (d) responsive to receiving the secure transaction, the cellular carrier system correlating a time and the identification of the radio frequency signal used by the offending device with an account associated with the registration of the offending device and when the processor of the cellular carrier system correlates the time and the identification of the radio frequency signal used by the offending device to the account associated with the offending device, the cellular carrier system disconnecting from the offending device.
- 8. The method of claim 7, further comprising disabling the account associated with the offending device.
- 9. The method of claim 7, the message further including an identification of the portable device.
- 10. The method of claim 7, wherein the portable device is a body worn device.
- 11. The method of claim 10, wherein the body worn device is a locking ankle bracelet.
 - 12. The method of claim 7, wherein the offending device is a cellular phone.
 - 13. The method of claim 7, wherein the identification of the radio frequency signal used by the offending device comprises a cellular band frequency on which the offending device has operated.
 - 14. A method of detecting and disabling offending devices, the method comprising:
 - (a) at a body-worn device, when an offending device transmits a radio frequency signal to a cell tower, detecting the radio frequency signal from the offending device;
 - (b) responsive to the detecting, the body-worn device transmitting a message from a transmitter of the bodyworn device to a receiver of a base station, the message including an identification of the radio frequency signal transmitted by the offending device;
 - (c) responsive to receiving the message, the base station sending a secure transaction to a cellular carrier system that is associated with the cell tower, the secure transaction including the identification of the radio frequency signal transmitted by the offending device; and
 - (d) responsive to receiving the secure transaction, the cellular carrier system correlating a time and the identification of the radio frequency signal transmitted by the offending device with an account associated with the offending device and when the processor of the cellular carrier system correlates the time and the identification of the radio frequency signal transmitted by the offending device with the account associated with the offending device, the cellular carrier system disconnecting from the offending device.

- 15. The method of claim 14, further comprising disabling the account associated with the offending device.
- 16. The method of claim 14, the message further including an identification of the body-worn device.
- 17. The method of claim 14, wherein the body worn 5 device is locked on to a person.
- 18. The method of claim 14, wherein the body worn device is a locking ankle bracelet.
- 19. The method of claim 14, wherein the offending device is a cellular phone.
- 20. The method of claim 14, wherein the identification of the radio frequency signal transmitted by the offending device comprises a cellular band frequency on which the offending device has transmitted.

* * * * *