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1
DOMAIN ADAPTION LEARNING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This 1s a Non-Provisional application of U.S. Provisional
Application No. 62/627,179, filed in the United States on
Feb. 6, 2018, entitled, “Domain Adaptation Learning Sys-
tem,” the entirety of which 1s incorporated herein by refer-
ence.

BACKGROUND OF INVENTION
(1) Field of Invention

The present invention relates to a system for adapting a
deep convolutional neural network and, more particularly, to
a system for adapting a deep convolutional neural network
trained on a source domain with labels to a target domain
without requiring any new labels.

(2) Description of Related Art

Deep convolutional neural networks (CNNs) achieve
state-oi-the-art performance on many 1mage understanding
tasks, including classification, segmentation, monocular
depth estimation, and captioning. These networks require
huge amounts of tramning images (tens of thousands to
millions), which, depending on the application, could be
relatively easy to collect, but also require the training 1images
to be annotated. Human annotation i1s often used as the
ground truth label that the network 1s expected to learn to
predict. Obtaiming human annotations/labeling i1s extremely
time consuming, costly, and does not scale well.

Domain adaptation attempts to solve this problem by
allowing a network to be trained on an existing labeled
dataset, and then adapted to a new image domain using
images ifrom the target domain with minimal or no labels/
annotations. CNNs are made of two parts: a deep feature
extractor, which maps an input image nto a feature space,
and a linear classifier (or regressor), which maps the features
to the desired output.

Many methods for domain adaptation exist. For instance,
the method described by Hoflman et al. (see the List of
Incorporated Literature References, Literature Reference
No. 1) mvolves a CNN feature extractor, a linear classifier,
and a CNN discriminator. The feature extractor extracts
teatures from both source domain (e.g., domain ‘A’) images
and target domain images (e.g., domain ‘B’). Features from
the source domain are annotated using the classifier. Here,
the loss 1s computed and back-propagated for training, using,
the ground truth labels. Note that this cannot be done for the
target domain 1mages, as no ground truth labels/annotations
are available. Instead, features from both domains are passed
to the discriminator, which 1s trained to distinguish between

features from the two respective domains. Meanwhile, the
feature extractor 1s trained so the discriminator cannot
distinguish between the two domains. Through this antago-
nistic process, the feature extractor learns to extract features
that are domain agnostic, allowing the classifier to be
applied to both domains.

Ghifary et al. (see Literature Reference No. 2) augmented
the standard feature extractor and classifier with an addi-
tional component for training. Here, they use an image
decoder, which maps the {features back to images. By

10

15

20

25

30

35

40

45

50

55

60

65

2

requiring the features to be able to reconstruct the input
image for the target domain, they also add some domain

agnosticism to the model.

The system of Zhu et al. (see Literature Reference No. 3)
1s used for the task of image to 1mage translation, where
given an image 1n the source domain, they make it appear as
if 1t came from the target domain. For example, given an
image taken during the summer, make it appear as if it was
taken during the winter.

While methods for domain adaptation exist, a continuing,
need exists for a system for transier learning based on
domain agnostic features.

SUMMARY OF INVENTION

The present invention relates to a system for adapting a
deep convolutional neural network and, more particularly, to
a system for adapting a deep convolutional neural network
trained on a source domain with labels to a target domain
without requiring any new labels. The system comprises one
or more processors and a non-transitory computer-readable
medium having executable instructions encoded thereon
such that when executed, the one or more processors per-
form multiple operations. The system trains a deep CNN on
an annotated source image domain. The deep CNN 1s
adapted to a new target image domain without requiring new
annotations by determining domain agnostic features that
map from the annotated source image domain and a target
image domain to a joint latent space, and using the domain
agnostic features to map the joint latent space to annotations
for the target 1image domain.

In another aspect, the joint latent space 1s invariant to any
structured noise variations between the annotated source
image domain and the target image domain.

In another aspect, decoders add back structured noise
variations for reconstructing each image domain from its
domain agnostic features in the joint latent space.

In another aspect, the joint latent space 1s regularized by
a plurality of auxiliary networks and loss functions.

In another aspect, 1n using the domain agnostic represen-
tations to map the joint latent space to annotations for the
target image domain, the system uses an adversarial setting
in which a discriminator tries to classity if a domain agnostic
feature 1n the joint latent space was generated from the
annotated source 1image domain or the target image domain.
A cross entropy loss function that 1s defined as a number of
correct classifications of the discriminator 1s optimized.

In another aspect, 1n using the domain agnostic represen-
tations to map the joint latent space to annotations for the
target 1image domain, the system encodes an image from its
actual domain to the joint latent space via an encoder,
wherein the actual domain 1s one of the annotated source
image domain and the target image domain. The image 1s
decoded to the other domain via a decoder, wherein the other
domain 1s the other of the annotated source 1mage domain
and the target image domain, such that a synthetic 1mage 1s
generated. The system i1dentifies if the synthetic image
belongs to the actual domain or the other domain.

In another aspect, wherein the system encodes the syn-
thetic 1mage back to the joint latent space, and decodes the
synthetic 1mage back to its actual domain.

In another aspect, a device 1s controlled based on the
annotations for the target image domain.

In another aspect, the device 1s a mechanical component
of an autonomous vehicle.

Finally, the present mvention also includes a computer
program product and a computer implemented method. The
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computer program product includes computer-readable
instructions stored on a non-transitory computer-readable
medium that are executable by a computer having one or
more processors, such that upon execution of the instruc-
tions, the one or more processors perform the operations
listed herein. Alternatively, the computer implemented
method 1ncludes an act of causing a computer to execute
such 1nstructions and perform the resulting operations.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present inven-
tion will be apparent from the following detailed descrip-
tions of the various aspects of the mvention 1n conjunction
with reference to the following drawings, where:

FIG. 1 1s a block diagram depicting the components of a
system for adapting a deep convolutional neural network
according to some embodiments of the present disclosure;

FIG. 2 1s an illustration of a computer program product
according to some embodiments of the present disclosure;

FIG. 3 1s an 1illustration of the high-level system archi-
tecture of the Transfer Sensing System (TS?) according to
some embodiments of the present disclosure;

FI1G. 4 1s an 1llustration of the detailed system architecture
of the TS* showing pathways to loss modules according to
some embodiments of the present disclosure;

FIG. 5 is an illustration showing the performance of TS
alter training according to some embodiments of the present
disclosure;

FIG. 6 1s a flow diagram illustrating using a processor to
control a device using label predictions according to some
embodiments of the present disclosure;

FIG. 7A 1s a flow diagram 1illustrating a training phase
according to some embodiments of the present disclosure;

FIG. 7B 1s a continuation of FIG. 7A illustrating the
training phase according to some embodiments of the pres-
ent disclosure; and

FIG. 8 1s a flow diagram 1llustrating an 1mage processing,
system according to some embodiments of the present
disclosure.

DETAILED DESCRIPTION

The present invention relates to a system for adapting a
deep convolutional neural network and, more particularly, to
a system for adapting a deep convolutional neural network
trained on a source domain with labels to a target domain
without requiring any new labels. The following description
1s presented to enable one of ordinary skill 1n the art to make
and use the mvention and to incorporate 1t 1n the context of
particular applications. Various modifications, as well as a
variety of uses in different applications will be readily
apparent to those skilled 1n the art, and the general principles
defined herein may be applied to a wide range of aspects.
Thus, the present invention 1s not intended to be limited to
the aspects presented, but 1s to be accorded the widest scope
consistent with the principles and novel features disclosed
herein.

In the following detailed description, numerous specific
details are set forth in order to provide a more thorough
understanding of the present invention. However, 1t will be
apparent to one skilled in the art that the present invention
may be practiced without necessarily being limited to these
specific details. In other instances, well-known structures
and devices are shown 1n block diagram form, rather than 1n
detail, in order to avoid obscuring the present imnvention.
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The reader’s attention 1s directed to all papers and docu-
ments which are filed concurrently with this specification
and which are open to public inspection with this specifi-
cation, and the contents of all such papers and documents are
incorporated herein by reference. All the features disclosed
in this specification, (including any accompanying claims,
abstract, and drawings) may be replaced by alternative
features serving the same, equvalent or similar purpose,
unless expressly stated otherwise. Thus, unless expressly
stated otherwise, each feature disclosed 1s one example only
of a generic series of equivalent or similar features.

Furthermore, any element 1n a claim that does not explic-
itly state “means for” performing a specified function, or
“step for” performing a specific function, 1s not to be
interpreted as a “means” or “step” clause as specified 1n 35
U.S.C. Section 112, Paragraph 6. In particular, the use of
“step of” or “act of” 1n the claims herein 1s not intended to
invoke the provisions of 35 U.S.C. 112, Paragraph 6.

Belfore describing the invention in detail, first a list of
cited references 1s provided. Next, a description of the
various principal aspects of the present invention 1s pro-
vided. Finally, specific details of various embodiment of the
present invention are provided to give an understanding of
the specific aspects.

(1) LIST OF INCORPORATED LITERATURE
REFERENCES

The following references are cited and incorporated
throughout this application. For clarity and convemence, the
references are listed herein as a central resource for the
reader. The following references are hereby incorporated by
reference as though fully set forth herein. The references are
cited 1n the application by referring to the corresponding
literature reference number, as follows:

1. J. Hoflman, D. Wang, F. Yu, and T. Darrell, “Fens 1n the
wild: Pixel-level adversarial and constraint-based adap-
tation,” arXiv preprint arXiv:1612.02649, 2016.

2. M. Ghitary, W. B. Klenin, M. Zhang, D. Balduzzi, and W.

L1, “Deep reconstruction-classification networks for
unsupervised domain adaptation,” in European Confer-
ence on Computer Vision. Springer, pp. 597-613, 2016.

3. 1.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks,” arXiv preprint arXiv:1703.10393, 2017.

4. A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual
worlds as proxy for multi-object tracking analysis,” 1n
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4340-4349, 2016.

5. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enz-
weiller, R. Benenson, U. Franke, S. Roth, and B. Schiele,
“The cityscapes dataset for semantic urban scene under-

standing,” 1n Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

6. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“(Generative adversarial nets,” 1n Advances in neural
information processing systems, pp. 2672-2680, 2014.

7. X. Mao, Q. L1, H. Xie, R. Y. Lau, and Z. Wang,
“Multi-class generative adversarial networks with the 12
loss function,” arXiv preprint arXiv:1611.04076, 2016.

8. M. Anjovsky, S. Chintala, and L. Bottou, “Wasserstein
gan,” arXiv preprint arXiv:1701.07875, 2017.

9. F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual
networks,” arXiv preprint arXiv:1705.09914, 2017.
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10. G. Huang, Z. Liu, K. Q. Wemberger, and L. van der
Maaten, “Densely connected convolutional networks,”
arX1v preprint arXiv:1608.06993, 2016.

(2) PRINCIPAL ASPECTS

Various embodiments of the invention include three “prin-
cipal” aspects. The first 15 a system for adapting a deep
convolutional neural network. The system 1s typically 1n the
form of a computer system operating software or 1n the form
of a “hard-coded” struction set. This system may be
incorporated into a wide variety of devices that provide
different functionalities. The second principal aspect 1s a
method, typically 1n the form of software, operated using a
data processing system (computer). The third principal
aspect 1s a computer program product. The computer pro-
gram product generally represents computer-readable
instructions stored on a non-transitory computer-readable
medium such as an optical storage device, e.g., a compact
disc (CD) or digital versatile disc (DVD), or a magnetic
storage device such as a tloppy disk or magnetic tape. Other,
non-limiting examples ol computer-readable media include
hard disks, read-only memory (ROM), and flash-type
memories. These aspects will be described in more detail
below.

A block diagram depicting an example of a system (1.e.,
computer system 100) of the present invention 1s provided 1n
FIG. 1. The computer system 100 1s configured to perform
calculations, processes, operations, and/or functions associ-
ated with a program or algorithm. In one aspect, certain
processes and steps discussed herein are realized as a series
of instructions (e.g., software program) that reside within
computer readable memory units and are executed by one or
more processors ol the computer system 100. When
executed, the instructions cause the computer system 100 to
perform specific actions and exhibit specific behavior, such
as described herein.

The computer system 100 may include an address/data
bus 102 that 1s configured to communicate information.
Additionally, one or more data processing units, such as a
processor 104 (or processors), are coupled with the address/
data bus 102. The processor 104 1s configured to process
information and instructions. In an aspect, the processor 104
1s a microprocessor. Alternatively, the processor 104 may be
a different type of processor such as a parallel processor,
application-specific integrated circuit (ASIC), program-
mable logic array (PLA), complex programmable logic
device (CPLD), or a field programmable gate array (FPGA).

The computer system 100 1s configured to utilize one or
more data storage units. The computer system 100 may
include a volatile memory unit 106 (e.g., random access
memory (“RAM?”), static RAM, dynamic RAM, etc.)
coupled with the address/data bus 102, wherein a volatile
memory unit 106 1s configured to store information and
instructions for the processor 104. The computer system 100
further may include a non-volatile memory unit 108 (e.g.,
read-only memory (“ROM”), programmable ROM
(“PROM™), erasable programmable ROM (“EPROM”),
clectrically erasable programmable ROM “EEPROM”),
flash memory, etc.) coupled with the address/data bus 102,
wherein the non-volatile memory unit 108 1s configured to
store static information and instructions for the processor
104. Alternatively, the computer system 100 may execute
instructions retrieved from an online data storage umit such
as 1n “Cloud” computing. In an aspect, the computer system
100 also may include one or more interfaces, such as an

interface 110, coupled with the address/data bus 102. The
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one or more interfaces are configured to enable the computer
system 100 to interface with other electronic devices and
computer systems. The communication interfaces imple-
mented by the one or more interfaces may include wireline
(e.g., serial cables, modems, network adaptors, etc.) and/or
wireless (e.g., wireless modems, wireless network adaptors,
etc.) communication technology.

In one aspect, the computer system 100 may include an
iput device 112 coupled with the address/data bus 102,
wherein the mput device 112 1s configured to communicate
information and command selections to the processor 100.
In accordance with one aspect, the mput device 112 1s an
alphanumeric input device, such as a keyboard, that may
include alphanumeric and/or function keys. Alternatively,
the mput device 112 may be an mput device other than an
alphanumeric mmput device. In an aspect, the computer
system 100 may include a cursor control device 114 coupled
with the address/data bus 102, wherein the cursor control
device 114 1s configured to communicate user input infor-
mation and/or command selections to the processor 100. In
an aspect, the cursor control device 114 i1s implemented
using a device such as a mouse, a track-ball, a track-pad, an
optical tracking device, or a touch screen. The foregoing
notwithstanding, 1n an aspect, the cursor control device 114
1s directed and/or activated via mput from the mput device
112, such as i response to the use of special keys and key
sequence commands associated with the input device 112. In
an alternative aspect, the cursor control device 114 1s con-
figured to be directed or guided by voice commands.

In an aspect, the computer system 100 further may include
one or more optional computer usable data storage devices,
such as a storage device 116, coupled with the address/data
bus 102. The storage device 116 1s configured to store
information and/or computer executable nstructions. In one
aspect, the storage device 116 1s a storage device such as a
magnetic or optical disk drive (e.g., hard disk dnive
(“HDD”), floppy diskette, compact disk read only memory
(“CD-ROM?”), digital versatile disk (“DVD”)). Pursuant to
one aspect, a display device 118 1s coupled with the address/
data bus 102, wherein the display device 118 1s configured
to display video and/or graphics. In an aspect, the display
device 118 may include a cathode ray tube (“CRT™), liquid
crystal display (“LCD”), field emission display (“FED”),
plasma display, or any other display device suitable for
displaying video and/or graphic images and alphanumeric
characters recognizable to a user.

The computer system 100 presented herein 1s an example
computing environment in accordance with an aspect. How-
ever, the non-limiting example of the computer system 100
1s not strictly limited to being a computer system. For
example, an aspect provides that the computer system 100
represents a type of data processing analysis that may be
used 1 accordance with various aspects described herein.
Moreover, other computing systems may also be imple-
mented. Indeed, the spinit and scope of the present technol-
ogy 1s not limited to any single data processing environment.
Thus, 1n an aspect, one or more operations of various aspects
of the present technology are controlled or implemented
using computer-executable instructions, such as program
modules, being executed by a computer. In one 1mplemen-
tation, such program modules include routines, programs,
objects, components and/or data structures that are config-
ured to perform particular tasks or implement particular
abstract data types. In addition, an aspect provides that one
or more aspects of the present technology are implemented
by utilizing one or more distributed computing environ-
ments, such as where tasks are performed by remote pro-
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cessing devices that are linked through a communications
network, or such as where various program modules are
located 1n both local and remote computer-storage media
including memory-storage devices.

An 1illustrative diagram of a computer program product
(1.e., storage device) embodying the present mvention 1s
depicted i FIG. 2. The computer program product is
depicted as tloppy disk 200 or an optical disk 202 such as a
CD or DVD. However, as mentioned previously, the com-
puter program product generally represents computer-read-
able instructions stored on any compatible non-transitory
computer-readable medium. The term “instructions™ as used
with respect to this mvention generally indicates a set of
operations to be performed on a computer, and may repre-
sent pieces of a whole program or idividual, separable,
software modules. Non-limiting examples of “instruction”
include computer program code (source or object code) and
“hard-coded” electronics (1.e. computer operations coded
into a computer chip). The “instruction” 1s stored on any
non-transitory computer-readable medium, such as i the
memory of a computer or on a floppy disk, a CD-ROM, and
a flash drive. In either event, the instructions are encoded on
a non-transitory computer-readable medium.

(3) SPECIFIC DETAILS OF VARIOUS
EMBODIMENTS

Described 1s a general framework for domain adaption,
which allows deep neural networks tramned on a source
domain to be tested on a different target domain without
requiring any training annotations in the target domain.
Currently, deep convolutional neural networks (CNNs)
achieve state-oi-the art performance on many image under-
standing tasks including: object detection and classification
(e.g., pedestrian detection, traflic sign detection), segmen-
tation (e.g., drivable surface segmentation), monocular
depth estimation (e.g., 3D wvision), and captioning (e.g.
automated 1mage and video captioning systems). These
networks require huge amounts of training 1images (€.g., tens
of thousands to millions), which depending on the applica-
tion could be relatively easy to collect, but also require the
training 1mages to be annotated. Human annotation 1s often
used as the ground truth label that the network 1s expected
to learn to predict. Obtaining human annotations/labeling 1s
extremely time consuming, costly and does not scale well.
Domain adaptation attempts to solve this problem by allow-
ing a network to be trained on an existing labeled dataset,
and then adapted to a new 1mage domain using 1mages from
the target domain with minimal or no labels/annotations.

FIG. 8 depicts an image processing system (element 800)
comprising a convolutional neural network (CNN). CNNs
are made of two parts: a deep lfeature extractor module
(clement 802), which maps an mput image obtained from a
target domain sensor (element 804 ) into a feature space, and
a linear classifier (or regressor) module (element 806),
which maps the features to the desired output, such as a
labeled target domain (element 808). As shown 1n FI1G. 8, the
feature extractor module (element 802) 1s trained by a
training source domain (element 810). The invention
described herein 1s a general framework and system which
adds extra networks and losses to help regularize the leamn-
ing of the feature extractor module to make 1t domain
agnostic (1.e., not domain specific). The domain agnostic
nature of the features in the latent space enforces the the
networks to extract only the shared knowledge between the
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two domains. Therefore, this constraint boosts the transfer-
ability of knowledge (e.g., classification, segmentation)
from one-domain to another.

Many existing methods for domain adaptation arise as
special cases of the framework. The method according to
embodiments of the present disclosure includes two unique
ways to improve the domain adaptation performance by
re-designing the feature extractors that are learned. First, the
system 1mproves the domain adaptation performance by
requiring that the distributions of features extracted from
both domains are indistinguishable (as judged by an adver-
sarial discriminator network), which 1s described 1n detail
below. In short, an adversarnal network (FIG. 4, module 412)
1s trained to distinguish the features coming from domain X
from that of domain Y, and the encoders (FIG. 4, modules
408 and 410) are constrained to map the domains i1n the
feature space (1.€., the latent space, FI1G. 4, module 400) such
that the adversary, module 412, cannot tell apart the
domains. This was first proposed by Hollman et al. (see
Literature Reference No. 1), but alone does not give a strong
enough constraint to make the features fully domain agnos-
tic, as two distributions can be matched 1n infinitely many
ways.

Second, the system 1mproves the domain adaptation per-
formance by requiring that the features are able to be
decoded back to the images well (as measured by the
reconstruction error between the original image and the
decoded 1mage, FIG. 4, 403). This idea was originally used
by Ghifary et al. (see Literature Reference No. 2), but 1s
much simpler than the method used for recovering the
images described herein. The i1mage decoding process
according to embodiments of the present disclosure 1s simi-
lar to that described by Zhu et al. (see Literature Reference
No. 3); however, Zhu et al. does not use it for the domain
adaptation problem.

The disclosed method allows for adapting a deep convo-
lutional neural network trained on a source domain with
labels to a target domain without requiring any new labels.
For example, 1n autonomous driving applications, a seman-
tic segmentation network 1s required to be trained to detect
roads, cars, pedestrians, etc. Training such a segmentation
network requires semantic, mstance-wise, dense pixel anno-
tations for each scene, which 1s excruciatingly expensive
and time consuming to acquire. To avoid human annota-
tions, a large body of work focuses on designing photo-
realistic simulated scenarios in which the ground truth
annotations are readily available. Cityscapes and Virtual
KITTI datasets are examples of such simulations, which
include a large number of synthetically generated driving
scenes together with ground truth pixel-level semantic anno-
tations (see Literature Reference Nos. 4 and 5). Training a
CNN based on such synthetic data and applying 1t to a
dashboard mounted camera (1.e., real-world 1mages) will
give very poor performance due to the large diflerences 1n
image characteristics. The invention described herein allows
such a network to be adapted to the new 1mage data without
requiring any new labels. The method outperforms and
provides an improvement over existing state-oif-the-art
(SOA) methods.

The method and system described herein 1s broadly
applicable to any image understanding and sensing task
where training labels are not available 1n the target domain.
Other examples of this include: 1) human activity recogni-
tion 1n 1nfrared (IR) images which are trained using existing,
annotated RGB (red, green, blue) images, and 2) monocular
depth estimation trained on synthetic data. A system level
architecture of the system according to embodiments of the
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present invention 1s depicted in FIG. 3. As shown 1n FIG. 3,
the mterplay between the ‘domain agnostic feature extrac-
tion” 300, ‘domain specific reconstruction from agnostic
teatures’ 302, and ‘label prediction from agnostic features’
304 enables the framework to simultaneously learn from the
source domain (1.e., data 1n domain ‘X’ with annotations
306) and adapt to the target domain (1.e., data in domain Y’
without annotations 308) to generate an accurate label
prediction of domain Y’ 301. In one embodiment, the
accurate label prediction 1s the pixel level annotation of the
scene, such as depicted in FIG. 3 where different colors
demonstrate different labels (e.g., car, bike, drivable sur-
face).

Consider training images x,&X (synthetic data 310) and
theirr corresponding annotations/labels ¢&C (annotation
312) from the source domain (i.e., domain X (element 306)).
Note that ¢, may be an 1image level, such as 1n classification,
or pixel level i the case of semantic segmentation. Also,
consider target images y, €Y (real data 314) in the target
domain (1.¢., domain Y (element 308)), where there are not
corresponding annotations for these images. Note that the
framework 1s readily extendable to a scenario where there
are annotations for few images in the target domain. In
addition, it 1s assumed that there are not correspondences
between 1mages in the source and target domains (e.g.,
clements 306 and 308). The lack of correspondences
assumption makes the problem significantly more challeng-
ing and 1s one of the unique capabilities of the system
described herein.

FIG. 4 depicts a detailed system architecture of the TS
framework according to embodiments of the present disclo-
sure. The pathways to the loss modules denote the 1inputs to
these modules, which are used for training TS*. The general
idea behind the approach according to embodiments of the
present disclosure 1s to {ind a joint latent space, Z (element
400), for the source and target domains, X and Y (elements
306 and 308), where the representations are domain agnos-
tic.

To clanty this point, consider the scenario i which X
(clement 306) 1s the domain of driving scenes/images on a
sunny day and Y (element 308) 1s the domain of driving
scenes 1n a rainy day. While ‘sunny’ and ‘rainy’ are char-
acteristics of the source and target domains (elements 306
and 308), they are truly nuisance variations with respect to
the annotation/classification task (e.g., semantic segmenta-
tion of the road), as they should not affect the annotations.
Treating such characteristics as structured noise, the goal 1s
to find a latent space, 7Z (element 400), that 1s mnvariant to
such variations. In other words, domain 7 (element 400)
should not contain domain specific characteristics, hence it
should be domain agnostic. For example, rain 1n a rainy

riving scene 1s treated as a nuisance parameter for the
semantic segmentation module. Similarly, lighting varia-
tions between day and might are nuisance parameters for the
semantic segmentation task. In what follows, the process
that leads to finding such domain agnostic latent space 1s
described.

Let the mappings from source and target domains (ele-
ments 306 and 308) to the latent space (element 400) be
defined as t,: X—Z and 1 Y—Z, respectively. Following
FIG. 4, { and {, are the “Encoder X (element 408) and
‘Encoder Y’ (element 410) modules. In the framework, these
mappings are parameterized by deep convolutional neural
networks (CNNs). Note that the members of the latent space
7=/, (element 400) are high dimensional vectors 1n the case
of 1image level tasks, or feature maps in the case of pixel

level tasks. Also, let h: Z—C be the classifier (element 406)
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that maps the latent space (element 400) to labels/annota-
tions (e.g., pixel level class labels 1n segmentation: ‘car’,
‘pedestrian’, ‘drivable surface’). Given that the annotations
for the source domain X (element 306) are known, one can
casily define a supervised loss {function to enforce

h(L(x;))=c;
O~Sdh(f.(x)).c))

where 1  1s an appropriate loss (e.g., cross entropy for
classification and segmentation). Q. (element 401) denotes
measuring classification error. A loss function maps an event
or values of one or more variables onto a real number
intuitively representing some “‘cost” associated with the
event. An optimization problem seeks to minimize the loss
function. Minimizing the above loss function leads to the
standard approach of supervised learning, which does not
concern domain adaptation. While this approach would lead
to a method that performs well on the images 1n the source
domain (element 306), x. =X, it will more often than not
perform poorly on 1mages from the target domain (element
308) y, €Y. The reason is that domain Z (element 400) 1s
biased to the distribution of the structured noise (‘sunny’) in
domain X (element 306), and the structured noise 1n domain
Y (element 308) (‘rainy’) confuses the classifier (element
406) h(-)

To avoid such confusion, the latent space, Z, (element
400) 1s required to be domain agnostic, so 1t 1s not sensitive
to the domain specific structured noise. To achieve such
latent space (element 400), a variety of auxiliary networks
and losses are introduced to help regularize the latent space
(element 400) and consequently achieve a robust h(-). The
auxiliary networks and loss pathways are depicted 1n FIG. 4.
The following 1s a description of the individual components
of the regularization losses.

1. Z (element 400) 1s required to preserve the core
information of the target (element 308) and source
(element 306) images and only discard the structured
noise. To impose such constraint on the latent space
(element 400), first define decoders g, : Z—X (element
402) and g : Z—Y (element 404) that maps the features
in the latent space (element 400) to the source and
target domains (elements 306 and 308), respectively. It
1s assumed that 1if Z (element 400) retains the crucial/
core information of the domains and only discards the
structured noise, then the decoders (elements 402 and
404) should be able to add the structured noise back and
reconstruct each image from their feature representa-
tion in the latent space, Z (element 400). In other
words, 1t 1s required that g (1 (-)) and g (1 (*)) be close
to 1dentity tunctions/maps (1.e., g.(f(x)x and g,
(1,(y))=y). This constraint leads to the following loss
function:

(1) (element 401)

Q2 (& (X)) X )+ 2 A& (V) ),

where 1, (-,") 1s a pixel-wise 1mage loss, such as L., norms,
which 1s defined as:

L, (g.(1.(x),x)=(x|g (£ (x))—xI* dx)'?. Q,, (element 403)
1s equivalent to measuring reconstruction error.

2. Ideally, the latent space Z (element 400) 1s domain
agnostic meaning that the feature representations of the
source and target domain (elements 306 and 308)
should not contain domain specific information. To
achieve this, an adversarial setting 1s used in which a
discriminator d,: Z—{c,, ¢} tries to classify if a feature
in the latent space z&7 (element 400) was generated
from domain X (element 306) or Y (element 308),
where ¢, and ¢, are two-dimensional domain identifier

(2) (element 403)
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one-hot vectors. The loss function then can be defined
as the number of correct guesses of the discriminator
(1.e., domain agnosticism 1s equivalent to fooling the
discriminator), and, therefore, the loss function can be
formulated as:

Q=2 (%)), )+ 2L (AL, (1)).¢,);

where 1. (-,-) 1s the cross entropy loss function. Q_ (ele-
ment 405) denotes measuring distributional discrep-
ancy.

3. To turther ensure that the mappings t, 1, g, and g are
consistent, half cycle adversarial losses are defined. An
image from a target domain (element 308) 1s first
encoded to the latent space via an encoder Y (element
410) and then decoded to the source domain (element
306) via a decoder X (element 402) to generate a “fake’
image. Furthermore, an 1image from a source domain
(element 306) 1s first encoded to the latent space via an
encoder X (element 408) and then decoded to the target
domain (element 308) via a decoder Y (element 404) to
generate a ‘fake’ image. Next, define discriminators d_:
X—{c.c,} and d,; Y—={c,c,} to identify if an image
1s ‘Take’ (generated from the other domain) or ‘real’
(belonged to the actual domain). To formulate this half

cycle loss function write:

Q=2 (A (g, ([(x;))),C,0)+
ijc(dx(gx(;;(yj)):cy) -

(3) (element 405)

(4) (element 407).
(Q; denotes measuring
distributional discrepancy.

4. Given that there are no correspondences between the
images 1n the source and target domains (elements 306
and 308), there 1s a need to ensure that the semantically
similar 1images (e.g., images with similar content, like
similar driving scenes or similar classes of images) 1n
both domains are projected 1nto close vicinity of one
another 1n the latent space (element 400). To ensure
this, define full cycle losses where the ‘fake’ image
generated 1n the halt cycle loss, g (1,(y,)) or g (1.(X,)).
are encoded back to the latent space (element 400) and
then decoded back to their original space. The entire
cycle should be equivalent to an identity mapping. This
loss can be formulated as follows:

Qcyc:z: I'Zfd(cho;(gy(ﬁc(xf) ) )) rxz')_l_
Ejzid(gy(fj::(gx(];@j)) Y

The above general loss tunction 1s then optimized via the
Stochastic Gradient Descent (SGD) method with adaptive
learning rate, 1n an end-to-end manner. FIG. 4 shows the
pathways for each loss function defined above. The discrimi-
native networks, dx, dy and dz are trained 1n an alternating,
optimization alongside with the encoders (elements 408 and
410) and decoders (elements 402 and 404). Many different
loss schemes have been proposed in the generative adver-
sarial network (GAN) literature including the binary cross
entropy loss (BCE) (see Literature Reference No. 6), the
least squares loss (LSGAN) (see Literature Reference No.
7), and the Wasserstein loss (WGAN) (see Literature Ret-
erence No. 8), and any of these are satisfactory for the task.

The following shows how various previous methods for
domain adaptation are special cases of the method described
herein. Setting AMd=Acyc=Ad=0 and 1x=1y, would lead to the
work of Literature Reference No. 1. By setting
rd=Acyc=Ad=Az=0 and 1x=ty, the work of Literature Rel-

erence No. 2 1s recovered. By setting Ac=Az=0, the work of
Literature Reference No. 3 1s recovered. The convolutional
networks 1 the model according to embodiments of the
present disclosure are interchangeable, but 1t was found from
experimental studies that the best performance was achieved
by using Dilated Densely-Connected Networks (1.e., Dilated

(5) (element 409).
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DenseNets) for the encoders which are derived by replacing
strided convolutions with dilated convolutions (see Litera-
ture Reference No. 9) in the DenseNet architecture (see
Literature Reference No. 10). Simple multi-layer residual
blocks are used followed by deconvolutional layers for the
decoders as described 1n Literature Reference No. 3. For the
discriminators, a few convolutional layers are used follow-
ing Literature Reference No. 3.

The TS® system described herein was trained on the
Virtual KITTI Dataset, which 1s a photo-realistic synthetic
video dataset designed to learn and evaluate computer vision
models for several video understanding tasks: object detec-
tion and multi-object tracking, scene-level and instance-
level semantic segmentation, optical tlow, and depth esti-
mation (see Literature Reference No. 4). Virtual KITTI
contains 350 high-resolution monocular videos (21,260
frames) generated from five different virtual worlds 1n urban
settings under different 1imaging and weather conditions.
Videos of ‘sunny’ weather condition with their semantic
segmentation annotations were utilized as the source domain
(element 306), ‘X’°, and the videos of ‘rainy’ weather con-
dition without the semantic segmentation annotations were
used as the target domain (element 308), ‘Y’ .

FIG. 5 shows the results of different pathways in the TS?
framework described herein after training. In short, pathway
401 enforces that the latent space be a discriminative space
for Domain X, meaning that the images should be labeled/
classified correctly. Pathway 403 enforces the latent space to
maintain the information in domains X and Y, by constrain-
ing the extracted features to be capable of recovering origi-
nal images in domains X and Y. Pathway 405 enforces the
latent space to be domain agnostic, while pathway 407
enforces a domain-to-domain 1mage translation (e.g., rainy
to sunny, or night to day image translation; see FIG. J).
Finally, pathway 409 enforces the encoders and decoders to
have cycle consistency, meaning that translating an input
image from domain X to domain Y and then back from
domain Y to domain X should lead to recovering the mput
image and vice versa. It can be seen that the Qc, Qd, and
Qcyc (elements 401, 407, and 409) have all been trained
correctly, and the mappings 1x, Iy, gx and gy are achieving
what 1s expected. As depicted 1n FIG. 4, element 401, shows
that the input image 1s labeled correctly, element 407 shows
domain-to-domain translation 1s performed correctly, and
clement 409 shows that the mappings are cycle consistent.
Note that the generated images from domain X (element
500), are ‘fake’ images 1n the sense that they are calculated
from gyixxi, but yet they look quite convincingly like ‘real’
rainy images.

FIGS. 7A and 7B depict training of a deep CNN according,
to embodiments of the present disclosure. Following a start
(element 700) of the process, there are two pathways: one
stemming from an annotated source domain, X (element
702), and one stemming from an unannotated target domain,
Y (element 704). The annotated source domain, X (element
702), 1s encoded via a source neural encoder (element 704).
The unannotated target domain, Y (element 704), 1s encoded
via a target neural encoder (element 706). The process
depicted 1n FIG. 7A follows as described for FIG. 4. As 1n
training any machine learning algorithm with a gradient-
descent (or 1n this case with a stochastic gradient descent
(SGD)) algorithm, FIG. 7B illustrates a terminate criterion
to 1dentify that training 1s completed 1n the system described
herein. In this case, the termination (end (element 710) can
be achieved via various protocols, one of which 1s compar-
ing the total loss value (element 712) to a predefined
threshold (element 714). The system determines 11 the loss
1s less than the threshold (element 716). The learning
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process 1s terminated (element 710) 1f the loss (element 712)
1s lower or equal to this threshold (element 714). If the loss
(clement 712) 1s larger than the threshold (element 714),
then the algorithm takes another step toward reducing the
loss tunction (element 712) by backpropagating through
source and target encoders and decoders as well as the
classifier to minimize the loss (element 716). Then, the
process proceeds back to start (element 700) through a series
of learning 1iterations (element 718).

The mvention according to embodiments of the present
disclosure 1s of particular value to fully autonomous navi-
gation systems for vehicle manufacturers. TS® will signifi-
cantly reduce the amount of annotated real-world training
data needed to train their perception and sensing algorithms.
Furthermore, thanks to its domain agnostic feature extrac-
tion capability, TS® produces more robust results when
navigating in novel or unseen conditions, such as a new city
or 1n rare weather conditions (e.g., snow, fog, rain).

The annotations for the target image domain obtained by
the TS? framework can be used for detection and recognition
ol objects, such as vehicles, pedestrians, and traflic signs,
under different weather conditions (e.g., rain, snow, fog) and
lighting conditions (e.g., low light, bright light). Thus, the
annotations can then be utilized to cause an automatic
operation related to controlling a component of the autono-
mous vehicle.

FIG. 6 1s a flow diagram 1illustrating using the processor
104 to control a device 600 using the annotations for the
target image. Non-limiting examples of devices 600 that can
be controlled via the processor 104 include a motor vehicle
or a motor vehicle component (electrical, non-electrical,
mechanical), such as a brake, a steering mechanism, sus-
pension, or safety device (e.g., airbags, seatbelt tensioners,
etc.). Further, the vehicle could be an unmanned aerial
vehicle (UAV), an autonomous seli-driving ground vehicle,
or a human operated vehicle controlled either by a driver or
by a remote operator. For instance, upon object detection
and recognition, the system can cause the autonomous
vehicle to perform a dniving operation/maneuver (such as
steering or another command) 1n line with driving param-
eters 1n accordance with the recognized object. For example,
if the system recognizes a bicyclist, another vehicle, or a
pedestrian, the system described herein can cause a vehicle
maneuver/operation to be performed to avoid a collision
with the bicyclist or vehicle (or any other object that should
be avoided while driving). The system can cause the autono-
mous vehicle to apply a functional movement response, such
as a braking operation followed by a steering operation, to
redirect vehicle away from the object, thereby avoiding a
collision.

Other appropriate responses may include one or more of
a steering operation, a throttle operation to increase speed or
to decrease speed, or a decision to maintain course and speed
without change. The responses may be appropriate for
avoiding a collision, improving travel speed, or improving
elliciency. As can be appreciated by one skilled in the art,
control of other device types 1s also possible. Thus, there are
a number of automated actions that can be mnitiated by the
autonomous vehicle given the particular object detected and
the circumstances 1n which the system 1s implemented. For
instance, the method can be applied to border security (e.g.,
detecting smugglers at night), intelligence, surveillance, and
reconnaissance (ISR), drones, autonomous vehicles, and
perception and safety 1n autonomous systems (e.g., detecting,
humans 1nteracting with robots 1n a manufacturing environ-
ment).
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Finally, while this invention has been described 1n terms
of several embodiments, one of ordinary skill 1n the art will
readily recognize that the invention may have other appli-
cations in other environments. It should be noted that many
embodiments and implementations are possible. Further, the
following claims are 1n no way intended to limit the scope
of the present invention to the specific embodiments
described above. In addition, any recitation of “means for”
1s 1ntended to evoke a means-plus-function reading of an
clement and a claim, whereas, any elements that do not
specifically use the recitation “means for”, are not intended
to be read as means-plus-function elements, even 1t the
claim otherwise includes the word “means”. Further, while
particular method steps have been recited 1n a particular
order, the method steps may occur 1n any desired order and
tall within the scope of the present invention.

What 1s claimed 1s:

1. A system for adapting a deep convolutional neural
network (CNN), the system comprising:

one or more processors and a non-transitory computer-

readable medium having executable 1nstructions

encoded thereon such that when executed, the one or

more processors perform operations of:

training a deep CNN on an annotated source image
domain;

adapting the deep CNN to a new target image domain
without requiring new annotations by determining
domain agnostic features that map from the anno-
tated source i1mage domain and a target image
domain to a joint latent space and using the domain
agnostic features to map the joint latent space to
annotations for the target image domain;

wherein the joint latent space 1s invariant to any struc-
tured noise variations between the annotated source
image domain and the target image domain; and

wherein decoders add back structured noise variations
for reconstructing each i1mage domain from 1its
domain agnostic features 1n the joint latent space.

2. The system as set forth in claim 1, wherein the joint
latent space 1s regularized by a plurality of auxiliary net-
works and loss functions.

3. The system as set forth 1n claim 1, where 1n using the
domain agnostic representations to map the joint latent space
to annotations for the target image domain, the one or more
processors further perform operations of:

using an adversarial setting 1n which a discriminator tries

to classily 1f a domain agnostic feature in the joint
latent space was generated from the annotated source
image domain or the target image domain; and
optimizing a cross entropy loss function that 1s defined as
a number of correct classifications of the discriminator.

4. The system as set forth 1n claim 1, where 1n using the
domain agnostic representations to map the joint latent space
to annotations for the target image domain, the one or more
processors further perform operations of:

encoding an 1mage from 1ts actual domain to the joint

latent space via an encoder, wherein the actual domain
1s one of the annotated source 1mage domain and the
target 1mage domain;
decoding the image to the other domain via a decoder,
wherein the other domain 1s the other of the annotated
source 1mage domain and the target image domain,
such that a synthetic 1image 1s generated; and

identifying if the synthetic image belongs to the actual
domain or the other domain.
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5. The system as set forth 1n claim 4, wherein the one or
more processors further perform operations of:

encoding the synthetic 1image back to the joint latent

space; and

decoding the synthetic 1image back to 1ts actual domain.

6. The system as set forth in claim 1, wherein a device 1s
controlled based on the annotations for the target image
domain.

7. The system as set forth 1n claim 6, wherein the device
1s a mechanical component of an autonomous vehicle.

8. A computer implemented method for adapting a deep
convolutional neural network (CNN), the method compris-
ing an act of:

causing one or more processers to execute nstructions

encoded on a non-transitory computer-readable
medium, such that upon execution, the one or more
processors perform operations of:

traming a deep CNN on an annotated source image

domain;

adapting the deep CNN to a new target image domain

without requiring new annotations by determiming
domain agnostic features that map from the annotated
source 1mage domain and a target image domain to a
joint latent space and using the domain agnostic fea-
tures to map the joint latent space to annotations for the
target 1mage domain;

wherein the joint latent space 1s invariant to any structured

noise variations between the annotated source image
domain and the target image domain; and

wherein decoders add back structured noise variations for

reconstructing each image domain from i1ts domain
agnostic features 1 the joint latent space.

9. The method as set forth in claim 8, wherein the joint
latent space 1s regularized by a plurality of auxiliary net-
works and loss functions.

10. The method as set forth 1n claim 8, where 1n using the
domain agnostic representations to map the joint latent space
to annotations for the target image domain, the one or more
processors further perform operations of:

using an adversarial setting in which a discriminator tries

to classity i a domain agnostic feature 1n the joint

latent space was generated from the annotated source

image domain or the target image domain; and
optimizing a cross entropy loss function that 1s defined as

a number of correct classifications of the discriminator.
11. The method as set forth 1n claim 8, where 1n using the
domain agnostic representations to map the joint latent space
to annotations for the target image domain, the one or more
processors further perform operations of:
encoding an image from 1ts actual domain to the joint
latent space via an encoder, wherein the actual domain
1s one of the annotated source image domain and the
target 1mage domain;
decoding the 1mage to the other domain via a decoder,
wherein the other domain 1s the other of the annotated
source 1mage domain and the target image domain,
such that a synthetic image 1s generated; and
identifying if the synthetic 1mage belongs to the actual
domain or the other domain.
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12. The method as set forth in claim 11, wherein the one
or more processors further perform operations of:

encoding the synthetic 1mage back to the joint latent

space; and

decoding the synthetic 1mage back to 1ts actual domain.

13. A computer program product for adapting a deep
convolutional neural network (CNN), the computer program
product comprising;:

computer-readable mnstructions stored on a non-transitory

computer-readable medium that are executable by a
computer having one or more processors for causing
the processor to perform operations of:

training a deep CNN on an annotated source image

domain;

adapting the deep CNN to a new target image domain

without requiring new annotations by determiming
domain agnostic features that map from the annotated
source 1mage domain and a target image domain to a
joint latent space and using the domain agnostic fea-
tures to map the joint latent space to annotations for the
target 1mage domain;

wherein the joint latent space 1s invariant to any structured

noise variations between the annotated source image
domain and the target image domain; and

wherein decoders add back structured noise variations for

reconstructing each i1mage domain from its domain
agnostic features in the joint latent space.

14. The computer program product as set forth i claim
13, wherein the joint latent space 1s regularized by a plurality
of auxiliary networks and loss functions.

15. The computer program product as set forth i claim
13, where 1n using the domain agnostic representations to
map the joint latent space to annotations for the target image
domain, the one or more processors further perform opera-
tions of:

using an adversarial setting 1n which a discriminator tries

to classily i a domain agnostic feature 1n the joint
latent space was generated from the annotated source
image domain or the target image domain; and
optimizing a cross entropy loss function that 1s defined as
a number of correct classifications of the discriminator.

16. The computer program product as set forth i claim
13, where 1n using the domain agnostic representations to
map the joint latent space to annotations for the target image
domain, the one or more processors further perform opera-
tions of:

encoding an 1mage from 1ts actual domain to the joint

latent space via an encoder, wherein the actual domain
1s one of the annotated source 1mage domain and the
target 1mage domain;
decoding the image to the other domain via a decoder,
wherein the other domain 1s the other of the annotated
source 1mage domain and the target image domain,
such that a synthetic 1image 1s generated; and

identifying if the synthetic image belongs to the actual
domain or the other domain.

17. The computer program product as set forth i claim
16, wherein the one or more processors further perform
operations of:

encoding the synthetic 1mage back to the joint latent

space; and

decoding the synthetic 1mage back to 1ts actual domain.
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