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PREVENTING OVERFITTING OF
HYPERPARAMETERS DURING TRAINING
OF NETWORK

BACKGROUND

Machine learning automates the creation, based on his-
torical data, of models that can then be used to make
predictions. A class of models called deep neural networks
(or DNNs) has become popular over the last few years, and
there 1s now a menagerie of types of DNNs. Some examples
of DNN’s include feed-forward, convolutional, recurrent,
long-short term memory (LSTM), and Neural Turing
Machines (NTM).

To train such networks, a common technique 1s to use a set
of traiming mputs with known true outputs. These training
inputs are run through the network, an error i1s calculated,
and various techniques (e.g., back-propagation) are used to
modily network parameters (e.g., weight values) 1 order to
attempt to mimimize a loss function that 1s based on this
calculated error (and potentially other factors). Network
training parameters, also called hyperparameters, atiect how
this training 1s performed. However, rigorous techniques for
setting and/or moditying these hyperparameters are gener-
ally not used (instead, the hyperparameters are often manu-
ally set), which can result 1n overfitting or other non-optimal
solutions for the network parameters.

BRIEF SUMMARY

Some embodiments of the invention optimize the training
of the parameters of a machine-trained (MT) network by
optimizing the tuning of a set of hyperparameters that define
how the training of the MT network 1s performed. These
hyperparameters, i various embodiments, may include
coellicients 1n the loss function used to train the network
(e.g., L1 and L2 regularization parameters), factors that
define how the network parameters are modified during
training (e.g., the learning rate), variational information
bottleneck (VIB) or vanational Bayes (VB) parameters, as
well as other values. Rather than manually assigning these
hyperparameters, some embodiments use optimization tech-
niques to tune the hyperparameters in order to optimize the
network training (thereby arriving at optimal or near-optimal
network parameters).

Some embodiments tune the hyperparameters by using a
training methodology 1n which the mputs used to train the
network and the mputs used to validate the network change
throughout the training. Specifically, some embodiments use
a prequential technique for tuning the hyperparameters that
iteratively trains the MT network by progressively adding
data to the mputs used to train the network at each 1teration.
Between 1terations, the hyperparameters are optimized by
determining the error of the network as trained from the
prior iteration when using a set ol validation inputs, and
modifying the hyperparameters to decrease this error. The
set of validation inputs, or a portion thereof, are then added
to the traiming mputs for the next iteration.

That 1s, for a particular iteration, a first set of training
inputs are used to train the parameters of the MT network
(e.g., the weight values for a neural network) using a {irst set
of hyperparameters. Next, a set of validation inputs are used
to compute an error for the MT network as trained by the
first set of training nputs and modily the hyperparameters
(1.e., to attempt to decrease/minimize this error). Some or all
of this set of validation mputs are added to the first set of
training inputs to create a second set of training inputs,
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2

which 1s then used to further train the parameters of the
network according to the second set of hyperparameters.
This process 1s repeated 1n some embodiments, with more of
the validation inputs being transferred to the training imputs
at each iteration (such that for each subsequent 1teration, the
set of training inputs 1s larger).

To better tune the hyperparameters, some embodiments
attempt to mimmize a description length score that specifies
a description length of the MT network. However, rather
than computing a description length based on, e.g., a number
ol bits required to describe the trained network (i.e., describe
the parameters of the trained network), the description
length score specifies a measure of the number of bits
required to reconstruct the trained network through the
prequential hyperparameter tuning technique. The optimi-
zation algorithm for the description length score thus seeks
to minimize the sum of (1) the bits required to specily the
correct output value for each new training 1mput and (11) the
bits required to update the hyperparameters at each iteration.

To measure the bits required to specity the correct output
value for each new ftraining iput, some embodiments
employ the information theory concept of a sender and
receiver. This concept assumes that both the sender and
receiver have adequate computing resources to perform the
MT network training, use the same training method, and
start with the same randomized parameters so that the sender
1s always aware of the computations performed by the
receiver (1.e., the sender always has knowledge of the
receiver’s version of the MT network). The sender also
knows both the mputs (e.g., images, audio snippets, etc.) and
the ground truth outputs (e.g., categories for images, face
identifications, etc.), whereas the receiver iitially only
knows the inputs. While one measurement of the bits
required to specily the correct output value to the receiver 1s
simply the bits required to provide this information, because
the sender can determine what the recerver’s network will
generate as output, this measurement can be minimized by
noting that the sender need only specity the error correction
bits. For a categorization network that outputs a probability
for each possible category, the closer the receiver network 1s
to outputting a (normalized) value of 1 for the correct
category, the smaller the number of error correction bits
required. Thus, the first term 1n the function to be minimized
1s an error measure of the network (1.e., the more predictive
the network already 1s, the fewer bits required to provide the
receiver with the next set of training inputs).

The value 1n minimizing the sum of the error correction
bits and the hyperparameter update bits 1s that this represents
a description of a network that 1s much more compressed
than the entirety of the network parameters. Minimum
description length theory states that the smaller (more com-
pressible) the MT network (or any other model), the more
predictive that network will be on new 1nputs (1.e., inputs not
used during training).

In order to minimize this network description length (the
sum of the error correction bits and the hyperparameter
update bits), some embodiments perform hyperparameter
optimization at each iteration. Specifically, the conceptual
sender seeks to optimize the hyperparameters for the upcom-
ing round of training by mimmizing the combination of the
hyperparameter updates and the error bits for the subsequent
set of training mputs (1.e., not the training mmputs added for
the upcoming round of training, but rather the training mnputs
to be added for the following round of training), aiter the
network 1s trained using the entire set of training inputs for
the upcoming round of training (i.e., all of the previous
training inputs as well as the newly added set of traiming
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inputs). Because the sender can replicate the training per-
formed by the receiver, the sender has the ability to make
this calculation. To perform this minimization, optimization
techniques (e.g., gradient descent) are used to modily the
hyperparameters.

The preceding Summary 1s intended to serve as a brief
introduction to some embodiments of the invention. It 1s not
meant to be an introduction or overview of all mventive
subject matter disclosed in this document. The Detailed
Description that follows and the Drawings that are referred
to 1 the Detailed Description will further describe the
embodiments described 1n the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings 1s needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details 1n the Summary, Detailed Descrip-
tion and the Drawings, but rather are to be defined by the
appended claims, because the claimed subject matters can be
embodied 1n other specific forms without departing from the
spirit of the subject matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation,
several embodiments of the mvention are set forth in the
tollowing figures.

FIG. 1 illustrates an example of a multi-layer machine-
trained network of some embodiments.

FIG. 2 conceptually illustrates a representation of a con-
volutional layer of a convolutional neural network.

FIG. 3 conceptually illustrates a training system of some
embodiments that iteratively adds inputs from a validation
set to the training set over the course of multiple training
runs.

FIG. 4 conceptually illustrates a process of some embodi-
ments for training a network while optimizing hyperparam-

cter values used 1n that training.

FIG. 5 conceptually 1llustrates the transier of inputs from
the validation set to the training set over several iterations.

FIG. 6 conceptually illustrates an information bottleneck
network of some embodiments that can be logically divided
into separate compressor and decoder stages.

FIG. 7 conceptually illustrates the architecture of an
information bottleneck neural network of some embodi-
ments.

FIG. 8 conceptually 1llustrates a softmax compressor of
some embodiments.

FIG. 9 conceptually 1illustrates a Boltzmann compressor
of some embodiments.

FIG. 10 conceptually illustrates the introduction of noise
for a single bottleneck layer of computation nodes.

FIG. 11 conceptually illustrates a Bayesian optimization
and hyperband process for a network with two hyperparam-
eters.

FIG. 12 conceptually 1llustrates using a Bayesian optimi-
zation and hyperband framework to tune parameters of
bilevel optimization.

FIG. 13 1s an example of an architecture of an electronic
device that includes the neural network integrated circuit of
some embodiments.

FI1G. 14 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

Some embodiments of the invention optimize the training
of the parameters of a machine-trained (MT) network by

5

10

15

20

25

30

35

40

45

50

55

60

65

4

optimizing the tuning of a set of hyperparameters that define
how the training of the MT network i1s performed. These
hyperparameters, i various embodiments, may include
coellicients 1n the loss function used to train the network
(e.g., L1 and L2 regularization parameters), factors that
define how the network parameters are modified during
training (e.g., the learning rate), variational information
bottleneck (VIB) parameters, as well as other values. Rather
than manually assigning these hyperparameters, some
embodiments use optimization techniques to tune the hyper-
parameters 1 order to optimize the network traiming
(thereby arriving at optimal or near-optimal network param-
cters).

FIG. 1 illustrates an example of a multi-layer machine-
trained network of some embodiments. This figure 1llus-
trates a feed-forward neural network 100 that has multiple
layers of processing nodes 102 (also called neurons). In all
but the first (input) and last (output) layer, each node 102
receives two or more outputs ol nodes from earlier process-
ing node layers and provides 1ts output to one or more nodes
in subsequent layers. The output of the node (or nodes) in the
last layer represents the output of the network 100. In
different embodiments, the output of the network 100 1s a
number in a range of values (e.g., 0 to 1), a vector repre-
senting a point mm an N-dimensional space (e.g., a 128-
dimensional vector), or a value representing one of a pre-
defined set of categories (e.g., for a network that classifies
cach 1nput mto one of eight possible outputs, the output
could be a three-bit value).

In this example, the neural network 100 only has one
output node. Other neural networks of other embodiments
have several output nodes that provide more than one output
value. Furthermore, while the network 100 includes only a
few nodes 102 per layer, a typical neural network may
include a varying number of nodes per layer (with some
layers having several thousand nodes) and significantly
more layers than shown (e.g., several dozen layers). In
addition, the neural networks of other embodiments may be
types ol networks other than feed forward networks (e.g.,
recurrent networks, regulatory feedback networks, radial
basis function networks, etc.).

The illustrated network 100 1s a fully-connected network
in which each node 1n a particular layer receives as mputs all
of the outputs from the previous layer. However, the neural
networks of some embodiments are convolutional feed-
forward neural networks. In this case, the intermediate
layers (referred to as “hidden™ layers) may include convo-
lutional layers, pooling layers, fully-connected layers, and
normalization layers. The convolutional layers of some
embodiments use a small kernel (e.g., 3x3x3) to process
cach tile of pixels 1n an 1mage with the same set of
parameters. The kernels (also referred to as filters) are
three-dimensional, and multiple kernels are used to process
cach group of mput values 1n a layer (resulting in a three-
dimensional output). Pooling layers combine the outputs of
clusters of nodes from one layer 1into a single node at the next
layer, as part of the process of reducing an 1mage (which
may have a large number of pixels) or other input 1tem down
to a single output (e.g., a vector output). In some embodi-
ments, pooling layers can use max pooling (in which the
maximum value among the clusters of node outputs 1s
selected) or average pooling (in which the clusters of node
outputs are averaged).

As shown 1n FIG. 1, each node 1n the neural network 100
has a linear component 110 and a nonlinear component 115.
The linear component 110 of each hidden or output node 1n
this example computes a dot product of a vector of weight
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coefficients and a vector of output values of prior nodes, plus
an offset. In other words, a hidden or output node’s linear
operator computes a weighted sum of 1ts inputs (which are
outputs of the previous layer of nodes) plus an offset (also
referred to as a bias). Similarly, the linear component 110 of
each mput node of some embodiments computes a dot
product of a vector of weight coefficients and a vector of
mput values, plus an offset. In other embodiments, each
input node receives a single mput and passes that input as 1ts
output. Each node’s nonlinear component 115 computes a
function based on the output of the node’s linear component
110. This function 1s commonly referred to as the activation
function, and the outputs of the node (which are then used
as mputs to the next layer of nodes) are referred to as
activations.

The notation of FIG. 1 can be described as follows.
Consider a neural network with L hidden layers (i.e., L
layers that are not the input layer or the output layer).
The variable 1 can be any of the hidden layers
(1e., 1 € {1, ..., L-1} index the hidden layers of the
network, with 1=0 representing the mput layer and 1=L
representing the output layer). The variable z “*'’ represents
the output of the linear component of a hidden node 11n layer
14+-1. As indicated by the following Equation (1), the variable
z“*V is computed as the dot product of a vector of weight
values W.**" and a vector of outputs y*’ from layer 1
multiplied by a constant value c;, and offset by a bias value

b;.

z

" (1)
ZEHU _ (PK'(HU _y(f)) wCi + bgﬂ) _ Z(W;gcﬂ) *J{g)) wCi + b(-Hl)

; :
k=1

The constant value c; 1s a value to which all the weight
values are normalized. In some embodiments, the constant
value c; 1s 1. The symbol * 1s an element-wise product, while
the symbol * is the dot product. The weight coefficients W
are parameters that are adjusted during the network’s train-
ing 1n order to configure the network to solve a particular
problem (e.g., object or face recognifion 1n 1mages, voice
analysis 1n audio, depth analysis 1n 1mages, etc.). In some
embodiments, the training algorithm imposes certain con-
straints on the weight values. Specifically, some embodi-
ments 1mpose a ternary constraint that requires all of the
weight values for any given layer to be either zero, a positive
value, or a negation of the positive value (e.g., 0, 1, and —1).
In addition, some embodiments use a training technique that
maximizes the number of weight values that are equal to
zero (such that, e.g., 75% or 90% of the weight values equal
ZEro).

The output vy, of the nonlinear component 115 of a
node 1n layer 141 1s a function of the node’s linear compo-
nent, and can be expressed as by Equation (2) below:

{({+1)

(2)

(i+1)
i

_ f(ngH)).

In this equation, f is the nonlinear activation function for
node 1. Examples of such activation functions include a
sigmoid function 120 (f(x)=1/(1+e™)), a tanh function 125,
a RelLU (rectified linear unit) function 130 or a leaky RelLU
function 135, as shown.

Traditionally, the sigmoid function and the tanh function
have been the activation functions of choice. More recently,

the ReLU function (J(x)=max(0, x)) has been proposed for
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the activation function 1n order to make it easier to compute
the activation function. See Nair, Vinod and Hinton, Geof-

frey E., “Rectified linear units improve restricted Boltzmann
machines,” ICML, pp. 807-814, 2010. Even more recently,

the leaky Rel.U has been proposed 1n order to simplify the
training of the processing nodes by replacing the flat section
(1.e., Xx<0) of the RelLU function with a section that has a
slight slope. See He, Kaiming, Zhang, Xiangyu, Ren, Sha-
oqing, and Sun, Jian, “Delving deep 1nto rectifiers: Surpass-
ing human-level performance on imagenet classification,”
arX1v preprint arXiv:1502.01852, 2015. In some embodi-
ments, the activation functions can be other types of func-
tions, like cup functions and periodic functions.

Equation (2) can be expressed 1n the following expanded
format of Equation (3):

(3)

({+1)
i

o _

f+1 f+1
:f(z§+}):f[ Wfk$yk]$ﬂf+bg+}.
\k=1 _

i—

In this equation, w,, are weight values associated with the
inputs y, of the node 1 1n layer 1+1.

As mentioned above, 1n some embodiments the machine-
trained network 1s a convolutional neural network. FIG. 2
conceptually 1llustrates a representation of a convolutional
layer of a convolutional neural network. The convolutional
layer receives a set of iput activation values 200 organized
as a three-dimensional array. This three-dimensional array 1s
either (1) a set of input values for the network, if the
convolutional layer 1s the first layer of the network, or (11) a
set of output values of a previous layer of the network (e.g.,
a previous convolutional layer, a pooling layer, etc.). The
array can be conceptualized as a set of two-dimensional
or1ds, as shown 1n the figure. In this example, the dimensions
of the mput values are 6xX6x3 (1.e., three 6x6 grids).

Each computation node of the convolutional layer
involves a linear component (e.g., a dot product followed by
scaling and bias functions) as well as a non-linear compo-
nent, as described above. The mput to each computation
node 1s a subset of the mput activation values, and the dot
product for the computation node 1nvolves multiplying those
input activation values by one of the filters of the layer. As
shown, 1n this example the layer includes six filters 205,
each of which are 3x3X3. Each value in one of the filters 1s
a weight value that 1s trained using the techniques described
above. Thus, 1n the example shown 1n this figure, each filter
includes 27 trainable weight values.

The size of the filters 1n the x and y directions can vary
(3%3 and 5X5 are common sizes), but in some embodiments
the depth 1s required to match the depth of the mput
activations (in this case there are three grids, so the depth 1s
three). The number of filters 1n a given layer can also
vary—in general, each filter 1s attempting to identify the
presence of a particular feature 1n the mput values. For
instance, 1 1mage analysis, a filter in an early layer might
test for the presence of an edge 1n a particular direction while
a filter 1n a later layer tests for the presence of a more specific
object type 1n the 1mage (e.g., a nose).

To generate the output activations, each of the filters 205
1s applied to numerous subsets of the input activation values.
Specifically, 1n a typical convolution layer, each 3x3X3 filter
1s moved across the three-dimensional array of activation
values, and the dot product between the 27 activations 1n the
current subset and the 27 weight values in the filter is
computed. This process starts 1n the top left corner (1.e.,

x=0-2, y=0-2) of the grid, and includes the full depth of the
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array. The filter moves across the rows, 1n this case using a
slide of 1 (1.e., moving one column per computation node,
such that the second dot product uses activations at x=1-3,
y=0-2). When the end of a row 1s reached, the filter 1s moved
back to the first columns (1.e., x=0-2) and down one row
(1.e., y=1-3), and so on until the bottom right corner of the
array 1s reached. Though not the case in this example, some
embodiments use zero-padding at the edges of the grids.

The output activation values 210 are arranged 1n a 4x4x6
array 1n this example. The outputs from a single filter are
arranged 1n a single grid, and because the example has six
filters 205 the output activations have six grids. Using a slide
value of 1 with no zero-padding results 1n a 4x4 output grid
for each filter. These output activation values 210 are then
the 1nput activation values for the next layer of the neural
network.

Before a multi-layer network can be used to solve a
particular problem (e.g., image classification, face recogni-
tion, etc.), the network 1s put through a supervised traiming,
process that adjusts the network’s configurable parameters
(e.g., the weight coeflicients of 1ts linear components). The
training process uses different mput value sets with known
output value sets. For each selected mput value set, the
training process typically (1) forward propagates the input
value set through the network’s nodes to produce a com-
puted output value set and then (2) backpropagates a gra-
dient (rate of change) of a loss function (output error) that
quantifies 1 a particular way the diflerence between the
input set’s known output value set and the mput set’s
computed output value set, in order to adjust the network’s
configurable parameters (e.g., the weight values).

In some embodiments, this training process 1s governed
by a set of training parameters, also referred to as hyperpa-
rameters. These hyperparameters define various {factors
about the traiming, such as how much the weights are
modified during backpropagation, how much and how
quickly certain factors in the loss function are changed
during the course of a tramning run (e.g., to modily the
relative importance of different factors 1n the loss function),
how much regularization 1s factored in (1.e., how much the
changes 1n the weights are dampened 1n order to avoid
overfitting the weights to the specific inputs used for train-
ing), etc. In general, the better the hyperparameter values are
set, the better the resulting network will be predictive for
new input data that was not used for training.

Some embodiments tune the hyperparameters by using a
training methodology 1n which the mputs used to train the
network and the mputs used to validate the network change
throughout the training. Specifically, some embodiments use
a prequential technique for tuning the hyperparameters that
iteratively trains the MT network by progressively adding
data to the mputs used to train the network at each 1teration.
Between 1terations, the hyperparameters are optimized by
determining the error of the network as trained from the
prior iteration when using a set ol validation inputs, and
modifying the hyperparameters to decrease this error. The
set of validation inputs, or a portion thereof, are then added
to the traiming mputs for the next iteration.

That 1s, for a particular iteration, a first set of training
inputs are used to train the parameters of the MT network
(e.g., the weight values for a neural network) using a {irst set
of hyperparameters. Next, a set of validation inputs are used
to compute an error for the MT network as trained by the
first set of training nputs and modily the hyperparameters
(1.e., to attempt to decrease/minimize this error). Some or all
of this set of validation mputs are added to the first set of
training inputs to create a second set of training inputs,
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which 1s then used to further train the parameters of the
network according to the second set of hyperparameters.
This process 1s repeated 1n some embodiments, with more of
the validation 1inputs being transferred to the training mputs
at each 1teration (such that for each subsequent iteration, the
set of tramning inputs 1s larger).

FIG. 3 conceptually illustrates a training system 300 of
some embodiments that iteratively adds mputs from a vali-
dation set to the traiming set over the course of multiple
training runs. The training system 300 uses a validation
system 350 to test the predictivity of the trained network
after each 1teration and uses a description length score based
on (1) potential hyperparameter modifications and (11) the
error generated for validation set inputs when incorporating
these potential modifications 1n order to determine optimal
hyperparameter modifications at each iteration. The traiming,
system 300 modifies the parameters (e.g., weight values) for
a machine-trained network over the course of these multiple
training 1terations, and the resulting network can then be
used for 1ts particular purpose (e.g., embedded on a device).

As shown, the training system 300 includes an 1nput
generator 305, an error calculator 310, an error propagator
315, and a parameter modifier 320. In some embodiments,
all of these modules execute on a single device, such as a
server, a desktop or laptop computer, a mobile device (e.g.,
a smartphone, tablet, etc.), a virtual machine, etc. In other
embodiments, these modules may execute across multiple
interconnected devices (or virtual machines), or separate
instances may execute on multiple devices (or virtual
machines) for additional computing power.

In some embodiments, the system imtially receives a
multi-layer network (including initial weight values), inputs
for the network, and expected outputs for these mputs. The
network 323 of some embodiments 1s a multi-layer machine-
trained network, such as that shown 1n FIG. 1 (e.g., a neural
network with some combination of convolutional layers,
tully-connected layers, residual layers, etc.). It includes
multiple layers of nodes, including a layer of input nodes, at
least one layer of hidden nodes, and a layer of output nodes.
Each hidden node and output node includes a linear com-
ponent (that uses the weight values 330) and a non-linear
activation function. The network 325 recerves an mput (e.g.,
an 1mage, an audio smppet, a sequence of 1images, etc.) and
generates a corresponding output.

The weight values 330 are used to parametrize the net-
work, and are trained by the system 300 for the network to
perform a particular task. In some embodiments, these
welghts are 1nitialized using a probabilistic distribution for
cach layer. That 1s, 1n some embodiments, the weights within
cach layer are selected randomly from a Gaussian distribu-
tion. Depending on the characteristics of the network being
trained, all the weights 1n any given layer may be forced
during training to one of a set of discrete candidate values
(e.g., with the candidate set for a layer being {0, o, -, },
with different values of o, for each layer k).

For the training inputs 335, some embodiments perform
training with a large number of different inputs, as this can
help train the weight values for an average input. Each input
in an input set may be an 1image, a voice snippet, etc. that 1s
to be propagated through the network, depending on the
specific purpose for which the network 1s being trained. For
example, 11 a network 1s being trained to 1dentily faces, the
set of inputs will include numerous i1mages of several
different people’s faces, probably including various types of
edge cases (e.g., images where the face 1s distorted, where
objects partially appear 1n front of the face, etc.). Each input
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also has a corresponding expected (ground truth) output that
1s what the network should generate as 1ts output when
presented with that input.

The mput generator 305 selects a set of inputs (and
corresponding outputs) from the sets of inputs and outputs
335. In addition, 1n some embodiments, the input generator
305 breaks up the mputs mnto constituent values to be fed
into the mnput layer of the network 325. For instance, for a
network being trained for face recognition, the mput gen-
erator might simply divide the pixels 1into several sections,
arrange the pixels mnto red, blue, and green (or luma and
chroma) channels, or perform computations based on the
pixel values and feed these to the input layer. That 1s, based
on the stored input 335 (e.g., an 1image), the input generator
305 might perform a set of computations 1n order to generate
the 1nputs for the input layer of the network 325.

The network 325 processes the set of inputs through the
network to obtain predicted outputs (1.e., outputs predicted
according to the current state of the network 325). Each
input propagates through the processing nodes of the net-
work 325, with each layer of nodes receiving their one or
more 1mputs and generating an output to pass to the next
layer of nodes. In the final output layer, one or more nodes
receives the outputs from the previous layer and generates
the outputs of the network. In some embodiments, this
processing entails, for each node, the linear component first
computing a weighted sum of 1ts input values (according to
the current weight values 330), and then the non-linear
activation function computing an output based on this
welghted sum. For certain training techniques that aim to
achieve certain criteria with respect to the weight values
(e.g., a small discrete set of weight values for each layer, a
large percentage of the resultant weight values being set to
0, etc.), certain calculations are performed for each node
(e.g., treating the weight values as a probability distribution,
calculating the mean and variance for each weight, and then
using these along with the node mput values to compute an
output mean and variance for each node).

The error calculator 310 then computes the error for the
input set. In some embodiments, the error calculator 310
computes the error for each individual mnput as the network
325 generates 1ts output. The error calculator 310 receives
both the predicted output from the mput generator 305 and
the output of the network 325, and uses a loss function that
quantifies the difference between the predicted output and
the actual output for each mput. Some embodiments com-
pute this as a simple difference, or absolute value of the
difference, between the two values; other embodiments
compute the square of the differences, or other such mea-
sure. In addition, some embodiments sum or average the loss
function value for each input 1n a set of inputs (1.e., batch of
inputs). This calculated error 1s passed to the error propa-
gator 315 1n some embodiments.

The error calculator 310 also adds any additional terms
used to bias the tramning 1n different ways (e.g., biasing the
welghts towards predefined discrete values for each weight
and/or to ensure that a threshold percentage of the weights
end up at the value 0). Examples of such loss function terms

and their use 1n training are described in greater detail in
U.S. patent application Ser. No. 15/815,222 (filed Nov. 16,

2017), now 1ssued as U.S. Pat. No. 11,113,603, and U.S.
patent application Ser. No. 15/921,622 (filed Mar. 14, 2018),

now 1ssued as U.S. Pat. No. 11,537,870, both of which are

incorporated herein by reference. Some of these loss func-
tion terms may include hyperparameters. For example, bias-
ing terms may include scaling hyperparameters that allow
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the relative weight of those terms to be modified, regular-
1zation terms may mnclude hyperparameters, etc.

Next, the error propagator 315 back-propagates the error
(including any constraint terms) to determine the rate of
change of the error with respect to a change of each weight
value. In typical training (1.e., without any additional penalty
terms), the loss function 1s back-propagated through the
network 1n a process that determines, for each weight, the

rate of change of the loss function with respect to a change
in the weight at the current value of the loss function. The
backpropagation process uses the chain rule for partial
derivatives to 1solate the partial derivative of the loss func-
tion with respect to each individual weight used in the
multi-layer network, and assign a value to this partial
derivative for the current value of the loss function. Thus,
this process 1dentifies the relative effect on the loss function
of changes to the many different weights used to generate the
outputs of the network.

Specifically, if L 1s the combined loss function (including
the penalty terms), then the backpropagation computes, for
each weight w,,, the partial derivative

0L

ow,,

Because the weights are 1solated 1n a node’s output compu-
tation as well as (typically) 1n any constraint terms, com-
puting these partial derivatives 1s not difficult via application
of the chain rule. In this sense, the loss function 1s a function
in many-dimensional space (1.e., with the various weight
coefficients being the many dimensions), and the nature of
the function means that the effect of each weight value can
be easily 1solated for a given loss function value.

The parameter modifier 320 adjusts the weight values
based on the relative rates of change and a training rate
factor. That 1s, the error propagator 315 provides, for each
welght value w,,, the partial derivative of the loss function
with respect to that w,,. These partial derivatives are used to
update the weight values by moving the weight values 1n the
direction opposite the gradient (to attempt to reduce the loss
function value) by a particular amount, with a larger partial
derivative for a particular weight (1.e., a component of the
gradient) resulting 1 a greater change to that weight. The
parameter modifier 320 of some embodiments uses a train-
ing rate hyperparameter (also referred to as a learning rate)
from the training parameters 340 to determine how much to
change the weight values based on the 1nstantaneous gradi-
ent components. That 1s, the gradient component for a
particular weight provides an amount to move (in the
direction opposite to the gradient component, as the goal 1s
to minimize the loss function) that weight value relative to
the other weight values, while the learning rate specifies the
distance of that move. Specifically, for each weight value
w.., with a learning rate r, the weight modifier updates this
welght value using the following equation.

(4)

oL
Wikiupdatedy = Wik — | ' * F
ik

After the weights (and any other network parameters) are
updated, the training system 300 can continue to perform
additional training. Some embodiments use a minimization
process (e.g., a stochastic gradient descent minimizer) to
determine when to stop training the network. In some
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embodiments, the system 300 only stops training the net-
work once certain thresholds for the weight have been met
(c.g., that a large enough percentage of the weight values
have been set to zero). In some embodiments, the input
generator 305 determines whether to perform more training;
in other embodiments, a different module (e.g., a module not
shown 1n FIG. 3 makes this determination).

As mentioned, some embodiments perform multiple train-
ing runs with changing training inputs 335, and perform
validation using the validation system 350 to determine how
predictive the network parameters are alter each training
run. In addition, the validation system 3350 1s used to modify
the training parameters 340 in order to optimize the resulting,
network. As shown, the validation system 350 includes an
input generator 355, a network 360, an error calculator 365,
a description length score 370, and a hyperparameter modi-
fier 375.

The validation system receives the weight values 330 (and
any other parameters of the network 360) as trained by the
training system 300 and measures the predictiveness of this
network. The network 360 has the same structure as the
network 325 used for tramning, and 1s used to validate the
training by determining how predictive the weight values
330 are for mputs that were not used for training. One key
for testing machine-trained networks 1s that the validation
inputs used to measure a network’s predictiveness should
not be mputs used during training (as these will not be
indicative of predictiveness). However, over the course of
multiple training runs, 1t 1s possible to use some inputs as
validation inputs after a first traiming run, then add these
inputs to the set of training inputs for the next training run
(so long as these mputs are not used for any future valida-
tion).

The error calculator 365 calculates the error in the net-
work output for the validation puts 380, 1n order to
measure the predictiveness of the network after a training,
run. Because the validation system 3350 is not moditying the
weilght values, this error 1s not used for backpropagation to
modily the weights. Instead, a description length score
calculator 370 uses the measured error 1n some embodi-
ments, along with additional information (e.g., possible
hyperparameter modifications, calculations of error due to
those possible modifications) 1n order to calculate a descrip-
tion length score (and attempt to minimize this score).

As mentioned above, hyperparameter tuning is typically a
difficult process, and many traiming systems use guesswork
to modily the hyperparameters. However, to better tune
these hyperparameters, some embodiments attempt to mini-
mize a description length score that specifies a description
length of the trained network (e.g., a number of bits required
to describe the network). One possible calculation for such
a description length 1s the number of bits to describe the
parameters of the trained network (which would push weight
values to 0). However, rather than computing the description
length score based on this metric, in some embodiments the
description length score calculator 370 uses a measure of the
number of bits required to reconstruct the trained network
through a prequential hyperparameter tuning technique. The
optimization algorithm for the description length score thus
secks to minimize the sum of (1) the bits required to specily
the correct output value for each new training input and (11)
the bits required to update the hyperparameters at each
iteration.

To measure the bits required to specily the correct output
value for each new ftraiming imput, some embodiments
employ the information theory concept of a sender and
receiver. This concept assumes that both the sender (e.g., the
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validation system 3350) and receiver (e.g., the training sys-
tem 300) have adequate computing resources to perform the
training algorithm, use the same training method, and start
with the same randomized parameters so that the sender 1s
always aware of the computations performed by the receiver
(1.e., the validation system 350 always has knowledge of the
training system 300 version of the network, and how that
network will be modified based on the new training inputs
added each 1teration). In this conception, the sender also
knows both the mputs (e.g., images, audio snippets, etc.) and
the ground truth outputs (e.g., categories for images, face
identifications, etc.), whereas the receiver initially only
knows the 1nputs.

While one measurement of the bits required to specify the
correct output value to the receiver (i.e., for the validation
system 350 to indicate the ground truth output for each new
training input) 1s simply the bits required to provide this
information, because the validation system can determine
what the tramning system’s network will generate as output,
this measurement can be minmimized by noting that the
sender need only specily the error correction bits (i.e., the
bits needed to get from the network output to the correct
output). For a categorization network that outputs a prob-
ability for each possible category, the closer the receiver
network 1s to outputting a (normalized) value of 1 for the
correct category, the smaller the number of error correction
bits required. Thus, the first term 1n the function to be
minimized 1s an error measure of the network (1.e., the more
accurate the network already 1s, the fewer bits required to
provide the receiver with the next set of training inputs).
While mitially this may be a larger number of bits, once the
network has been through a training run, the size of the error
description should decline quickly.

The value 1n minimizing the sum of the error correction
bits and the hyperparameter update bits 1s that this represents
a description of a network that 1s much more compressed
than the entirety of the network parameters. Minimum
description length theory states that the smaller (more com-
pressible) the network, the more predictive that network will
be on new 1nputs (1.e., inputs not used during training). As
such, because the goal of training the network 1s to have as
predictive a network as possible (e.g., avoiding overfitting),
the description length score calculator 370 attempts to
minimize this description length score.

Thus, 1n order to minimize this network description length
(the sum of the error correction bits and the hyperparameter
update bits), the hyperparameter modifier 375 of some
embodiments performs hyperparameter optimization at each
iteration. Specifically, the validation system 350 (the con-
ceptual mformation theory sender) seeks to optimize the
hyperparameters for the upcoming round of traiming by
minimizing the combination of the hyperparameter updates
and the error bits for the subsequent set of training inputs
(1.., not the training 1puts added for the upcoming round of
training, but rather the training inputs to be added for the
following round of training), after the network 1s trained
using the entire set of training inputs for the upcoming round
of traiming (1.e., all of the previous training inputs as well as
the newly added set of training inputs). Because the valida-
tion system 350 (the sender) can replicate the traiming
performed by the tramning system 300 (the receiver), the
validation system 350 has the ability to make this calcula-
tion.

To perform this minimization, optimization techniques
(e.g., gradient descent) are used to modily the hyperparam-
eters. The hyperparameter modifier 375, 1n concert with the
description length score calculator 370, determines the opti-
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mal modifications to the hyperparameters 340 at each itera-
tion, and provides these updates to the training system 300.
These modifications, for example, might modity the learning
rate from one training iteration to another (1.e., to modify the
rate at which weight values are changed during backpropa-
gation), increase or decrease regularization factors (which
tend to push weight values towards 0 1n order to reduce
overfitting), or modily other hyperparameters (as men-
tioned, the specific hyperparameters used will depend on the
specific training algorithm and loss function used by the
training system 300).

It should be understood that FIG. 3 illustrates one
example of a conceptual training/validation system, and that
other systems may embody the invention and perform
similar functions as well. For instance, some embodiments
do not use a separate validation system, but rather use the
same modules for training and validation, so long as mnputs
are not used for validation once they have been used for the
actual network training.

FIG. 4 conceptually illustrates a process 400 of some
embodiments for training a network while optimizing hyper-
parameter values used in that tramning (in order to best
optimize the training of the network). The process 400 1s
used to optimize the resultant network such that the network
will be maximally predictive (1.e., will provide the best
results for new mputs not used 1n training of the network).
In some embodiments, the process 400 1s performed by the
training system 300 and validation system 350, or a similar
combined system. The process 400 will be described in part
by reference to FIG. 5, which conceptually illustrates the
transier of inputs from the validation set to the training set
over several 1terations.

As shown, the process 400 begins by receiving (at 405) a
multi-layer network to be trained, along with 1nitial weight
values and hyperparameters. In some embodiments, a net-
work definition specifies the structure of the network (.e.,
the number of 1nput nodes, the number of layers and type of
cach layer, the filter structures for convolutional layers, etc.).
The 1mitial weight values may be generated randomly 1n
some embodiments (e.g., randomly assigning each weight a
value between -1 and 1). The 1nitial hyperparameter values
may be assigned randomly (within an acceptable range for
cach hyperparameter) or manually 1n different embodiments.

Next, the process 400 receives (at 410) an i1nitial set of
training nputs and validation inputs. Specifically, 1n some
embodiments, the training system receives the traimning
inputs while the validation system receives the validation
inputs (and 1s also allowed to have knowledge of the training
inputs). In some embodiments, the validation system also
calculates the error bits required to provide the training
system with the 1nitial set of training inputs, as this data 1s
used for computing the minimum description length score
(which requires the inclusion of the bits needed to describe
all of the traiming inputs used).

FIG. 5 illustrates that at a first iteration of the network
training system, a first set of iputs 5035 are in the training
set, while numerous additional sets of mputs 510-535 are
used for validation. Where this figure shows a set of inputs,
it should be understood that this represents both the mput as
well as a ground truth network output. Depending on the
type of network being trained, these inputs may be 1mages,
audio snippets, video snippets, etc. Similarly, depending on
the network, the ground truth outputs could be categories
(e.g., 1identitying the correct category from a set of possible
output categories for an i1mage or other input), binary
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determinations (e.g., specitying whether a particular audio
smppet 1s a human voice), or other appropriate network
outputs.

Next, the process 400 trains (at 415) the network weights
using the current set of training inputs and the current
hyperparameters. At the first iteration, this will be the nitial
set of training inputs, whereas for later iterations this waill
include mput items that were previously part of the valida-
tion mputs (and 1n some embodiments also include the nitial
training inputs). For the hyperparameters, the first traiming
run uses the mitially set values (e.g., manually set hyperpa-
rameter values). As mentioned above, different embodi-
ments use different training techniques (e.g., quantized
parameter values, variational Bayes, variational information
bottleneck, etc.) to attempt to optimize the parameter values
for predictiveness (as well as additional factors such as
sparsity of non-zero values).

The process 400 then measures (at 420) the error of the
trained network using the current validation inputs. As
mentioned, using the validation mputs (1.e., inputs not used
in tramning the network) allow the predictiveness of the
network to be measured. In addition, the error of the network
1s used 1n calculating the description length score, though 1n
some embodiments the description length score uses the
future error after a subsequent training run in determining
the description length score and optimizing the hyperparam-
cters. FIG. 5 illustrates that 1n a first iteration of the training
and validation cycle, the validation set used to determine
network predictiveness 1s very large.

The process 400 then determines (at 4235) whether to
perform additional training. Some embodiments always
perform traiming iterations until the entire validation set has
been added to the tramning set, irrespective of the error
measurement. Other embodiments, however, stop perform-
ing training if the network 1s adequately predictive on the
remaining validation inputs. Once additional training 1s no
longer required, the process 400 outputs (at 430) the network
(1.e., outputs the network parameters).

On the other hand, if additional training 1s required, the
process 400 moves (at 435) a next set of mputs from the
validation iputs to the training inputs. In some embodi-
ments, these inputs moved to the training inputs are some of
the inputs most recently used for validation (1.e., at 420). As
shown 1n FIG. 5, not all of the validation inputs used for the
most recent round of predictiveness testing are moved to the
training set; instead, only a subset of these inputs are
transferred at each iteration. For instance, after the first
iteration of training, the set of inputs 510 1s transferred from
the validation set to the training set for the second traiming
iteration. In this example, over the course of several itera-
tions, all but the last remaining set of inputs 535 are
transferred from the validation set to the training set. In
addition, for a final iteration, some embodiments transter the
last set of 1nputs to the training set, and perform a final round
of tramning using these inputs as well.

Next, the process 400 attempts to minimize (at 440) a
description length score that combines (1) error measure-
ments and (11) potential modifications to hyperparameters. In
some embodiments, as mentioned, the error measurement
used for the description length score 1s a measure of the error
for a next set of validation 1nputs to be added to the training
set, not the set of validation 1inputs just moved to the training
set. As described above, because the sender can replicate the
training performed by the receiver, the sender has the ability
to make this calculation. To perform this minimization,
optimization techniques (e.g., gradient descent) are used to
modily the hyperparameters. Specifically, some embodi-
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ments compute (or at least estimate) the gradient of the
description length score with respect to a vector of hyper-
parameters.

To measure the error bits for the description length score,
some embodiments use a system of codebooks. Specifically,
for a categorization network, some embodiments define a
meta-codebook with one codebook for each category. For
cach set of training inputs, the bit cost according to the
current meta-codebook 1s added to the description length
score. For instance, the bit cost for an mmput assigned to
category 1 by the training system that i1s actually ground-
truth category j would have a bit cost of -log (code,/
2code ;). Using the sender/receiver formulation, the code-
book for a category 11s updated by accumulating the number
ol assignments by the receiver’s network of a new mput to
category 1 when 1t 1s from the true category 1 (noting that 1
and 1 may be 1dentical). A codebook would be used by first
normalizing its counts to probabilities that add to 1 by
dividing by their sum. In some embodiments, the initial (first
iteration) meta-codebook consists ot code;, =1 representing a
uniform (uminformed) distribution of categories for the first
set of tramning inputs (before the network 1s trained). For a
subsequent set of mputs to be added to the training set, the
algorithm adds 1 to code;; if an input is assigned to category
1 and 1s actually of category 1. Some embodiments also add
1 to each diagonal entry code, in anticipation of the
improvement in the next training run. Other embodiments
measure the error by using log(1/p) as a measure of the bits
needed to communicate each mput, where p 1s the normal-
1zed categorization probability for the correct category for a
grven mput output by the network (trained using the updated
hyperparameters) for that input. Thus, as p—1, the number
of error bits for that input approaches 0 (1.e., the more
predictive the network 1s after being trained with a new set
of hyperparameters, the fewer bits required to provide the
next set of inputs).

Meanwhile, the hyperparameter modification bits added
to the description length score increase with the size of the
change for each hyperparameter in some embodiments.
Some embodiments use a set (e.g., 8) of discrete possible
hyperparameter values and use a code that specifies to either
keep the same hyperparameter, decrease by one value within
the predefined set, or increase by one value within the
predefined set. At each 1iteration, the total description length
score 1s minmimized for that iteration and added to the total
score. This description length score (accounting for hyper-
parameter modification bits) should be smaller than an upper
bound that can be set on the score in the case i which the
hyperparameters are not modified throughout training. In
this upper bound case, the error bits for providing each new
set of training mputs are computed and added to the score at
cach 1teration, assuming the hyperparameters are held con-
stant. By optimally modifying the hyperparameters (and
therefore trading hyperparameter modification bits for error
bits), an overall score can 1deally be achieved.

Based on this minimization, the process modifies (at 445)
the hyperparameters. The process then returns to 413 to train
the network weights using the new set of hyperparameters
and the training nputs including the inputs newly added at
435. As mentioned, some embodiments continue until either
the network 1s adequately predictive or until all of the
validation inputs have been added to the training set.

Before describing several examples of hyperparameter
tuning, variational information bottleneck (VIB) and its
hyperparameters will be described. At a high level, the
information bottleneck loss function 1s an information theo-
retic loss function for training classifier neural networks of

10

15

20

25

30

35

40

45

50

55

60

65

16

some embodiments (1.e., neural networks that sort inputs,
such as 1mages, 1nto classifications). An information bottle-
neck (ITB), in some embodiments, trains the network to
discard portions of information from input data that are not
usetul for deducing the correct classification. Only informa-
tion relevant to making the correct classification on input
data 1s allowed to pass through the “bottleneck™ network.
This removal of unnecessary information reduces overfitting
by preventing the network from learning the noise 1n the
training set.

FIG. 6 conceptually 1llustrates an IB network 600 of some
embodiments that can be logically divided into separate
compressor and decoder stages 605 and 610. The bottleneck
615 1s a designated intermediate value computed within the
network that 1s subjected to a constraint that limaits that
amount ol information that 1s passed between the stages. The
training process trains both stages simultaneously to produce
correct classifications at the output of the network while
satisiying the bottleneck constraint at the intermediate point
in the network.

The IB loss function of some embodiments uses a mutual
information function to quantitatively measure iformation
in units of bits:

Lip=1 (K’X)—ﬁf ()t Y) (5)

In this loss function, X 1s a random variable representing an
input datum (e.g., an entire 1image represented as a single
large number). X 1s a discrete random variable with alphabet
X for the mtermediate value computed within the network
that 1s the designated bottleneck. The output of the network
Y is the hypothesized classification of X (over alphabet Y
that includes all possible categories). The random variable Y
1s the ground truth classification for the input datum.

The first term 1n the loss function, I(X; X) measures the
mutual information between the input data and the bottle-
neck variable. Thus, minimizing the loss function 1nvolves
minimizing this mutual mnformation term: the goal 1s for the
variable X to contain minimal information about the input of
the network X The second term PI(X; Y) indicates that the
bottleneck variable should contain information about the
ground truth Y. As this term has a negative coeflicient,
minimizing the loss function 1nvolves maximizing this term.
Together these terms serve to discard as much information
as possible while keeping useful information at the bottle-
neck. The [ coellicient 1s a manually specified constant that
controls the relative importance of compressing information
versus preserving useful information. This 3 coellicient 1s a
hyperparameter that can be tuned using the above-described
methods 1n some embodiments, allowing the system to
discard controlled amounts of useful information 11 doing so
results 1n superior compression.

During optimization, the expected behavior for these
terms 1s that I(X; X) will start at a large value and decrease
over time, while BI(X; Y) will start as a small value and
increase. This corresponds to the network learning how to
compress unnecessary bits out of the input data and how to
decode the correct category from the remaining bits.

However, if the number of symbols in the alphabet v is
equal to the number of categories in the alphabet Y (i.e.,
IvI=IY 1), then the entropy H(X) (and thus I(X; X)) is at
most H(Y). In order for the network to be perfectly accurate,
I(X; Y) should also be equal to H(Y). Thus, I(X; X) should
reach 1ts theoretical maximum during optimization, and will
likely have a smaller value than its initial state, which
contradicts the mtuition described above that I(X; X) will
decrease as the network learns to compress. In addition, if
I(X; X) 1s mitially less than the maximum possible value,
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then the network i1s already discarding important bats of
information. In some embodiments, defining ¥ to have the
same number of symbols as y has categories does not leave
room for X to contain a superset of the information in Y.

The following describes the mformation bottleneck con-
cept using a particular 1image as an example. As such an
example, an 1mage might contain a black cat, showing
various details about the cat (e.g., 1ts eyes, whiskers, etc.) as
well as details about the surrounding scene. If the network
does not discard any information, then all of the information
regarding the cat and surrounding scene would pass through
from X to X and I(X; X) would equal the entire image.
Knowing g, one could recreate the original picture X per-
fectly. If the network discarded all but the specific informa-
tion of the existence of a black cat, then I(X; 5() would equal
this much smaller amount of information. In this latter case,
there 1s no longer enough information in g to know X exactly
(e.g., no mnformation about the cat’s facial details, 1ts pose,
or the surrounding scene 1s preserved). Ideally, this minimal
information 1s enough to deduce the ground truth classifi-
cation Y. If the proper classification 1s “cat”, then the
classification will be accurate, and the I(i; Y) term will have
a maximum value (because the critical information made 1t
through the bottleneck). If the ground truth 1s actually
“Bombay cat”, I(X: Y) will have some medium value, 1n that
g tells us something but not everything about the correct
classification. On the other hand, if the network only keeps
1dentification of the eye color (but not that the eyes belong
to a cat), which 1sn’t relevant to the classification, then I(X:
Y) would be zero.

For the computation of the loss function, the following
terms are used:

X.. network 1nput data for training datum 1

X : designated bottleneck discrete random variable for

training datum i (with alphabet X
P, probability that X =i, where j € X
Y ;: ground truth label of training datum 1 (with alphabet
Y)

Y ;: output of the neural network for training datum 1

p... probability that Y =k, where k € Y

0, mean probability over all training data that X=j

0., mean probability over all training data i true cat-

egory k that X=j

m.: mass of training datum 1

M, : total mass of all training data 1n true category k

M: total mass of all training data

The mutual information terms I(X; X) and/(X; Y) can be
defined in terms of p,; using the following equations:

1 (6)
0; = Eszpfj
1 (7)
'fs‘ﬁcj - Z UCTST:
K iY=k

(3)
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The gradients with respect to p,; are given by the follow-
Ing:

91(X; X) a6 s

= — 1 + logd ~
d pi; ;(( =0 )533’:';

i
+ v, (1 +logp;;)

= (1 +logh,) + —(1+1 (10
=~ (L +logoy) + — (1 +logp;;)

i ij
M fs‘j

ﬁf(}?; Y) m (11)

i "y
r - —(1 +logd)) + E(l +logdy, ;)

FIG. 7 conceptually illustrates the architecture of an TB
neural network 700 of some embodiments. For each piece of
input data X, the compressor stage 705 (which may include
many layers) of the network computes p,;, a probability
distribution over the symbols in X. The bottleneck allows a
single symbol from X to pass between the stages. This
symbol can be stochastically sampled from the distribution
p,;- The decoder stage 710 computes p,., a probability
distribution over the categories 1n Y . The hypothesis clas-
sification Y, can be sampled from the distribution p,,.

The TB loss function of some embodiments takes p,; and
Y, as 1nputs, and backpropagates gradients through the
compressor stage 705. The TB loss function does not pro-
vide gradients for tramning the decoder stage 7 in some
embodiments. The goal is to make sure X, includes the
necessary mformation for decoding Y., without dictating a
specific decoding technique. One approach 1s to use a second
loss function term (e.g., cross-entropy loss, as shown 1n FIG.
7) to train the decoder stage to decode Y, from X. As
described below, some embodiments use an alternative
approach 1 which the decoder stage 1s generated automati-
cally instead of trained.

The compressor stage 705 has multiple possible designs
for different embodiments. FIG. 8 conceptually 1llustrates a
softmax compressor 800 of some embodiments. This soft-
max compressor 1s a neural network with one output neuron
for each symbol in X. The final layer in the network is a
softmax layer which produces p,;, the desired probability
distribufion function over the symbols 1n X. This approach
1s similar to a traditional classifier network that learns a
one-hot encoding of the categories. In this case, however,
there are more symbols j € X than there are categories j €'Y,
such that H(X) may be greater than H(Y)

Some embodiments use a stochastic quantization com-
pressor. This 1s a neural network with a scalar output that can
only take a fixed discrete set of numeric values. Such a
compressor might use full-precision floating point math
internally and probabilistically snap the final output to a
discrete value. The distribution p,; 1s obtained from the
probabilities used within the snapping procedure.

FIG. 9 conceptually 1llustrates a third option, a Boltzmann
compressor 900 of some embodiments. This type of com-
pressor network produces a point z; 1n D-dimensional space
for each input datum 1, and computes p,; by measuring the
Boltzmann probabilities of point z. belonging to various
codewords C; in that same space. There 1s one codeword C,
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defined for each j € X. This approach has the advantage that
D can be much smaller than IXI, saving computation and
memory. Because the vector components z., are floating
point numbers, a high-entropy X can be described in a
low-dimensional space.

The following are several terms used 1n the subsequent
description of a Boltzmann compressor of some embodi-
ments:

z.. network output point in D-dimensional space for

training datum 1, with vector components z,,

C;: codeword for symbol j € X, with vector components

C.a
d;;: squared Euclidean distance from z, to C,

A.: inverse squared radius of codeword C;

oi: user-specified global scaling factor

P, probability that point z; belongs to codeword C,

The following equations are used to compute p,; (1.€., the

probability that the point z, belongs to a given codeword ).

dij = ||z — (12)

Cill = ) (i = Cja)’

d

R; = ma}z( —aA ;d;) (13)

&d —R
5= Tt

1 (15)

S Eaﬂ.jdj Ry

(14)

Pij =

The product 7Ld provides the distance to codeword | 1n
units of squared radn of codeword j. In addition, including
a 1n this product enables control of the global scale of the
system. The probability distribution p,; 1s a Boltzmann
distribution with respect to these regularized distances. In
addition, 1t should be noted that the Boltzmann distribution
in equation (15) may also include a normalization term 1n
some embodiments. To compute the probabilities, some
embodiments first compute the partition function S; using
the well-known technique of subtracting an offset R, from
the exponents to ensure numerical stability with floating-
point arithmetic. The parameters C;, A, and o/ may be fixed
constants or learned parameters of the system in different
embodiments.

The following equations give the gradients with respect to
any of the parameters

fE {{1’: /’)Lj: de: Zfd}:a_; —
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o0& o0& o0&
f?d { Q(Efd—de) :é‘: i (18)
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opij (19)
da
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-continued
When & = A
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Applying the chain rule to the information bottleneck loss
function results 1n:

l’aLj’B (29)

0Lz O pi;
ZZ dpi; OF

For the decoder stage of the network of some embodi-
ments, some embodiments use a neural network trained with
standard techniques (or using hyperparameter tuning as
described herein) to produce Y from X. Such a decoder
could be a standard classifier neural network 1n some
embodiments, that solves the sub-problem of classifying the
compressed input data X. If the information bottleneck loss
function successfully discards noise while preserving impor-
tant information, then this sub-problem should be easier and
less prone to overfitting than the original problem of clas-
sifying X. One option 1s to use the standard cross-entropy
loss function to train the decoder network to produce p,,, a
one-hot encoding of the category Y.

A second option for the decoder stage of some embodi-
ments 1s to use an automatically generated decoder that
leverages data structures from within the information bottle-
neck loss function. Such a decoder reuses the Bkjﬂvalues
computed for the information bottleneck loss term I(X; Y) to

automatically generate a decoder from X to Y. The 0,; matrix
entries are defined to be Skj—Pr{X—JIY—k} Reversing this
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conditional probability using Bayes’ Theorem gives
SjkzPr{szl)?:j}. This result 1s the desired probability
distribution p,, given X,=j. The 0, matrix can be computed
once at the end of training, and the decoder stage 1s simply
a lookup table that outputs a p,, vector for each symbol in X.

VIB builds on the information bottleneck concept by
introducing a variational bound of the information bottle-
neck loss function. In some embodiments, VIB moves
layer-by-layer to identify portions of the network (e.g.,
nodes, edges, or even entire filters) that are not passing
important information. To accomplish this, 1n some embodi-
ments, VIB introduces probabilistic (e.g., Gaussian) noise
into the output values of a set of computation nodes of the
network (e.g., the nodes of one or more layers of the
network). That 1s, the outputs of such nodes (which are
passed to nodes 1n the next layer) are made to vary proba-
bilistically around the actual computed output value during
training. This noise enables the training system to 1dentily
nodes that are less important to the eventual output of the
network (e.g., the classification decision, etc.) and remove
these nodes. That 1s, 1f the introduction of noise to a
particular node does not have a noticeable effect on the
network output, then this node can be removed. Different
embodiments may use this technique to remove individual
nodes, edges (1.e., the passing of values from one node to
another), and even entire filters (effectively a group of
computation nodes).

FIG. 10 conceptually 1llustrates this concept for a single
bottleneck layer 1000 of computation nodes. In this case, the
compressor 1005 and decoder 1010 are simply the layers of
the neural network leading up to the bottleneck layer 1000.
In some embodiments, each layer of the network 1s treated
as a bottleneck for the purpose of identifying the nodes,
edges, and/or filters that can be removed from the network.
As shown 1n this figure, each of the nodes 1n the bottleneck
layer 1000 has noise added to 1ts output (e.g., with this noise
based on a probability distribution about the actual output
value). These noisy outputs are provided to the decoder 1010
1in order to determine which outputs can be removed from
the network.

Thus, the goal of training with VIB 1s to reduce the
information transmitted by nodes, edges, and/or filters to the
pomnt that they can be removed from the network. To
accomplish this goal, some embodiments use a VIB loss
term for a layer that 1s an estimate of the total information
transmitted by that layer (the VIB loss function being
different than the standard information bottleneck loss

described above, due to the variational bound being intro-
duced). One such possible loss function 1s the following:

1
lyip = yZng[l + _2]

U,

This loss function, 1n some embodiments, represents the
loss for a single layer, with the subscript ¢ representing each
channel output by the layer (e.g., the outputs for each filter
of the layer). The complete loss function, then 1s a sum over
all of the layers, with a different Y and G . for each layer. The
G . represents the noise variance for the channel, while the
coefficient Y 1s a multiplicative variable that can be changed
per layer. That 1s, this coefficient value 1s a hyperparameter
that can be modified by the techmques described herein.
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The gradient of this VIB loss term 1,5 for a single layer
1S:

Oy 2¥ (29)
do. ﬂ'c(ﬂ'g + 1)

For large G, this gradient falls off rapidly, as 1/8 °:
Olyig 2y (30)
c?::rc T ,f_jr3

The result of this gradient 1s that the VIB loss function
pushes harder to increase noise on a channel with small
noise variance than on a channel with a large noise variance
(e.g., a channel that 1s on the threshold of being pruned).

Some embodiments 1nstead use a heuristic loss function
term 1,,,"" that removes the additive constant 1 from the
logarithm 1n the per-channel VIB loss term:

lyg ==y ) log(o?) GD

The gradient of this heuristic VIB loss term for a single
layer 1s:

heur)
o1

do.

(32)

The removal of the additive constant causes the gradient to
fall off much more gradually with increasing noise variance
(i.e., as proportional to 6. rather than 6_>. When the noise is
small, the difference between the gradients of these two loss
functions 1s minimal, but when the noise 1s large, the
gradient of the heuristic loss function increases the likeli-
hood of channel removal as compared to the gradient for the
1nitial loss function given above.

As noted above, the goal of using VIB techniques in
training 1s to reduce the information transmitted by channels
so that those channels can be removed from the network. In
some embodiments, a channel can be removed once its noise
variance (G.) exceeds a threshold (e.g., 1). However, the
VIB loss terms shown above (both the 1nitial and heuristic
loss terms) do not take into account this threshold and, as
noted, push harder to increase the noise for low-noise
channels than for channels that are near the removal thresh-
old. Therefore, some embodiments use a loss function that
explicitly penalizes the number of remaining channels, such
as the following:

Z(chan)

ViB (33)

= yz Sigmoid(l — o)

This sigmoid function 1s a smooth approximation to the
number of remaining channels, with the sigmoid being a
continuous function and therefore having a finite gradient
(as opposed to a step function). Using this approach, the VIB
coefficient ¥ can be viewed as a Lagrange multiplier for a
constraint on the number of channels that remain for each
layer. This coefficient 1s a hyperparameter that can be tuned
using the techniques described herein in order to determine
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the limit for each different layer of the network that yields
a mimimum validation loss (as opposed to mandating a
specific limit on the number of channels for each layer).

The use of a sigmoid function ensures that the gradient
force exerted to increase the noise on a channel 1s at a
maximum when that channel 1s near the removal threshold.
Various s1igmoid functions may be used for the loss function:
these 1nclude the logistic function, an algebraic sigmoid
function, and a Cauchy cumulative distribution function
(CDF). The logistic function, logistic(x)=1/(1+€™), has a
gradient that decays rapidly with increasing |xl, and thus 1s
not an optimal choice.

The algebraic sigmoid 1s given by the following equation
(where v 1s the width of the sigmoid):

— 1 (x/v) (34)
Sigmoid(x) = =] 1 +
2L At
The derivative of this function 1s given by:
0 Sigmoid(x) - 1 (35)
0x B

Zv[l + (J.:/v)z]m

Thus, the VIB single-layer loss term gradient with respect to
the noise variance using an algebraic sigmoid 1s:

b ) v (36)
- 3
9o {[(e = /v +1)2
For large values of G_, this approximates to:
olzg” Rl (37)
(‘?LT::' - 20’3

=

Another type of sigmoid function 1s generated by starting
with a bell-shaped probability distribution function (PDF)

centered at zero, and then taking the CDF of this PDF as the
sigmoid (this CDF has a value of 0 at negative infinity and
1 at positive infimity, as required for a sigmoid function). The
derivative of the sigmoid 1s thus the original bell-shaped
PDFE. Thus, some embodiments use a PDF that falls off
slowly with increasing Ixl, then the resulting sigmoid will
have a derivative with this same property. The Cauchy PDF
falls off just about as slowly as possible for a PDF with
support on the entire real axis, so 1ts CDF 1s useful as a
sigmoid function. This Cauchy CDF 1s given by:

Sigmoid(x)=1/ arctan{x/v)+1/2 (38)

The derivative of this sigmoid 1s, as mentioned, the Cauchy
PDF, which falls off with increasing Ix| as 1/IxI”:

0 Sigmoid(x) - 1
0x B

(39)
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Using this formulation for the VIB loss term, the gradient
with respect to the noise variance 1s:

(40)

For large values of G , this approximates to:

h
83%;?1) oy

00, :r'rr:rg'

(41)

As noted, the coefficient vy for each layer of the network
can be treated as a different hyperparameter, and as such the
training of a network using VIB will include many different
hyperparameters (1.e., one for each layer, 1n addition to the
learning rate, regularization parameters, etc.). Attempting to
manually tune these hyperparameters 1s difficult and 1nac-
curate even when there are only a few such values (1.e.,
without VIB), but when using VIB for training this problem
becomes dramatically more difficult. As such, some embodi-
ments tune the hyperparameters, including the VIB coeffi-
cients, using the prequential techniques described herein.

Several examples of hyperparameter tuning will now be
described, again using the sender/receiver formulation. A
first example relates to tuning a parameter a that multiplies
the Kullback-Leibler (KL) term (a measure of the diver-
gence between prior and current posterior probability dis-
fributions) 1n a Variational Bayes (VB) loss function. As
mentioned above, VB 1s described in more detail in U.S.
patent application Ser. No. 15/921,622 (filed Mar. 14, 2018).

The VB loss function 1s given as

Loss, g=Likelihood—ct*(KL). (42)

As described above, the assumption 1s made that the
sender has complete mput and output data, while the
receiver 1nitially only has the mput data. Both sender and
receiver order the mputs 1n the same manner, and have the
same 1nitial network (in the VB formulation, the natural
parameters 1) for the 1nitial posterior of each weight are the
same for the sender and receiver, and are initially random).
In addition, some embodiments make a simplifying assump-
tion that each input 1s processed exactly once during a
training run. To begin with this calculation, the description
length score 1s mmitially set to zero, and as an 1nifial group of
inputs 1s provided to the receiver its bit cost 1s added to this
SCOre.

Using the mitial o, the sender and receiver take one
gradient step for each mput 1n the minibatch 1n some
embodiments (though, as described below, other embodi-
ments use different optimization techniques rather than
using these gradient steps). The VB gradient for a given
mput 1 1s

~ Jd(Lossyg;) - d(Likelihood;)

O(KL)
on on |

o1

(43)

8i o
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Here, the gradient of KL does not depend on the input index
1. After a tra;lmng run m of n,_ 1nputs, with input numbers
1, 15 - - Ly m 18 Processed, the new parameter value (using

learning rate A) is

(44)

“ ”, d(Likelihood,) J(KL)
nnwszr.&n:nnL?Lng:nJrZ an — aAm o
i=i '

For the purpose of determining the optimal change 1n a,
as indicated above, some embodiments look at the error bits
for the subsequent (1.e., out of sample) group of inputs for
training run m+1, because to use the error bits for the current
set of mputs would encourage o=0 so that the gradient
would focus on 1n-sample fitting only. The goal, as described
above, 1s to choose a 1n order to minimize the error bits
required to provide this next set of mputs m+1 to the
recei1ver. To do so, some embodiments compute the gradient
of these error bits with respect to a using backpropagation
using the following:

0 (ErrorBits)
0w

- 0 (ErrorBits) 0n
- an da’

(45)

where the right-hand side 1s the dot product of (1) the
gradient of the error bits with respect to the natural param-
eter vector and (11) the derivative of the natural parameter
vector with respect to a. This last term reflects the impact of
o, on the updates to the natural parameters performed using
the current set of inputs. Therefore, this 1s evaluated atn,,_. .
viewed as a function of a as computed from the group of
inputs m, such that the gradient of the error bits with respect
to a becomes

0 (ErrorBits) - d (ErrorBits) O (Mnew) (46)
d - on Tinew  ga
O (ErrorBits) = (szehhﬂﬂd )
= |5'}' Tnew Z
on @af p—
O (KL
YAm ( )]
on

[@ (KL) ) 0 (ErrorBits)
= —Am
o o

H=1new

[t should be noted that o(KL)/6,, may be computed
analytically, while d(ErrorBits)/d,, 1s obtained from forward
propagation and then subsequent backpropagation (of the
total error bits for sending group of inputs m+1) with respect
to . Some embodiments apply the learning rate A, to the
gradient of error bits with respect to o and define the new
value for o as

(47)

Hnew =
0 (ErrorBits)
o

— }’L( 0(KL) ) 0 (ErrorBits)

x+Aor=a+A,
on o

T=new *

This updated hyperparameter value o 1s provided to
the receiver and the bit cost for this update (e.g., the bit cost
of the change in hyperparameter value) 1s added to the
description length score. From this point in the computation,
two algorithms are possible 1n different embodiments for
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updating o.. The difference between a basic a update and an
accelerated approximate o update involves the error bits to
be added to the description length score for the new group
of mnputs m+1. The basic update uses the current modeln,,_,
that was found using the previous o, while the accelerated
method uses a first-order approximation to the consequences
of using the model n*,__  that would have been found using
o with the group of inputs m, thereby generating a

FIEW

smaller description length score (due to the improved o)
without the additional computation of propagating the group
of inputs m+1 again to find the exact error bits and updating
the model retroactively.

For the basic alpha update, some embodiments take the
already-computed error bits for the group of inputs m+l1
with respect to the model 11, and add these error bits to the
description length score. Both sender and receiver then use
o, .. 1n place of a, model 1, 1n place of model 1, and
groups of mputs m+1 1n place of m, and recurse the gradient
calculation.

As mentioned, for the accelerated update, some embodi-
ments reduce the error bits added to the score by using a
first-order approximation to these error bits that would have
been obtained using the model 1, ., that would have been
found using anew 1n place of o 1n the VB gradient step that
defined m,,_ . To determine n, ., some embodiments modify
N"™" to approximate what its value would have been 1f using
anew 1n place of a in the VB training of the previous group
of mputs m. First, 1t 1s noted that

= O (Likelihood;) A(KL) (48)
new = I + A — A
1] 1] ; an A on
0 (Likelihood,;) O(KL)
= 1] T _ [ﬁynw — (wﬁew _ (E)] Am
i=1 8?}‘ 8?}‘
- ﬂ(szehhmd) d(KL) J(KL)
+AY T - (Aa)Aim ,
i=1 0 (9?}‘
where A = «,,,, — @. Using «,.,would have resulted in
(49)
Hnew =
= d(Likelihood;) J(KL) O (KL)
A — Qe = Mpew — (AQ)A .
N+ o oA == = T = (DA —

=1

Next, the approximate error bits that would have been
computed for the group of mputs m+1 with model 0, 1s
determined. This approximation 1s available using the pre-
viously-computed gradient Jd(ErrorBits)/aa. Thus, the error
bits as computed using the basic update technique are
modified for the accelerated method using the following
equation

(40)

0 (ErrorBits)
A '

AcceleratedErrorBits = ErrorBits + (@, 0y — @)

These accelerated error bits represent a quick approxima-
tion to the error bits that would have been computed to send
the group of inputs m+1 using m+1 using 11*new without
performing an additional forward propagation. These
approximate accelerated error bits are added to the descrip-
tion length core. Both the sender and receiver can now use
o, 1n place of a, model n* __  1n place of model and the
group of mputs m+1 1n place of m, and recurse the gradient
calculation.
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The approximate accelerated method of some embodi-
ments involves two improvements as compared to the basic
method. First, the model size 1s smaller, representing an
improved estimate of the description length of the VB
method. Second, there are two opportunities used to improve
the model—both the basic VB gradient step and the
improvement on the previous model had the new a been used
earlier. That 1s, the new o 1s used retroactively for the
previous group of training inputs, while being careful to not
perform 1n-sample VB optimization. Because this retroac-
tive model improvement can be calculated based on infor-
mation already accounted for 1n the description length score,
there 1s no additional bit cost for the improvement.

A second example relates to the hyperparameter vector A
of length len(A) that appears in the (receiver’s) loss function
as

L (51)

where A might represent a vector of information bottleneck
(TB) parameters. In some embodiments, Equation (31) 1s
interpreted as a scalar loss function L, (e.g., unhappiness)
together with the dot product of a vector L, of regularization
functions with a vector A of hyperparameters (each entry of
which 1s controlling the effect of the corresponding regular-
1zation). For example, a different IB parameter might be
used for each level of the network. The receiver uses the
current value A, of A to produce new weights w=w(i,,).

The sender, 1n some embodiments, attempts to choose a
modified vector A=A,+AA of hyperparameters to minimize
the hyperparameter optimization loss function, which as
described above includes hyperparameter modification bits
as well as error bits for new training 1nputs T, prorated to the
size of a minibatch M (noting that T might be the same size
as M). This loss function for hyperparameter optimization
(also referred to as the sender’s loss function) can be
expressed as

:L 1 +L2 )\4,

Keceiver

L . (AM)=BitsOf(A—A,)+IM|-ErrorBitsPerltemOfT
(A).

Alternatively, some embodiments use BitsOf[(A—A,)/A] in
this loss function if sending multiplicative adjustments, 1n
place of BitsOf (A—24,).

To choose the optimized modified hyperparameter vector,
the sender needs both the gradient 3L, (A)/3A and a step
size. In some embodiments, the gradient of the BitsOf(A—A,)
in Equation (52) can be computed mn a straightforward
manner once a bit representation 1s chosen for the scalar
components of AA=A—A, and these bit representations are
added up.

To find the gradient of the error bits per item of T from
Equation (52) with respect to A, in some embodiments the
sender anticipates the optimization the receiver would have
done had A=A +AA been used in place of A, then use the
resulting w(A), in place of w(A,), to predict the items of T
To find this gradient, some embodiments use the chain rule

(52)

0 ErrorBitsPeritemOfT(A) 0 ErrorBitsPerltemOfT 0w()  (53)

dA Ow dA

The left-hand side of this Equation (53) 1s a row vector of
length len(A), while the right-hand side is a vector-matrix
product where the first term 1s a row vector of dimension
len(w), while the second term 1s a matrix of dimension
len(w)xlen(A). It should be noted that some embodiments
work with the transpose of Equation (53) instead. The first
term on the right 1 this equation mvolves one back-
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propagation of ErrorBits for each item of T, then weighted
for unbiasedness to adjust for the sample of inputs. This
evaluates the sender’s out-of-sample-error-bit-gradient with
respect to w at the receiver’s ending weights w computed
using A,

The second term on the right in Equation (53) 1s approxi-
mated to first-order in AA, anticipating the training system
behavior with this slightly different A. For this approxima-
tion, it is noted that the transformation w,—>w(A,) consists
of accumulated steps (scaled by the receiver’s Learnin-
gRate) 1n the direction of the receiver’s gradient using the
following equation

(54)

where Jl.,/Ow 1s interpreted as a matrix of size len(w)X
len(A) so that its product with A, produces a column vector
of size len(w) to match dimensions of Jl.,/ow. To anticipate
(to first order) the w(A) that the receiver would have
obtained by using A in place of A,, some embodiments use
steps (of size LearningRate) of the gradient

ow  Ow

(53)

To obtain a first-order approximation, the scaled sums of
these basic components cL.,/cw and cL.,/cw are accumu-
lated. These accumulated scaled sums may be denoted as

. 0L (56)
A1 = LearningRate Y —
ow
and
. dL; (57)
A2 = LearningRate ) ——,
ow

where the sum 1s over the receiver’s optimization steps. A,
is a matrix of size len(w)xlen(d). Thus, the approximation to
w(A) can be written in terms of the two components from

Equations (36) and (57),

WA)=A +A, A, (58)

which represents the weights the receiver would have
obtained if A had been used in place of A,. This construction
also gives

w(ho)=A +A Ay (59)

Thus, the sender’s gradient, with respect to A, of the antici-
pated receiver’s weights w(A) can be written as

Ow(A) -

(60)
ax -
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This Equation (60) 1s the final term on the right side of
Equation (53) needed to compute the sender’s gradient of
error bits with respect to the hyperparameter vector A. The
sender’s gradient 1s therefore

0 LS ender
oA

8 BitsOf (A — o) X (61)

| 0 ErrorBits PerltemOfT
AA | |

Jgw

2.

The sender takes a step 1n the direction of this gradient

ol . ... ax of size Step from which the following equations
gLSender (62)
A = Step—=
and
l:)\,[}%ﬁ)b (63)
are obtained. These are both vectors of size len(A).

To set the sender’s step size, some embodiments use a
nonlinear approximation to L, _that 1s an improvement
upon the first-order gradient (which contains no information
about the optimal step size) although at a cost of additional
computation. The sender’s loss function for AA may be
approximated Equation (52),

L¢ . =BitsOf(A—Ay)+IMI-3ErrorBitsPerltemOfT(A). (64)

In this equation, the error bits of the right-hand term may be
obtained 1n some embodiments by a forward propagation of
the elements of T through a network with weights w(A)=w
(Ag+AA) as defined in Equation (58). Although a linear
approximation to the weights 1s used, the actual out-oi-
sample error bits are computed; this combined with the cost
of transmitting AA helps provide regularization to the choice
of Step 1n some embodiments.

The algorithm for training this set of hyperparameters
(e.g., the vector of TB parameters) 1s now discussed. Ini-
tially, the receiver trains to convergence (with the weights
changing from w, to w) on S (the training set of “seen”
inputs, mcluding the most recent set of mputs added to the
training set) by taking gradient steps 1n w (network weight)
space to improve the receiver’s loss function (1.e., the loss
function for the network) using the current hyperparameter
vector A, and keeping track of A, and A, per Equations (56)
and (57) (noting again that 1., 1s the receiver’s scalar loss
function (e.g., unhappiness) and L, is a vector of len(A)
regularization functions.

The sender selects a stratified set of new mputs T from U
(the validation set of “unseen’” data instances), and attempts
to identify a new value A=A, +AA to replace A,. The sender
performs one backpropagation (using the receiver’s ending
weilghts we computed using A,) of ErrorBits for each of the
inputs 1n T, then weighted for unbiasedness to adjust for the
stratified sample. This evaluates the sender’s out-of-sample-
error-bit-gradient (SErrorBitsPerltemOfT)/ow with respect
to w. The sender’s gradient (where IMI 1s the minibatch size,
which may be equal to T) 1s then given by Equation (61)
above. The sender’s new A=A +AA is obtained using step
size Step as using Equation (62). If the sender chooses to
evaluate this finite step size at a particular choice of A, the
sender’s loss function can be approximated according to
Equation (64), with the error bits of the nght hand term
being obtained by forward propagation of the elements of T
through a network with weights w(A)=A ,+A,-A. The sender
then communicates the errors of the new set of training
inputs along with a new A, and the description length score
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1s updated with the error bits plus the hyperparameter
modification bits (i.e., the bits of AL).

As 1n the previous example, different embodiments use a
basic update or an accelerated update. In the basic update,
the receiver begins a new training run starting with w (the
ending weights from the previous training run) as the new
w,, and with A as the new A,,. In the accelerated version, the
receiver begins a new training run starting with w(A) (the
sender’s approximation to what the receiver would have
ended up with had A been used in place of A, ending weights
from the previous training) as the new w,, and with A as the
new A,. As mentioned above, the receiver has full access to
this 1mnformation without violating the principle that the
receiver cannot use validation inputs for traiming, because
the receiver now has A along with the accumulated values of
A, and A, from the (now) previous training. This accelerated
update supposes that the new A is better than the old A, in
the sense that it 1s closer to the stable limit, and that using
the improved values sooner will help.

Finally, a third hyperparameter will be discussed, 1n this
case 1, the receiver’s LearningRate (1.e., the learning rate
used during training). The learming rate, unlike the above
example, 1s not a feature of the receiver’s loss function, but
rather specifies how much the receiver modifies the weights
during tramning (based on the receiver’s loss function). The
current training run uses the current learning rate n,,, begin-
ning with weights w, and ending with weights w(1,) com-
puted as the scaled gradient steps

(65)

aLRecefver
W(??D)=??ﬂz P

The sender’s first-order approximation to the weights the
recelver would have ended up with (had a different learning
rate 11 been used) 1s then given by

(66)

aLRecefver
w(i) = ??Z FY

The sender’s loss function 1s given (similar to the above
example) by

L. ... (N)=BitsOf{n—ny)+IM|ErrorBitsPerltemOfT
().

To find the gradient of the error bits per 1tem of T from
Equation (67) with respect to 1, the sender anticipates the
optimization the receiver would have done had m=n4s+An
been used 1n place of 1., then use the resulting w(n) in place
of w(n,), to predict the 1tems of T. Using the chain rule, this
gradient 1s given as

(67)

(68)

0 EvrorBitsPerltemOfl (n) 0 ErrorBitsPerltemOfT  dw(1)
on B ow 01

The left-hand side of this equation 1s a scalar, while the
right-hand side 1s a dot product of two vectors each with
dimension len(w). The first term on the right side of the
equation 1nvolves one back-propagation of ErrorBits for
each item of T, then weighted for unbiasedness to adjust for
the stratified sample. This evaluates the sender’s out-of-
sample-error-bit-gradient with respect to w at the receiver’s
ending weights w computed using 1,. The second term on
the right side of the equation 1s approximated to first-order
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in An anticipating the receiver’s behavior with this slightly
different 1, using Equation (66) to get

aw(??) _ ZaLRECEfFET (69)
on aw
Thus, the sender’s gradient 1s
éLSender _ (70)
on

0 BitsOf (1 — 11p) )
o1

| M|

ErrorBitsPeritemOfT Z OL pocerver
oW ow

The sender takes a step 1n the direction of this gradient
ol . ,../on of size Step from which

(aLSender
an

(71)

An = Step

and

N=No+AN (72)

are obtained.

To set the sender’s step size, some embodiments use a
nonlinear approximation to L, _as an improvement upon
the first-order gradient (which does not have any informa-
tion about the optimal step size), though at a cost of
additional computation. The sender’s loss function for An
may be approximated using Equation (67) as

L. ... A(N)=BitsOf{(n—n)+|M|EmrorBitsPerltemOf T
M)

in which the error bits of the right-hand term may be
obtamned by a forward propagation of the elements of T
through a network with weights w(n)=w(n, +An) as
defined by Equation (66). Although some embodiments use
a limear approximation to the weights, the actual out-of-
sample error bits are computed; this combined with the cost
of transmitting An helps provide regularization to the choice
of Step.

It should be noted that some embodiments use different
techniques for hyperparameter tuning than the above
examples (e.g., different techniques for computing the gra-
dient, techniques to replace the gradient computations). For
example, some embodiments use Bayesian optimization and
hyperband (BOHB) for the hyperparameter optimization, as
described 1n “BOHB: Robust and Efficient Hyperparameter
Optimization at Scale”, by Falkner, et al., in Proceedings of
the 35" International Conference on Machine Learning, July
2018, which 1s 1incorporated herein by reference. This opti-
mization technique 1s applicable to any sort of hyperparam-
eters, whether those hyperparameters are discrete or con-
tinuous. Specifically, BOHB 1nvolves parallel training runs
using various random vectors 1n hyperparameter space (1.e.,
a space having one dimension for each hyperparameter
being tuned) and determining which of these hyperparam-
eter vectors gives the best results (1.e., results 1n a tramed
network that 1s most predictive for new input data). Some
embodiments then select several vectors nearby to this
1identified best result, and perform additional training runs
using these different hyperparameter value vectors.

FIG. 11 conceptually 1llustrates this process for a network
with only two hyperparameters (hyperparameter space will
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typically have more than two dimensions, but this example
1s limited to two hyperparameters for ease of visualization).
As shown 1n the first stage 1105, various hyperparameter
vectors are selected (e.g., randomly), and training runs are
performed (e.g., in parallel) using the values specified by
each vector. In this case, the point 1115 represents the

hyperparameter vector that yields the best results (1.e., the
most predictive network). On the premise that results (1.e.,
network predictiveness) vary smoothly within hyperparam-
eter space, the second stage 1110 shows that for the next set
of traiming runs, vectors surrounding the point 1115 1n
hyperparameter space are selected.

BOHB has the benefit that, because gradients are not
taken of hyperparameters, 1t can be applied to hyperparam-
eters that have either continuous or discrete possible values.
However, as the number of hyperparameters being tuned
increases, the difficulty of adequately exploring hyperpa-
rameter space quickly increases as well. In addition, once a
best hyperparameter vector 1s found from an 1nitial set of
vectors, the requisite number of next attempt hyperparam-
eter vectors also quickly increases.

Instead, some embodiments use a bilevel optimization
approach, as described 1n “Self-Tuning Networks: Bilevel
Optimization of Hyperparameters Using Structured Best-
Response Functions”, by MacKay, et al., available at https://
arxiv.org/pdf/1903.03088.pdf, March 2019, which 1s 1ncor-
porated herein by reference. In some embodiments, the
validation system 350 of FIG. 3 uses bilevel optimization to
fune hyperparameters based on their effects on validation
mputs. That 1s, gradients of a first tramning loss function 1s
used by the tramning system 300 to tune the network param-
eters (weights, biases, etc.) while gradients of a second
validation loss function (which 1s a modification to the
training loss function that accounts for changes to hyperpa-
rameters) 1s used to tune the hyperparameters.

Using a bilevel optimization approach such as that
described 1n the “Self-Tuning Networks™ paper incorporated
by reference above enables a network training and validation
system to tune the hyperparameters. In addition, iteratively
tuning the hyperparameters using such an approach while
tracking a description length score allows such an approach
to be performed without overfitting the hyperparameters.
Using such techniques without such an 1terative process that
includes a description length score may result 1n overfitting
of the hyperparameters, which 1n turn leads to overfitting of
the network parameters. Without the rigorous tracking of the
amount of change to the hyperparameters, information about
the validation inputs may be encoded into the hyperparam-
eter changes, thereby overfitting the network to these mputs
(and causing subsequent validation runs to be tainted).

Some embodiments also use both of these techniques
together; e.g., by using the Bayesian optimization and hyper-
band framework to tune parameters of the bilevel optimi-
zation (1.e., hyper-hyperparameters). FIG. 12 conceptually
1llustrates this combination of techniques. This figure shows
that the training system 300 includes a training engine 1200
(1.e., representing several of the training modules shown 1n
FIG. 3) using a set of hyperparameters 340 that take training
inputs 335 to train the weight values 330 (and other network
parameters). The validation engine 1205 of validation sys-
tem 350 of some embodiments uses the bilevel optimization
gsradient descent-based technique, using validation inputs
380 to perform validation and tune the hyperparameters 340.
In addition, this operation 1s governed by a set of validation
parameters 1210 1n some embodiments. These validation
parameters 1210 are optimized by the validation parameter
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modifier 12135, which uses Bayesian optimization and hyper-
band techniques to tune these validation parameters.

In addition to hyperparameters such as the learning rate,
regularization, etc., some embodiments use similar tech-
niques (1.e., iterative tuning using a prequential approach
that 1s tracked with a description length score) to modify
other aspects of the training and/or the network 1tself. For
example, diflerent embodiments may modity the actual loss
function being used, which and how often each traiming data
point should be used, the type of activation function(s) used
in the non-linear components of the computation nodes of
the network, and/or the structure of the network (e.g., the
s1zes of the layers, the types of layers, etc.), as well as other
features of the training process and/or the network.

In some embodiments, the network validation system
modifies one or more of these aspects of the training process
and/or the network by using a function to represent the
aspect that 1s continuously differentiable with respect to a
measure ol network predictiveness (e.g., the description
length score). As described above, the description length
score 15 a measure of network predictiveness based on the
mimmum description length principle that a more compress-
ible MT network will be more predictive for new 1nputs.
Using a continuously differentiable function allows the
network validation system to compute the gradient of this
continuously differentiable function with respect to the
predictiveness measure and use a gradient-based technique
to adjust the training and/or network feature.

For the loss function, having a discrete set of possible loss
functions (e.g., a logarithmic function and a quadratic func-
tion) would not be continuously differentiable, as there 1s no
continuous function. However, variables can be defined such
that a complete loss function 1s defined as a first variable (A)
multiplied by the logarithmic function summed with a
second variable (B) multiplied by the quadratic function.
This defines an infinite set of possible loss functions based
on the values for variables A and B, and each of these
variables can be differentiated with respect to the predic-
tiveness (using the validation set 1n, e.g., the manner
described above). For systems with many possible loss
functions, different variables can be defined for each pos-
sible loss function, and similar techniques used.

In addition, by iteratively validating the trained network
and modilying the loss function based on the validation set
(part of which 1s then 1incorporated into the traiming set), not
only can the validation system identily an optimized singu-
lar loss function, but some embodiments 1dentify an optimal
sequence ol loss functions that results 1n the most predictive
network. Using the above example, 1t might be optimal to
have a logarithmic loss function for the initial training run,
but later 1n the set use a quadratic loss function (or a
combination of both).

Furthermore, while the example above (a linear combi-
nation of specific potential loss functions) 1s simple, some
embodiments use a more generalized set of basis functions
that allow the loss function optimization algorithm to con-
struct any suiliciently smooth (1.e., differentiable) function.
For instance, diflerent embodiments could use a set of basis
functions (e.g., Fourier or wavelet basis functions) to con-
struct an optimized loss function (including a loss function
that evolves over time).

To further generalize the loss function optimization, some
embodiments use a piece ol code that can be evolved
according to bilevel optimization (as constrained by the
prequential techniques to prevent the evolution process from
“cheating” that leads to overfitting) as a description of the
loss function. Some embodiments use parse trees for coms-
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putations to represent possible loss functions, with operators
at the nodes and operands at the leaves. The space of
possible trees can be searched to i1dentily an optimal loss
function.

In addition, as mentioned, some embodiments use pre-
quential techniques to optimize the non-linear activation
function or functions used in the network. As one option,
some embodiments use a linear combination of possible
activation functions, similar to the techmique described
above for the loss function. For instance, some embodiments
use a first vaniable multiplied by a ReLLU or leaky ReLLU
function, a second variable multiplied by a tanh function, a
third variable multiplied by a sigmoid function, etc., such
that the linear combination 1s differentiable 1n each of the
variables with respect to the predictiveness score.

In some embodiments, the network 1s trained for execu-
tion by a neural network inference circuit that uses a lookup
table (LUT) to implement activation functions. In this case,
the space of available activation functions 1s defined by the
number of 1nput and output bits of the LUT. For instance, for
a LUT that maps a 3-bit mput to a 4-bit output, any
activation function (e.g., including both monotonic and
non-monotonic activation functions) that maps each of the
32 possible mputs to one of the 16 possible outputs 1s an
option for the activation function. In some embodiments,
this allows for the training and validation system to define a
piecewise linear model of an arbitrary function, with up to
a particular number (i.e., the number of possible outputs for
the LUT) of knots (1.e., points at which the piecewise linear
function changes direction). The training and validation
system can differentiate the description length score with
respect to the location of these knots.

In some embodiments, this allows the training and vali-
dation system to compensate for quantization of the output
activation values. For example, most of the output activation
values generated by a particular computation node (neuron)
for a given training set might be concentrated within a small
range of the overall interval for possible outputs. Rather than
have a number of the sections of the piecewise function that
are never or rarely used, the system of some embodiments
can non-linearly transform (either deterministically or dii-
ferentiably) the non-uniform distribution into a more uni-
form distribution (e.g., by moving the locations of the knots
with respect to the mput values). To do this, 1n some
embodiments, the system selects an activation function that
maximizes entropy (1.e., that maximizes the utility and
expressiveness of the bits used for the activation function).

As noted above, some embodiments use the above-de-
scribed prequential techniques to modity the network struc-
ture. This can include defining whether or not to include
specific edges between computation nodes of the network,
how many and what type of layers to include (e.g., how
many convolutional layers 1n between sets of pooling layers,
etc.). One way to accomplish this 1s to define each edge
(between computation nodes, between possible layers, etc.)
as either 1n or out of the network. Logically, this 1s a linear
combination of many millions (or billions or larger) of
possible networks, and the training and validation system
can optimize which edges are kept in the network. Other
embodiments use a parametric characterization of a function
that generates a network structure, and use the prequential
techniques to modify this function (e.g., by differentiating
the description length score with respect to the parameters of
the network-generation function). While a brute force search
for an optimal network structure can be carried out using the
computing power of a massive datacenter, using prequential
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techniques can greatly reduce the resources required to
achieve a similar result by optimizing this search.

In addition to modifying hyperparameters (e.g., VIB
parameters, regularization, learning rate, etc.), the loss func-
tion 1tself, or aspects of the network (e.g., network structure,
activation functions, etc.), some embodiments use the pre-
quential techniques to select an optimized training set. As
described above, 1n the sender/receiver formulation, the
sender and receiver both have the training data inputs, and
the information transier measured by the description length
score 1s the bits required for the sender to provide the
receiver with the correct output (or the error from the output
generated by the recerver to the correct output). The 1terative
transier of inputs from the validation set to the training set
provides the receiver with the correct output for a portion of
the previous validation set so that the corresponding imputs
can be added to the training set for the next training run.

In the previous description, the mputs for each transter to
the validation set are selected randomly by the validation
system. In some cases, using an optimized group of mnputs
would allow the training of the network to converge faster
than 1t would with a randomly selected group of inputs.
However, selecting this group of inputs requires a large
number of bits because N choose K grows rapidly in N (and
in K, as K approaches N/2). However, rather than providing
the traming system with the specific selections, some
embodiments instead provide the training set with a program
that allows 1t to rank the training mputs, and select the K
optimal inputs. In addition to modifying the hyperparam-
cters of the actual training algorithm, the hyperparameters of
this mput selection algorithm can be modified using the
same formula. If the number of bits used to modity the input
selection algorithm hyperparameters is less than the number
of bits saved for modifying the training algorithm hyperpa-
rameters, a lower description length score can be achieved
(and thus the network will be more predictive).

Once trained, the networks of some embodiments can be
compiled 1nto a set of program instructions for a machine-
trained network inference circuit that implements such net-
works using real-world inputs. Such a machine-trained net-
work 1nference circuit of some embodiments can be
embedded into various different types of devices 1n order to
perform different purposes (e.g., face recognition, object
categorization, voice analysis, etc.). For each type of device,
a network 1s trained, and the network parameters are stored
with the neural network inference circuit to be executed on
the device. These devices can include mobile devices, desk-
top computers, Internet of Things (Io'T devices), etc.

FIG. 13 1s an example of an architecture 1300 of an
clectronic device that includes a machine-trained network
integrated circuit of some embodiments. The electronic
device may be a mobile computing device such as a smart-
phone, tablet, laptop, etc., or may be another type of device
(e.g., an Io'T device, a personal home assistant). As shown,
the device 1300 includes one or more general-purpose
processing units 13035, a machine-trained network chip
tabric 1310, and a peripherals interface 1315.

The peripherals interface 1315 1s coupled to various
sensors and subsystems, including a camera subsystem
1320, an audio subsystem 1330, an I/O subsystem 1335, and
other sensors 1345 (e.g., motion/acceleration sensors), etc.
The peripherals interface 1315 enables communication
between the processing units 1305 and various peripherals.
For example, an orientation sensor (e.g., a gyroscope) and an
acceleration sensor (e.g., an accelerometer) can be coupled
to the peripherals interface 1315 to facilitate orientation and
acceleration functions. The camera subsystem 1320 1s
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coupled to one or more optical sensors 1340 (e.g., charged
coupled device (CCD) optical sensors, complementary
metal-oxide-semiconductor (CMOS) optical sensors, etc.).
The camera subsystem 1320 and the optical sensors 1340
facilitate camera functions, such as 1mage and/or video data
capturing.

The audio subsystem 1330 couples with a speaker to
output audio (e.g., to output voice navigation instructions).
Additionally, the audio subsystem 1330 1s coupled to a
microphone to facilitate voice-enabled functions, such as
voice recognition, digital recording, etc. The I/O subsystem
1335 involves the transfer between iput/output peripheral
devices, such as a display, a touch screen, etc., and the data
bus of the processing units 1305 through the peripherals
interface 1315. The I/O subsystem 1335 includes various
input controllers 1360 to facilitate the transier between
iput/output peripheral devices and the data bus of the
processing units 1305. These mput controllers 1360 couple
to various 1nput/control devices, such as one or more but-
tons, a touchscreen, etc.

In some embodiments, the device includes a wireless
communication subsystem (not shown in FIG. 13) to estab-
lish wireless communication functions. In some embodi-
ments, the wireless communication subsystem includes
radio frequency receivers and transmitters and/or optical
receivers and transmitters. These receivers and transmitters
of some embodiments are implemented to operate over one
or more communication networks such as a GSM network,
a Wi-F1 network, a Bluetooth network, etc.

As 1llustrated i FIG. 13, a memory 1370 (or set of
various physical storages) stores an operating system (OS)
1372. The OS 1372 includes mnstructions for handling basic
system services and for performing hardware dependent
tasks. The memory 1370 also stores various sets of mnstruc-
tions, mncluding (1) graphical user interface instructions
1374 to facilitate graphic user interface processing; (2)
image processing instructions 1376 to facilitate 1mage-
related processing and functions; (3) mput processing
istructions 1378 to {facilitate input-related (e.g., touch
input) processes and functions; and (4) camera instructions
1384 to facilitate camera-related processes and functions.
The processing units 1305 execute the instructions stored 1n
the memory 1370 1n some embodiments.

The memory 1370 may represent multiple different stor-
ages available on the device 1300. In some embodiments,
the memory 1370 includes volatile memory (e.g., high-
speed random access memory), non-volatile memory (e.g.,
flash memory), a combination of volatile and non-volatile
memory, and/or any other type of memory.

The 1nstructions described above are merely exemplary
and the memory 1370 includes additional and/or other
instructions 1 some embodiments. For instance, the
memory for a smartphone may include phone instructions to
facilitate phone-related processes and functions. An 10T
device, for instance, might have fewer types of stored
instructions (and fewer subsystems), to perform 1ts specific
purpose and have the ability to receive a single type of input
that 1s evaluated with its neural network.

The above-identified instructions need not be i1mple-
mented as separate software programs or modules. Various
other functions of the device can be implemented in hard-
ware and/or 1n software, including in one or more signal
processing and/or application specific integrated circuits.

In addition, a neural network parameter memory 1375
stores the weight values, bias parameters, etc. for imple-
menting one or more machine-trained networks by the MT
network chip fabric 1310. In some embodiments, different
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clusters of the chip fabric 1310 can implement different
machine-trained networks 1n parallel in some embodiments.
In different embodiments, these neural network parameters
are stored on-chip (1.e., in memory that 1s part of the MT
network chip fabric 1310) or loaded onto the chip fabric
1310 from the neural network parameter memory 1375 via
the processing unit(s) 1305. For instance, some embodi-
ments load some or all of these network parameters at the
time the chip fabric 1310 1s booted up, and the parameters
are then stored on the chip until the chip 1s shut down.
While the components illustrated in FIG. 13 are shown as
separate components, one of ordinary skill in the art will
recognize that two or more components may be integrated
into one or more mtegrated circuits. In addition, two or more
components may be coupled together by one or more
communication buses or signal lines (e.g., a bus between the
general-purpose processing units 1305 and the MT network
chip fabric 1310, which enables the processing units 1305 to
provide mnputs to the MT network chip fabric 1310 and
receive the outputs of the network from the chip fabric 1310.
Also, while many of the functions have been described as
being performed by one component, one of ordinary skill in
the art will realize that the functions described with respect

to FIG. 13 may be split into two or more separate compo-
nents.

In this specification, the term “software” 1s meant to
include firmware residing in read-only memory or applica-
tions stored 1in magnetic storage, which can be read into
memory for processing by a processor. Also, mn some
embodiments, multiple software imventions can be i1mple-
mented as sub-parts of a larger program while remaining
distinct soitware inventions. In some embodiments, multiple
soltware inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement a software mvention described here
1s within the scope of the mvention. In some embodiments,
the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine 1mplementations that execute and perform the
operations of the solftware programs.

FIG. 14 conceptually illustrates an electronic system 1400
with which some embodiments of the invention are imple-
mented. The electronic system 1400 can be used to execute
any of the applications (e.g., the traiming application)
described above. The electronic system 1400 may be a
computer (e.g., a desktop computer, personal computer,
tablet computer, server computer, mainirame, a blade com-
puter etc.), phone, PDA, or any other sort of electronic
device. Such an electronic system includes various types of
computer readable media and interfaces for various other
types of computer readable media. Electronic system 1400
includes a bus 1405, processing unit(s) 1410, a system
memory 1425, a read-only memory 1430, a permanent
storage device 1435, input devices 1440, and output devices
1445.

The bus 1405 collectively represents all system, periph-
eral, and chipset buses that communicatively connect the
numerous internal devices of the electronic system 1400.
For instance, the bus 1405 communicatively connects the
processing unit(s) 1410 with the read-only memory 1430,
the system memory 1425, and the permanent storage device
1435.

From these various memory units, the processing unit(s)
1410 retrieves mstructions to execute and data to process 1n
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
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processor 1n different embodiments, and may include
generic CPUs as well as graphics processing units (GPUSs).

The read-only-memory (ROM) 1430 stores static data and
instructions that are needed by the processing umt(s) 1410
and other modules of the electronic system. The permanent
storage device 1435, on the other hand, 1s a read-and-write

memory device. This device 1s a non-volatile memory unit
that stores instructions and data even when the electronic

system 1400 1s off. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk
and 1ts corresponding disk drive) as the permanent storage

device 1435.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 1435, the system
memory 14235 1s a read-and-write memory device. However,
unlike storage device 1435, the system memory 1s a volatile
read-and-write memory, such a random-access memory. The
system memory stores some of the instructions and data that
the processor needs at runtime. In some embodiments, the
invention’s processes are stored in the system memory 1425,
the permanent storage device 1435, and/or the read-only
memory 1430. From these various memory units, the pro-
cessing unit(s) 1410 retrieves instructions to execute and
data to process 1 order to execute the processes of some
embodiments.

The bus 1405 also connects to the mput and output
devices 1440 and 1445. The 1input devices enable the user to
communicate mnformation and select commands to the elec-
tronic system. The mput devices 1440 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 1445 display 1mages gener-
ated by the electronic system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

Finally, as shown 1 FIG. 14, bus 1405 also couples
clectronic system 1400 to a network 1465 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN™), a wide area network (“WAN"), or an Intranet), or
a network of networks, such as the Internet. Any or all
components of electronic system 1400 may be used 1n
conjunction with the ivention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra-density optical discs, any other optical or magnetic
media, and tloppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing umt and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as 1s
produced by a compiler, and files including higher-level
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code that are executed by a computer, an electronic com-
ponent, or a mICroprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits

(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself.

As used 1n this specification, the terms “computer”,

“server”, “processor’, and “memory’” all refer to electronic

or other technological devices. These terms exclude people
or groups of people. For the purposes of the specification,
the terms display or displaying means displaying on an
clectronic device. As used 1n this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium™ are entirely restricted to
tangible, physical objects that store mmformation 1 a form
that 1s readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art waill
recognize that the invention can be embodied i1n other
specific forms without departing from the spirit of the
invention. In addition, some of the figures (including FIG. 4)
conceptually illustrate processes. The specific operations of
these processes may not be performed in the exact order
shown and described. The specific operations may not be
performed 1n one continuous series of operations, and dif-
ferent specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process. Thus, one of ordinary skill in the art would
understand that the invention i1s not to be limited by the
foregoing illustrative details, but rather i1s to be defined by
the appended claims.

We claim:
1. A method for traiming a machine-trained (MT) network,
the method comprising:
using a {irst set of inputs to train parameters of the MT
network according to a set of hyperparameters that
define aspects of the traiming by (1) computing a value
of a first loss Tunction based on propagation of the first
set of mputs through the MT network and (1) modify-
ing the MT network parameters based on gradients of
the first loss function with respect to the parameters at
the computed value;
using a second set of mputs to validate the MT network
as trained by the first set of 1nputs by:
propagating the second set of inputs through the MT
network with the modified parameters to generate a
second set of outputs; and
for each iput of the second set of inputs, measuring a
difference between (1) the output generated by propa-
gating the mput through the MT network with the
modified parameters and (1) an expected output for
the mput; and
based on the validation, modifying the hyperparameters
for subsequent traiming of the MT network based on
gradients of a description length score with respect to
the hyperparameters, wherein the description length
score constrains the hyperparameter modification to
prevent overfitting of the modified hyperparameters to
the second set of mputs by accounting for (1) the
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difference measurements for each input of the second
set of mputs and (1) the modifications to the hyperpa-
rameters.

2. The method of claim 1, wherein the description length
score (1) quantifies information provided to modily the
hyperparameters and (1) 1s minimized to constrain the
hyperparameter modification.

3. The method of claim 2, wherein the description length
score further quantifies a measure of information required to
provide data regarding new training inputs for the subse-
quent training of the MT network.

4. The method of claim 3, wherein the new traiming inputs
are part of the second set of inputs.

5. The method of claim 1, wherein propagation of the first
set of inputs through the MT network generates a first set of
outputs and the computed value of the first loss function
measures a difference, for each input of the first set of inputs,
between the output generated by propagating the input
through the MT network and an expected output for the
input.

6. The method of claim 1, wherein the description length
score incorporates the first loss function to account for error
due to modification of the hyperparameters.

7. The method of claim 6, whereimn gradients of the
description length score with respect to the hyperparameters
incorporate gradients of the first loss function with respect to
the parameters accounting for modifications to the hyper-
parameters.

8. The method of claim 1 further comprising;:

using a third set of mputs to further train the parameters

of the MT network according to the modified set of
hyperparameters;

using a fourth set of mputs to validate the MT network as

trained by the third set of mputs; and

based on the validation with the fourth set of inputs,

further modifying the hyperparameters for subsequent
training of the M'T network.

9. The method of claim 8, wherein:

the third set of iputs comprises (1) the first set of mputs

and (11) a subset of the second set of inputs; and

the fourth set of inputs comprises the second set of inputs

without the subset that 1s part of the third set of inputs.

10. A non-transitory machine-readable medium storing a
program which when executed by at least one processing
unmit traimns a machine-trained (MT) network, the program
comprising sets of mnstructions for:

using a lirst set of mputs to train parameters of the MT

network according to a set of hyperparameters that
define aspects of the traiming by 1) computing a value of
a first loss function based on propagation of the first set
of mnputs through the MT network and (1) modifying
the MT network parameters based on gradients of the
first loss function with respect to the parameters at the
computed value;

using a second set of inputs to validate the MT network

as trained by the first set of 1nputs by:

propagating the second set of inputs through the MT
network with the modified parameters to generate a
second set of outputs; and

for each 1nput of the second set of inputs, measuring a
difference between (1) the output generated by propa-
gating the mput through the MT network with the
modified parameters and (1) an expected output for
the 1mput; and

based on the validation, moditying the hyperparameters
for subsequent training of the MT network based on
gradients of a description length score with respect to
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the hyperparameters, wherein the description length
score constrains the hyperparameter modification to
prevent overditting of the modified hyperparameters

to the second set of 1inputs by accounting for (1) the
difference measurements for each input of the second >
set of inputs and (11) the modifications to the hyper-
parameters.

11. The non-transitory machine-readable medium of
claim 10, wherein the description length score (1) quantifies
information provided to modily the hyperparameters and (11)
1s minimized to constrain the hyperparameter modification.

12. The non-transitory machine-readable medium of
claim 11, wherein the description length score further quan-
tifies a measure of information required to provide data
regarding new training nputs for the subsequent training of
the MT network.

13. The non-transitory machine-readable medium of
claiam 12, wherein the new training nputs are part of the

second set of 1nputs.

14. The non-transitory machine-readable medium of
claam 10, wherein propagation of the first set of inputs
through the MT network generates a first set of outputs and
the computed value of the first loss function measures a
difference, for each mput of the first set of mputs, between 75
the output generated by propagating the input through the
MT network and an expected output for the mput.

10

15

20

42

15. The non-transitory machine-readable medium of
claim 10, wherein the description length score incorporates
the first loss function to account for error due to modification
of the hyperparameters.

16. The non-transitory machine-readable medium of
claim 15, wherein gradients of the description length score
with respect to the hyperparameters incorporate gradients of
the first loss function with respect to the parameters account-
ing for modifications to the hyperparameters.

17. The non-transitory machine-readable medium of
claam 10, wherein the program further comprises sets of
instructions for:

using a third set of mputs to further train the parameters

of the MT network according to the modified set of
hyperparameters;

using a fourth set of mputs to validate the MT network as

trained by the third set of mputs; and

based on the validation with the fourth set of inputs,

further moditying the hyperparameters for subsequent
training of the M'T network.

18. The non-transitory machine-readable medium of
claim 17, wherein:

the third set of mputs comprises (1) the first set of inputs

and (11) a subset of the second set of inputs; and

the fourth set of inputs comprises the second set of iputs

without the subset that 1s part of the third set of inputs.
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