12 United States Patent

Bonorden

US011609745B2

US 11,609,745 B2
Mar. 21, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(60)

(1)

(52)

(58)

ASYNCHRONOUS DATA OBJECTS FOR AN
EVENT DRIVEN PROGRAMMING
LANGUAGLEL

Applicant: McAfee, LLC, Santa Clara, CA (US)

Inventor: Olaf Bonorden, Paderborn (DE)

Assignee: McAfee, LLC, Santa Clara, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 15/861,916
Filed: Jan. 4, 2018

Prior Publication Data

US 2018/0285083 Al Oct. 4, 2018

Related U.S. Application Data

Provisional application No. 62/480,033, filed on Mar.
31, 2017.

Int. CIL.

GO6F 8/30 (2018.01)

GO6F 9/48 (2006.01)

U.S. CL

CPC ...l GO6F 8/31 (2013.01); GO6F 9/485

(2013.01)

Field of Classification Search
CPC GO6F 17/30445; GO6F 17/30581; GO6F
17/30902; GO6F 17/30286; GO6F 9/5016;

(56) References Cited

U.S. PATENT DOCUMENTS

6,088,803 A * 7/2000 Tso ..cooovevriiinnnnn, HO4L 63/145
709/219
8,694,961 B2* 4/2014 Batres GOGF 9/4843
717/115

(Continued)

OTHER PUBLICAITONS

Leon Alkalaj; Performance of Multi-Threaded Execution 1n a Shared-
Memory Multiprocessor; IEEE; pp. 330-333; retrieved on Oct. 31,

2022 (Year: 1991).*
(Continued)

Primary Examiner — S. Sough

Assistant Examiner — Cuong V Luu

(74) Attorney, Agent, or Firm — Hanley, Flight &
Zimmerman, LLLLC

(57) ABSTRACT

A method for increasing scalability of asynchronous data
processing includes interpreting a computer program for
reading data from an input data stream, wherein the input
data stream 1s defined in the program as an object having a
function for obtaining more data from the mput data stream;
determining that additional data from the input data stream
1s required to continue execution of the function in a thread
of the interpreted computer program; suspending execution
of the thread responsive to a determination that the addi-
tional data 1s unavailable; saving a state information for the
suspended thread, wherein the saved state information
includes mformation to allow resumption of the suspended
thread; generating an event indication upon availability of at

GO6F 9/544; GO6F 9/485; GO6F 9/4812;
GO6F 9/3009; GO6F 9/46; GO6F 9/52;

GO6F 9/461; GO6F 9/3851; GO6F 8/31;
GO6F 11/1438

See application file for complete search history.

least some of the additional data; and resuming execution of
the suspended thread of execution and providing the addi-
tional data as a result of the function.

15 Claims, 6 Drawing Sheets

ERECUTE THREAD
i)

ADDITIONAL DATA NEEDED
TO RESUME EXECUTION?

iy

4

GENERATE AND STORE STATE INFORMATION
1)

l

ERD TX{ETION THREAD
il

l

DETECT THAY SUFFICIENT DATA HAS BEEN RECEIVED
8741

-

RECREATE THE EXECHTICN STACK BASED OX THE SAVER STARE
INFOXKATION

39

l

RESUME EXE{UTION OF IHE THREAD UMNG THE KECREATED
EXECUTION STALK

i3

US 11,609,745 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,235,396 B2* 1/2016 Ke ..ccoooveviiiiininnnnnn, GO6F 8/453
9,448,837 B2* 9/2016 Lwzetal. GO6F 9/44
2006/0179289 Al 8/2006 Floyd et al.
2006/0236136 Al 10/2006 Jones
2013/0061326 Al1* 3/2013 Bennett GO6F 21/51
726/24
2013/0152057 Al1* 6/2013 Ke ..ooooiiiiiiiiiiinnnn, GO6F 8/453
717/132
2013/0263087 Al* 10/2013 Batres GOGF 9/4843
717/115
2016/0078246 Al 3/2016 Kumar et al.
2016/0246643 Al* 8/2016 Xuccooeevvivviiiinnnnn GO6F 9/485
2018/0285110 Al1l™* 10/2018 Rayetal. GO6F 9/30

OTHER PUBLICATIONS

Lance Hammond et al.; Data Speculation Support for a Chip
Multiprocessor; ACM,; pp. 58-69; retrieved on Oct. 31, 2022 (Year:
1998).*

International Searching Authority, “International Search Report and
Written Opinion,” 1ssued 1n connection with International Applica-

tion No. PCT/US2018/012324, dated Apr. 20, 2018, 15 pages.

International Searching Authority, “International Preliminary Report
on Patentability and Written Opinion,” 1ssued 1n connection to

International Patent Application No. PCT/US2018/012324, dated
Oct. 1, 2019, 9 pages.

* cited by examiner

U.S. Patent Mar. 21, 2023 Sheet 1 of 6 US 11,609,745 B2

1
o T T B R I\}

I""lf-l‘-o-l--n.nﬂ'n---?--\.'---"\-.--‘I-rh-"-.-"'l.-.."-u.-"--'--“'- W

1

1'. iff N {hf

..i* N ,r"r :.__| A
i‘m-.

ﬁiﬁ-
¥
éﬁ.f

»
3

FiG. 1

o 7, T, TR AP

tmuxnu&.&v&:m —
iy, =0, 0, 2, 2, ' g Ty e R O N N r

]
o0
\(,
~
= AL
>
—
—
7P,
-
\&
=
gl
2
m\nu THAIO i “ “
w _ w m VIOWIN
 REOALAN
- N
~
. %)
3 ’ | e |
: o
S ® | . 5t
VR EIL] |
= J e oML ¥0553I0%4
N || o
¥l 37
DA _ |
YOMLIN

U.S. Patent

U.S. Patent Mar. 21, 2023 Sheet 3 of 6 US 11,609,745 B2

: FXECUTE THREAD |
34z

" ADDITIONAL DATA NEEDED
T0 RESUME EXECUTION?

1K

)
k
k
k
k

! GENERATE AND STORE STATE INFORMATION E
- W

END EXRCUTION TRREAD
il

DETECT THAT SUFFICIENT DATA HAS BEEN RECEWED
L3

‘Hhhﬁl“m“m ‘‘‘‘‘‘
3

eeeremeesoeee S wseoennsetesmassooemmasasesnna

! RECREATE THE EXELUTION MACK BASED ON THL SAVED STALR I

; INFORNATION
| 330 i

mm-ﬂl'q.
1

RESUME EXECUTION OF THE THREAD USING THE RECREATED -

EXFCUTION STALK |
woo

FiGy, 3

US 11,609,745 B2

Sheet 4 of 6

Mar. 21, 2023

U.S. Patent

e

d3iditgd it 138 aNY
IN3A3 QIAH03Y GOV

T o,

o a2, S, 2

- - - - g

VIV THCRO1IN
HELIEHTE]

L F F F

e

by g o, T T

43

Pt gl gl e e gt 5 A s o i A

et e} LAY TS HUM NURLTY

v Bid
1OV YIYG m —
m §0y
| 434408 4008
e LT A
GINTIIE I 4a0g] | o A SN B v W sau
0N 10K
o W
rmwww: VIVOONEIIN
- NYIHLS K008 dL18
i |
TIVIAY YiVG
1Y 108

I I I e el il il g il

FFFFFFFFFEFF ey rrrereryryy v gl of i

‘
)

T1VIYAY b
Y190 T J3IINCAY

30k
VMV INY

i
J8YM VK
§01 NV

FYYFFFFFEFFFFrry s F,

gl g e g s e e e i e e e i e o i gl ks A G s g A

US 11,609,745 B2

Sheet 5 of 6

Mar. 21, 2023

U.S. Patent

T B T T BT R T Y .._..._..._..,_.........._..1.....__.......r.._..,__.._..r.,.....l.....l.,__._.l.__..h-.;fl.il.i.lﬁi.-{.hﬂi.l.l\i__:_:..iﬂ.

-

P R R B TR o L I R

S

ol e e A

18,

won
F18Y08L 3%

A A Rl d A AFATE Y EFFrY - BN W WA S W OE W EEa T R

g
=

1

I¥H0LS YIYG $45A30

" #
F ¥
i)
i f
_ “
] s
I)
i 1
J ; e
3 - - . - o
: ..._-..L._._.L........:__.._..__. “ H o S ’
. i
] [L w 3
. . r
" - ﬁ +
q ! £
s >
! #

dmwma e a e m el TR R Y Y
Ml et T T T T T T T .
'

'
e T L T
e L b b

I I I I I L T T T T T e

- erEa EEarmmaars s marmam s s s ey s e AT AT A TAT T
Fhy F ¥ Hn h BV AN TR HEE R HEY R E R Ay R N ul alatal Ll Rl .

.-." L N
L] . "
.-. 1 b 4 .
1 - . L .
1 ' .
£ b)
“)

W . 4 T h

A I e i e e el S e e e i e il A ol i

%l%&.tk&tﬁi&.ﬁ{i{fﬁ o

PR R R R Y v sl el ol -l ol .1.!-.1?

:
A,
I
.

)

- H ok A AR A e E A L L T N R e R

- P T T R il R e
L ¥ r I f r
+ e e e . ” J il L S W ¥ i L e e e] .
- g o L e 1
£ ! p 1 d .
Ey Y r ' T £ i
1 L_ r i f .
F
+ A F . i]
x - . 4 . - ! !
r]
+ I ‘u Fl ‘.
A N 1
] I]
+ . T > r
+ / n . .) ¥ v . v “
¥ . . 1 *
H $ 1 ” : | I- - ”- * - mmm m m '
3 . r i 1 - k i
<]
. 1 3 r R K N i N Y * . 4]
y L T ﬂ 1 ' ”_”. ” : ."
+]
km......tt...T.....t.........:._......1r............,.1,.......u.....1...-.....l..“....-.....-L_..-.l..-.......-....._.1_.1_.....u:......_..-‘.. Fobw o fp ok by nln ok dowan e e e N LI Ry T e wd b At bwcd - TETTFPTITYT AT = - M
o ol e A i e i i e e P 0 4 ot f9 e ph o o He e A A A A A A
iulhlhlhlhluill..lrl..lulrlhl.lpnr bl a0 A R S A e e it KA AT A AN '
. £
/ $ e S p e e me e,
4 £ b :
[Epre—— t]
i
LR ALtk n T e e m ke iiiiﬁittititiihttt:-..-.:.-..:-.....-...-n..1__..—.-..Tl....._..........-......_...1..1..........-..._..:_...._...._....._......."..r......1...........1......:..1r......1+......_.............+_.—-..r.*1t¥1ﬂk1t¥1iﬁttiiti¥ltil.........:................t.....l.....:..:...-.:.:......_..__..'rﬁtlihl-111111“ “ r
N T T T T R R R H
4 . e ' “ .“ . "... ol e “
u ¢ » A : F |
] f : r 1 F _ 1
1 ! t * # | ;) .
4 ? -"...__.“ . F - ..l-.—n.m. i . p . !
A ' T ¥ W = At -G - ... :
“ A p ol .“ -. “ ﬂ .
. '] ']
| . + - + K »]
]] r L]
“ * F] u... i ‘
¥ e rrrreeeEe. ¥ o e asrectarm N ALy L T S —— L?Etésﬁﬁ“ﬁﬁhﬁhlﬁﬁ]uﬂlﬁﬁ 3
* # : : ¥ 1 I n : "
! E) \ . B . K]] a . '
’ 1 p . ' i H_ ! ! £ * n
s ¥ 1 . . ' ! ! } A i "y P * .
‘ H . Fl A, .)) .u. & ¥ f ﬂ- K o - _ - . L8
’ : X : 3 i : i) i : — b ' E . y
. o 5 1 ' ' wnried ' ' T ' e g
a .l-l.ll......._ ¥ i “) . Ay v m F f ‘ | [l . f . r)
. o T ! : w ¥ / J ' B “
T ._.. i -.. F * L] 2 B L - W, 1
. a; " . / ¢ ¢ ‘ b
1 + i N
- - H. L} L LN B I = 4 & - -
“i m e m ok onmokdldk dd MY i...-..-l_-..Iuiul.l.l.n.r._-u.iu.ln.ulunl..l..nl..._lul..-!- lnu...-.‘.l..lh.u_.1l-|.n|11-|...|.1.-....|..............-._._- [O T e R N AL R T B R B A ol sl il ol bl L il il e i i latlriatiri-trwautﬁ..b.i.iq..ii.t: A LT L “ “
. p)
“ B r ot il e i P B b= T b P A R R A h Y W kR HANHA W ok N &
m m : i 1
L ¥ . s £
A O .“ . ¥ W odr e
:
:
e PO S - . D RN EELERER!
._.__..._..__l........-...1:.1.._.!l.-_.:_:.....l..r..-.:.-_.r-..l..-.-_..T.-..r._1..-..l..—_..-.r.r...........:uﬂ.ln.{...l..1u1_.......11|..1...r_......l.q\._-.l........_...IL....-.-_..--.-..-:.-.......-..-..-...__.1.-h!-iﬂ oY “. llllllllllllllllll P _“l e {
r ' 7
4 k ! il ot Pl
W FE R] __“ r H] " i
s - X -]) r
¥] .1 Py H. Fl ¢ i . r i
* . ¥ A A “ 1 . . ! 1 e ' r
I ! 4 - g e L F E : r
p 7 iy f : | ' ; , L ¥ a
. o ¥ ' " ! 1 ' #
: r E ’ ' ' : r F d
A » r r ¥ T] Fs
. p F ' : £) ' :
: ._..T._.l.......-.-.__.._.............u._w | - f e -.-.._n.-.n.-.....-.:..q.i.\an.L :.......-.u..,..l.ﬁw....._l....q.....-__ :
.r
T i [} ! ' 1__ -‘. ,
: " y _ I :
]
“. L] ! [] ;] .“ #u. -
: AdH e i A i i .._. r H
1 . L ! d 3 L .
" . b i n I
i | i
L ' . i
I)) ! " e e e e == 3
] :]
+ T
] ’ -
T i . | ¥
i ! 3
t * T
. “ . v t
' ; :) : ’ P cem— - P .
] i 2 + 4 .ﬁ
+ . K + + .
T] ¥ *
k - M
1 ! K + L] -
+ . K 3 3 a
1 \ K v . . T L] "
o n e m st sann a e een e . : ! ’ " Al : : :
r r . - K ' 2 ¥ - ¥ L] '
“ .w “. PR RN ;" 3 “ 1 1 H 3 \55 H ”]
. .- . ' . 3 A 1
[] ¥ 4 . .H 1 4 » E - A A s L - gard ow o d omodod o T T o A i
* bk B L ; w e . M - R y . AT " +.m.-.q..11 M ! . . ‘ﬂ' ; “
- ? 4 ‘ / -) g * ' : : A y L 1 " r
. f i 4 o 4 p j ¢ i b e g '
» . d) .__. L y 1..__.r | * n . o) 3 " p
: . ; 2 | ») . ; : - ; .. ; ,
+ I . _....__._.. ¥ » ' : W . p
F H L A = 1. F F W LAm m EEmEa oma ln- llllllllllll F .-..n.‘.ll.l..lu..‘..!.l..l:l..-!:llul.ll..lﬂhl..l.ll.llm i
. ara bt J R R .r..l.llll.l.l.-.lll.u. k . i “] , N .] :
A) i . ! L ¥ F Fl 1 . I i 3 A 4 .
.] . : »r j X . p : . ' i i g i M,
1 P fr . ! . . i > ' A ' . ¥ A W f . T !
N . 2 Fr h raow T N “ i r - 4 1 ' ’ F K3 F A . L
' . w 1 4 T ; v F . i i ' ¥ ‘ 4 ¢ .,
i i 3 “ o P F K . . ; t i . f r 4 r rr rEa T T T T T m T T - Fi N .)
i 4 . . p F *wAdmrdAdbddsrrrrfrwa r . i . . . p Jl ? r A F "
[] = ¥ [] a * [] I '] ".) r "
“ ¥ . v 1 r ‘ ! ' /' q 4 4
r i] [')
1 e ¥ - 1 4 * 1 ¢ i . g ¢ '
' ' L * . 3 » 1 ? i : + r .
A kA A R A R AR A s s by s T » - X * i . 1 r ..“
t . . " ..\.\h_ p » r !
, p Pt ; 1 * ' ' ‘ ¥ F !
F 3 ' [1 ’ i 1.._.‘- d F ¥ |
: . T : * m ' - : ; ; y
> ' ' f brwtrrn - - Hwom o M A kAT " mw . “ LT T T T " » .-_.‘ T T i L L L L L
» . . K -
K ' . ! -
.“ i] F B IS] .”
: i LR &
]]
! ' . “
. .
“ : : :
[] .) “ ” d
i ' . i ﬂ . - 1
i LA : ' ! ' .
4 . i ”_ L1 :
/ -] i i ! '
i 4 : . y ' F e,
L]
d s e r r v ra v e a T T E W MEE ma W EEEEaEEEEmEEETEESEETEEaEmE P N I R AU CECE R R N R R i b ded Rk .r

US 11,609,745 B2

Sheet 6 of 6

Mar. 21, 2023

=t R T T R T A m R EERRE L L mmER R R R R RN R R koA ohod kR

U.S. Patent

9 "5id

d v = = g P S FTY ddd o Y g T~ a2 T oA ATl

[F 7 F = 7 ¥ |

§iL
071 435341

e s s s mm e FY YTy L LA A QR i g L

i
A R OE L aww s s omm ok ok ok od

T

"m mi pala A A N N e ra it AA Al s T rrrEE. o mom mmmmr e sE e A Tl AT AT AT e T AT e T e T T T T T T e T S A T T o .1.-...-.-..-.“.1 g oaom o a ko aoad T TR gy s FE ST prrrrrrs e s .

_ G4 7
W3L3A5805 O/

-y rwrrr s n s e s e - el I R ...-.._.m El L L L R R R I R T e . I L T Y

L e e Ty

L e e BT T T

- h ok bk kB e
LR B R e R B

LR R R R R A A I A A]

-
dd g g ma

W T E EE L amEwe-

[= = m s Ee @ s mmmn e m ok okod oo
LT T T A F e e mman

hERRwAER o, .-
k]
L]
A M R My owew omrcwew o m ok bk F

]
]
i
"
I‘_‘_

L)

[T e

b
.

%
]

e S T S e e T

l.--l.-..-_.

[}
*
ey
1

llllllllllllll.ll.l.|-|.1..1..1..1..1..11...1.1.1.1.1.1.1.-...-.# R R I I I I R R T AT AT AT Ay e e
LI ars

R i L

L]
-
L]
+
=
+
-
4
b

b
-
4
4
4

n
+
L]
1
1
L]
L]
1
L]
L]
1
1
L]
1
L]
]

L]

]

]

]

]

]

'

-

i

i i
]
] i
1 i
i i
i i
i i
r i
1 i
i i
r |]
L} Il
o X
LN 1
] []
-“ .
r []
o]
¢ d
A g
4 J
/ /
!]
! ¢
) ¢
¢ ' ¢
¥ r
r ¥
r r
¥ r
r F
* r
- F
* »
L r
L] []
a *
L] ,
L] ,
u L]
L]]
] [
i [
i 1
' -~
i i
1 i
i i
L i
[]
L}
I
]
]
[}
[]
[]
[]
[]
[}
.
.
o
K
.
[

e e
ey oy v T Ty

-
]
i
]
1
]
]
]
]
T
i
1
i
n

-

Arrrh e et
- Em R Ry s mwmod ok h
e E e R g g w & wE

||||||||||| " e Emmmm L T B W A L

= A F A A g

*

e

i r

a 11

. -
" -’

L - r r-rrr >

] -m
e L}
o '
........ u 1.
-

r
]

X
b

= 4 F 4 F dd d

Fof.T.Td T 7 Fr = s & 8 B rrs s S s ar s s arm rn rwrxx g g ammm f T YT T T T -

Ly Frr F)

Vil
I

L
Illlllllill-ii.li..i.

)
)

f

K

t

r

¥

F

.

r

-

]

]

]

]

]

]

]

r

r

1

L]

1

]

[}

]

]

[}

[}

;

; S |
.‘“ lllllllll LI BN I B R] ._.l.l. lllllll]

AT e i
]) 1

1l

|
|

Wil

& r F m ok ok b F + F F P T oo 1

140)

LR I Y u-'h-'-h-'-h-".-u--------'-- [N T
L]
n
1
L]
L
L]
4
LY
4
%
i
]
]
]
]
b
b
b
b
L]
L]
-

[ER I) |11|1lll.l-lll

L N EE NI B, |

JUdd

o wmwwm m mm mm momom o
E N EEEREEE A i U S
" wm wm m oW W™ W W™ R & A m A A A E oy

R e e T

Mt A e L

e N R el Rl R R e e e N N N N R I /

[
L]
1
1
]

e R R R R ETUrTMYTY T YN --'-a.--.--."-._"."'.".'_E

= & A A A aad

TR A A S a mEmE A EmEmEETEEEEA S A A R T TR T AR e aprmmamhLlL Lt Ly e e mm e m o -
_—rm
.

il

2503
oy
L
P

'
- e m ook

+*
L]
-

9 FE XK ®E Sy rrsmrrrrrrrra

LBV ERE N NPT i3I TS DRSO

T R R e e e E e e A A AT T o r A a At St wd A A A AR A A AN A AL At T E EE ... e

T T T T T T NI N I
LI

L e e B T T
P B B B B B R A o e e e e T T

4 § & 4 J A E EE .y gy wwTEEEE NS & Jd g g T i

$INA30 O/

= m m b mr T F s " g PR PP PPN Ay s w S r S R v i N |

T e

r r r r r a - 8 & 4 : gy r 2 a

+
F
[
4
"
"
"
-
]

B R R N N N N N N L L E L E E EERE T E R R I A o T]

o & pma mmam h kT mom. N mw T EmE E EmE T EE S S Em oy owwrwr s eaata a .

a
1

1
1
i

US 11,609,745 B2

1

ASYNCHRONOUS DATA OBJECTS FOR AN
EVENT DRIVEN PROGRAMMING
LANGUAGE

This patent claims the benefit of U.S. Provisional Patent

Application Ser. No. 62/480,053, which was filed on Mar.
31, 2017. U.S. Provisional Patent Application Ser. No.
62/480,053 1s hereby incorporated herein by reference 1n its

entirety. Priority to U.S. Provisional Patent Application Ser.
Nos. 62/480,053 1s hereby claimed.

TECHNICAL FIELD

Embodiments described herein generally relate to com-
puter programming, and more specifically to asynchronous
data objects for an event driven programming language.

BACKGROUND ART

In an event driven programming language, parts of the
code are executed 1f certain events occur. For example, an
incoming connection might trigger a routine that should
handle new connections. During execution, a blocking
operation may happen, and the program may try to read data,
but find the data 1s not yet available. One solution 1s to pause
execution of the thread, wait until the operation may con-
tinue, and continue execution. In this implementation, a
thread’s resources may be required and used while waiting.
Thus, the solution does not scale 1f there are many concur-
rent events at the same time and blocking operations happen
frequently.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram 1illustrating a network of program-
mable devices according to one or more embodiments.

FIG. 2 1s a diagram illustrating an example system for
utilizing an event driven programming language, according
to one or more embodiments.

FIG. 3 1s a flowchart illustrating a method for utilizing
asynchronous data objects for an event driven programming
language, according to one or more embodiments.

FI1G. 4 1s a flow diagram 1llustrating a method for utilizing
asynchronous data objects for an event driven programming
language, according to one or more embodiments.

FI1G. 5 1s a diagram 1illustrating a computing device for use
with techniques described herein according to one embodi-
ment.

FIG. 6 1s a block diagram 1llustrating a computing device
for use with techmiques described herein according to
another embodiment.

DESCRIPTION OF EMBODIMENTS

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the invention. It will be apparent,
however, to one skilled in the art that the invention may be
practiced without these specific details. In other instances,
structure and devices are shown in block diagram form 1in
order to avoid obscuring the invention. References to num-
bers without subscripts or suilixes are understood to refer-
ence all instance of subscripts and suflixes corresponding to
the referenced number. Moreover, the language used 1n this
disclosure has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter, resort

10

15

20

25

30

35

40

45

50

55

60

65

2

to the claims being necessary to determine such inventive
subject matter. Reference 1n the specification to “one
embodiment” or to “an embodiment” means that a particular
feature, structure, or characteristic described 1n connection
with the embodiments 1s included 1n at least one embodi-
ment of the ivention, and multiple references to “one
embodiment” or “an embodiment™ should not be understood
as necessarily all referring to the same embodiment.

As used herein, the term “programmable device™ can refer
to a single programmable device or a plurality of program-
mable devices working together to perform the function
described as being performed on or by the programmable
device.

As used herein, the term “medium” refers to a single
physical medium or a plurality of media that together store
what 1s described as being stored on the medium.

As used herein, the term “network device” can refer to
any programmable device that 1s capable of communicating
with another programmable device across any type of net-
work.

One or more embodiments provide a special object for an
event driven programming language having a function for
obtaining more data from the mput data stream. Adding such
an object may provide a techmique for, in response to
determining that processing should be suspended, determin-
ing and storing a processing state and ending an execution
thread such that the thread’s resources may be redirected to
other transactions. Instances of the object may describe data
blocks that might not be fully available yet, including
interface functions that asynchronously fetch more data 1f
needed.

Using this object, a user may be able to build a chain of
data structures that might not be available yet. For example,
processing HTTP connections as HT'TP server or proxy, a
user may have an HT'TP request object using the TCP stream
as such an object, and the request object may provide other
objects for the body of the request. Later, if the body should
be accessed and not enough data i1s processed, the object
may attempt to obtain additional data using a function call.
The call may lead to additional calls for the TCP connection
object.

Whenever processing must stop because not enough data
1s received, the processing chain (such as body, request, and
TCP stream), 1s abandoned and recreated later, without using
the thread’s resources like a thread does while waiting.
According to one or more embodiments, compared to block-
ing solutions using threads, the use of the new object uses
only a small constant number of threads and scales better for
a large number of connections. The recreation of the execu-
tion stack 1s done internally by the object. The programming
model of the language may look like the traditional way of
having threads while blocking 10.

Referring to FIG. 1, an example infrastructure 100 1n
which embodiments may be implemented 1s 1llustrated sche-
matically. Infrastructure 100 contains computer networks
102. Computer networks 102 may include many different
types of computer networks available today, such as the
Internet, a corporate network, a Local Area Network (LAN),
or a personal network, such as those over a Bluetooth
connection. Each of these networks can contain wired or
wireless programmable devices and operate using any num-
ber of network protocols (e.g., TCP/IP). Networks 102 may
be connected to gateways and routers (represented by 108),
end user computers 106, and computer servers 104. Infra-
structure 100 also 1ncludes cellular network 103 for use with
mobile communication devices. Mobile cellular networks
support mobile phones and many other types of mobile

US 11,609,745 B2

3

devices. Mobile devices 1n the infrastructure 100 are 1llus-
trated as mobile phones 110, laptops 112, and tablets 114. A
mobile device such as mobile phone 110 may interact with
one or more mobile provider networks as the mobile device
moves, typically interacting with a plurality of mobile
network towers 120, 130, and 140 for connecting to the
cellular network 103. Each of the networks 102 may contain
a number of other devices typically referred to as Internet of
Things devices (microcontrollers, embedded systems, indus-
trial control computing modules, thermostat, refrigerator,
ctc.) 150. Although referred to as a cellular network 1n FIG.
1, a mobile device may interact with towers of more than one
provider network, as well as with multiple non-cellular
devices such as wireless access points and routers 108. In
addition, the mobile devices 110, 112, and 114 may interact
with non-mobile devices such as computers 104 and 106 for
desired services. The functionality of the gateway device
108 may be implemented in any device or combination of
devices illustrated 1 FIG. 1; however, 1t 1s most commonly
implemented in a firewall or intrusion protection system 1n
a gateway or roufter.

FIG. 2 1s a diagram illustrating an example system for
asynchronous processing of a data stream, according to one
or more embodiments. FIG. 2 includes a client device 205,
and network devices 210A through 210N. Fach of client
device 205, and network devices 210A through 210N may
be connected across network 200. Client device 205 may
include, for example, a memory 220 and processor 225,
along with a network interface 235 utilized to connect to
network devices 210A through 210N over a network 200.
Memory 220 may include a number of software or firmware
modules executable by processor 225 including 1 some
embodiments an interpreter and library routines for inter-
preting programming language having the constructs
described herein. In one or more embodiments, memory 220
may 1nclude a security module 230. Security module 230
may be utilized to perform security functions for data across
the network.

Additionally, security module 230 may manage the pro-
cessing ol computer code by processor 225. In one or more
embodiments, security module 230 may utilize an event
driven programming language utilizing asynchronous data
objects to manage performance of processor 225. For
example, security module 230 may implement a new object
that includes a function for obtaining more data from the
input data stream and allows for capturing processing state
information 1f a processing thread requires additional data
for processing. For example, the state information may be
captured 1f the thread i1s waitting on data from network
devices 210. According to one or more embodiments, the
state information may be captured by a new kind of object
in the programming language utilized by security module
230. In one or more embodiments, once the state informa-
tion 1s captured by the object, thread resources may be
redirected to other transactions. When the additional data 1s
available, the execution stack may be rebuilt based on the
object’s saved state information. The object may then use 1ts
function for obtaining more data from the input data stream
to obtain the additional data, allowing execution of the
thread to resume. Unlike suspending execution of a thread
by waiting for an event, the abandoned thread’s resources
are Ireed except for the object’s saved state information,
freeing processor and memory resources that would other-
wise be absorbed by a waiting thread.

FIG. 3 1s a flowchart illustrating a method of improving
scalability of asynchronous data processing. The method
begins at 305 and a computer program for reading data from

10

15

20

25

30

35

40

45

50

55

60

65

4

an input stream 1s interpreted. Note that, although the
computer program 1s here described 1n terms of an inter-
preted programming language, the programming language
could instead be compiled and executed outside of an
interpreter environment. The computer program may 1den-
tify the input data stream as a programming language object
having a function for obtaining more data from the input
data stream. At 310, a decision 1s made regarding whether

additional data 1s needed to continue execution of the
computer program. According to one or more embodiments,
the events of the event driven programming language may
indicate additional data may be required. As an example,
execution of the thread cannot continue until additional data
from one of the remote network devices 1s obtained. If, at
310, a determination 1s made that additional data 1s required
but unavailable from the source for the mput data stream,
then the flowchart continues at 315 and the interpreter
suspends execution of the execution thread. Then, at 320, the
interpreter saves state mformation for the interpreted com-
puter program in the object. The saved state information
includes suflicient mformation to allow the interpreter to
resume the suspended thread of execution. Once the thread
of execution of the interpreted computer program 1s sus-
pended and the state information saved, the interpreter may
redirect resources to other threads of execution. In one or
more embodiments, the thread may be abandoned or
destroyed to conserve processing resources. The flowchart
continues at 325, and the interpreter decides whether the
additional data needed in step 310 1s now available. If, at
325, a determination 1s made that the additional data 1s
avallable, the flowchart continues at 330, and an event
indication 1s generated. At 335, the interpreter resumes
execution of the suspended thread of execution of the
interpreted computer program. Then, at 340, the interpreter
provides the additional data by using the object’s function
for obtaining more data from the input data stream.

FIG. 4 1s a flow diagram illustrating a technique for
utilizing asynchronous data objects for an event driven
programming language, according to one or more embodi-
ments. In this example we look at HTTP processing to show
how the concept of need-more-data object could be 1mple-
mented. A TCP connection 1s accepted, data 1s read, the
HTTP request 1s parsed, and the request body 1s scanned for
malware. The example consists of program code containing
function calls to module functions. An example of the code
corresponding to the flow diagram 1s as follows:

STREAM
ROUTINE Accept ON (accept) {
TCP.Socket clientSocket = TCP.AcceptedSocket
stream = clientSocket.InputStream
STRING protocol = stream.DetectProtocol
IF protocol == “HTTP” THEN {
CALL “HTTPConnection”
h
}

ROUTINE HTTPConnection ON () {
HTTP.RequestResponse request = HTTP.ParseRequest (stream)
HTTP.Header requestHeader = request.Header
NUMBER 1 =0
NUMBER contentLength = O
LOOP (requestHeader.Count) {
IF requestHeader.KeyBylndex (1) == “Content-Length”

THEN
contentL.ength = ToNumber
(requestHeader. ValueByIndex (1))
1=1+1

;

IF contentLength > 0 THEN {

US 11,609,745 B2

S

-continued

STREAM body = request. Body
IF Antivirus.IsInfected (body) THEN {
block = “virus foundin™

CALL “SendBlock”
END(ALL)

In this example program code corresponding to the flow

diagram of FI1G. 4, the object having a function for obtaining
more data from the input data stream 1s called STREAM. To
implement the STREAM object, the following functions are
used: GetCurrentSize, which returns the size of the data
already available; Read, which obtains the data already
available; IsFinished, which returns whether more bytes will
be available; and NeedMoreData, which requests more data,
and may either increase the current size or add an event and
return an 1nterrupt. As an example, NeedMoreData may be
called again later if the event 1s triggered. NeedMoreData
might call other functions; for example, the body stream
might request additional data from the input stream, leading,
to a hierarchy of (interruptible) function calls.

Returning to FIG. 4°s flow diagram, the tlow for process
402, AV.Infected 1s depicted. AV.Intected 402 may be part of
antimalware program 405 tasked with scanning for malware
404 and uses NeedMoreData on the HI'TP body stream to
get all data needed. In the example program code corre-
sponding to FIG. 4, an incoming connection leads to a call
of routine Accept, which 1n turn calls a module function
InputStream of module TCP. InputStream returns a stream
object according to described embodiments. AV.Infected
then makes a DetectProtocol function call on the stream. The
DetectProtocol function of stream requires some bytes of the
input stream to 1dentily the protocol. If the bytes are not yet
available, the DetectProtocol function calls NeedMoreData
on the TCP.Inputstream at 412. The TCP.Inputstream may be
a stream object 1dentifying the execution stack. The stream
may try to read more data from the network, and it not
available, may add an event to be notified when new data 1s
available at 414. Then, 1t will return with status IsInterrupted
to AV.Infected 402. The DetectProtocol function will detect
the interrupt, save its state in a stream object 11 needed, and
return immediately. The thread that was executing the trans-
action 1s now 1Iree to execute other processes. If data 1s
received, the event will trigger, and execution of the trans-
action will continue with the DetectProtocol function, res-
toration of the saved state information from the stream
object, and a new call to the NeedMoreData function. Thus,
instead of blocking a whole thread, the thread will exat all
stack frames, freeing unneeded resources, and return later.

The same worktflow may be implemented 1in the HT'T-
P.RequestResponse object returned by HT TPParseRequest
at 410. Calling the ParseRequest function may create a
request object while minimizing data consumption. If a user
wants to access the HI'TP header or the body, the object may
try to obtain as many bytes from the mput stream as needed,
calling the NeedMoreData function at 406 on its input
stream until the header, or the requested part of the body
response, 1s received at 408.

Referring now to FIG. 5, a block diagram illustrates a
programmable device 600 that may be used within a net-
work device, such as devices 205, 1n accordance with one or
more embodiments. Devices 205 may not include all of the
clements of FIG. 5. The programmable device 600 1llus-
trated 1n FIG. 5 1s a multiprocessor programmable device

10

15

20

25

30

35

40

45

50

55

60

65

6

that includes a first processing element 670 and a second
processing element 680. While two processing elements 670
and 680 are shown, an embodiment of programmable device
600 may also include only one such processing element.
Programmable device 600 1s illustrated as a point-to-point
interconnect system, i which the first processing element
670 and second processing element 680 are coupled via a
point-to-point interconnect 650. Any or all of the intercon-
nects illustrated 1n FIG. 5 may be implemented as a multi-
drop bus rather than point-to-point interconnects.

As 1llustrated in FIG. 5, each of processing elements 670
and 680 may be multicore processors, including first and
second processor cores (1.€., processor cores 674a and 674b
and processor cores 684a and 6845). Such cores 674a, 6745,
684a, 684b may be configured to execute instruction code 1n
a manner similar to that discussed above 1n connection with
FIGS. 1-4. However, other embodiments may use process-
ing elements that are single core processors as desired. In
embodiments with multiple processing elements 670, 680,
cach processing element may be implemented with different
numbers ol cores as desired.

Each processing element 670, 680 may include at least
one shared cache 646. The shared cache 646a, 6460 may
store data (e.g., istructions) that are utilized by one or more
components of the processing element, such as the cores
674a, 674b and 684a, 684b, respectively. For example, the
shared cache may locally cache data stored 1n a memory
632, 634 for faster access by components of the processing
elements 670, 680. In one or more embodiments, the shared
cache 646a, 6460 may 1include one or more mid-level
caches, such as level 2 (L2), level 3 (LL3), level 4 (L4), or
other levels of cache, a last level cache (LLC), or combi-
nations thereof.

While FIG. 5 illustrates a programmable device with two
processing elements 670, 680 for clarity of the drawing, the
scope of the present invention 1s not so limited and any
number of processing elements may be present. Alterna-
tively, one or more of processing elements 670, 680 may be
an element other than a processor, such as an graphics
processing unit (GPU), a digital signal processing (DSP)
unit, a field programmable gate array, or any other program-
mable processing element. Processing element 680 may be
heterogeneous or asymmetric to processing element 670.
There may be a variety of diflerences between processing
clements 670, 680 1n terms of a spectrum of metrics of merit
including architectural, microarchitectural, thermal, power
consumption characteristics, and the like. These differences
may ellectively manifest themselves as asymmetry and
heterogeneity amongst processing elements 670, 680. In
some embodiments, the various processing elements 670,
680 may reside in the same die package.

First processing element 670 may further include memory
controller logic (MC) 672 and point-to-point (P-P) intercon-
nects 676 and 678. Similarly, second processing element 680
may include a MC 682 and P-P interconnects 686 and 688.
As 1llustrated 1n FIG. 6, MCs 672 and 682 couple processing
clements 670 and 680 to respective memories, namely a
memory 632 and a memory 634, which may be portions of
main memory locally attached to the respective processors.
While MC logic 672 and 682 is 1llustrated as integrated into
processing elements 670 and 680, in some embodiments the
memory controller logic may be discrete logic outside
processing elements 670, 680 rather than integrated therein.

Processing element 670 and processing element 680 may
be coupled to an I/O subsystem 690 wvia respective P-P
interconnects 676 and 686 through links 652 and 654. As
illustrated 1n FIG. 6, I/O subsystem 690 includes P-P inter-

US 11,609,745 B2

7

connects 694 and 698. Furthermore, I/O subsystem 690
includes an intertace 692 to couple IO subsystem 690 with
a high performance graphics engine 638. In one embodi-
ment, a bus (not shown) may be used to couple graphics
engine 638 to I/O subsystem 690. Alternately, a point-to-
point interconnect 639 may couple these components.

In turn, I/O subsystem 690 may be coupled to a first link
616 via an interface 696. In one embodiment, first link 616
may be a Peripheral Component Interconnect (PCI) bus, or
a bus such as a PCI Express bus or another IO interconnect
bus, although the scope of the present invention is not so
limited.

As illustrated i FI1G. 5, various /O devices 614, 624 may
be coupled to first link 616, along with a bridge 618 which
may couple first link 616 to a second link 620. In one
embodiment, second link 620 may be a low pin count (LPC)
bus. Various devices may be coupled to second link 620
including, for example, a keyboard/mouse 612, communi-
cation device(s) 626 (which may 1n turn be 1n communica-
tion with the computer network 603), and a data storage unit
628 such as a disk drive or other mass storage device which
may include code 630, 1n one embodiment. The code 630
may 1include instructions for performing embodiments of
one or more of the techniques described above. Further, an
audio I/O 624 may be coupled to second bus 620.

Note that other embodiments are contemplated. For
example, 1nstead of the point-to-point architecture of FIG. 5,
a system may implement a multi-drop bus or another such
communication topology. Although links 616 and 620 are
illustrated as busses in FIG. 5, any desired type of link may
be used. Also, the elements of FIG. 5 may alternatively be
partitioned using more or fewer integrated chips than illus-
trated 1n FIG. 3.

Referring now to FIG. 6, a block diagram illustrates a
programmable device 700 according to another embodi-
ment. Certain aspects of FIG. 5 have been omitted from FIG.
6 in order to avoid obscuring other aspects of FIG. 6.

FIG. 6 1illustrates that processing elements 770 and 780
may 1include tegrated memory and I/O control logic
(“CL”) 772 and 782, respectively. In some embodiments, the
772, 782 may mclude memory control logic (MC) such as
that described above 1n connection with FIG. 5. In addition,
CL 772, 782 may also include I/O control logic. FIG. 6
illustrates that not only may the memories 732, 734 be
coupled to the 772, 782, but also that I/O devices 744 may
also be coupled to the control logic 772, 782. Legacy 1/0O
devices 715 may be coupled to the I/O subsystem 790 by
interface 796. Each processing element 770, 780 may
include multiple processor cores, illustrated in FIG. 6 as
processor cores 774A, 7748, T84 A, and 784B. As illustrated
in FI1G. 6, I/0 subsystem 790 includes P-P interconnects 794
and 798 that connect to P-P interconnects 776 and 786 of the
processing elements 770 and 780 with links 752 and 754.
Processing elements 770 and 780 may also be intercon-
nected by link 750 and interconnects 778 and 788, respec-
tively.

The programmable devices depicted in FIGS. 5 and 6 are
schematic illustrations of embodiments of programmable
devices which may be utilized to implement various
embodiments discussed herein. Various components of the
programmable devices depicted mn FIGS. 6 and 7 may be
combined 1n a system-on-a-chup (SoC) architecture.

It 1s to be understood that the various components of the
flow diagrams described above, could occur 1n a different
order or even concurrently. It should also be understood that
various embodiments of the mventions may include all or
just some of the components described above. Thus, the flow

10

15

20

25

30

35

40

45

50

55

60

65

8

diagrams are provided for better understanding of the
embodiments, but the specific ordering of the components of
the flow diagrams are not intended to be limiting unless
otherwise described so.

Program 1nstructions may be used to cause a general-
purpose or special-purpose processing system that 1s pro-
grammed with the instructions to perform the operations
described herein. Alternatively, the operations may be per-
formed by specific hardware components that contain hard-
wired logic for performing the operations, or by any com-
bination of programmed computer components and custom
hardware components. The methods described herein may
be provided as a computer program product that may include
a machine readable medium having stored thereon instruc-
tions that may be used to program a processing system or
other electronic device to perform the methods. The term
“machine readable medium” used herein shall include any
medium that 1s capable of storing or encoding a sequence of
istructions for execution by the machine and that cause the
machine to perform any one of the methods described
herein. The term “machine readable medium™ shall accord-
ingly include, but not be limited to, tangible, non-transitory
memories such as solid-state memories, optical and mag-
netic disks. Furthermore, 1t 1s common in the art to speak of
software, 1n one form or another (e.g., program, procedure,
process, application, module, logic, and so on) as taking an
action or causing a result. Such expressions are merely a
shorthand way of stating that the execution of the software
by a processing system causes the processor to perform an
action or produce a result.

It 1s to be understood that the above description 1s
intended to be illustrative, and not restrictive. For example,
the above-described embodiments may be used 1n combi-
nation with each other. As another example, the above-
described tlow diagrams include a series of actions which
may not be performed 1n the particular order depicted 1n the
drawings. Rather, the various actions may occur 1n a difler-
ent order, or even simultaneously. Many other embodiment
will be apparent to those of skill 1n the art upon reviewing
the above description. The scope of the invention should
therefore be determined with reference to the appended
claims, along with the full scope of equivalents to which
such claims are entitled.

What 1s claimed 1s:

1. A method for increasing scalability of asynchronous
data processing, the method comprising:

interpreting a computer program, the computer program

to scan a first portion of data from a source for an input
data stream for malware at a first time, the computer
program to identily the iput data stream as a program-
ming language object having a function to obtain more
data from the mmput data stream:;

in response to the scan of the first portion of the data not

indicating that the malware 1s present, providing the
first portion of the data to a first execution thread;

in response to a request for additional data from the 1nput

data stream, determining that a second portion of the
data associated with the first portion of the data from
the source for the input data stream 1s unavailable at the
first time, wherein the request for the additional data
from the mput data stream does not occur in response
to the scan of the first portion of the data indicating that
the malware 1s present, wherein determining that the
second portion of the data 1s unavailable includes:

determining a size of the first portion of the data;

determining whether additional bytes will be available

from the mput data stream; and

US 11,609,745 B2

9

in response to the additional data being available,

increasing the size of the first portion of the data;
in response to determining that the second portion of the

data 1s unavailable:

adding an event to enable noftification of the second
portion of the data becoming available; and

returning an interrupt to the computer program, the
interrupt to cause suspension of execution of the first
execution thread:

in response to detection of the interrupt, saving state

information for the first execution thread, the state
information to allow an interpreter to recreate the first
execution thread;
terminating execution of the first execution thread to
enable resources associated with the first execution
thread to be redirected to other threads of execution;

in response to receiving the second portion of the data,
triggering the event;

in response to the event being triggered, determiming that

the second portion of the data 1s available from the
source 1n the mput data stream;

in response to the determination that the second portion of

the data 1s available, scanming the second portion of the
data for the malware at a second time different from the
first time, a pause 1n the scanning occurring between
the first time and the second time;

in response to the scan of the second portion of the data

indicating that the malware 1s present, terminating
processing of the first portion of the data and the second
portion of the data;

in response to the scan of the second portion of the data

not indicating that the malware 1s present, creating a
second execution thread using the state information
saved 1n connection with the first execution thread, the
second execution thread different from the first execu-
tion thread; and

providing the second portion of the data to the second

execution thread in response to creating the second
execution thread.

2. The method of claim 1, wherein the function 1s a first
function, and the programming language object includes a
second function to obtain a size of the data available from
the mput data stream.

3. The method of claim 1, wherein the function 1s a first
function, and the programming language object includes a
second function to read the data available from the input data
stream.

4. The method of claim 1, wherein the function 1s a first
function, and the programming language object includes a
second function to indicate whether more data will be
available from the input data stream.

5. The method of claim 1, fturther including;:

determining that the second portion of the data from the

source for the mput data stream 1s available;
obtaining the second portion of the data from the source
for the input data stream; and

increasing a size of the data available from the input data

stream.

6. A non-transitory machine readable medium comprising
instructions that, when executed, cause a programmable
device to at least:

interpret a computer program to scan a first portion of data

from a source for an input data stream for malware at
a first time, the computer program to identily the mput
data stream as a programming language object having
a function to obtain more data from the input data
stream;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

in response to the scan of the first portion of the data not
indicating that the malware 1s present, provide the first
portion of the data to a first execution thread;
in response to a request for additional data from the input
data stream, determine that a second portion of the data
different from the first portion of the data from the
source for the input data stream i1s unavailable at the
first time, wherein the request for the additional data
from the mput data stream does not occur in response
to the scan of the first portion of the data indicating that
the malware 1s present, wherein to determine that the
second portion of the data 1s unavailable, the nstruc-
tions, when executed, cause the programmable device
to:
determine a size of the first portion of the data;
determine whether additional bytes will be available
from the mput data stream; and
in response to the additional data being available,
increase the size of the first portion of the data;
in response to determining that the second portion of the
data 1s unavailable:
add an event to enable notification of the second
portion of the data becoming available; and
return an interrupt to the computer program to cause
suspension of execution of a first execution thread;
in response to detection of the interrupt, save state infor-
mation for the first execution thread, the state informa-
tion to allow an interpreter to recreate the first execus-
tion thread;
terminate execution of the first execution thread to enable
resources associated with the first execution thread to
be redirected to other threads of execution;
in response to receiving the second portion of the data,
trigger the event;
in response to the event being triggered, determine that
the second portion of the data 1s available from the
source 1n the mput data stream;
in response to the determination that the second portion of
the data 1s available, scan the second portion of the data
for the malware at a second time different from the first
time, a pause in the scanning occurring between the
first time and the second time;
in response to the scan of the second portion of the data
indicating that the malware 1s present, terminate pro-
cessing of the first portion of the data and the second
portion of the data;
when the second portion of the data does not 1include the
malware, create a second execution thread using the
state information saved in connection with the first
execution thread, the second execution thread different
from the first execution thread; and
provide the second portion of the data to the second
execution thread.
7. The non-transitory machine readable medium of claim
6, wherein the function 1s a first function, and the program-
ming language object includes a second function to obtain a
s1ize of data available from the input data stream.
8. The non-transitory machine readable medium of claim
6, wherein the function 1s a first function, and the program-
ming language object includes a second function to read the
data available from the input data stream.
9. The non-transitory machine readable medium of claim
6, wherein the function 1s a first function, and the program-
ming language object includes a second function to indicate
whether more data will be available from the mmput data
stream.

US 11,609,745 B2

11

10. The non-transitory machine readable medium of claim
6, wherein the instructions, when executed, cause the pro-
grammable device to:

determine that the second portion of the data from the

source for the input data stream 1s available;

obtain the second portion of the data from the source for

the mput data stream; and

increase a size of the data available from the input data

stream.

11. A system comprising;:

one or more processors; and

a memory including instructions which, when executed

by the one or more processors, cause the one or more
processors to:

interpret a computer program, the computer program to

scan a {irst portion of data from a source for an input
data stream for malware at a first time, the computer
program to identily the input data stream as a program-
ming language object having a function to obtain more
data from the input data stream:;

in response to the scan of the first portion of the data not

indicating that the malware 1s present, provide the first
portion of the data to a first execution thread;
interpret a request for additional data from the mput data
stream, wherein the request for the additional data from
the mput data stream does not occur in response to the
scan of the first portion of the data indicating that the
malware 1s present, wherein to interpret the request, the
one or more processors are to:
determine a size of the first portion of the data;
determine whether additional bytes will be available
from the mput data stream; and
in response to the additional data being available,
increase the size of the first portion of the data;
determine that a second portion of the data from the
source for the input data stream 1s unavailable;
in response to determining that the second portion of the
data 1s unavailable:
add an event to enable noftification of the second
portion of the data becoming available; and
return an nterrupt to the computer program, the inter-
rupt to cause suspension ol execution of a first
execution thread;
in response to detection of the interrupt, save state infor-
mation for the first execution thread, the state informa-
tion to allow an interpreter to recreate the first execu-

tion thread;

10

15

20

25

30

35

40

45

12

terminate execution of the first execution thread to enable
resources associated with the first execution thread to
be redirected to other threads of execution;

in response to receiving the second portion of the data,

trigger the event;

in response to the event being triggered, determine that

the second portion of the data 1s available from the
source 1n the mput data stream:;

in response to the determination that the second portion of

the data 1s available, scan the second portion of the data
for the malware at a second time different from the first
time, a pause in the scanning occurring between the
first time and the second time;

in response to the scan of the second portion of the data

indicating that the malware 1s present, terminate pro-
cessing of the first portion of the data and the second
portion of the data;

in response to the scan of the second portion of the data

not indicating that the malware 1s present, create a
second execution thread using the state information
saved 1n connection with the first execution thread, the
second execution thread different from the first execu-
tion thread; and

provide the second portion of the data to the second

execution thread.

12. The system of claim 11, wherein the function 1s a first
function, and the programming language object includes a
second function to obtain a size of data available from the
input data stream.

13. The system of claim 11, wherein the function 1s a first
function, and the programming language object includes a
second function to read the data available from the input data
stream.

14. The system of claim 11, wherein the function 1s a first
function, and the programming language object includes a
second function to indicate whether more data will be
available from the input data stream.

15. The system of claim 11, wherein the one or more
processors are to:

determine that the second portion of the data from the

source for the mput data stream 1s available;

obtain the second portion of the data from the source for

the input data stream; and

increase a size of the data available from the mput data

stream.

	Front Page
	Drawings
	Specification
	Claims

