12 United States Patent

Xu et al.

US011601652B2

US 11,601,652 B2
Mar. 7, 2023

(10) Patent No.:
45) Date of Patent:

(54) CODING MODE DETERMINATION BASED
ON COLOR FORMAT

(71) Applicants: Beijing Bytedance Network
Technology Co., Ltd., Beijing (CN);
Bytedance Inc., Los Angeles, CA (US)

(72) Inventors: Jizheng Xu, San Diego, CA (US);
Zhipin Deng, Beijing (CN); Li Zhang,
San Diego, CA (US); Hongbin Liu,
Beijing (CN); Kai Zhang, San Diego,
CA (US)

(73) Assignees: BEIJING BYTEDANCE NETWORK
TECHNOLOGY CO., LTD., Beijing
(CN); BYTEDANCE INC., Los
Angeles, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 17/684,630
(22) Filed: Mar. 2, 2022

(65) Prior Publication Data
US 2022/0210437 Al Jun. 30, 2022

Related U.S. Application Data

(63) Continuation of application No.
PCT/CN2020/112974, filed on Sep. 2, 2020.

(30) Foreign Application Priority Data
Sep. 2, 2019 (CN) ...eeeeneneel. PCT/CN2019/103939

(51) Int. CL
HO4N 19/157
HO4N 19/174

(2014.01)
(2014.01)

(Continued)

2110

N\

(52) U.S. CL
CPC HO4N 197157 (2014.11); HO4N 9/64
(2013.01); HO4N 19/119 (2014.11);
(Continued)

(38) Field of Classification Search
CPC .. HO4N 19/157; HO4N 19/119; HO4N 19/174;
HO4N 19/176; HO4N 19/186;

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

9,860,559 B2
10,055,189 B2

1/2018 Zhang et al.
8/2018 Tsai1 et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 103327328 A 9/2013
CN 104685875 A 6/2015
(Continued)

OTHER PUBLICATTIONS

Bross et al. “Versatile Video Coding (Draft 4),” Joint Video Experts
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11 13th Meeting: Marrakech, MA, Jan. 9-18, 2019 document
JVET-M1001, 2019, http://phenix.it-sudparis.eu/jvet/doc_end_user/
current_document.php?1d=5755.

(Continued)

Primary Examiner — Jae N Noh
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

A method of video processing 1s described. The method
includes determining, for a conversion between a video
region of a video and a coded representation of the video, an
intra coding characteristic of the video region based on a
color format of the video according to a rule; and performing
the conversion according to the intra coding characteristic.

20 Claims, 26 Drawing Sheets

Determining, for a conversion between a
video region of a video and a ¢oded
representation of the video, an intra coding
characteristic of the video reqion based on a
color format of the video according to a rule

2112

Performing the conversion according to the
intra coding characteristic

- 2114

US 11,601,652 B2

Page 2
(51) Inmt. Cl. CN 107534711 A 1/2018
HO4N 19/186 (2014.01) N st A TS
HO4N 19/503 (2014.01) CN 109804629 A 5/2019
HO4N 19/176 (2014.01) CN 110381311 A 10/2019
HO4N 197169 (2014.01) EP 3994886 Al 5/2022
HOIN 19/119 (2014.01) WO WO2015008132 AL S 112015 HOAN 19711
ggj% f%f (ggg'g:‘) WO 2017206803 Al 122017
(2023.01) WO 2018177953 Al 10/2018
(52) U.S. CL WO 2019069950 A 4/2019
CPC ... HO4N 19/174 (2014.11); HO4N 19/176 ~ WO WO-2020219737 Al * 10/2020 HO4N 19/105
(2014.11); HO4N 19/186 (2014.11); HO4N WO S Is AL 2
19/1883 (2014.11); HO4N 19/46 (2014.11); WO WO0-2021030747 A1 * 22001 . HO4N 19/103
HO4N 19/503 (2014.11) wo W0-2021060847 Al * 4/2021

(58) Field of Classification Search
CPC .. HO4N 19/1883; HO4N 19/46; HO4N 19/503;
HO4N 9/64
See application file for complete search history.

(56)

10,136,140

10,306,240

10,382,795

10,820,015

11,330,298
2012/0128067
2012/0163455
2013/0279583
2013/0294524
2014/0226721
2014/0328404
2015/0063460
2015/0195559
2015/0373357
2016/0100179
2016/0234494
2017/0251213
2017/0272782
2017/0366818
2018/0070110
2018/0199072
2018/0205946
2018/0307457
2019/0158854
2019/0230337
2019/0238864
2019/0320171
2020/0077095
2020/0137394
2020/0260070
2020/0296398
2021/0029356
2021/0037242
2021/0044828
2021/0152830
2021/0227234
2021/0250592
2021/0274175
2021/0329233
2022/0038717
2022/0046288
2022/0141495
2022/0159254
2022/0159255

FOREIGN PATENT DOCUM

CN
CN
CN
CN
CN
CN

References Cited

U.S. PATENT DOCUM

B2 11/201
B2 5/201
B2 8/201
B2 10/2020
B2 5/2022
Al 5/201
6/201
10/201
11/201
8/201
11/201
3/201
7/201
12/201
4/201
8/201
8/201
9/201
12/201
3/201
7/201
7/201
10/201
5/201
7/201
8/201
10/201
3/2020
4/2020
8/2020
9/2020
1/2021
2/2021
2/2021
5/2021
7/2021
8/2021
9/2021
10/2021
2/2022
2/2022
5/2022
5/2022
5/2022

O ND OO

OO OO WO ~1~1~-1CNOYWLLhon b b

AN A ANAAAAAAAAAAAAAAAAA A A AN A A AN A AN A A A

104782125 A
105379284 A
105491379 A
106062779 A
106797465 A
107071494 A

L1 et al.
Xi1u et al.
Huang et al.
Zhang et al.
Ray et al.
Liu et al.
Zheng et al.
Gao et al.

Van Der Auwera et al.

Joshi et al.
Na et al.
Gamel et al.
Chen et al.
Pang et al.
He et al.
Seregin et al.
Ye et al.

L1 et al.
Zhang et al.
Chuang et al.
L1 et al.
Zhang et al.
Tsail et al.
He et al.
Kim

Xi1u et al.
Zhang et al.
Chuang et al.
Shih et al.
Yoo et al.
Zhao et al.

Zhang et al.
Zhao et al.

Pham Van et al.

Bossen et al.
Zhang et al.
Xiu et al.
[.im et al.
Tsai et al.
Zhu et al.
Rosewarne
Kim et al.
Xu et al.

Xu et al.

7/201
3/201
4/201
10/201
5/201
8/201

~1 ~1 N Oy O LA

EINTTS

ENTTS

OTHER PUBLICATTIONS

Bross et al. “Versatile Video Coding (Draft 6),” Joint Video Experts
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, 15th Meeting, Gotehnburg, SE, Jul. 3-12, 2019, document

JVET-02001 ,vB and vE 2019.

Cai et al. “On Supporting 64x64 Chroma Transform Unit,” Joint
Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE, Jul. 3-12,
2019, document JVET-0O0389, 2019.

Chao et al. “Non-CES: Palette Mode and Prediction Mode Signal-
ing,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 16th Meeting: Geneva, CH, Oct.
1-11, 2019, document JVET-P0476, 2019.

Chen et al. “Algorithm Description for Versatile Video Coding and
Test Model 5 (VIM 5),” Joint Video Experts Team (JVET) of

[TU-T SG 16 WP 3 and ISO/IEC JITC 1/SC 29/WG 11 14th
Meeting: Geneva, CH, Mar. 19-27, 2019, document JVET-N1002,
2019.

Choi et al. “Chroma Block Size Restriction in Dual Tree Intra

Coding,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3
and ISO/IEC JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE,
Jul. 3-12, 2019, document JVET-O0398, 2019.

“High Efficiency Video Coding,” Series H: Audiovisual and Mul-

timedia Systems: Infrastructure of Audiovisual Services—Coding
of Moving Video, ITU-T Telecommunication Standardization Sec-

tor of ITU, H.265, Feb. 2018.
Huang et al. “Block Partitioning Structure in the VVC Standard,”

IEEE Transactions on Circuits and Systems for Video Technology,

Oct. 2021, 31(10):3818-3833.

Kuo et al. “Non-CE2: CRS with Chroma Separate Tree,” Joint
Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC
JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE, Jul. 3-12,
2019, document JVET-O0130, 2019.

L1 et al. “AHGI15: Cleanup for Signaling of Minimum QP of
Transform Skip,” Joint Video Experts Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11 18th Meeting: by tele-
conference, Apr. 15-24, 2020, document JVET-R0045, 2020.

Lin et al. “CE3-2.1.1 and CE3-2.1.2: Removing 2x2, 2x4, and 4x2
chroma CBs,” Joint Video Experts Team (JVET)of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 1115th Meeting: Gothenburg,
SE, Jul. 3-12, 2019, document JVET-30050, 2019.

Poirter et al. “Non-CE2: Alternative Solutions for Reducing the
Luma-Chroma Latency” Joint Video Experts Team (JVET) of
[TU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 15th
Meeting: Gothenburg, SE, Jul. 3-12, 2019, document JVET-0O0524,
20109.

Pu et al. “AHGI15: Chroma Quantization Parameters QpC Table,”
Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE, Jul.
3-12, 2019, document JVET-00433, 2019.

Rosewarne et al. “AHG16-Related: Chroma Block Coding and Size
Restriction,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP
3 and ISO/IEC JTC 1/SC 29/WG 11 13th Meeting: Marrakech, MA,
Jan. 9-18, 2019, document JVET-M0245, 2019.

US 11,601,652 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Said et al. “CES5: Per-context CABAC Initialization with Single
Window (Test 5.1.4),” Joint Video Experts Team (JVET) of ITU-T
SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 13th Meeting:
Marrakech, MA, Jan. 9-18, 2019, document JVET-M0413, 2019.

Wang ¢t al. Effective Quadtree Plus Binary Tree Block Partition
Decision for Future Video Coding, 2017 Data Compression Con-
ference, 2017, IEEE.

Yang et al. “Low-Complexity CTU Partition Structure Decision and
Fast Intra Mode Decision for Versatile Video Coding,” IEEE
Transactions on Circuits and Systems for Video Technology, Jun.
2020, 30(6):1668-1682.

Zhou et al. “Non-CE3: Intra Chroma Partitioning and Prediction
Restriction,” Joint Video Exploration Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11 13th Meeting: Marrakesh,
MA, Jan. 9-18, 2019, document JVET-M0065.,2 019.

Zhu et al. “Non-CES8: Adaptive Single/Dual Tree with IBC Simpli-
fication,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3
and ISO/IEC JTC 1/SC 29/WG 11 15th Meeting: Gothenburg, SE,
Jul. 3-12, 2019, document JVET-O0258, 2019.
https://vcgit.hhi.fraunhofer.de/jvet/ VV CSoftware VIM/tags/VIM-
5.0.

https://jvet.hhi.fraunhofer.de/svn/svn. HMJIEMSoftware/.

International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/107381 dated Nov. 11, 2020

(9 pages).
International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/107400 dated Oct. 26, 2020

(10 pages).
International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/107408 dated Sep. 28, 2020

(10 pages).

International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/112974 dated Nov. 30, 2020

(14 pages).
International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/112975 dated Nov. 30, 2020

(10 pages).
International Search Report and Written Opinion from International
Patent Application No. PCT/CN2020/116472 dated Dec. 25, 2020

(13 pages).
International Search Report and Written Opinion from International

Patent Application No. PCT/CN2021/086522 dated Jul. 9, 2021 (13
pages).

Non Final Oflice Action from U.S. Appl. No. 17/589,537 dated May
10, 2022,

Non Final Oflice Action from U.S. Appl. No. 17/589,168 dated May
18, 2022.

Non Final Office Action from U.S. Appl. No. 17/589,483 dated May
23, 2022,

Non Final Office Action from U.S. Appl. No. 17/684,694 dated Jul.
5, 2022.

Final Office Action from U.S. Appl. No. 17/589,483 dated Sep. 19,
2022.

Extended European Search Report from FEuropean Patent No.
20859901.9 dated Aug. 18, 2022 (13 pages).

Extended Furopean Search Report from European Patent No. 20850328.
4dated Nov. 28, 2022 (8 pages).

Yuan et al. “Quadtree Based Nonsquare Block Structure for Inter
Frame Coding in High Efficiency Video Coding,” EEE Transactions
on Circuits and Systems for Video Technology, Dec. 2012, 22(12):1707-
1719. (cited 1n EP20859902.7 EESR dated Oct. 11, 2022).

Extended European Search Report from FEuropean Patent No.
20859902.7 dated Oct. 11, 2022 (13 pages).

* cited by examiner

US 11,601,652 B2

Sheet 1 of 26

Mar. 7, 2023

U.S. Patent

amod Jwanung

s AN S A F A FAaFAaFaFaFasFasFasFsasasFsasFsasyasasasasFasFarE-

= L |

L I w

n - a

n - '

n - ".

q - - a

- L]

v S .

- L] L L}

N - . 4

N - o’] .

v I‘.l J.Il

- B

L I - - . "

N - . S

N - .ol

£ 3 BN

" fr. . om

LD LT .

- . - ._l_

J. ;I J-ﬂ

N - .1;. "

- i--... ._-.-..-_.

n - . m . - .

N L -

- L} L} L

L . S S

N - . e SRR

N - 4 T .

i L] . L N

N - 4 g ..

v _-. LR i

i " p_.._._-

N - . . g

— -

N - . .

v i“ .._._-..l-.

X - ¥ . .t

L I a . o= .

N - . iy S

— L} L + r

N - 4 A e P

. . . M- .l.

- [] f f A d

v 'y . L *a . !

L i. ey ___._._l - L]

L . - . - N

N - f R . [£

- L] tm i |]

N - 4 R - . .

T | r. - l‘ll.rl.rl.rl.rl.rlrlrl.rl.rlrl.rl.rlrl.rl.rlrl.rl.rlrlrl.rlrl.rl.r
. .

s

MO JUSHND

LI E NN RN ERERERENEREENENRENERENENENEN}N)

320G avUsisiey

US 11,601,652 B2

Sheet 2 of 26

£ Xopu
7 Xapu
[Xapu

0 XIPU

Mar. 7, 2023

U.S. Patent

¢ Ol

EIE I BE B BE B BE B B

)

....
el el el PR R R A Ll e e e e e e e e
JE e g - L L LTt oo ¥
ORI LT R IR AP RS CER PR
rp T T T T T T T .
R IR .
Wt A +
Wt A L] -
. L] ..- +
r * 1ﬁ ¥ .
x 1 + el
[T T R T T T T T T TR T R T T F] +
; ilIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.f.. R e A A
TR LT R b R S
T T e .
e e .
e A .
. L] L3 Ly
X L) +
r L] +
. L] L3 +
Y L) +
r N o - S . N -
. L] L3 . Ly
T T R TR M T AETERRPEPR
T T T T R R
LR I .
I M I .
Wt L] +
. L] L3 Ly
Y L +
Wt L) +
. L] L3 +
g T g g
L L] + L]
O LRSI AT I A AT .
T M M .
R S S .
Lt v ¥ L
Y L L 1
ot v * L
. L] L3 + L]
X L) + 1
L L] + L]
F or or or or o @ @ W W W W LB L B *

s18ied

' Vo ' ' ' ' ' ' o
..
AR SRR AR LA AR AR AR A A A A A A A
................................ | .__'l
LR LN P T o
T L T T ¥
* r .._- ._.- i
. Ly 4 4 o
[]] u [] .
I EEEEEE RN PR I IR A B e e e e e e e o
- L 4 "
L]]]] .
' L 4 - R o
*]] r :
B . 4 . i
-] " » s
..__ .—_. ._- - L]
- - 1 4 “
-] . 3 .
* » 1 ’ a
r - 1 ‘_. L]
- I . v 4
' . I . i
- " . v 4
B . 1 . i
- 1]] .
' . 1 . Fi
-~ r I I o
L S S S O S S S U R Y o e e e e e T H-. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa .Ir aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa -
R L W T "
LR L P T s o
L] k .
................ e e
» [- g i
T L T e "
»] i . |
-~ k. 4) i
L]]]] .
' L q - R o
*]]] :
- . 1 . i
-] " » s
. - 1 F] L]
L]] u [.
r . 1 - o
- ' . 3 .
" ¥ . ; :
r - 1 ‘_. L]
- I . v 4
' . I . i
- 1 . v 4
B - 1 . i
- ' . + \
' . 1 . a4
- r i 5 o
By Ly g Ry Ly g Ry Ay g g gy g g By e ey g Ay e g e g ey ey Py gy oy gy
R » B = r 5 r s oromoronoromoromoro s+ J H
................. -
M + - >
* L] u i
. b " " " omoEoEoEoEoEoEEEEEE K .
s P N 4
Ny AN el el e :
‘a' LT F mr 2 orErErErEroEorom o o
" " e e e e "
' 1 i, - o
[] [= r s romor s .
“w r = onomomomonow 4
‘. I mr mr arErErErEroou "
"w r " s omomomomoEoEoEoEoEEEoEoEE "
‘w r u 4
r . o
- I u 4
' . - o
- ' u H
r . o
L]] - Ly .
. .r 1. L3 o
r RN - r r r rrrrrrrrrrrrBEEEEREEREEREEREEEEEE
M asassasasssssrasahrrrrrrrrrrrrrr s REEWNEEEEEEEEN ST o o oy vy
L B o WL, M LT, o
T T T T T T T T 3
Lt L e PR BRI R R R |
P T T T T T T =T T T T T T I W T T T T T T u
» * P !
.............................. TS |
»] " P 4
P e e e e e e e e e m e e e e e e e e e e e e I S u
» " P s
' 4 o
M] . . [i
* 1 .l.. - 4
.i A 4 L] o
“w] i A 4
' 1 . » "
»] " . B 4
r 1 L] o
M + 1 K i
- k 1 'y |
- I " B 4
'w " L A "
“w r i A 4
‘u I L ..__. 4
llllllllllllllllllllllll e e r g s e e e r el e .- 4

apow aysed
Ui PaP03 ¥30iY

US 11,601,652 B2

Sheet 3 of 26

Mar. 7, 2023

U.S. Patent

. - T

popenis 12 ssnus anspdmay 7

L T et Ll Ul U]

” i » » -
- «
L] +
* F'l _-“ “n » H.. »r ...l....l.....__.....__.q...t -
: ? : M ‘ £ Mu m : W& wv @- | : 4 JMV #!#}.##J.}.#}.#}.#}.#}.##ﬂt#
M . a N . . T e i Ve Ve i i e
a . 13 . » a
S ¥ i INY i L 3 AR . Mu %mvm.wuwm..www. mm.mu,mw%ww mw..w.ww.w _wwm AR
] .] . . » » LAl L e Sl EN 2 Y
” “n n * - .__u.._...__”.w”tn...“...”...n...u.t...
___..r..r..r..r..r..r..r..r..r..r..r..r..r..r..rl_-..r..r..r..r..r..r..r..r..r..r..r..r..r..r..r..r..-...r..r..r..r..r..r..r..r.r..r.r.r..r.r.r..-_.r.r..r..r.r..r.r.r..r.r.r..r.r.r..r
a . A
= [» a
] L] -
. ;) » .
M L H..l_.l i F bl ot * L * ' “
N ii - L] & LA
ﬁ:. - . N .) » a
» . - a [" - . =
- L] + L]
* . iy * i..
[] 4 -
llllllllllllllllllllllllllllllll.-.lllllllllllllllrll—___.I.__._.I._.._.IIIIIIIII1_IIIIIIIIIIIII._.I_-_._.I.__._.I.__._.IIIIIIII.ILIIIIIIIIIIIIIII
. .] - ﬂ L .L Y
L] . . ¥ . . a '
« . .] * i . . . L. o .]
- : ' . =, Ky N s ' % il . . s
L ’ £ m.. L} ﬂ“ -.. .'
a - . r . 1 '
. - .
" ' v : : v *) o ;
« . o
- N ¥ [h
_-“..-....l...-....l..l..._l...-....l...-...I..l...I...I..I.._-...I...I..I...-...I...l..l..l ..l_-. “.I FE R R R R R R R R R R R R “‘l R R R R ER R R R R R R R .l...l..l....l...-....l.._-....l..l....l...-....l...-....l..l..._l...l..._...l...-...I..l...I...I..I.._l..l..l..l..l..l...l..l..l"
" ' ..__. r ¥ i v
L) . ¥ a h
= - [+ m_. . . - [}
a - r . 1 '
L] L] m‘ -]
L] . L] 4 '
. . ’ ¥ i o]
a N ¢ ¥ ['
.] ¥ . o 3
L] - L - 4 '
. ' ¥ i o)
“ - . i N "]
. B el e - -
e - e e R S R R N N R N N R N N R N R N N AR
B A NI K ‘ 7 r T 3
-H...........H....H...H.................................H...H...H...H...H...HH....H....H....H....H...................._...................H....H....H....H....H._._"....H....H....H....H...H.......................................H...H....H...H...” u.._.l. s] ¥ “ ” . ".. - _.
-#####M#M##### ar ar Vo T e i T i T T e o e T . ,w ' * mm . m mm i m« ¥
ar P e S ar i p Vi ar B e i r e dr P .) a h
B i i i X N N L s as L L r iy i i . .] ¥ i o 3
O dr A dr e e dp e r dr dp e A e e de e g dr dr o ar ok . . ! ¥] h
B i ar L e N iy iy .] » . . . L - 3
i g L I e g g ey e S S S L N e e e N . ¥ 4 .
I A N N At N N St B N N B 3E NN A M N a At A N NN A N NN) . At] ¥ i o o 3
T R e T R i N e] ¥ . i K A b
T nH.q”...HnH.qH...”.qH.q”.qH.qH.qH.q”.qH.qH.qH.._u.qH.q”nH.q”..H*H*H*”nn*”ﬁnuﬁ*uﬁ*” ' ¥ “._ . ; .
B i ur i dp iy e i ety p vl i e e 0ty e e ey i eyl e dp i e Wy e e e iy i e p e e iy i] ¥ . . . o .
o 4 4 b i i o4 4 i b g L P I i by EF &k ook LI N EL 1. w - m‘ . L} L |]
B i i ar ar Vi iy Yy O e i iy i Vi iy i i i i iy e i Vi iy Vi iy] » . . . L .
ar dr iy i e ip Jdr e e e p i dr S tp dr i B dr ok ip dr e dr i . m ¥ @ i ﬁ
B i #m#*##* C A My) Ca e sl sl el i i i] ¥ M & iy m m " ~
Py S e M P N N S W] .) . .
B u b o P i P L L i iy e iy] ¥ Ky . o -
r dr iy Pt L e s iy A AL N NN AL AL a2 3E M . ¥ . i k]
B ur dr dr e iy W dp e i p e r i W e dr e i i iy i iy ey i e Vi dp i dr i p i] ¥ 1 L
F e e N e e N N . 7 ¥]

Wi i i i iy e iy iy i iy_..........................t... P | ¥ . o
e e S [i .1.-..1.-.._-.-.1.-..1.-.1.-.1.-..1.-.1.-.1.-..1.-.1.-.1.-..1.-..1& rrrrrr i r e e e Ty e e g i in iy e i i i iy e iy e i i e e T T Fal bl bl bl Al Rl BL D RL b bl bl o .1.._.__.__.1.__.___.-..1.__._..__._-.._._..__.1.__.1._.1.__.__.__.1.._._..__.1.__._..._.1.__.__.__.1.._.__.“.1.__._..._.1.__.__.__.1.._.__.__.1.__.1._.1.__._..__.1.._._..__.1.__.__.._.1.__.__._- M Tl Tl T T T T T T
- -

R L] ﬂ

lr . ﬂ L -L

& . [+ . N . el -

..] w _f Ky ' i : .

" . [¥ .) i . - -

a . # ¥]

. .] w . . - . .

] - - m.. ¥ 4

- A] + ﬂ . . ' . i
.. n + . .. a

K) 3 L W

aaaamaamaaaaaaapfpananesssnasasassaaaaaaaay A s a s amaamaaaaasfanaaasassaaaaaasgiesseasaassssseasaaipansssessacsasssaaaa
B D D D I T s AN " ¢ 7 v v
dr g dp O dp Jdpodp gp o dp dp o dp Jdpodr 0o dr dr drodp Jdpodr g dp drodp Jpodr g g drodp g B Ao g drodp Jodr g odp A dp EaEaCar . L} T a
B e iy dr i iy Vi p iy Vi p i e i W e e i e Vi iy e Ve iy Vi ir Vi iy e i i e ar i iy Vi e] ¥ . i L
S dr de P e O dr dr o B dr e drdr ar ar d ok . . . ¥ .]
(AL NN MO0 NN Wk A NN LI N AL AL X LA N] ¥ b] i . . i
By P—.............................. e r * : “ ¥ - N
B i r ar iy iy O ur i i i iy i iy iy ar i iy] » L
e dr b iy e e e e de e dr e dr e dr i e B dr ok dr g e bk . ¥ 4
A N T NN Al 3 o N N A N Mt A A N s M NN iy iy] ¥ e i . . o PRl
dr e dr dp e e p e dr e e dr dr drdr e o de B dr e dr i oA dr .) [
e R N o I e e e e P N et iy i i] ¥ Ky o
I_l.I..;.l_l.I_...Il.lb.ll.l...l}.l...!l.lb.ll.!b.ll.l}. l_...ll.Ib.ll.lb.ll.lb.ll.l...l}.lb.!}.lb.ll..;.l.". I.l_.;.ll.l...l.l...Il.l.;.ll.I.;.ll.l...l}.l...l”l.l_.-_.-.l_.-_.-.l_.-_.-.I_.-_.-.l_.-_.-. T EEEEEE R E E E R E E E E E EEEE Y] .-llllllllllllllll..-llllllllllllllll"IllIlllllllllllllf_lllllllllllllll
. . -
" i .-_ .] ¥ i . i
» . . i -_ . N] ¥ . Lo i . . ' i
" . : i ﬂ. M. -_ . . KW g . gy . - X IM .-“.._ “._ . : ' i AMU ﬂ‘”
” L -1 . “i -_ . N il . . > 3 .‘ul " H. . . ﬂ l“ 3 rE h
N -‘ i -_ » . . .-.-..lt- 7 . r i
. - -_ * - - m._ - [L | -

[] L | -] L] . -
.rIIIIIIIIIIIIIIII...IIIIIIIIIIIIIIIl-_IIIIIIIIIIIIIIII.-IIIIIIIIIIIIIIII - o oo oo o om ok +.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r e

anmed Weung 1oied SR

U.S. Patent

vertical traverse scan

horizontal traverse scan

Mar. 7, 2023

o000 0o 0o

W gy o g W o o o o g o o o o o o P o o

bt tatatn tnta ety gttt ta ta tn b o oy

f

0
1
1
0 _s
FRrIr)
0
0

Wy oy o g o g g o Py

: e e 3 : . L
4 . . X
z. ; .. X
ﬁ :': N . I . A AT AR Bl tutn, - .:
15 WO . W W W W R e W W w W W oW W W w MR W W W ::: d ::

: vy]] . ll L
4 e e ¥
3 i 3

b
K
L]
L]
]
..
-.
.-
..
..
..
::
..
V
L]
Vv
L]
V
L]
V
L]
]
]
]
V
L]
V.
L]
V
]
V
L]
]
L]
"
L]
L]
P
]
L]
L]
L]
'
]
L]
"
L]
]
L
]
L]
"
]

L ol]

et el leie ety el e P

-hhhhhhhhh;—hhhhhhhhh

B L P L I L R P ST ISLRT L R BT LR

yF¥FEFrFEErSsEsEr - ¥y F¥¥FFEFrFer ¥ FFrFyFyErFysEes

- : w
3 b 3
;. . R . .. a T ' »
J - i K X | T | T
: gy ¢ Q1O
3 < ::' , e ::' . paa : Z:
3 N . > & b : X,

:

e IO IOIOIOIO.
P HIOIQIOiQ|o
:

.
gt g O g ey e g g g g e g e e e g e g e ey g g g g g g g g e g R g g e gy ey

Y R

——-———-———-—-—-———-———-———
Talm iy el e e i Ty it T T T T T T T T T

P W W M W W W
I T N NN T N N N N NN NN N N NN N N NN NN N N N

e e AT e e e e e L Ty R o, e S, S T A e A e e S g S e e

I . ;
4 - . p . p
R 3 . . B .
s . ") . . ;
2 .- .
J - 3 u L "
[E ¥ 4 3 :
» - . 1 - J
. .. " -|i 1. -
4 . : . N 1' 1.. o w . L
g . . i L
L h Jledied e i i |
- = b +* -+ - -
3 g - T 3 3 !
g . Tu & a4 -
. . L -]]
5:...._-_....... . :...-.... '-.,.-..'..._-.,'- . e alpe e . :..:.......1-‘;:'_:..'.'..'.'..'.';:'.: e elpe e sl-............._-_....l-.-..............-..é
- s - » [l : 1 : =
;o ST o . .} : :
i ‘# . . oy o : W TN "
3 ; - v o S - S R : S,
i . . Ty L ! e ! . . s
z X X w o'y - - ; s
4 3 ; : - :::"-I-I'I-I-I'I::: - . , -
jn--n L oY R L T gttty R A Y T EY T YT Y 4---4-----4:
- iy o A : : S : L S i " il - 3
« i oioiolo;
:-.- : . N ey o - 'I
- . . i b . b - . -~
. : } . . ! :
. : ' ¥

ociociociocio

'\-hﬂ-hhhhhhh“hhhhhhhhh

Sheet 4 of 26

"W PR ROy PRy g Ry R iy Fiy Ty P

(44 &) 8, 8, L L 5,40 i i . .) el e ot Tt T T Tl R . (44 4,8, 8, 8, L8 L, L .

US 11,601,652 B2

U.S. Pa

i_ﬁ.i_i.‘_i;i_‘.i_i.‘_i.i ‘.i i.ﬁ i.i ‘.

i.‘ i.i ‘.i i.‘_i.i_‘.i_i.‘;i

o ooooiciolol
oooioicioiolol
Lol oe R Rol Rl Beoe

[
p
[
p
p
[
[
. - F .
[
p
[
p
p
p

e R o e !

Z - Y 3 : . a . . ! .

o et § iy iy i

,,',,',,,,.,.,,,,;',_,,.,,,.,.,,_'.;-, R SUNNN SN SN

. K - k- ¥
k .

-
]

]

]

]

]

i -
i{b* e

bb*b*b"b*b*bﬁ e e vl e v
II
I
I
I
h.-.-

ten

3

]
L]

run Length =

m

o f:

'.'""' """'.

'-'-'-'-'-'-'-.-.'-'-'-'-'-'-' '|. A A e

%3

(::3

{}

:::;}. 3-'22‘-'

L
L
L
L
L
L
L}
’ .
L
L
L
L
L

L)
n
[
b
§
X
n
v

Ll

G
3

Lot B

;0 1

-....--.‘.-----_' L K E Kk K J

"
. Lo N K
'-'-'-'-'-'-'II-_' _'-'-'-'-'-'-'- 'y -.- ['I.I-L'I'I-'I'I-'-'I-'I '-'I-'-'-'I'-'-:-'-'-'I'-'-'I-' b -'-'-'-'-'II-'-_'
. : ¥,
e e
l‘#######_‘-####### L ¥ E E o ##4###4:####4##4####### hdr A e e
' ; b
¥) . ¥ !
ll [}
B ¥ . ‘
. H ' ' -

RN BN N

4_44#4444

L I R N I I N R I R N N I I I I A A I I I I B N R N I I I I B N A O]

=L

‘..‘.‘.‘..‘.‘. \.\.k.\.\.ﬂ..'

g e vk e v e o e e e ool e e
.
Lo b Sl Sl Sl b 3l el Al Sl ol o g

‘-r"-‘-r‘-‘—-‘-lm"-‘--‘-‘—-‘-‘-r' Sk Al Al S Al Al o

- :Jr :Jr :Jr :Jr :Jr Jr:-lv :Jr :Jr :Jr :Jr :Jr :Jr :Jr :Jr :Jr :Jr :Jr :Jr
Il .
L
L
L
L
L

.\.k.\.\.ﬂ..\.

ke e 2 i e :': - - - -

e N

[q,
r q,
r 4,
3 q,
r . q,
. ~ oo T
:------- t T "W, _--------_ -------::-r
b - wy b) i -
r + > e k [I} 1,
r +] 'I'I'I'I'I-I'I'-' '|.' -‘ % 1
r ¥ ¥ el See . " 4
. Ll] k | [] -
r ¥ o Lo e e B : " Ll
. Ll) ¥ ¥ k -
] + ¥ Ll L . r 4
.) .2 . A e)
:-.-.-.-.-.-.-. .. . TaTATE AR i,l.-.-.-.-.-.-.,ﬁ.-.-.-.-.-.-.-,-_i.-.-.-.-.-.-.-:-
r b k] I i
r b L]] b
' N3 ¥ r}]
' N3 [} [} B
' 3 ¥ I} p
I b, L) [
| s . r 4
o o o o e o g o o o o P P e e o e e e B :.hhm.hhm.h:!.m.hhhm.m.lrhm.hhhhm‘“
L] .
' ! b y 1) ¥] :
[-l [] l-- - . ‘ r‘ 4
r] ¥ L a3] ¥ i
r 1 b . Ll i ¥ i
r i ¥ . . L) I i
" FEFEEEFREEEE R r.- - * F F F F ¥ --l- +* ¥+ * ¥ ¥ -l-"- + % F ¥+ ¥+ & -l-.‘l- - * * ¥ F ¥ "I- + * F F ¥ ¥ '-"l- + * * F ¥ -l- ..-

) "':"':"':'."

ol

L]
[]
L]
L]
[]
L]
L]
L]
L]
[]
L]
L]
L .
L]
et e et et

w4 e

Mar. 7, 2023

u
-

X

s B

He u

-

&

e

Sheet 5 of 26

N
“ m-&::?:ie_ el ﬂfﬁ*??‘#ﬁgfh |

ireclex

£+

I'll'll'll'll'll'll'l I'I.'I.'I.'I.'II'II'I 'll'll'll'll'll'll'll 'lr'll'll'll'll'll'll 'l'u'|'|'|'|'|‘J'|'|'|'|'|'|' "l'l'I'I'I'I'I'I‘I'I'I'I'I'I'I'.
F R gy ! e
L . . * - .. . L . . . i . . ¥ . i
o i , x Y e, R I e D S .
FRLIO S S0 B 00 B 5 w0 5 oh S 5 ouo i Ut B < B
: '._. M . " 1 *" ¥ i
. . - - i ot ¥ []
X % ¥ P Yoo b :
Lt L. . L Siakiain : .. :
| £ v 5 4R oW AR ave BEES wox B
'y V) + A ' :
l‘;ﬁb..b.. ._.___'I:'l:_ ...b... .b....ﬁl..b....%b..b... .b.....:ﬁ..b...ﬁ:
'.. 1} ¥ i
t - . . . ‘l* . . -
1S o .c::g SR WIS oie I EE e
t ‘l* -

e R R R ettt ettt e

e, Al .l Al

"
-!'.-r'.-!'_—'.-r'.-!'p'-r'.-!'.-!'.-r'.-!'_-!'

. .

[

.

"

[

.

e

"

[

.

"

[

F

111
1

¥

3.".
r######q######{######
. .

o b e

wwwww#wwwwwwﬁwewwwwﬂwwwwww
r
r
r
r
r
r
e B B e

<y oo i
Fennanans '.".'.".'.'.'.i.'.'-'"'-'"‘-" :.,.,_.,.,_.,.,_. — .,i:.,. P "t P .,:
E,,.,_,,..,_,,.?_,.,.,_,,..,, §..._,,..,_,,,,_1 ;...._,,..,_,,EE,«,,...._,,..,, i:,,,_....,_..1_?....,_....,.,.E.a. R .E
PR LD Y D D
3 ST S S SO SUUUUTI: ST SUTI i

PRI e -

S e RO E

R T R S o
B s ST ¥
e T SOt SRR
I Rt SR
A O E
PEEEEDENENCIEY o L

a3 -
3 P K
@y Aoriomioon
ettt S e N . W
K I Ez:.:::::::::.55::.::::::::5:,-*._5 W
Xy R SRRl | 1

US 11,601,652 B2

US 11,601,652 B2

Sheet 6 of 26

Mar. 7, 2023

U.S. Patent

= FFTFETEFETEETEETTYYYFEYYEFEYEREYER

[el il Bl "l Tl il Bl Nl Rl Sl Rl ll Rl Sl Rl ll Rl Nl ll Sl Rl il Rl Sl il Sl Rl Sl Rl Sl)

-

I. N jlﬁ“
N I N A
- .f“.r..'ﬂll .l‘.—.. * r

. .

= . q r

[& F r
- .
l.1

......_..
.-_|1Il.
" .__.i.-_.._.-_.._r.._

l‘.‘ .—.-l. " I_.r.'hf ‘.__ - ..IIEIE.I I.I“'H .” IH 'ﬂ.ﬂ.‘.ﬂl‘ . HIH'”I“IIIII..I.".II.II.

Ly e eﬂ..........u.... ...u.m.n . N i

Xk .._..____-_.-_.4_-_4-..- -1!”111-.-..__.___.__..__.___......| o - oy ol elal .._-_. 1....-.-x.....ﬂ.._.._...__..__..-.... -__1. u—-. q-_ ...i L RCRC S N .—..

.““#ut.“ Ilﬂ-Ilﬂ-.I_-ﬂ___.l_-"-.Il-_-.ItI___.-_t -HI#-H-H-HE_-..-...-..-..-_..-..-H-_..iwnuiul. E R EE R RN . i
- E iy E - r ...

..-_._.r.._l.._
.__.-.__...

.-_..._.-_..._._...._._._...._.:__..............._ . .o
I e R st

FF ¥ s .-_.__.._1.-..-..._1....1....1““ Tl-_ .-r. .
' r al
LGN

o

. L -
. “-_H -
x .
oL [
[[] t.ll
L] a r - []
[} l.__......-_ . l_n & .1.....
k Il r'l -
. ..u- . T "
. - F) &
[For .

k

L

K3

NN
X

3 B B &
L]
N

L}

n

X ..-.. -_“
ki
. el N
. P)
. " ..-_IH
. . l.-_l a
. A ”.4”.-..._.
. LR)
. P,
r r
. x - -
3 ST A
. W a’
e ek
1 _ M X
5
. - L -
. 2t i e S
- L r T h
. . oo
. o ™
- I '
. SR N
. . “ ..-.ﬂ.._ .”-..1
-

Sl II'I'..#.I'

. ' ' -
- '
. LA
. . -
. - = -
o Bl
. . . - .
kT axa
. - - i} - .
. il . -_l.._ Lt
- 1 . .
. . e .-_l.__ e R ol .
. R PR R SR o Y
3 e .i“. R T R A
. . [- k. o} '
* - a r . . - ..
; a S - l.-.l. ¥
. - ' . = P '
- a - . . o -
[b .1.-.? L .'l a r [L]
» l.._ ! ll . l.__. “-_l .
a w i . .
. P N 1, »
. ' » = - [
3 . L r L
- - - a2
1 e L aw
3 . R "
3 .. AN o
3 L. AR -
3 A AL e
. - i . a’ "
a
)

Tl
) o Ay =
e e e T e e

S

U.S. Patent

Mar. 7, 2023

.

H.dﬂd

|

F |
IIIIIIIIIIIIII
IR

F | F |

|

F |

|

F |

L L
| - |
R R EFEEFEEEEEEEEREEERERERER)

L]

- |

|

- |
o

- |

AN A AN A
i

A A A AN A A
TR R,

™
o
2
o a
o
Al

T T
oo
A N X
e A
W
T T

]
]
R R R

R EFEEEREEREEREEEREERE R RN

e
o
M
]
i
F |
a3
a0
FE R EEEEREEEEEREEREERR
o
]

':‘IIHIII‘

N
S R ey

.
o

g
o

o
|

I:I
I R R R R E RN RS R R NN

A

i
-]

Sheet 7 of 26

o
o M M M

A

AN N N X
M M M M M
]
N
M M M M M

illl -
A A
A A

LI
|

LI
|
|
|
|
|
|

aa
X

i
i

X K KKK NN KK

A
A
A
A
A
]

L
"
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ot
@
il a '.I ;

US 11,601,652 B2

FIG. 7

U.S. Patent Mar. 7, 2023 Sheet 8 of 26 US 11,601,652 B2

-lll-lll-lll-lll-lll-ll'_-lll-lll-lll-lll-lll-ll'_-ll‘ .
L] L]]

" .
= x -
1 T rrroTrra LI L] ror T
'q.*-*-.'-.*-.*-.*-.*n*n* .- :'n. ALY n*n'..'
I I . T m o moEow '
&1 1 = momomomowm b I "
T " [l
A . "
Tu . '.,".
s . 'l,‘-
En)
."..
-"..
.".
n:'
L
G e e -l-‘_l-._ll‘_-l-‘l"
i - LN)
= o ok
PR "
[b &
B+ o =
Lo] LI)
Ao T)
L [l
[LI
T R LN
Ao P
[kA
B+ o = &
T IR b I
Ao
[b
B+ o
" m o= omomom k T omow = . . - L K] .
111777 m k T 1177 moE L I L] Ao
P = =2 m o= o= = omomoEoqoEm " s = om o= omomomoqg gy kR Tmomomomomomoq g » .
1._# l‘*l‘*}‘.l‘*}*}* }-bl-b.-b “-bl#ﬁ#,#.#,#,-b-#-#.ﬁ'#.#-#, "-b:_-b’_-b-b.‘-b-b.-b-b-#-#'#-..‘#.#:_#’#:_#.#-#‘#.#- 4 -b-b]
= =Ta e A e e e i I RN 1 B B
§ . L] L]
. p‘n'
b h'l
LR
. e
. 1,'1.
b [] h‘n' .
L g L
. - .
L I] []
. 1.'1. 1,'1._
. []] .
B A * 1 .
!111111111111 l. #‘Jl h.lllllllllll "
TEEEEE S E SN A l-f‘_ PP R N R
T = o &
X L g *
T = [-
X L L] *
T L &
x L))
T = [&
X L g *
T b I R r &
X L L] *
T = LR el
r*l (S] I.-"j
X 1 L g *
T = [A
¥ - Lt)
T L -
X 1 - Ao L]
T = a " . .
L P L D P |
R T I N I N I I e I A - *
Tu '.,".
s '.‘,‘.
u "
s '.,".
- '.‘,‘.
1*1 "N
--*J. =
s '.,'.
1*1 "
& P T)
1 - - = - A T N, T N T e
R :q:—rq:q:—:q"- :l*}'l*}*l*}*}*}*}*}*}*}'
MMM W
R N IC INC INC INC I T O IO O | -‘-I-I-I-I-I-I-I-I-I-I-Iil
e R R L » I N N !-"
L] L] LEETR . .
Tu . *
Y 3 L
'r** -t ;]
1
Tu
s
u
s
s
.:.
1". : L]
- .
1': i:‘ l:I*
T = = &
X k. L)
T LI] L]
X e Ll
Tq-'- .i" ..‘|.‘I
Tx- "o s
T T) T R
X 1 k& Ao
T .'r‘ ..'}11
T b LI] . |.*-.
1-*-1 h'rj . SN
X - LR . " . k& e . N 1 Ao .
T = 7 = = = = m) " == omoy N LS . " " " B T "= L]
Rt l*»*»"»*»*»"l*-."»‘f (R L :‘:‘:""l":"}*:-‘:‘:":- 2Tt :-."' W R e ke
‘. . 1 e ERE LBE] 1 ll.-.I
Ak ¥ -
) - L
T h 1 o
* L] =
Tk 1 -
Y » LN
T 1 » -
) - L
L] 1 o
* b =
T - -
Y » LN
Ak 1 » -
u "a "N
* L] =
Tk " momomon k T momomoEow .
PN I NN]
Tt e e e e e e e e

._""""

l-'

US 11,601,652 B2

Sheet 9 of 26

Mar. 7, 2023

U.S. Patent

&

4y
.

J

PRy
3
o
R

'
'
'
'
'
'

.‘.
¥
v
'
'
'
'
'
'

K
r .

k
j gy ey

-3
b
4
)
3
»}

FFFFFFFFF
rr rrorororr

- -+

mln”

.,

v,

.,

Ao

-+ - -

-+

-

[}

.
. g
[_"‘
. a
[}

[

F I |
NN
R I I D I T I I]
NN
4 & & & & & & & &
NN
P I N B B N B |

- Ay

]
‘ -
‘ r -
i L
' e
¢ .

i

b, e, e, v, e, e, e, v, v, e, e, e, e,

[

Lol B B L R

N
Ry

by
RS

o 3
(-

3

L,
¥

o
r

J -
)

T3
E.

r
r

r
r

[I |
r
L
L]
LI
[I |
L
[I |
[1
L
LI

L
F

L]
r
LI N]
L]

LI I]
Frrrrrbrir
L]
Frrrrirbrir
LI N]

F ke ke
L]
Frrrrrbrir
L]
Frrrrirbrir
LI N]
Frrrrrrr
LI I]

r
r

-,

e e) o, o, e,

i

L T, O, N, N, W,

: .u.._...”...._ - .___n.%

N

e,

Rt s
-+ =i 4 - -5

el

e

.k . P t -
. . g
.k i) + “ W
¥ H ¥
.k P + %
[¥ r :
¥ P r -
: B T Y
: 4 F N
4 -t R S A
+ - ¥ Coe
- 4 ey 4 w
¥ 2 H
n.-.-..l & .l...n_.l.-.l...l...l.-.l...l...l.-.l...
+ l..rl.l.rll l.l*
. H S S ...H .
o F .._..l_.—.l e innlnilﬁn - ‘.-_,.u
- 4 - . R a = - = 4 .H .
poaAE R TR L%
- 4 ' T -lilililhlililili#
+ ‘e - l.lllll.l - l.l*
¥ L Ty
- e e _1..1.....l. - e e l..l.ul..u._l.“._-.. “.4.l. Y
.k . -4
- + 4
N O "%
ot +
A 4
¥ "4
- ¥ KR
'l

L
- - ‘

L L L L L L T L L L T T T g
' STy
ey i 7
R & = £
¥ R RN
- a4
|H|| ! "“ﬂ L% Lt L _&n Lt L. 9 L% Lt L &% L L% R 5% 5 5 % L % ﬂ"ﬂ"ﬂb ﬂlﬂlﬂl ﬂlﬂlﬂl ﬂl ﬂIH_|
' . . . 4 4
P 1 - + .
iy $ A] v H W
el R {7 ¢ R 2 X
- " H +
¥ : ¥ .
- .. " . v Cee e
I A o Y R
MR PR RS Y m o7
B . H H

.,
sty oy

]

ot

LEERERRETRETNRN®E

g g g g g g gy g gy

s & & 2 & &2 & & a

A & & & b & k& =g

4 & &8 &4 & & & & a
b & & & & koA
a & & a2 b & b & &

A & 2 2 =2 &2 2 &2 a
A & & b b & & &

s & & 2 & &2 & & a

b b & b b &k bk & =g

4 & &8 &4 & & & & a
b & & & & koA
a & & a2 b & b & &
b & & & & A oA
4 2 2 2 =2 &2 a = a
A & & b b & kX

a & & 2 & &2 & & a

b & & b & & b s o=

4 2 2 2 = &2 a2 & &
b & & & & koA
a & & 2 & &2 & & &

i
i
i
i
i
i
i

T.-I.-I.-I.-I.-I.-I.-I.-I.-I%-nlll.-l.-lll.-l.-lll.-

i
i
i
i
i
i
P

R
- W

.................h..................‘......-.....-.....-..r”..-.....-.....-....

iy oy e

& =2 4 &2 & 2 ka2

4 & & & & & & & o

& & & & & & b & &

& 2 4 &2 & 2 ko2

F I B T T I R T R)

4 & & & & & bAoA
A 2 h & &
A & & b & a2
A 2 a2 =2 a2 a2 a2 aa

F I T T RO I R T R)

b &2 & & & &2 &k & &
g & & & & & & & & a

oy ol ol ok ke ol ke kel

r

[]

F
Frrr bb

1
r
r

r

F F
[]
r

[]
[]
r

r
L4

&
L]

-
&

b & & b & AN

b = &
b b &
a & a

b b & sk Ok ko
4 & & & & & & & &

L]
L]

a
L]

L]

US 11,601,652 B2

Sheet 10 of 26

Mar. 7, 2023

U.S. Patent

-

" I-" l-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b l-* I-" l_-b

E

e g S T

l_-b

l-'.

¥4

- as

. '
' '
. . . -
. '
. . .
'
. . . .
'
. . - .
RN
R
P T Y
PR 2w

~r
. m

: rrrrrrrrrrrrrrrr

L]

- .l_..l_M_..l_ -

' . -
- ' -
[. .
[-
' -

e i I L o L

-

¥

L

iy,

w,

atm

. . - - . . - [.- - - . - - . . - ' - ' - - - [-
R N B A r Y A I Tl . ks a k. k. kA Ea N b . & I I N T IR '
For o> i a e . N I P i N a . o> N P i a ra W i A owa N PR a R i P
o . Vo ' ' . . [' r o e .o . ' " . r ' - . Vo . r
. .
-
N LR R R R R oM oE - O T [[T R '
r . rmaerrrrroa rrrarrrrora rror rrror rrrrrrcrr - . . .
r ' r
. . - .o - . . .
. . ' r
- P '
Ty . ' r
- . - L] - - r - - - - - - . r !
. ' . ' r
. ' . . . '
- . ' . r
N o ' . . T P . .o oo Tom .
N . ' . r
. '
. ' r
- . . . - .o - . .
N . ' r
D R e e R I R R s rrrrr e rrr e
. . - - - . . .
. ' r
. . . . '
. ' r .
. - .o - .
. ' r
. ' . '
. ' ' . r
. r - r .o . r . . r - . .
. ' ' . . r '
. . P ' P
. ' r
. P . - . ro.
. ' . r
. PR . ' . r - .] . .
4 w x kb r 1 4 ma s kr h wa oy k1 hwra ki kroawald
m A

A T T o T T T T T T T T T T T T T T T T ™!

T T T T T O I T TR T I I R T |
\ .4..-_._..._-_.4..-..4..-_._....-_.4._-..4..-_._..._-_ ..-..4..-_._... .4._-..4..-_._.._

epunog

T T T T T O O T T O O T T O O D O O T T T |
R R

Al rom A g e bk e a

Ll "Old

US 11,601,652 B2

CL LI - ,
B

r -] L L] - - -
.. . 4 m . ' rr
r r . . ' roa . '
. r - a ' -
' r . ' . . ' ' ' . ' . .
a r - r ' . ' ' r
r . ' r . . .
' a '
' r . ' . . .
. ' . " r =2 Fr E Ea =a moEaa moamm .
FrFrrCraasaaaashaan - . ' L I N
ror rrr & b b b kb h b hodh hrhranroro ' . - ' L
* . ' . . ' '
' . . ' ' ' F . r r
- . ' . ' . ' '
- s om ' N . ' ' . a ' - = . FF r r
. ' F . ' . o s T ' s . a . ' a '
. - ' ' . . . oo ' ' . . . - raor . . r roar r
. r ' . ron ' . ' a . a . ar ' . ' ron
- ' r - . ' . r ' ' F r . r r . r
' - . r r ' . . ' '
. - . r r
r ' '
AN A L IE I | -
& AL .-..-..-..-..-.l..-_.-..r}.r}.r....}.q....q.q....q...__..._........._..........-...........-.........._.__.__.._.__.
L LI ..i.____..___ AR E R R R R R LR LR AR LR X R
X]
x X
X 4
¥]
x X
1 T -
- - e, .
___.______—._..-..-..-..-..-..-..-.
. .-..-..-......-......-_.1.-_.-.....-.....-.....-....-_....-.-.l_....._....-......_....-.....-.....r.-._..-..-......-.....—..-.l.....l.....l.....l.....l.....l..-.
. . . . " . . . -
' ' . - r ' . . . a m ' . ' . a r
' - . (- " . . h-. n 1 "R - - r " ' e r) -
a . ' . == r a - = om r T .- ' o . . . - . - . .. r
t r [r] r roa _...-...l.-_ i -.i-. | N] . F . o r " on 1
r . ' r . " r - . . r - I . ' - . . - . . r
' roa . . r . . i] I I . ' r '
, . . . : i . ey . . : . : :
r r r '] [a . a . '
a . - I r h ' " r r r Fr r EEEELLESESES2Sa2a=2a2a@ "
' A I koA s om s oa 41 F I F 1 F E N Ea@®E®EFFFPFFF P LoELF '
' rrrrrraaaaaabrorrrrderoaroaroacr rrr e r oo oEa . ' .
Lok rr e b a r . '
' a ' ' . . '
' a .o .. '
' . - - ' Vo . 1 = . . '
r o a ror . . ' . '
' ' a . ' ' . . . - . '
' r a . . ' r . .
o ' . - r ' . . . ' o
r ' a ' . r
r ' ' ' ' . . '
r ' ' L or o moa
r a1 r 1 rFr 1 a . ' ' Ahrrrrrdkrrororora
N R R R R L N

22
S
e
£33
£3..
e
Fot

" voa '
r
- '
' .
' A a2 s & & aa ' ' '
2 rrrrrr e b rrr ek rr e Fa ' o
' ' ' a ' ' P ' r
e nr o r ' r . . r ' r '
R r ' a ' ' . r ' r
e o ow roa . r . . ' r '
rrrrraorrrarrrcrr ' ror ' a nr ' ' ' Foa a ' r
‘_...P -l .- nlr-r N ' e o ' ' r N D . - . T N Doe : ') '
h a.-._ . i 5 r . s . S - . . .
WE " _..- i Bl . y L ' ' .. . o ' ._____. o a) ' ' r e .
-.L-.__ -L..-.-.‘ TR i r " . - st ' ' - .) ' .-.- *aF finur - R ' ' I IR O O O |
n .1”.-_ - a r ' a . a ' n-. i » P O T L ' .4._...4.4...._._._._._..._._._._._.......4._...4.4.
. [...i.-... 1 1 " 1 . e ' r " " r _-.l* t.‘-‘.l-h_nlhhll. " ' __..__ hFororoa
. a r a a - a ul_ b ' . a2 omomomn
- r = = ' - .-..4.......4......;.....;.......-...........-.........;.....; L] L r =Tk - El & r L L]
Lo .-._.4 L AC M N R A .41...1.___._...___..1._....1._._..1.___..1._..._1._._ .-..— - .-q.—1 3 4 . LT . ' \ LR "
. -.. Lt . " m R ' i ._m .
- A omor o2 . x5 r = e &
F s s r r ™ o r K = M-. r e
- h m - - X . r e orrow Fom o
K » A onomom . raoa
r - -*‘ n " rroroan M
.......-1.“. r- N N] L] .._..._ - -.__..._ 1..-.__..._..__-.__ ..__.._..__..._..__..._..._.
a ¥, . x AR - AL »" .___r.-_ LN GLEE R R e
) N » aon o onomom. PR R nonn LR NN N R R
- roa rm & = r = = = N - &+ = o= om -...._-11-1.__
-...:- . - X ll.i-1 .lI.-l._--1i.;.. i.-.i-- . 1--.- L __.I--l
. PN ln.._l- " a. lar ah o w "k
.-..-..-..-..-..-..-.l..-. .-..-_.-_.-..-_.-_.-..-_.-..-..-..r.-..-..-..-.l. + = o= r.‘.1.... .-_-.W..1|-1W§l-l
Ta [N W waorir " .. .ni\.t‘...__- = n ok
" &+ = = bk = = N .-..'r s rFaoor
[] r 2 = = &2 = & . r & m = &k = = &2 = = &
‘e ._..-_.__.-. .-.“.-_.._.-.._ ”.._ l.-.n-..-.“...“.. .nH. .H~1.-..-..._..._.“.-.“. ey .“.._
LI - - " ar EE I I
- . o L .-..-.._..L..h.r.-.._..r.-_l....-._.r.._h....-.-_.__..r d i X t.__..-t.—ttt.-ttth....q.._.-.._l....-..r.-_h...,.._.,....'.._.,.._.__....
- -k ow - .-. 3 " = oa i - B]
¥ B o ¥ . - nroacr * *
- - ow - X = TR | ..
¥ F r r - . * *
- T hon LRI " . ¥ P " a
" s ar e L) ...n._._ P .4 o P «a . *
¥ B arow .__..-.4.—.4.-.__..-.-.___._._.___._...4 [- - . & [3
- T onoa E 4 b ok o X " a oy " a s
¥ . I] e T] - " r oo ¥ *
._..._ " momoEon 1.-..__.._..__.._. x e X - . -..._..__-.__..._..__.... . A
I IC C O
.-. .-.—_l.—_.-._..-.—_.-._.l._..-.—..-._..-_._. .-. --...__- .-_I_...l_.a.l....l_...t.ql..-_l....l..q.-.....-..-..-..-..-..l .__.-.—_.-.—_l._..-.—..-._..._ !.-..-.
X L) .4 [-.. ._ § .
s r s on omor homowo P *
X nor .;.1.1.-_.._.--“ .-. LA) ._.n Nt
.-..1.1 r .1.......11 .4 ._..._. 1 " -..-.i. P :.-_‘ .
x - ‘I- - . g r s e -
r . or & --_...r. ' - ¥ - &
.-. . a B o r o -
. nonr koo [' - X
.-. " aow T - s oaomom - - r oo ra
NN PN N ..-. et -........4.__.._...._..__..__. A ' . . ') ! = ata e
r.....—....l.....—.....—.....-.....l.._..rl.l.-_.r....—.-..-..-.l...t....l....l.....—ll}.-..-. .-..-..-..r.-..—l..r.-.l.-..—...l.-_.r....—l.r... - ' e . e r .0 ') Jprrr
[= . [[[l a = " [l = [l 1; [! l.-..
' r r ' ' ¥
' . ' . a r . ' . . ' r ' a.
' ' R N " oa . . ' ‘Bora) ' " N N ' e .
' " oa . - r .-.
" " - ' - * . r a [] ['] " - or o o . .
r o . nh.- . A m nn m m e ' ¥ “x
. ' r - " ' -it. “.- R L . r.._..-..;..-_.;..-_....-....l_l.l_...l..;.l..;.l....l..'l..;.l....l....l....l....t
' ' . . r e .
! F . T

L Y .wﬂ : o . e L . o | . :

= - ' r . ' r
' ' a ' '
- voa ' ' r r
- ' o ' . '
. x . ' . [- .
-_n ' ' reTeT e e rerTe r e et '
r r
' '
[.

U.S. Patent

U.S. Patent Mar. 7, 2023 Sheet 12 of 26 US 11,601,652 B2

FIG. 12

US 11,601,652 B2

€l "Old

S

=

at

:

anjeAjaxid wnwixep PuUEq DUpES anjeAjaxid Wi

2] ol sjaspoanoj eudls L
7”,, e L

-

=

aaa
44

mowmm& pueq buniels

U.S. Patent

U.S. Patent Mar. 7, 2023 Sheet 14 of 26 US 11,601,652 B2

FIG. 14

US 11,601,652 B2

Sheet 15 of 26

Mar. 7, 2023

U.S. Patent

SR

Dititij

-
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

{3
Ck g g R
i::i'

ol TP K TR TP Y Y T

RN S SO SRR SO S SO SO S SUE SO S SO U S T SUS SO S S SO SO SN SU SO SO T SO S S SUR S ST SO U S SN SO S S SU SO SO S S S

5
R%)
e
358
&
£

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

gk y
& .h.m

__-.l.l.i.._-.l.l.._-.l__-.ll.l.._-.l.__.-..r ?i.* _*_..._‘....*.r

S35%HH
%_Q..w

e, al, ol e, e, e, ol e, e ol e, o, e ol

N

rrrrrrr

apons oauf |

mmﬁ%ﬁ @ﬁmﬁm P

..................... e e

” ﬂ..._ fr{._.?t.rzm .m.r ﬂpﬂ,{ﬁuﬂrﬁ\\ “.ﬁw_

. -
.*t u-
hhhhhh

PP0R SPJUT

PSRRI
Py

! ﬂ 8 ,u :

.-i ~ ._.. -

."'"-.‘"'.

Kw%& Jm. 4 S .H{w -

mbﬁﬁf - e J @
g%mﬁ PIEMIDS

.........

..... 11.- \.._._. R1!....._ Wt ”r....._— n. ” ..._....-.._r_.._. ..._r-.._r_.._.- L
._.,hi ORGP ENRAGN LN

n
[

?V”
?J.

.. Pt

.l

":

. ok
R 3
s

,

.-.

¥

%ﬁhﬂ..i.

Y YL YT LY

L}
t\»n }}lrtrlbl}}lrielbl}tr}(f}l}}lr

ﬁi
.I

_“ P fleseus

% AU/ .u...,__w” m_..u RrIA L. w NOL _,-_w.

w
“W”\ .
+r &

- a Ta"
. - -

Ty L :.i__.. S R e
‘%“ﬂﬂiu.M¥. uﬂi?ﬁf,ﬁhfmvﬂT

n.I]
-..-_I
Htf Ay ALY -y "

i
¥

~

L |
ar

.
r.

-
-
.-.
.-.

Facilce: ﬂmmﬁcmﬂmw EGAMIC

_‘... S

L
el L

e

Fnd

-
1.‘!..
©

“a

'\l"‘-

L] L]
‘ -
-

Ill 'I"‘I:"
™

{'55
ﬂl
'""f'ﬁ'
L
v Y
ﬂ
o
ﬁ:
i......
,53.'
U
‘'
+‘-'-u-*

" e i a ...-.-_..._..__p___...

...,... .,H._n ,....ﬂ_.h -
_...ﬂfrf.nw.r,ﬁ‘fﬁ AL ..,.r.r.u.f..,v i

o
7 m-_..ﬂ

W B el Bl Ak N B - W el el el Bew W W = el Bl Bk B B W

.w.mb..h T, \.v

DLHO, ,Qw 2

IR

US 11,601,652 B2

Sheet 16 of 26

Mar. 7, 2023

U.S. Patent

91 Ol

mmm_aﬁmwm&ﬁ 4291 = xw

mmmaﬁ RS mEQ,Eu mm Wi

Ll 'Ol

US 11,601,652 B2

Sheet 17 of 26

2041

Anonn

Buisssooid 08pIA Y0LL

JO88820U

Mar. 7, 2023

Z0L1

0ULl

U.S. Patent

US 11,601,652 B2

081

Sheet 18 of 26

Mar. 7, 2023

U.S. Patent

8l "Old

ajn3 xejuAs ayl o3 buipioose buisied

Uolbas 0BpIA BU JO JeULIO) J0j0D B pue
9ZIS MO0lq BUWIOIYD & ussmiaq diysuone)a:

2 SBUlSp jeyl 8jni xejuAs e o} Buipioooe

uofjejuesaldal papo0 8y} ‘uotias 0apiA 8y} Jo

uonejuesaidal pepoo e pue 0apiA Jo uolfes
08pIA B USSMIS] UOISISAUOD B o} ‘Buisied

U.S. Patent Mar. 7, 2023 Sheet 19 of 26 US 11,601,652 B2

FIG. 20

FI1G. 19

US 11,601,652 B2

PLLZ —

Sheet 20 of 26

Mar. 7, 2023

ckic

U.S. Patent

ViZ 'Old

ofsLvoRIBYD BUIpOD BRUl
sy} 0} Buipioooe uaisieAu0d ay) Bujwuioued

sini & 0} BuipIoooe O8PIA 8L} JO JRULIO) JOJ02
e Uo peseq uciBai 0BPIA BY] JO J1SLISI0BIBYD
Buipoo Biul Ue ‘0sPIA BY) Jo uopelusssidal
PBP0D & puR OBPIA € JO uoiba) 0BPIA
B USSMIS] UOISIBAUQD B 10} ‘Buiuiuisiaq

0LLe

US 11,601,652 B2

Sheet 21 of 26

Mar. 7, 2023

U.S. Patent

AT

di¢ "Old

O8PIA 8y} JO uoliejussaldal papod e pue
O3PIA B USIMIS(UOISIBALID e Bululoliad

0cle

US 11,601,652 B2

YELe -

Sheet 22 of 26

Mar. 7, 2023

AN R4

U.S. Patent

912 'Ol

Butuiuiieap
DY} U0 Paseq uoIsisAuoD ayi Bulwioled

09PIA B4} 0} 300|q uoioipasd iUl BUIORD
}S8f|BWS B JO 9ZIS B UO UOHOUISaI B Moy

JO/PUB JSUIBUM ‘0DPIA BY} JO uojjetussaldal

POPOO B pue 08piA B Jo uoiBas 0apiA
B U98MIB(UOISISAUOCD B U0} ‘BUuitiuLIs)a(]

0CLC

US 11,601,652 B2

LT -

Sheet 23 of 26

Mar. 7, 2023

cvice

U.S. Patent

daie "ol

DlBuiLIBIep
Sy} U0 pPaseq uoIsIBAU0D ay) Buuiopad

sjnJ & 0 Buipioooe 90|g

OBPIA JUSLND 8y} 0} swsyos Buiuopued e Jo

Ayjigqeoydde ue ‘oapia ayj jo uogeluasaidal
DAP0Y B DUR 0apIA B JO YD0|g O3PIA JUJINo
B U9aMiaq UOISISAUDD e Jo} ‘Buluiuisisg

Ovlid

US 11,601,652 B2

bSle -

Sheet 24 of 26

Mar. 7, 2023

cqlce

U.S. Patent

3i¢ "Old

DlBuiLIBIep
Sy} U0 pPaseq uoIsIBAU0D ay) Buuiopad

8|ru B 0} Duipioaoe pajgeus st spowl
JOJUI UB JSUISYM ‘0BPIA BY] JO uoheluasalday
PBPOD B PUB OSPIA B JO 300[q 08pIA
2 Usamiag UOISIBAU0D & 10} ‘Buuiuusia(

051¢

US 11,601,652 B2

¥9LZ -

Sheet 25 of 26

Mar. 7, 2023

U.S. Patent

412 "Old

SU} UO paseq UOISIBAUOD ay} bulluiolsd

LoiBal CapIA By} 04
papuued st epolw aysjed e Jo asn Jsyioym

‘ajni B UO Paseq ‘08piA By} JO uolejussaldai

POPO3 B pUe 03PIA B JO uotbal 0BPIA
B US8MIB(UOISIBSALIOD B 10} 'DuiiuBia(

09L¢

US 11,601,652 B2

vLLZ

Sheet 26 of 26

Mar. 7, 2023

cLhe

U.S. Patent

OL¢ Ol

DLiuiLISiap

MOO0|q OSPIA JUSLIND

SY} JO uoisUawlp B pue uoleuasaidal papoo

mEc_%m_nomnf%%om&mc_Emmw_Q@
10) pasn adA] spoiu Buipod e uo spuadap
18Ul a|nJ 8 0) BuipIooDE YOO CBDIA JUSLIND
BU} 40} pamolje si susyos buoued ueuso
2 18UISYM ‘08DIA 8] Jo uoneiusssidal

POPROD B pUe DBPIA B 4O 00| OSPIA JUBIIND
e UDSM}aq UoISISAU0D . 1o} ‘Buiuiwislag

0L1¢

US 11,601,652 B2

1

CODING MODE DETERMINATION BASED
ON COLOR FORMAT

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of International Patent
Application No. PCT/CN2020/112974, filed on Sep. 2,

2020, which claims the priority to and benefit of Interna-
tional Patent Application No. PCT/CN2019/103959, filed on

Sep. 2, 2019. All the atorementioned patent applications are
hereby incorporated by reference 1n their entireties.

TECHNICAL FIELD

This document 1s related to video and 1mage coding and
decoding technologies.

BACKGROUND

Digital video accounts for the largest bandwidth use on
the mternet and other digital communication networks. As
the number of connected user devices capable of receiving
and displaying wvideo increases, it 1s expected that the
bandwidth demand for digital video usage will continue to
grow.

SUMMARY

The disclosed techniques may be used by video or image
decoder or encoder embodiments for 1n which reference
pictures are used 1n video coding or decoding.

In one example aspect a method of video processing 1s
disclosed. The method includes determining, for a conver-
sion between a video region of a video and a coded repre-
sentation of the video, an intra coding characteristic of the
video region based on a color format of the video according,
to a rule; and performing the conversion according to the
intra coding characteristic.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a current video block of a video and a
coded representation of the video, wherein the coded rep-
resentation conforms to a format rule, and wherein the
format rule specifies a syntax element, modeType, indicative
of a coding mode of the current video block, that 1s equal to
either MODE_TYPE_NO_JNTER that restricts use of the
inter coding mode for the conversion, or MODE_TYPE_
NO_INTRA that restricts use of the intra mode for the
conversion.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a video and a coded representation of
the video, wherein the coded representation conforms to a
format rule that specifies that a flag indicating a prediction
mode constraint 1s not included 1n the coded representation
in case that a chroma format of the video 1s 4:2:2, 4:0:0, or
4:4.4.

In another example aspect, another method of video
processing 1s disclosed. The method includes determining,
for a conversion between a video region of a video and a
coded representation of the video, whether and/or how a
restriction on a size of a smallest chroma intra prediction
block to the video region 1s enabled according to a rule; and
performing the conversion based on the determining,
wherein the rule 1s dependent on whether a color format of

the video 1s 4:2:0 or 4:2:2.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another example aspect, another method of video
processing 1s disclosed. The method includes determining,
for a conversion between a video region of a video and a
coded representation of the video, whether a restriction on a
s1ze of a smallest chroma 1ntra prediction block to the video
region 1s enabled according to a rule; and performing the
conversion based on the determining, wherein the rule is
dependent on a color format of the video and/or a width (M)
and a height (N) of the video region, and wherein the rule
turther specifies that, for the video region that 1s a coding
tree node with a BT (binary tree) split, then the restriction on
the smallest chroma intra prediction block 1s disabled 1n case
that 1) the color format of the video 1s 4:2:2 and 2) that a
multiplication of M and N 1s a value from a set of values,
wherein the set of values includes 64.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a video region of a video and a coded
representation of the video according to a restriction on a
smallest chroma intra prediction block size, wherein the
coded representation conforms to a format rule that specifies
a value of a syntax field in the coded representation, due to
a 4:2:2 color format of the video.

In another example aspect, another method of video
processing 1s disclosed. The method includes determining,
for a conversion between a current video block of a video
and a coded representation of the video, an applicability of
a partitioning scheme to the current video block according to
a rule; and performing the conversion based on the deter-
mining.

In another example aspect, another method of video
processing 1s disclosed. The method includes determining,
for a conversion between a video block of a video and a
coded representation of the video, whether an inter mode 1s
enabled according to a rule, and performing the conversion
based on the determining, wherein the rule specifies that the
inter mode 1s enabled 1n case that a dual tree partitioning of
luma samples 1s enabled for the video block.

In another example aspect, another method of video
processing 1s disclosed. The method includes determining,
for a conversion between a video region of a video and a
coded representation of the video, based on a rule, whether
use of a palette mode 1s permitted for the video region; and
performing the conversion based on the determining,
wherein the palette mode includes encoding the video region
using a palette of representative sample values.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a current video block of a video and a
coded representation of the video, wherein the coded rep-
resentation conforms to a format rule, wherein the format
rule specifies a syntax element, modeType, that includes a
MODE_TYPE_IBC that allows use of an intra block copy
mode for the conversion or MODE TYPE PALETTE that
allows use of a palette mode for the conversion, wherein the
intra block copy mode includes encoding the current video
block using at least a block vector pointing to a video frame
containing the current video block, and wherein the palette
mode 1ncludes encoding the current video block using a
palette of representative sample values.

In another example aspect, another method of video
processing 1s disclosed. The method includes determining,
for a conversion between a current video block of a video
and a coded representation of the video, whether a certain
partitioning scheme 1s allowed for the current video block
according to a rule that depends on a coding mode type used
for representing the current video block 1n the coded repre-

US 11,601,652 B2

3

sentation and a dimension of the current video block; and
performing the conversion based on the determinming.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a video block of a video and a coded
representation of the video, wherein the coded representa-
tion conforms to a format rule, wherein the format rule
speciflies that a characteristic of the video block controls
whether a syntax element 1n the coded representation 1ndi-
cates a prediction mode of the video block.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a video region of a first component of
a video and a coded representation of the video, wherein the
coded representation conforms to a format rule, wherein the
format rule specifies whether and/or how a syntax field 1s
configured 1n the coded representation to indicate a difler-
ential quantization parameter for the video region depends
on a splitting scheme used for splitting samples of the first
component.

In another example aspect, another method of video
processing 1s disclosed. The method includes performing a
conversion between a video region of a first component of
a video and a coded representation of the video according to
a rule, wherein the rule specifies, in case that a dual tree
and/or a local dual tree coding structure 1s applied to the
video region, that a variable related to a differential quan-
tization parameter ol the first component 1s not modified
during a decoding or parsing process of a second component
ol the video.

In yet another example aspect, the above-described
method may be implemented by a video encoder apparatus
that comprises a processor.

In yet another example aspect, the above-described
method may be implemented by a video decoder apparatus
that comprises a processor.

In yet another example aspect, these methods may be
embodied in the form of processor-executable instructions
and stored on a computer-readable program medium.

These, and other, aspects are further described in the
present document.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of intra block copy coding tool.

FIG. 2 shows an example of a block coded in palette
mode.

FIG. 3 shows an example of use of palette predictor to
signal palette entries.

FIG. 4 shows an example of examples of Horizontal and
vertical traverse scans.

FIG. 5§ shows examples of coding of palette indices.

FIG. 6 shows an example of 67 intra prediction modes.

FIG. 7 shows examples of the left and above neighbours
of the current block.

FIG. 8 shows examples of ALF filter shapes (chroma: 5x35
diamond, luma: 7x7 diamond).

FIG. 9 shows an example of subsampled Laplacian cal-
culation.

FIG. 10 shows an example of a modified block classifi-
cation at virtual boundaries.

FIG. 11 1s an example illustration of modified ALF
filtering for Luma component at virtual boundaries.

FIG. 12 shows examples of four 1-D 3-pixel patterns for
the pixel classification in EO.

FIG. 13 four bands are grouped together and represented
by its starting band position.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 14 top and left neighboring blocks used in CIIP
weight dertvation.

FIG. 15 Luma mapping with chroma scaling architecture.

FIG. 16 shows examples of SCIPU.

FIG. 17 1s a block diagram of an example of a hardware
platform used for implementing techniques described 1n the
present document.

FIG. 18 1s a flowchart for an example method of video
processing.

FIG. 19 shows examples of positions of spatial merge
candidates.

FIG. 20 shows examples of candidate pairs considered for
redundancy check of spatial merge candidates.

FIGS. 21 A to 21G are flowcharts for example methods of

video processing.

DETAILED DESCRIPTION

The present document provides various techniques that
can be used by a decoder of image or video bitstreams to
improve the quality of decompressed or decoded digital
video or images. For brevity, the term “video” 1s used herein
to mclude both a sequence of pictures (traditionally called
video) and 1individual images. Furthermore, a video encoder
may also implement these techniques during the process of
encoding in order to reconstruct decoded frames used for
further encoding.

Section headings are used 1n the present document for
case of understanding and do not limit the embodiments and
techniques to the corresponding sections. As such, embodi-
ments {rom one section can be combined with embodiments
from other sections.

1. Summary

This document 1s related to video coding technologies.
Specifically, 1t 1s related to palette coding with employing
base colors based representation 1n video coding. It may be
applied to the existing video coding standard like HEVC, or
the standard (Versatile Video Coding) to be finalized. It may
be also applicable to future video coding standards or video
codec.

2. Initial Discussion

Video coding standards have evolved primarily through

the development of the well-known ITU-T and ISO/IEC
standards. The ITU-T produced H.261 and H.263, ISO/IEC
produced MPEG-1 and MPEG-4 Visual, and the two orga-
nizations jointly produced the H.262/MPEG-2 Video and
H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/
HEVC standards. Since H.262, the video coding standards
are based on the hybrid video coding structure wherein
temporal prediction plus transform coding are utilized. To
explore the future video coding technologies beyond HEVC,
Joint Video Exploration Team (JVET) was founded by
VCEG and MPEG jointly i 2015. Since then, many new
methods have been adopted by JVET and put mto the

reference software named Joint Exploration Model (JEM).
In April 2018, the Joint Video Expert Team (JVET) between

VCEG (Q6/16) and ISO/IEC JTC1 SC29/WG11 (MPEG)
was created to work on the VVC standard targeting at 50%
bitrate reduction compared to HEVC.

2.1 Intra Block Copy
Intra block copy (IBC), a.k.a. current picture referencing,

has been adopted in HEVC Screen Content Coding exten-
sions (HEVC-SCC) and the current VVC test model (VIM-

4.0). IBC extends the concept of motion compensation from
inter-frame coding to intra-frame coding. As demonstrated
in FIG. 1, the current block 1s predicted by a reference block
in the same picture when IBC 1s applied. The samples 1n the

US 11,601,652 B2

S

reference block must have been already reconstructed before
the current block 1s coded or decoded. Although IBC 1s not
so eflicient for most camera-captured sequences, it shows
significant coding gains for screen content. The reason 1s
that there are lots of repeating patterns, such as icons and
text characters 1n a screen content picture. IBC can remove
the redundancy between these repeating patterns effectively.
In HEVC-SCC, an iter-coded coding unit (CU) can apply
IBC i1 1t chooses the current picture as its reference picture.
The MV 1s renamed as block vector (BV) 1n this case, and
a BV always has an integer-pixel precision. To be compat-
ible with main profile HEVC, the current picture 1s marked
as a “long-term” reference picture in the Decoded Picture
Butfler (DPB). It should be noted that similarly, in multiple
view/3D video coding standards, the inter-view reference
picture 1s also marked as a “long-term” reference picture.

Following a BV to find its reference block, the prediction
can be generated by copying the reference block. The
residual can be got by subtracting the reference pixels from
the original signals. Then transform and quantization can be
applied as 1n other coding modes.

FIG. 1 1s an illustration of Intra block copy.

However, when a reference block 1s outside of the picture,
or overlaps with the current block, or outside of the recon-
structed area, or outside of the valid area restricted by some
constrains, part or all pixel values are not defined. Basically,
there are two solutions to handle such a problem. One 1s to
disallow such a situation, e.g. in bitstream conformance. The
other 1s to apply padding for those undefined pixel values.
The following sub-sessions describe the solutions in detail.

2.2 IBC 1n HEVC Screen Content Coding Extensions

In the screen content coding extensions of HEVC, when
a block uses current picture as reference, it should guarantee
that the whole reference block 1s within the available recon-
structed area, as indicated 1n the following spec text:

The varishies offsetX and offsetY are derived as follows:

offsetX = (ChromaArraylype ==0) 70 : (mvCLX [0] & 0x7 7?2 :0)
offsetY = (ChromaArraylype ==0)7 0 : (mvCLX [1] & 0x7 72 :0)

10

15

20

25

30

6

2.3.1 IBC Merge Mode

In IBC merge mode, an index pointing to an entry in the
IBC merge candidates list 1s parsed from the bitstream. The
construction of the IBC merge list can be summarized
according to the following sequence of steps:

Step 1: Dernivation of spatial candidates

Step 2: Insertion of HMVP candidates

Step 3: Insertion of pairwise average candidates

In the derivation of spatial merge candidates, a maximum
of four merge candidates are selected among candidates
located 1n the positions depicted 1n FIG. 19. The order of
derivationi1s A, B,, B,, A, and B,. Position B, 1s considered
only when any PU of position A, B,, B,, A, 1s not available
(e.g., because 1t belongs to another slice or tile) or i1s not
coded with IBC mode. After candidate at position A; 1s
added, the 1nsertion of the remaining candidates 1s subject to
a redundancy check which ensures that candidates waith
same motion information are excluded from the list so that
coding efliciency 1s improved. To reduce computational
complexity, not all possible candidate pairs are considered 1n

the mentioned redundancy check. Instead only the pairs
linked with an arrow in FIG. 20 are considered and a
candidate 1s only added to the list i1f the corresponding
candidate used for redundancy check has not the same
motion 1mnformation.

After msertion of the spatial candidates, 1f the IBC merge
list size 1s still smaller than the maximum IBC merge list
s1ize, IBC candidates from HMVP table may be inserted.
Redundancy check are performed when inserting the HMVP
candidates.

Finally, pairwise average candidates are inserted into the
IBC merge list.

When a reference block 1dentified by a merge candidate 1s
outside of the picture, or overlaps with the current block, or

(8-104)
(8-105)

It 1s a requirement of bitstream conformance that when the reference picture 1s the current picture,

the luma motion vector mvLX shall obey the follow contraints:

When the derivation process for z-scan order block availability as specified in clause 6.4.1 1s invoked with

(XCurr, yCurr) set equal to (xCb, yCb) and the neighbouring luma location (xNbY, yNbY) set equal to
(XPb + (mvLX[O] >>2) - offsetX, yPb + (mvLX [1] >> 2) - offsetY) as mputs, the outputs shall be

equal to TRUE.

When the derivation process for z-scan order block abailability as specified in clause 6.4.1 1s invoked with

(XCurr, yCurr) set equal to (xCb, yCb) and the neighbouring luma location (xXNbY, yNbY) set equal to
(xPb+ (mvL [O] >>2)+ nPbW — 1 + offsetX, yPb + (mvLx[1 | << 2)+ nPbH - 1 + offsetY) as inputs,

the output shall be equal to TRUE.
One or both of the following conditions shall be true:

The value of (mvLX[0] >> 2) + nPbW + xB1 + offsetX 1s less than or equal to O.
The value of (mvLX[1] >> 2) + nPbH + yB1 + oflsetY is less than or equal to O.

The following condition shall be true:

(XPb + (mvLX[O]>> 2) + nPbSw - 1 + oflsetX) / CtbSizeY - xCb / CtbSizeY <=

yCb/CtbS1zeY - (yvPb + (mvLX[1 | >> 2) + nPbSh - 1 + offsetY) / CtbSize Y

(8-106)

Thus, the case that the reference block overlaps with the 55 outside of the reconstructed area, or outside of the valid area

current block or the reference block is outside of the picture
will not happen. There 1s no need to pad the reference or

prediction block.
2.3 IBC 1n VVC Test Model

In the current VVC test model, 1.e., VIM-4.0 design, the
whole reference block should be with the current coding tree
unit (CTU) and does not overlap with the current block.
Thus, there 1s no need to pad the reference or prediction
block. The IBC flag 1s coded as a prediction mode of the
current CU. Thus, there are totally three prediction modes,
MODE_INTRA, MODE_INTER and MODE_IBC for each
CU.

60

65

restricted by some constrains, the merge candidate 1s called
invalid merge candidate.

It 1s noted that invalid merge candidates may be inserted
into the IBC merge list.

2.3.2 IBC AMVP Mode

In IBC AMVP mode, an AMVP index point to an entry 1n
the IBC AMVP list 1s parsed from the bitstream. The
construction of the IBC AMVP list can be summarized
according to the following sequence of steps:

Step 1: Dernivation of spatial candidates

Check A,, A, until an available candidate 1s found.

Check B,, B,, B, until an available candidate 1s found.

US 11,601,652 B2

7

Step 2: Insertion of HMVP candidates
Step 3: Insertion of zero candidates

After insertion of the spatial candidates, 11 the IBC AMVP
list size 1s still smaller than the maximum IBC AMVP list
s1ze, IBC candidates from HMVP table may be inserted.

Finally, zero candidates are inserted into the IBC AMVP

list.

2.4 Palette Mode

The basic 1dea behind a palette mode is that the samples
in the CU are represented by a small set of representative
colour values. This set 1s referred to as the palette. And 1t 1s
also possible to indicate a sample that 1s outside the palette

by signalling an escape symbol followed by (possibly quan-
tized) component values. This kind of sample 1s called

escape sample. The palette mode 1s 1llustrated 1n FIG. 2.
FIG. 2 shows an example of a block coded in palette
mode.

2.5 Palette Mode 1n HEVC Screen Content Coding Exten-
sions (HEVC-SCC)

In the palette mode 1n HEVC-SCC, a predictive way 1s
used to code the palette and index map.

2.5.1 Coding of the Palette Entries

For coding of the palette entries, a palette predictor 1s
maintained. The maximum size of the palette as well as the
palette predictor 1s signalled in the SPS. In HEVC-SCC, a
palette_predictor_initializer_present_flag 1s introduced in
the PPS. When this flag 1s 1, entries for mitializing the
palette predictor are signalled in the bitstream. The palette
predictor 1s 1mtialized at the beginning of each CTU row,
cach slice and each tile. Depending on the value of the
palette_predictor_imtializer_present_tlag, the palette pre-
dictor 1s reset to O or mitialized using the palette predictor
intializer entries signalled m the PPS. In HEVC-SCC, a
palette predictor initializer of size O was enabled to allow
explicit disabling of the palette predictor initialization at the
PPS level.

For each entry in the palette predictor, a reuse flag 1s
signalled to indicate whether 1t 1s part of the current palette.
This 1s 1llustrated 1n FIG. 3. The reuse tlags are sent using
run-length coding of zeros. After this, the number of new
palette entries are signalled using exponential Golomb code
of order 0. Finally, the component values for the new palette
entries are signalled.

FIG. 3 shows an example of use of palette predictor to
signal palette entries.

2.5.2 Coding of Palette Indices

The palette indices are coded using horizontal and vertical
traverse scans as shown in FIG. 4. The scan order is
explicitly signalled 1n the bitstream using the palette_trans-
pose_tlag. For the rest of the subsection 1t 1s assumed that the
scan 1s horizontal.

FI1G. 4 shows examples of Horizontal and vertical traverse
scans.

The palette indices are coded using two main palette
sample modes: ‘INDEX’ and °‘COPY_ABOVE’. As
explained previously, the escape symbol 1s also signalled as
an ‘INDEX’ mode and assigned an index equal to the
maximum palette size. The mode 1s signalled using a flag
except for the top row or when the previous mode was
‘COPY_ABOVE’. In the ‘COPY_ABOVE’ mode, the pal-
ctte index of the sample 1n the row above 1s copied. In the
‘INDEX’ mode, the palette index 1s explicitly signalled. For
both ‘INDEX’ and ‘COPY_ABOVE’ modes, a run value 1s
signalled which specifies the number of subsequent samples
that are also coded using the same mode. When escape

symbol 1s part of the run 1 ‘INDEX’ or ‘COPY_ABOVE’

10

15

20

25

30

35

40

45

50

55

60

65

8

mode, the escape component values are signalled for each
escape symbol. The coding of palette indices 1s illustrated 1n
FIG. 5.

This syntax order 1s accomplished as follows. First the
number of index values for the CU 1s signaled. This 1s
followed by signaling of the actual index values for the
entire CU using truncated binary coding. Both the number of
indices as well as the the index values are coded 1n bypass
mode. This groups the index-related bypass bins together.
Then the palette sample mode (if necessary) and run are
signaled 1n an interleaved manner. Finally, the component
escape values corresponding to the escape samples for the
entire CU are grouped together and coded 1n bypass mode.

An additional syntax element, last_run_type flag, 1s sig-
naled after signaling the index values. This syntax element,
in conjunction with the number of indices, eliminates the
need to signal the run value corresponding to the last run in

the block.

In HEVC-SCC, the palette mode 1s also enabled for 4:2:2,
4.:2:0, and monochrome chroma formats. The signaling of
the palette entries and palette indices 1s almost 1dentical for
all the chroma formats. In case of non-monochrome formats,
cach palette entry consists of 3 components. For the mono-
chrome format, each palette entry consists of a single
component. For subsampled chroma directions, the chroma
samples are associated with luma sample indices that are
divisible by 2. After reconstructing the palette indices for the
CU, 1f a sample has only a single component associated with
it, only the first component of the palette entry 1s used. The
only difference 1n signaling i1s for the escape component
values. For each escape sample, the number of escape
component values signaled may be different depending on
the number of components associated with that sample.

In VVC, the dual tree coding structure 1s used on coding
the intra slices, so the luma component and two chroma
components may have diflerent palette and palette indices.
In addition, the two chroma component shares same palette
and palette indices.

FIG. 5 shows examples of coding of palette indices.

2.6 Intra Mode Coding 1n VVC

To capture the arbitrary edge directions presented in
natural video, the number of directional intra modes 1n
VIMS5 1s extended from 33, as used in HEVC, to 65. The
new directional modes not in HEVC are depicted as red
dotted arrows 1n FIG. 6 and the planar and DC modes remain
the same. These denser directional intra prediction modes
apply for all block sizes and for both luma and chroma 1ntra
predictions.

In VIMS3, several conventional angular intra prediction
modes are adaptively replaced with wide-angle 1ntra predic-
tion modes for the non-square blocks.

In HEVC, every imtra-coded block has a square shape and
the length of each of 1ts side 1s a power of 2. Thus, no
division operations are required to generate an intra-predic-
tor using DC mode. In VIMYS5, blocks can have a rectangular
shape that necessitates the use of a division operation per
block 1n the general case. To avoid division operations for
DC prediction, only the longer side 1s used to compute the
average for non-square blocks.

FIG. 6 shows an example of 67 intra prediction modes.

To keep the complexity of the most probable mode
(MPM) list generation low, an intra mode coding method
with 6 MPMs i1s used by considering two available neigh-
boring mtra modes. The following three aspects are consid-
ered to construct the MPM list:

Default intra modes

Neighbouring intra modes

Derived intra modes

US 11,601,652 B2

9

A unified 6-MPM list 1s used for intra blocks 1rrespective
of whether MRL and ISP coding tools are applied or not. The
MPM list 1s constructed based on intra modes of the left and
above neighboring block. Suppose the mode of the left block
1s denoted as Left and the mode of the above block 1s
denoted as Above, the unified MPM list 1s constructed as
follows (The left and above blocks are shown 1 FIG. 7):

FIG. 7 1s an example of the left and above neighbours of
the current block.

When a neighboring block 1s not available, 1ts intra mode
1s set to Planar by default.

If both modes Left and Above are non-angular modes:

MPM list—{Planar, DC, V, H, V-4, V+4}

If one of modes Left and Above 1s angular mode, and the
other 1s non-angular;

Set a mode Max as the larger mode 1n Left and Above

MPM list—{Planar, Max, DC, Max—1, Max+1, Max—-2}

If Left and Above are both angular and they are different:

Set a mode Max as the larger mode 1n Left and Above

if the difference of mode Left and Above 1s 1n the range

of 2 to 62, inclusive

MPM list—{Planar, Left, Above, DC, Max—1, Max+1}
Otherwise

MPM list—{Planar, Left, Above, DC, Max—2, Max+2}
If Left and Above are both angular and they are the same:
MPM list—{Planar, Left, Left—1, Left+1, DC, Left-2}

Besides, the first bin of the mpm index codeword 1s
CABAC context coded. In total three contexts are used,
corresponding to whether the current intra block 1s MRL
enabled, ISP enabled, or a normal intra block.

During 6 MPM list generation process, pruning 1s used to
remove duplicated modes so that only unique modes can be
included mnto the MPM list. For entropy coding of the 61
non-MPM modes, a Truncated Binary Code (TBC) 1s used.

For chroma intra mode coding, a total of 8 intra modes are
allowed for chroma intra mode coding. Those modes include
five traditional intra modes and three cross-component linear
model modes (CCLM, LM_A, and LM_L). Chroma mode
signalling and derivation process are shown in Table 2-.
Chroma mode coding directly depends on the intra predic-
tion mode of the corresponding luma block. Since separate
block partitioning structure for luma and chroma compo-
nents 1s enabled 1n I slices, one chroma block may corre-
spond to multiple luma blocks. Therefore, for Chroma DM
mode, the intra prediction mode of the corresponding luma
block covering the center position of the current chroma
block 1s directly inherited.

TABLE 2-4

Derivation of chroma prediction mode
from luma mode when cclm_is enabled

Corresponding luma intra

Chroma prediction mode
prediction X
mode 0 50 18 1 (0 <= X <=066)
0 66 0 0 0 0
] 50 66 50 50 50
2 18 18 66 18 18
3]]] 66]
4 81 81 81 81 81
5 82 82 82 82 82
6 83 83 83 83 83
7 0 50 18 1 X

10

15

20

25

30

35

40

45

50

35

60

65

10

2.7 Quantized Residual Block Differential Pulse-Code
Modulation (QR-BDPCM)

In JVET-M0413, a quantized residual block differential
pulse-code modulation (QR-BDPCM) 1s proposed to code
screen contents efficiently.

The prediction directions used mn QR-BDPCM can be
vertical and horizontal prediction modes. The intra predic-
tion 1s done on the entire block by sample copying in
prediction direction (horizontal or vertical prediction) simi-
lar to intra prediction. The residual 1s quantized and the delta
between the quantized residual and its predictor (horizontal
or vertical) quantized value 1s coded. This can be described
by the following: For a block of size M (rows)xXN (cols), let
r; » 0ISM—1, 05)<N-1 be the prediction residual after
performing intra prediction horizontally (copying left neigh-
bor pixel value across the the predicted block line by line)
or vertically (copying top neighbor line to each line in the
predicted block) using unfiltered samples from above or left
block boundary samples. Let Q(r;), 0<i<M-1, 0<)<N-1]
denote the quantized version of the residual r, , where

Ik
residual 1s difference between original block and the pre-

dicted block values. Then the block DPCM 1s applied to the
quantized residual samples, resulting 1n modified MXN array
R with elements T, . When vertical BDPCM 1s signalled.

Qi 1), i=0,0=j=(N-1)

F_{ (2-7-1]
Tl Q) - 00n), l=is(M-1),0=j<(N-1)

For horizontal prediction, similar rules apply, and the
residual quantized samples are obtained by

Qi 1), O<i=M-1),;=0

- { (2-7-2]
TN QUi - Qi) O=is(M-1), 1= j=<(V-1)

The residual quantized samples T, ; are sent to the decoder.

On the decoder side, the above calculations are reversed
to produce Q(r; ;), 0<i<M-1, 0<j<N-1. For vertical predic-
tion case,

/ (2—7-3]
Or; ;) = Zm, O<i<sM-1),0=<j<(®N-=1
=0
For horizontal case,
J 2-7-4
Orij)=) i Osis(M—1),0=js NV -1) ()
=0

The inverse quantized residuals, Q™" (Q(r, 7)), are added to
the i1ntra block prediction values to produce the recon-
structed sample values.

The main benefit of this scheme i1s that the inverse DPCM
can be done on the fly during coefficient parsing simply
adding the predictor as the coefficients are parsed or it can
be performed after parsing.

2.8 Adaptive Loop Filter

In the VIMJ5, an Adaptive Loop Filter (ALF) with block-
based filter adaption 1s applied. For the luma component,
one among 25 filters 1s selected for each 4x4 block, based on
the direction and activity of local gradients.

US 11,601,652 B2

11

2.8.1.1 Filter Shape

In the VIM3J, two diamond filter shapes (as shown 1n FIG.
8) are used. The 7X7 diamond shape 1s applied for luma
component and the 3x5 diamond shape i1s applied for
chroma components.

FIG. 8 shows examples of ALF filter shapes (chroma: 3X3
diamond, luma: 7X7 diamond)

2.8.1.2 Block Classification
For luma component, each 4x4 block 1s categorized nto

one out of 25 classes. The classification index C 1s derived
based on 1its directionality D and a quantized value of
activity A, as follows:

C=5D+A (2-9-1)

To calculate D and A, gradients of the horizontal, vertical
and two diagonal direction are first calculated using 1-D

Laplacian:

+3 j+3 (2_9_2)
gy = 71 y: Vie,ts
f=i—2 =2
Vi =12R(k,)= R(k, [= 1) =Rk, [+ 1)
i+3 j+3
g = Z Z Hy (2-1)
f=i—2 =72
Hyi=2RG, D =Rk -1, D= Rk+1, 1)
+3 J+3
ga1 = Z Z D1y, (2-9-4)
f=i—21=j—3
Dl = 12RUe, = R —1,1-1) = Rk + 1,1+ 1)
+3 j+3
g2 = Z Z D2, (2—9-5]
k=2 j=j—2
D24, = 12R0k,) = Rk 1,1+ 1) =R+ 1,1 = 1)

Where 1ndices 1 and j refer to the coordinates of the upper
left sample within the 4x4 block and R(i1,]) indicates a
reconstructed sample at coordinate (1,)).

To reduce the complexity of block classification, the
subsampled 1-D Laplacian calculation 1s applied. As shown
in FIG. 9 the same subsampled positions are used for
gradient calculation of all directions.

FIG. 9 shows an example of subsampled Laplacian cal-
culation. (a) Subsampled positions for vertical gradient (b)
Subsampled positions for horizontal gradient (c) Sub-
sampled positions for diagonal gradient (d) Subsampled
positions for diagonal gradient.

Then D maximum and minimum values of the gradients
of horizontal and vertical directions are set as:

(2-9-6)

8 hivmﬂ:mﬂ}{ (&m&u)8 n,vmm:miﬂ(g &)

The maximum and minimum values of the gradient of two
diagonal directions are set as:

Frl Fr

ﬂ';t'-—
8 d0,d1 —mﬂx(gdﬂsgdl)agd[},dl

(2-9-7)

"=mind(g 40,841

To derive the value of the directionality D, these values
are compared against each other and with two thresholds t,
and t,:

Step 1. If both gh,vMMgt]'gh,vMiﬂ and 0.1 Sti8a0.41
are true, D 1s set to O.

Step 2. It g, " /8n," "> Ba0.ar 1Ba0.an
Step 3; otherwise continue from Step 4.
Step 3. If g, ,"“*>t,-g, ", D is set to 2; otherwise D is set
to 1.
Step4. If g0 11" >80 21, D 18 set to 4; otherwise D 1s set
to 3.

IR

FFt

" continue from

10

15

20

25

30

35

40

45

50

35

60

65

12

The activity value A 1s calculated as:

i+3 j+3

A= Z Z (Viey + Hi)

k=u—2 I=j—2

(2-9-8)

A 1s further quantized to the range of O to 4, inclusively,
and the quantized value is denoted as A.

For chroma components in a picture, no classification
method 1s applied, 1.e. a single set of ALF coefficients 1s
applied for each chroma component.

2.8.1.3 Geometric Transformations of Filter Coetficients
and Clipping Values

Before filtering each 4x4 luma block, geometric transfor-
mations such as rotation or diagonal and vertical flipping are
applied to the filter coefficients f (k, 1) and to the corre-
sponding filter clipping values c(k, 1) depending on gradient
values calculated for that block. This 1s equivalent to apply-
ing these transformations to the samples 1n the filter support
region. The 1dea 1s to make different blocks to which ALF 1s
applied more similar by aligning their directionality.

Three geometric transformations, including diagonal, ver-
tical flip and rotation are introduced:

Diagonal.f,(k,D=f1,k),c ,(k,D)=c(Lk), (2-9-9)
Vertical flip:f, (k,D=flk, K—I-1),c {k,D=c(k, K—I-1) (2-9-10)
Rotation:fr(k, D= K—I-1,k),c x(k,)=c(K—I—1,k) (2-9-11)

where K 15 the size of the filter and 0<k, I€K-1 are
coefficients coordinates, such that location (0,0) 1s at the
upper left corner and location (K—1, K—1) 1s at the lower
right corner. The transformations are applied to the filter
coefficients f (k, 1) and to the clipping values c(k, 1) depend-
ing on gradient values calculated for that block. The rela-
tionship between the transformation and the four gradients
of the four directions are summarized 1n the following table.

TABLE 2-5

Mapping of the gradient calculated for one
block and the transformations

Gradient values Transformation

8ur < 8 and g, < g, No transformation
8 < 8q and g, < g, Diagonal

841 < 82 and g, < g, Vertical flip

g <gpandg <g, Rotation

2.8.1.4 Filter Parameters Signalling

In the VIMS, ALF filter parameters are signalled in
Adaptation Parameter Set (APS). In one APS, up to 235 sets
of luma filter coefficients and clipping value indexes, and up
to one set of chroma filter coefficients nd clipping value
indexes could be signalled. To reduce bits overhead, filter
coefficients of different classification can be merged. In slice
header, the indices of the APSs used for the current slice are
signaled.

Clipping value indexes, which are decoded from the APS,
allow determining clipping values using a Luma table of
clipping values and a Chroma table of clipping values. These
clipping values are dependent of the internal bitdepth. More
precisely, the Luma table of clipping values and Chroma
table of clipping values are obtained by the following

formulas:

N—n+1

AlfClip, = {mund(QB—N 2-9-12)

) for ne |1 ... N]},

US 11,601,652 B2

13
-continued

M) for ne |l ... N]}

AlfClip. = {mund(Q(B DN (2-9-13)

with B equal to the internal bitdepth and N equal to 4
which 1s the number of allowed clipping values in VIMS3.0.

The filtering process can be controlled at CTB level. A
flag 1s always signalled to indicate whether ALF 1s applied
to a luma CTB. A luma CTB can choose a filter set among
16 fixed filter sets and the filter sets from APSs. A filter set
index 1s signaled for a luma CTB to indicate which filter set
1s applied. The 16 fixed filter sets are pre-defined and
hard-coded 1n both the encoder and the decoder.

The filter coefficients are quantized with norm equal to
128. In order to restrict the multiplication complexity, a
bitstream conformance 1s applied so that the coefficient
value of the non-central position shall be in the range of -2’
to 2’—1, inclusive. The central position coefficient is not
signalled 1n the bitstream and 1s considered as equal to 128.

2.8.1.5 Filtering Process

At decoder side, when ALF 1s enabled for a CTB, each
sample R(1, j) within the CU 1s filtered, resulting 1n sample
value R'(1, j) as shown below,

R'(1.))=R(j (Lo Zpmaf Uk, DXE(R (K, jfFD—R(,).k,

N+64)>>7) (2-9-14)

where f (k, 1) denotes the decoded filter coefficients, K(x,
y) 1s the clipping function and c(k, 1) denotes the decoded
clipping parameters. The variable k and 1 varies between
—1/2 and L/2 where L denotes the filter length. The clipping
function K(x, y)=min (y, max(—y, x)) which corresponds to
the function Clip3 (—v, y, X).

2.8.1.6 Virtual Boundary Filtering Process for Line Buffer
Reduction

In VIM3J, to reduce the line buffer requirement of ALF,
modified block classification and filtering are employed for
the samples near horizontal CTU boundaries. For this pur-
pose, a virtual boundary 1s defined as a line by shifting the
horizontal CTU boundary with “N” samples as shown in
FIG. 10 with N equal to 4 for the Luma component and 2 for
the Chroma component.

FIG. 10 shows an example of a modified block classifi-
cation at virtual boundaries.

Modified block classification 1s applied for the Luma
component as depicted in FIG. 11 activity value A 1s
accordingly scaled by taking into account the reduced num-
ber of samples used in 1D Laplacian gradient calculation.

For filtering processing, symmetric padding operation at
the virtual boundaries are used for both Luma and Chroma
components. As shown 1 FIG. 11, when the sample being
filtered 1s located below the virtual boundary, the neighbor-
ing samples that are located above the virtual boundary are
padded. Meanwhile, the corresponding samples at the other
sides are also padded, symmetrically.

FIG. 11 shows examples of modified ALF filtering for
Luma component at virtual boundaries.

2.9 Sample Adaptive Offset (SAQ)

Sample adaptive offset (SAQ) 1s applied to the recon-
structed signal after the deblocking filter by using offsets
specified for each CTB by the encoder. The HM encoder first
makes the decision on whether or not the SAQ process 1s to
be applied for current slice. If SAQO 1s applied for the slice,
each CTB 1s classified as one of five SAQ types as shown 1n
Table 2-. The concept of SAO 1s to classify pixels into
categories and reduces the distortion by adding an offset to
pixels of each category. SAO operation includes Edge Offset
(EO) which uses edge properties for pixel classification 1n

10

15

20

25

30

35

40

45

50

35

60

65

14

SAO type 1-4 and Band Offset (BO) which uses pixel
intensity for pixel classification in SAQO type 5. Each appli-
cable CTB has SAQO parameters including sao_merge_left_
flag, sao_merge_up_flag, SAO type and four offsets. If

sao_merge_left_flag s equal to 1, the current CTB will reuse
the SAQO type and offsets of the CTB to the left. If sao_mer-
ge up_flag 1s equal to 1, the current CTB will reuse SAO
type and offsets of the CTB above.

TABLE 2-6
Specification of SAO type
sample adaptive offset Number of
SAO type type to be used categories
0 None 0
1 1-D O-degree pattern edge offset 4
2 1-D 90-degree pattern edge offset 4
3 1-D 135-degree pattern edge 4
offset
4 1-D 45-degree pattern edge offset 4
5 band offset 4
2.9.1 Operation of Each SAQO Type
Edge offset uses four 1-D 3-pixel patterns for classifica-
tion of the current pixel p by consideration of edge direc-

tional information, as shown 1 FIG. 12. From left to right
these are: O-degree, 90-degree, 135-degree and 45-degree.
FIG. 12 shows examples of four 1-D 3-pixel patterns for
the pixel classification 1n EO.
Each CTB 1s classified into one of five categories accord-

ing to Table 2-7.

TABLE 2-7

Pixel classification rule for EO

Category Condition Meaning
0 None of the below Largely monotonic
1 p < 2 neighbours Local minimum
2 p < 1 neighbour && Edge
p — 1 neighbour
3 p > 1 neighbour &é& Edge
p — 1 neighbour
4 p > 2 neighbours Local maximum

Band offset (BO) classifies all pixels 1n one CTB region
into 32 uniform bands by using the five most significant bits
of the pixel value as the band index. In other words, the pixel
intensity range 1s divided into 32 equal segments from zero
to the maximum 1ntensity value (e.g. 2535 for 8-bit pixels).
Four adjacent bands are grouped together and each group 1s
indicated by its most left-hand position as shown 1n FIG. 13.
The encoder searches all position to get the group with the
maximum distortion reduction by compensating offset of
each band.

FIG. 13 shows an example of four bands are grouped
together and represented by its starting band position

2.10 Combined Inter and Intra Prediction (CIIP)

In VTM)5, when a CU 1s coded 1n merge mode, 1f the CU
contains at least 64 luma samples (that 1s, CU width times
CU height 1s equal to or larger than 64), and if both CU
width and CU height are less than 128 luma samples, an
additional flag 1s signalled to indicate if the combined
inter/intra prediction (CIIP) mode 1s applied to the current
CU. As 1ts name 1ndicates, the CIIP prediction combines an
inter prediction signal with an infra prediction signal. The
inter prediction signal in the CIIP mode P, .. 1s derived
using the same inter prediction process applied to regular

US 11,601,652 B2

15

merge mode; and the intra prediction signal P, . 1s derived
following the regular intra prediction process with the planar
mode. Then, the intra and inter prediction signals are com-
bined using weighted averaging, where the weight value 1s
calculated depending on the coding modes of the top and left
neighbouring blocks (depicted 1 FIG. 14) as follows:
If the top neighbor 1s available and intra coded, then set
islntraTop to 1, otherwise set 1slntraTop to O;
If the left neighbor 1s available and intra coded, then set
1sintral eft to 1, otherwise set islntral.eft to O;
If (1slntraleft+islntralLeft) 1s equal to 2, then wt 1s set to
3;
Otherwise, i (islntralett+islntralLeft) 1s equal to 1, then
wt 1S set to 2;
Otherwise, set wt to 1.
The CIIP prediction 1s formed as follows:

+wi*pP.

IRy

P cpp=((4-wt)* P,

inter

£2)>>2 (3-2)

FIG. 14 shows examples of Top and leit neighboring
blocks used in CIIP weight derivation

2.11 Luma Mapping with Chroma Scaling (LMCS)

In VIMS35, a coding tool called the luma mapping with
chroma scaling (LMCS) 1s added as a new processing block
betfore the loop filters. LMCS has two main components: 1)
in-loop mapping of the luma component based on adaptive
piecewise linear models; 2) for the chroma components,
luma-dependent chroma residual scaling 1s applied. FIG. 135
shows the LMCS architecture from decoder’s perspective.
The dotted blocks 1 FIG. 15 indicate where the processing
1s applied in the mapped domain; and these include the
inverse quantization, inverse transform, luma intra predic-
tion and adding of the luma prediction together with the
luma residual. The unpatterned blocks in FIG. 15 indicate
where the processing 1s applied in the original (i.e., non-
mapped) domain; and these include loop filters such as
deblocking, ALF, and SAO, motion compensated prediction,
chroma intra prediction, adding of the chroma prediction
together with the chroma residual, and storage of decoded
pictures as reference pictures. The checkered blocks 1n FIG.
15 are the new LMCS functional blocks, including forward
and mverse mapping ol the luma signal and a luma-depen-
dent chroma scaling process. Like most other tools 1n VVC,
LMCS can be enabled/disabled at the sequence level using
an SPS flag.

FIG. 15 shows examples of Luma mapping with chroma
scaling architecture.

2.12 Dualtree Partitioning,

In the current VVC design, for I slices, each CTU can be
split mto coding umts with 64x64 luma samples using an
implicit quadtree split and that these coding units are the root
of two separate coding_tree syntax structure for luma and
chroma.

Since the dual tree 1n intra picture allows to apply
different partitioning 1n the chroma coding tree compared to

10

15

20

25

30

35

40

45

50

16

the luma coding tree, the dual tree introduces longer coding
pipeline and the QTBT MinQTSizeC value range and
MinBtSizeY and Min’

I'TS1zeY 1n chroma tree allow small
chroma blocks such as 2x2, 4x2, and 2x4. It provides
difficulties 1n practical decoder design. Moreover, several
prediction modes such as CCLM, planar and angular mode
needs multiplication. In order to alleviate the above-men-
tioned 1ssues, small chroma block sizes (2x2/2x4/4x2) are
restricted in dual tree as a partitioning restriction.

2.13 Smallest Chroma Intra Prediction Umt (SCIPU) 1n
JVET-00050

Small chroma size 1s not friendly to hardware implemen-
tation. In dualtree cases, chroma blocks with too small sizes
are disallowed. However, 1n singletree cases, VVC draft 5
still allows 2x2, 2x4, 4x2 chroma blocks. To restrict the size
of chroma block, 1n single coding tree, a SCIPU 1s defined
in JVET-00050 as a coding tree node whose chroma block
s1ze 15 larger than or equal to TH chroma samples and has
at least one child luma block smaller than 4TH luma
samples, where TH 1s set to 16 1n this contribution. It 1s
required that 1n each SCIPU, all CBs are inter, or all CBs are
non-inter, 1.e, either intra or IBC. In case of a non-inter
SCIPU, 1t 1s further required that chroma of the non-inter
SCIPU shall not be further split and luma of the SCIPU 1s
allowed to be further split. In this way, the smallest chroma
intra CB size 1s 16 chroma samples, and 2x2, 2x4, and 4x2
chroma CBs are removed. In addition, chroma scaling 1s not
applied 1n case of a non-inter SCIPU.

Two SCIPU examples are shown mn FIG. 16. In FIG.
16(a), one chroma CB of 8x4 chroma samples and three
luma CBs (4x8, 8x8, 4x8 luma CBs) form one SCIPU
because the ternary tree (1T) split from the 8x4 chroma
samples would result in chroma CBs smaller than 16 chroma
samples. In FIG. 16(b), one chroma CB of 4x4 chroma
samples (the left side of the 8x4 chroma samples) and three
luma CBs (8x4, 4x4, 4x4 luma CBs) form one SCIPU, and

the other one chroma CB of 4x4 samples (the right side of
the 8x4 chroma samples) and two luma CBs (8x4, 8x4 luma
CBs) form one SCIPU because the binary tree (BT) split
from the 4x4 chroma samples would result in chroma CBs
smaller than 16 chroma samples.

FIG. 16 shows SCIPU examples.

The type of a SCIPU 1s inferred to be non-inter if the
current slice 1s an I-slice or the current SCIPU has a 4x4
luma partition 1n 1t after further split one time (because no
inter 4x4 1s allowed 1 VVC); otherwise, the type of the
SCIPU (inter or non-inter) 1s 1indicated by one signalled tlag
betore parsing the CUs in the SCIPU.

2.14 Small Chroma Block Constrains in VVC Drait 6

In VVC draft 6 (JVET-02001-vE.docx), the constrains on
small chroma blocks are implemented as follows (related
part is marked in {{ } }). Boldface texts are enclosed in [[]].

Descriptor

coding_tree(x0, yO, cbWidth, cbHeight, qgOnY, qgOnC, cbSubdiv, cqtDepth,

mttDepth, depthOffset,

partldx, {{treeTypeCurr, modeTypeCurr}}) {

if(split_cu_flag) {

if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor)

&&

allowSplitQT)

[[split_qgt_flag]]

ae(v)

US 11,601,652 B2
17 18

-continued

if(tsplit_gt_flag) {
if((allowSplitBtHor || allowSplitTtHor)&&
(allowSplitBtVer || allowSplitTtVer))
[[mtt_split_cu_vertical flag]] ae(v)
if((allowSplitBtVer && allowSplitTtVer && mitt_split_cu_verti cal flag) ||
(allowSplitBtHor && allowSplitTtHor && !mtt_split_cu_vertical flag))

[[mtt_split_cu_binary_ flag]] ae(v)

;

{{if(modeTypeCondition = =1)
modeType = MODE_TYPE_INTRA
else if(modeTypeCondition = = 2) {
mode_constraint_flag ae(v)

modeType = mode_constraint_flag ? MODE_TYPE _INTRA : MODE_TYPE_IN
TER

I else {

modeType = modeTypeCurr

h

treeType = (modeType= =
MODE)TYPE)INTRA) ? DUAL)TREE_LUMA : treeTypeCurr} |
if(! split_gt_flag) {
if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_VER) {
depthoflset += (X0 + cbWidth > pic_width_in_luma_samples) 7 1 : O
x1 =x0 + (cbWidth / 2)
coding_tree(x0, yO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, O, treeType, modeType)
1f(x1 < pic_width_in_luma_samples)
coding_tree(x1, vO, cbWidth / 2, cbHeightY, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
} else if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_HOR) {
depthOflset += (yO + cbHeight > pic_height n_luma samples) ? 1 : O
yl = yO + (cbHeight / 2)
coding_tree(x0, yO, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, O, treeType, modeType)
1f(v1 < pic_height_in_luma_samples)
coding tree(x0, yl, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
I else if(MttSplitMode [x0][vO][mttDepth] = = SPLIT_TT VER) {
xl =x0 + (cbWidth / 4)
x2=%x0+(3*cbWidth/ 4)
qeOnY = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
qgOnC = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_oflset_subdiv)
coding_tree(x0, yO, cbWidth / 4, cbHeight, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOflset, O, treeType, modeType)
coding tree(x1, yO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding tree(x2, y0, cbWidth / 4, cbHeight, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)
} else {/* SPLIT_TT_HOR */
yl = yO + (cbHeight / 4)
y2 =vy0 + (3 * cbHeight / 4)
qeOnY = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
qgOnC = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_oflset_subdiv)
coding tree(x0, yO, cbWidth, cbHeight / 4, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
coding_tree(x0, y1, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding_tree(x0, yv2, cbWidth, cbHeight / 4, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOflset, 2, treeType, modeType)
h

I else {

x1 =x0 + (cbWidth / 2)
vyl = yO + (cbHeight / 2)
coding_tree(X0, yvO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0, O, 0, treeType, modeType)
1f(x1 < pic_width_in_luma_samples)
coding_tree(xl, yO, cbWidth / 2, cbHeight / 2, ggOnY, qgOnC,
cb Subdiv + 2,
cqtDepth + 1, 0, O, 1, treeType, modeType)
1f(v1 < pic_height_in_luma_samples)
coding_tree(x0, yl, cbWidth / 2, cbHeight / 2, ggOnY, qgOnC,
cbSubdiv + 2,

cqtDepth +1, 0, 0, 2, treeType, modeType)
1f(v | < pic_height in_luma samples && xI < pic_width_in_luma_samples)
coding_tree(xl, vl, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cbSubdiv + 2,

h

cqtDepth +1, 0, 0, 3, treeType, modeType)

US 11,601,652 B2

19

-continued

{{if(modeTypeCur = = MODE_TYPE_ALL && modeType = =

MODE_TYPE_INTRA) {

coding_tree(x0, y0, cbWidth, cbHeight, qgOnY, qgOnC, cbSubdiv, cqtDepth,

mttDepth,0,0

)
h

DUAL_TREE_CHROMA, modeType)

33
} else

coding unit{ x0, yO, cbWidth, cbHeight, cqtDepth, treeTypeCurr , modeTypeCurr

2.14.1.1 Coding Unit Syntax

coding unit{ x0, y0, cbWidth, cbHeight, cqtDepth, treeType, modeType) {

ch'lype = treeType = = DUAL_TREE_CHROMA? 1 : O
if(slice_type !=1 || sps_ibc_enabled_flag || sps_palette_enabled_flag) {
1f(treeType = DUAL_TREE_CHROMA &&

20

Descriptor

' ((cbWidth = = 4 && cbHeight = = 4) || [[modeType = = MODE_TYPE_INTRA]])

&& !sps_ibc_enabled_flag))

[[cu_skip_flag]] [X0][yO]
1f(cu_skip_flag] x0][yO | = =0 && slice_type =1

ae(v)

&& (cbWidth = = 4 && cbHeight = = 4) [[&& modeType = = MODE_TYPE_ALL]])

[[pred_mode_flag]]
if(((slice_type == 1 && cu_skip_flag| xO][yO] = =0) |

ae(v)

(slice_type != 1 && (CuPredMode[chType][x0][yO] = MODE_INTRA ||
(cbWidth = = 4 && cbHeight = =4 && cu_skip flag[xO0 [yvO]| ==0)))) &&
cbWidth <= 64 && cbHeight <= 64 && [[modeType != MODE_TYPE_INTER]] &&

sps_ibc_enabled_flag && treelype != DUAL_TREE CHROMA)
[[pred_mode 1bc_flag]]

ae(v)

if((((slice_type==1] (cbWidth = = 4 && cbHeight = = 4) || sps_ibc_enabled_flag) &&

CuPredMode[X0][yO] = = MODE_INTRA) |

(slice_type !=1 && !(cbWidth = =4 && cbHeight = =4) && !sps_ibc_enabled_flag
&& CuPredMode [xO |[vO | '= MODE_INTRA)) && !sps_palette _enabled flag &&
cbWidth <= 64 && cbHeight <= 64 && && cu_skip_flag] x0 |[y0 | == 0 &&

[[modeType != MODE_INTER]])
[[pred_mode_plt flag]]

h

{{ The variable modeTypeCondition is derived as follows:

If one of the following conditions is true, modeTypeCon-
dition 1s set equal to O

slice_type==I and qtbtt_dual_tree 1intra_flag 1s equal to
1

modeTypeCurr 1s not equal to MODE_TYPE_ALL

Otherwise, 1f one of the following conditions 1s true,

modeTypeCondition 1s set equal to 1

cbWidth * cbHeight 1s equal to 64 and split_qt_flag is
equal to 1

cbWidth * cbHeight 1s equal to 64 and MttSphitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

cbWidth * cbHeight 1s equal to 32 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

Otherwise, 1f one of the following conditions 1s true,

modeTypeCondition 1s set equal to 1+(slice_type =] ?
1:0)

cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

40

45

50

55

60

65

ae(v)

cbWidth * cbHeight 1s equal to 128 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

Otherwise, modeTypeCondition is set equal to 0}}

Allowed Quad Split Process

Inputs to this process are:

a coding block size cbSize 1n luma samples,

a multi-type tree depth mttDepth,

a variable treelype specitying whether a single tree
(SINGLE_TREE) or a dual tree 1s used to partition the
CTUs and, when a dual tree 1s used, whether the luma
(DUAL_TREE_LUMA) or chroma components (DU-
AL_TREE_CHROMA) are currently processed,

{{a variable modeType specifying whether intra (MOD-

E_INTRA), IBC (MODE_IBC), palette (MODE_PLT),

and 1nter coding modes can be used (MOD-

E_TYPE_ALL), or whether only 1ntra, IBC, and palette

coding modes can be used (MODE_TYPE_INTRA), or

whether only inter coding modes can be used (MOD-

E_TYPE_INTER) for coding units inside the coding
tree node.}}

Output of this process 1s the variable allowSplitQt.

The variable allowSplitQt 1s derived as follows:

If one or more of the following conditions are ftrue,
allowSplitQt 1s set equal to FALSE:
treeType 1s equal to SINGLE_TREE or DUAL_TREE_

LUMA and cbSize 1s less than or equal to MinQt-
S1zeY

US 11,601,652 B2

21

treeType 1s equal to DUAL_TREE_CHROMA and
cbS1ze/SubWidthC 1s less than or equal to MinQt-
S1zeC

mttDepth 1s not equal to 0

treeType 1s equal to DUAL_TREE_CHROMA and
(cbS1ze/SubWidthC) 1s less than or equal to 4

HtreeType is equal to DUAL_TREE_CHROMA and
modeType is equal to MODE_TYPE_INTRA}}

Otherwise, allowSplitQt 1s set equal to TRUE.

Allowed Binary Split Process

Inputs to this process are:

a binary split mode btSplit,

a coding block width cbWidth 1n luma samples,

a coding block height cbHeight 1n luma samples,

a location (x0, v0O) of the top-left luma sample of the
considered coding block relative to the top-left luma
sample of the picture,

a multi-type tree depth mttDepth,

a maximum multi-type tree depth with o
Depth,

a maximum binary tree size maxBtSize,

a minimium quadtree size minQtSize,

a partition index partldx,

a variable treelype specilying whether a single tree

(SINGLE_TREE) or a dual tree 1s used to partition the
CTUs and, when a dual tree 1s used, whether the luma
(DUAL_TREE_LUMA) or chroma components (DU-
AL_TREE_CHROMA) are currently processed,
{{a variable modelype specitying whether intra (MOD-
H_INTRA), IBC (MODE_IBC), palette (MODE_PLT),
and inter coding modes can be used (MOD-
E_TYPE_ALL), or whether only 1ntra, IBC, and palette
codmg modes can be used (MODE_TYPE_INTRA), or
whether only inter coding modes can be used (MOD-
H_TYPE INTER) for coding units inside the coding

tree node. 1
Output of this process 1s the variable allowBtSplit.

Tset maxMtt-

TABLE

6-2

Specification of parallel TtSplit and cbSize based on btSplit.

[[btSplit = =
SPLIT BT VER]]

[[btSplit = =
SPLIT BT _HOR]]

[parallel TtSplit]]
[[cbSize]]

SPLIT_TT_VER
cbWidth

SPLIT_TT_HOR
cbHeight

The vanables parallelTtSplit and cbSize are dernived as
specified 1n Table 6-2.
The variable allowBtSplit 1s dertved as follows:
If one or more of the following conditions are true,
allowBtSpht 1s set equal to FALSE:
cbSize 1s less than or equal to MinBtSizeY
cbWidth 1s greater than maxBtSize
cbHeight 1s greater than maxBtSize
mttDepth 1s greater than or equal to maxMttDepth
treeType 1s equal to DUAL_TREE_CHROMA and
(cbWidth/SubWidthC) * (cbHeight/SubHeightC) 1s
less than or equal to 16

HtreeType is equal to DUAL_TREE_CHROMA and
modeType is equal to MODE_TYPE_INTRA}}

Otherwise, 1f all of the following conditions are true,
allowBtSplit 1s set equal to FALSE
btSplit 1s equal to SPLIT_BT_VER
yO+cbHeight 1s greater than pic_height jn_ju-

ma_samples

10

15

20

25

30

35

40

45

50

55

60

65

22

Otherwise, if all of the following conditions are true,
allowBtSplit 1s set equal to FALSE
btSplit 1s equal to SPLIT_BT_VER
cbHeight 1s greater than MaxTbSizeY
x0+cbWidth 1s greater than pic_width_in_ju-

ma_samples

Otherwise, 1t all of the following conditions are ftrue,
allowBtSplit 1s set equal to FALSE
btSplit 1s equal to SPLIT_BT_HOR
cbWidth 1s greater than MaxTbSizeY
yO+cbHeight 1s greater than pic_height in_ju-

ma_samples

Otherwise, 1t all of the following conditions are true,
allowBtSplit 1s set equal to FALSE

x0+cbWidth 1s greater than pic_width_in_lu-
ma_samples
yO+cbHeight 1s greater than pic_height in_ju-

ma_samples

cbWidth 1s greater than minQtSize
Otherwise, if all of the following conditions are true,
allowBtSplit 1s set equal to FALSE
btSplit 1s equal to SPLIT_BT_HOR
x0+cbWidth 1s greater than
ma_samples
yO+cbHeight 1s less than or equal to pic_height _in_lu-
ma_samples
Otherwise, if all of the following conditions are true,
allowBtSplit 1s set equal to FALSE:
mttDepth 1s greater than O
partldx 1s equal to 1
MittSplitMode[x0][yO][mttDepth-1] 1s equal to paral-
lel TtSplat
Otherwise, 1f all of the following conditions are ftrue,
allowBtSplit 1s set equal to FALSE
btSplit 1s equal to SPLIT_BT_VER
cbWidth 1s less than or equal to MaxTbSi1zeY
cbHeight 1s greater than MaxTbSi1zeY
Otherwise, if all of the following conditions are true,
allowBtSplit 1s set equal to FALSE
btSplit 1s equal to SPLIT_BT_HOR

cbWidth 1s greater than MaxTbSizeY
cbHeight 1s less than or equal to MaxTbSizeY

Otherwise, allowBtSplit 1s set equal to TRUE.

Allowed Ternary Split Process

Inputs to this process are:

a ternary split mode ttSplit,

a coding block width cbWidth in luma samples,

a coding block height cbHeight in luma samples,

a location (x0, y0) of the top-left luma sample of the
considered coding block relative to the top-left luma
sample of the picture,

a multi-type tree depth mttDepth

a maximum multi-type tree depth with oflset maxMit-
Depth,

a maximum ternary tree size maxtSize,

a variable treeType specitying whether a single tree
(SINGLE_TREE) or a dual tree 1s used to partition the
CTUs and, when a dual tree 1s used, whether the luma
(DUAL_TREE_LUMA) or chroma components (DU-
AL_TREE_CHROMA) are currently processed,

{{a variable modelype specilying whether intra (MOD-

H_INTRA), IBC (MODE_IBC), palette (MODE_PLT),

and inter coding modes can be used (MOD-

E_TYPE_ALL), or whether only 1ntra, IBC, and palette

coding modes can be used (MODE_TYPE_INTRA), or

pic_width_in_ju-

US 11,601,652 B2

23

whether only inter coding modes can be used (MOD-
H_TYPE INTER) for coding units inside the coding

tree node. H
Output of this process 1s the vanable allowTtSplit.

TABLE

6-3

Specification of cbSize based on ttSplit.

[[ttSplit = =
SPLIT TT VER]]

[[ttSplit = =
SPLIT_TT HOR]]

[[cbSize]] cbWidth cbHeight

The variable cbSize 1s derived as specified 1n Table 6-3.

The variable allowTtSplit 1s derived as follows:

If one or more of the following conditions are true,
allowTtSplit 1s set equal to FALSE:
cbSize 1s less than or equal to 2 * MinTtSi1zeY
cbWidth 1s greater than Min(MaxTbhSizeY, maxTtSize)
cbHeight 1s greater than Min(MaxTbS1zeY, maxTtSize)
mttDepth 1s greater than or equal to maxMttDepth

x0+cbWidth 1s greater than pic_width_in_lu-
ma_samples
yO+cbHeight 1s greater than pic_height in_lu-

ma_samples
treeType 1s equal to DUAL_TREE_CHROMA and

(cbWidth/SubWidthC) * (cbHeight/SubHeightC) 1s
less than or equal to 32

HtreeType is equal to DUAL_TREE_CHROMA and
modeType is equal to MODE_TYPE_INTRA)}}

Otherwise, allowTtSplit 1s set equal to TRUE.

[[pred_mode_flag]] equal to O specifies that the current
coding unit 1s coded in 1nter prediction mode. pred_mod-
¢_flag equal to 1 specifies that the current coding unit is
coded 1n 1ntra prediction mode.

When pred_mode flag 1s not present, 1t 1s inferred as
follows:

It cbWidth 1s equal to 4 and cbHeight 1s equal to 4,

pred_mode flag 1s inferred to be equal to 1.

{{Otherwise, if modeType is equal to MODE_TYPE_IN-
TRA, pred_mode_{flag 1s inferred to be equal to 1.

Otherwise, 1 modelype 1s equal to MODE_TY-
PE_INTER, pred_mode_flag 1s inferred to be equal to
0.}

Otherwise, pred_mode_flag 1s inferred to be equal to 1
when decoding an I slice, and equal to 0 when decoding
a P or B slice, respectively.

The vanable CuPredMode[chType][x][y] 15 denved as
follows for x=x0 . . . xO+cbWidth-1 and y=y0 . . .
yO+cbHeight-1:

If pred_mode flag 1s equal to 0, CuPredMode[chType]
x][v] 1s set equal to MODE_INTER.

Otherwise (pred_mode flag 1s equal to 1), CuPredMode
chlype][x][y] 1s set equal to MODE_INTRA.

[[pred_mode_ibc_flag]] equal to 1 specifies that the cur-
rent coding unit 1s coded 1n IBC prediction mode. pred_mo-
de_1bc_flag equal to O specifies that the current coding unit
1s not coded i IBC prediction mode.

When pred_mode_ibc_flag 1s not present, it 1s inferred as
follows:

If cu_skip_flag[x0][y0] 1s equal to 1, and cbWidth 1s equal
to 4, and cbHeight 1s equal to 4, pred_mode_ibc_flag 1s
inferred to be equal 1.

Otherwise, 1 both cbWidth and cbHeight are equal to 128,
pred_mode 1bc_flag i1s inferred to be equal to 0.

{{Otherwise, if modeType is equal to MODE_TYPE_IN-

FER, pred_mode_ibc_flag 1s inferred to be equal to 0.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

Otherwise, 1 treelype 1s equal to DUAL_
TREE_CHROMA, pred_mode_1ibc_{lag 1s inferred to
be equal to 0.}}

Otherwise, pred_mode_1bc_{tlag 1s infered to be equal to
the value of sps_ibc_enabled_flag

when decoding an I slice, and O when decoding a P or B
slice, respectively.

When pred_mode 1bc_flag 1s equal to 1, the vanable
CuPredMode[chType][x][y] 1s set to be equal to MOD-

E_IBC for x=x0 . . . xO+cbWidth-1 and y=y0 . . .
yO+cbHeight-1.

3. Examples of Technical Problems Solved by Disclosed

Technical Solutions

1. Currently IBC 1s considered as MODE_TYPE_INTRA
and thus small chroma block 1s disallowed, which leads
to unnecessary coding etliciency loss.

2. Currently palette 1s considered as MODE_TYPE_IN-
TRA and thus small chroma block 1s disallowed, which
leads to unnecessary coding efliciency loss.

3. Currently small chroma block constrains do not con-
sider color subsampling format.

4. Currently same partition and prediction mode con-
straints on small blocks 1s applied to all chroma for-
mats. However, 1t may be desirable to design different
constraint mechanisms on small blocks 1n 4:2:0 and
4:2:2 chroma formats.

5. Currently the Palette mode flag signaling depends on
the modeType, which 1s not desirable as palette may be

not apply small block constraints.
6. Currently the IBC mode flag 1s inferred to be 0 for PB

slice with cu_skip_flag equal to 1 but MODE_TYPE

equal to MODE_TYPE_INTRA, this 1s 1llegal 1n the

syntax parsing.

7. Currently, non-4x4 luma IBC mode 1s not allowed for
SCIPU luma blocks, which may be not desirable and
may cause coding efliciency loss.

8. 2xH chroma block 1s still allowed, which 1s not friendly
to hardware implementation.

9. CIIP 1s considered as of MODE INTER while 1t uses
intra prediction, which breaks the constrains in some
cases.

10. When SCIPU 1s applied, delta QP for chroma may be
signaled depending on the luma splitting. For example,
when the current block dimensions are 16x8 1n luma
samples and are split with vertical T'T, a local dual tree
may be applied. It 1s specified that ggOnC=qgOnC &&
(cbSubdiv+2<=cu_chroma_qp_oflset_subdiv)

So qgOnC 1s set to zero 1 cbSubdiv+2<=cu_chro-
ma_qp_oifset_subdiv. This conditional setting
assumes that the chroma component 1s also split by
TT. With the local dual tree, the chroma component
may not be split, thus cbSubdiv may be larger than
cu_chroma_qgp_oflset_subdiv. IsCuChromaQpOil-
setCoded should be set to be 0 to allow signaling
delta QP for chroma. However, IsCuChromanOf--
setCoded 1s not set to be 0 because qgOnC 1s set to
be O.

4. Examples of Technical Solutions and Embodiments

The listing below should be considered as examples.
These techniques should not be interpreted 1n a narrow way.
Furthermore, these techniques can be combined 1n any
mannet.

In this document, “MxN coding tree node” indicates a
MxN block, with M as the block width and N as the block
height 1n luma samples, which may be further partitioned,
such as by QT/BT/TT. For example, a block could be a QT

node, or a BT node, or a'TT node. A coding tree node could

US 11,601,652 B2

25

be a coding unit (e.g., with three color components for single
tree, with two chroma color components for dual tree
chroma coding, and only luma color component for dual tree
luma coding), or a luma coding block, or a chroma coding
block. A “small coding tree node unit” may indicate a coding
tree node with block size MxN equal to 32/64/128 1n luma
samples.

If not specifically mentioned, the width W and height H
for a coding block 1s measured in luma samples. For

example, MxN coding block means a MxN luma block,
and/or two (M/SubWidthC)x(N/SubHeightC) chroma
blocks, where SubWidthC and SubHeightC are derived by

chroma format as below.

[[Chroma [[Sub
[[chroma_format_idc]] [[separate_colour plane flag|] format]] Width(C]]
0 0 Monochrome 1
1 0 4:2:0 2
2 0 4:2:2 2
3 0 4:4:4 1
3 1 4:4:4 1

1. Whether and/or how to partition into small blocks may

depend on color formats.

a. In one example, for 4:4:4 color format, the constrains
on the sizes of chroma blocks may follow those con-
strains on luma blocks.

b. In one example, for 4:2:2 color format, the constrains
on the sizes of chroma blocks may follow those con-
strains for 4:2:0 color format.

c. In one example, for 4:0:0, and/or 4:4:4 chroma format,
the constraints on small block partitions and/or predic-
tion modes may be not applied.

d. In one example, the constraints on small block parti-
tions and/or prediction modes may be applied differ-
ently for different chroma formats.

1. In one example, for MxN (such as 8x8) coding tree
node with hornizontal BT split, m 4:2:2 chroma
format, the horizontal BT split may be allowed for
both chroma block and luma block, while 1n 4:2:0
chroma format, the horizontal BT split may be
allowed for luma block but disabled for chroma
block.

11. In one example, for MxN (such as 16x4) coding tree
node with vertical BT split, 1n 4:2:2 chroma format,
the vertical BT split may be allowed for both chroma
block and luma block, while 1n 4:2:0 chroma format,
the vertical BT split may be allowed for luma block
but disabled for chroma block.

111. In one example, for MxN (such as 8x16) coding tree
node with horizontal TT split, 1n 4:2:2 chroma {for-
mat, the horizontal TT split may be allowed for both
chroma block and luma block, while 1n 4:2:0 chroma
format, the horizontal TT split may be allowed for
luma block but disabled for chroma block.

1v. In one example, for MxN (such as 32x4) coding tree
node with vertical TT split, 1n 4:2:2 chroma format,
the vertical T'T split may be allowed for both chroma
block and luma block, while 1n 4:2:0 chroma format,
the vertical TT split may be allowed for luma block
but disabled for chroma block.

v. In one example, for 4:0:0, and/or 4:4:4 color formats,
small block constraints may be not applied.

¢. In one example, whether to enable SCIPU 1s dependent
on the color format.

5

10

25

30

35

40

45

50

55

60

65

26

1. In one example, SCIPU 1s enabled for 4:2:0 and 4:2:2
color formats.
11. In one example, SCIPU 1s disabled for 4:0:0 and/or

4:4:4 color format.

1. In one example, modeType may be always equal
to MODE TYPE AILIL for 4:0:0 and/or 4:4:4
color format.

2. In one example, modeTypeCondition may be
always equal to O for 4:0:0 and/or 4:4:4 color
format.

2. How to determine the prediction modes (and/or mod-
¢Type) for (sub-)blocks of a coding tree node may depend on
chroma formats.

[[Sub
HeightC]]

1
2

a. In one example, 11 one of the below conditions 1s true,
the modeType of (sub-)blocks partitioned by this cod-
ing tree node may be equal to MODE_TYPE_ALL for
4:2:2 chroma format, while for 4:2:0 chroma format,
the modeType may be equal to either MODE_TY-
PE_INTRA or MODE_TYPE_INTER.

1. MxN (such as 8x8) coding tree node with horizontal
BT split

11. MxN (such as 16x4) coding tree node with vertical
BT split

111. MxN (such as 8x16) coding tree node with hori-
zontal TT split

1v. MxN (such as 32x4) coding tree node with vertical
TT split

3. It 1s proposed to rename MODE_TYPE_INTRA to
MODE_TYPE_NO_INTER and restrict the usage of MOD-
E_INTER.

a. In one example, when modeType of a coding unit 1s
equal to MODE_TYPE_NO_INTER, MODE_INTER
may be disallowed.

4. It 1s proposed to rename MODE_TYPE_INTER to
MODE_TYPE_NO_INTRA and restrict the usage of MOD-
E_INTRA.

a. In one example, when modeType of a coding unit 1s
equal to MODE_TYPE_NO_INTRA, MODE_INTRA
may be disallowed.

5. The mode constraint tlag may be never signaled 1n 4:2:2

and/or 4:0:0 and/or 4:4:4 chroma formats.

a. In one example, when mode constraint flag 1s not
present, 1t may be inferred to equal to be 1.

1. Alternatively, when mode constraint flag 1s not pres-

ent, 1t may be inferred to equal to be 0.
6. Whether and/or how to apply SCIPU on an MxN

coding block with M as the block width and N as the block
height may depend on whether the color format 1s 4:2:0 or
4:2:2.

a. In one example, in 4:2:2 color format, for an MxN
coding block with M as the block width and N as the
block height, SCIPU may be enabled only 1 M mul-
tiplied by N (denoted by M*N) 1s equal to 64 or 32.

b. In one example, a coding tree node with M*N=128 may

be never treated as SCIPU block 1n 4:2:2 color format.

4 |1

Ll

d

C.

d.

C.

US 11,601,652 B2

27

In one example, a coding tree node with BT split and
M*N=64 may be never treated as SCIPU block 1n 4:2:2
color format.

In one example, a coding tree node with split_qt_tlag
equal to 1 and M*N=64, may be an SCIPU block 1n
4:2:2 color format.

In one example, a coding tree node with TT split and
M*N=64, may be treated as SCIPU block 1n 4:2:2 color
format.

f. In one example, a coding tree node with BT split and

h. .

7.

M*N=32, may be treated as SCIPU block in 4:2:2 color
format.

. In above description, for an SCIPU block 1n 4:2:2 color

format, the modeTypeCondition may be always equal
to 1.

In above description, for an SCIPU block 1n 4:2:2 color
format, only MODE_TYPE_INTRA may be allowed
for both the current block i1n parent node and all

sub-blocks under child leaf nodes.
In 4:2:2 color format, modelypeCondition of an

SCIPU block may be always equal to 1.

d.

b.
8.
may
a.

b.

9.

In one example, modeTypeCondition may be equal to
0 or 1 for 4:2:2 color format.

In one example, for SCIPU blocks 1 4:2:2 color
format, modeTypeCondition may be never equal to 2.
In 4:2:2 color format, modeType of an SCIPU block
be always equal to MODE_TYPE_INTRA.

In one example, modeType may be equal to MOD-
E_TYPE_ALL or MODE_TYPE_INTRA 1n 4:2:2
color format.

In one example, for SCIPU blocks 1 4:2:2 color
format, MODE_TYPE_INTER may be disabled.

Whether the block partition 1s allowed or not may be

dependent on the modelype, and/or the block size.
a. In one example, whether BT and/or T'T split 1s allowed

10.
MODE_TYPE

for a block may be dependent on the modeType.

1. In one example, i modeType 1s equal to MODE_TY-
PE_INTER, then BT split may be disallowed for the
current coding block (e.g., allowBtSplit 1s set equal
to false).

11. In one example, 1f modeType 1s equal to MODE_TY-
PE_INTER, then TT split may be disallowed for the
current coding block (e.g., allowTtSplit 1s set equal
to false).

. In one example, whether BT and/or TT split 1s allowed

for a block may be dependent on the modeType and the

block size.

1. In one example, for an MxN coding block, with M as
the block width and N as the block height, when
M*N 1s less than or equal to 32 and modelype 1s
equal to MODE_TYPE_INTER, the BT split may be
disallowed (e.g., allowBtSplit 1s set equal to false).

11. In one example, for an MxN coding block, with M

as the block width and N as the block height, when

M*N 1s less than or equal to 64 and modeType 1s

equal to MODE_TYPE_INTER, the TT split may be

disallowed (e.g., allowTtSplit 1s set equal to false).

When modelypeCurr of a coding tree 1s equal to

_INTER, split of the coding tree may be

restricted

d.

b.

In one example, when modeTypeCurr of a coding tree
1s equal to MODE_TYPE_INTER, BT split may be
disallowed.

In one example, when modeTypeCurr of a coding tree
1s equal to MODE_TYPE_INTER, TT split may be

disallowed.

10

15

20

25

30

35

40

45

50

55

60

65

c. In one example, for DUAL_TREE

28

c. In one example, when modeTypeCurr of a coding tree

1s equal to MODE_
disallowed.

TYPE_INTER, QT split may be

. In one example, when modeTypeCurr of a coding tree

1s equal to MODE_TYPE_INTER and luma block size
1s less than or equal to 32, BT split may be disallowed.

. In one example, when modeTypeCurr of a coding tree

1s equal to MODE_TYPE_INTER and luma block size
1s less than or equal to 64, TT split may be disallowed.

11. A coding unit with treelype being DUAL_TREE
LUMA may be coded 1n inter mode.
a. In one example, coding unit coded i1n inter coding

mode, 1.e. MODE_INTER may only contain luma
component even for color formats with multiple color

components.

b. In one example, pred_mode_tlag may need to be parsed

for DUAL TREE LUMA block.

_LUMA block coded
in 1mter mode, the same constrains of inter mode for
SINGLE_TREE may be also applied.

1. In one example, 4x4 DUAL_TREE_LUMA inter

block may be disallowed.

12. Chroma 1intra (and/or IBC) blocks with block width

equal to M (such as M
allowed.

a. In one example, 2xN (such as N<=64) chroma intra

=2) chroma samples may be not

blocks may be not allowed 1n dual tree.

1. In one example, when treeType 1s equal to DUAL_
TREE_CHROMA and the block width 1s equal to 4
chroma samples, vertical BT split may be disabled.

11. In one example, when treeType 1s equal to DUAL _
TREE_CHROMA and the block width 1s equal to 8

chroma samples, vertical TT split may be disabled.

b. In one example, 2xN (such as N<=64) chroma intra

(and/or IBC) blocks may be not allowed 1n single tree.
1. In one example, for MxN (such as M=8 and N<=64)
coding tree node with vertical BT split, one of below

process may be applied.
1. Vertical BT split may be disallowed for the 4xN or
4x (N/2) chroma block but allowed for the 8xN

luma block.

2. The 4xN or 4x (N/2) chroma block may be not
vertical BT split, and it may be coded by MOD-
E_INTRA, or MODE_IBC.

3. Vertical BT split may be allowed for both the 8xN
luma block and the 4xN or 4x (IN/2) chroma block,
but both luma and chroma blocks not coded by
MODE_INTRA (e.g., may be coded by MOD-
E_INTER, or MODE_IBC).

. In one example, for MxN (such as M=16 and
N<I 64) coding tree node with vertical TT split, one
of below process may be applied.

1. Vertical T'T split may be disallowed for the 8xN or
8% (N/2) chroma block but allowed for the 16xN
luma block.

2. The 8xN or 8x (IN/2) chroma block may be not
vertical TT split and coded by MODE_INTRA, or
MODE MC.

3. Vertical TT split may be allowed for both the
16xNN luma block and the 8xIN or 8x (IN/2) chroma
block, but both luma and chroma blocks may be
not coded by MODE_INTRA (e.g., may be coded
by MODE_INTER, or MODE_IBC).

L.L

13. IBC mode may be allowed for luma and/or chroma
blocks regardless of whether 1t 1s of small block size.

US 11,601,652 B2

29

a. In one example, IBC mode may be allowed for luma
blocks 1ncluding 8x4/8x8/16x4 and 4xN (such as
N<=64) luma blocks, even iI modelype 1s equal to

MODE_TYPE_INTRA.
b. In one example, IBC mode may be allowed for chroma

blocks, even 1 modelype 1s equal to MODE_TY-
PE_INTRA.

14. The signaling of IBC prediction mode flag may
depend on prediction mode type (e.g., MODE_TYPE_IN-
TRA).

a. In one example, IBC prediction mode flag for a
non-SKIP block (e.g. a coding block which 1s not coded
by skip mode) may be explicitly signaled in the bis-
tream when the treeType 1s not equal to DUAL_
TREE_CHROMA and the modeType 1s equal to MOD-

_TYPE_INTRA.

15 IBC prediction mode flag may be inferred depending,
on the CU SKIP flag and the mode type (e.g., modelype).
a. In one example, 11 the current block 1s coded with SKIP
mode (such as cu_skip flag 1s equal to 1), and the
modeType 1s equal to MODE_TYPE_INTRA, the IBC
prediction mode flag (such as pred_mode_1bc_flag)
may be inferred to be equal to 1.

16. The explicit signaling of Palette mode flag may not

depend on the modeType.

a. In one example, palette mode tlag (such as pred_mode
plt_flag) signaling may depend on the slice_type, block
s1ize, prediction mode, etc., But no matter what the
modeType 1s.

b. In one example, palette mode tlag (such as pred_mode_
plt_flag) 1s mnferred to be 0 when modeType 1s equal to

MODE_TYPE_INTER or MODE_TYPE_INTRA.

17. IBC mode may be allowed to use when modelype 1s

equal to MODE_TYPE_INTER
a. In one example, chroma IBC may be disallowed when

modeType 1s equal to MODE_TYPE_INTRA.

b. In one example, IBC mode may be allowed to use when
modeType 1s equal to MODE_TYPE_INTRA or MOD-

H_TYPE_INTER.

C. In one example, IBC mode may be allowed to use
regardless what modeType 1s.

d. In one example, within one SCIPU, IBC and inter mode
may be both allowed.

¢. In one example, the size of IBC chroma block may
always corresponds to the size of corresponding luma

block.

f. 311 one example, when modeType 1s equal to MOD-
E_TYPE_INTER and coding unit size 1s 4x4 in luma,
Slgnahng of pred_mode_ibc_flag may be skipped and
pred_mode 1bc_flag may be inferred to be equal to 1.
18. Palette mode may be allowed to use when modeType
1s MODE_TYPE_INTER
a. In one example, chroma palette may be disallowed
when modeType 1s MODE_TYPE_INTRA.
b. In one example, IBC mode may be allowed to use when
modeType 1s equal to MODE_TYPE_INTRA or MOD-

H_TYPE_INTER.

C. 111 one example, IBC mode may be allowed to use
regardless what modeType 1s.

d. In one example, palette mode may be allowed to use
when modeType 1s equal to MODE_TYPE_INTRA or
MODE_TYPE_INTER.

¢. In one example, palette mode may be allowed to use
regardless what modeTlype 1s.

f. In one example, within one SCIPU, palette and inter
mode may be both allowed.

LlJ

10

15

20

25

30

35

40

45

50

55

60

65

30

g. In one example, within one SCIPU, palette, IBC and
inter mode may be all allowed.

h. In one example, the size of palette chroma block may
always corresponds to the size of corresponding luma

block.

1. f'n one example, when modelype 1s equal to MOD-

E_TYPE_INFER and coding unit size 1s 4x4 1n luma,

Slgnahng of pred_mode plt_tlag may be skipped and

pred_mode plt flag may be inferred to be equal to 1.
1. In one example, when modeType 1s equal to MOD-
E_TYPE_INTER and coding unit size 1s 4x4 1n luma,

one message may be sent to indicated i the current

prediction mode 1s of IBC or palette.
k. In one example, whether to enable/disable Palette mode
may depend on slice types and modeType.

1. In one example, for I slices with MODE_TYPE_IN-

TRA, Palette mode may be enabled.
11. In one example, for PB slices with MODE_TY-
PE_INTER, Palette mode may be enabled.

19. When palette mode 1s enabled, local dualtree may be
disallowed.

a. In one example, when palette mode 1s enabled, mod-

¢lypeCondition may be always set equal to O.

20. For small chroma blocks with width equal to M (e.g.,
M=2) or height equal to N (e.g., N=2), allowed intra
prediction modes may be restricted to be different from those
allowed for large chroma blocks.

a. In one example, only a subset of intra prediction mode
of available chroma intra prediction modes may be
used.

b. In one example, only INTRA_DC mode may be used.

c. In one example, only INTRA PLANAR mode may be
used.

d. In one example, only INTRA_ANGULARI8 mode
may be used.

¢. In one example, only INTRA_ANGULARS30 mode
may be used.

f. In one example, CCLM modes may be disallowed.

21. For small chroma blocks with width equal to M (e.g.,
M=2) or height equal to N (e.g., N=2), transform types may
be restricted to be different from those allowed for large
chroma blocks.

a. In one example, only transform skip may be used.

b. In one example, only one-dimensional transform may

be used.

c. In one example, coding tools that support multiple
types of transforms are disallowed.

1. Alternatively, the signaling of coding tools that
support multiple types of transforms 1s omitted.

22. CIIP may be considered as MODE_TYPE_INTRA.

a. In one example, CIIP mode may be allowed when
dualtree partitioning 1s used.

1. In one example, CUP mode may be allowed when CU
type 1s of DUAL_TREE_CHROMA.

b. Alternatively, CIIP may be considered as MODE_TY-

PE_INTER

1. In one example, when chroma block width 1s equal to
M (e.g., M=2), CIIP mode may be disallowed.

11. In one example, when chroma block width 1s equal
to M (e.g., M=2), intra prediction modes for chroma
in CIIP may be restricted to simple intra prediction
mode.

1. In one example, INTRA_DC may be used for
chroma intra prediction, when chroma block width
1s equal to M (e.g., M=2).

US 11,601,652 B2

31

2. In one example, INTRA_ANGULARI8 may be
used for chroma intra prediction, when chroma
block width 1s equal to M (e.g., M=2).

3. In one example, INTRA_ANGULARS0 may be
used for chroma intra prediction, when chroma
block width 1s equal to M (e.g., M=2).

111. In one example, intra prediction modes for chroma
in CIIP may be restricted to simple intra prediction
mode.

1. In one example, INTRA_DC may be used for
chroma intra prediction.

2. In one example, INTRA_ANGULARI18 mode
may be used for chroma intra prediction.

3. In one example, INTRA_ANGULARS50 mode

may be used for chroma intra prediction.
23. For above bullets, the variables M and/or N may be
pre-defined or signaled.

a. In one example, M and/or N may be further dependent
on color formats (e.g., 4:2:0, 4:2:2, 4:4:4).

24. modeType may be extended to cover more types.

a. In one example, modelype may be MODE_TY-
PE_IBC. When modelype 1s equal to MODE_TY-
PE_IBC, the prediction mode 1s mferred to be IBC.

1. In one example, pred_mode_tlag 1s not signaled 1n
this case.

11. In one example, pred_mode _1bc_1flag 1s not signaled
in this case.

111. In one example, pred_mode_plt_flag 1s not signaled
in this case.

b. In one example, modelype may be MODE_TYPE_P-
ALETTE. When modelype 1s equal to MODE_TY-
PE_PALETTE, the prediction mode 1s mnferred to be
Palette mode.

1. In one example, pred_mode_tlag 1s not signaled 1n
this case.

11. In one example, pred_mode_ibc_{flag 1s not signaled
in this case.

111. In one example, pred_mode_plt_flag 1s not signaled
in this case.

c. In one example, [[mode_constraint_flag]] may be
replaced by an index to tell which one of allowed
modeTypes are used.

25. In one example, whether QT split 1s allowed for a
block with dimensions WxH may depend on modelype
combined with dimensions.

a. For example, 11 modeType 1s equal to MODE_TY-
PE_INTER and W 1s equal to 8 and H 1s equal to 8, QT
spit 1s disallowed.

26. In one example, whether vertical TT split 1s allowed
for a block with dimensions WxH may depend on modeType
combined with dimensions.

a. For example, 11 modeType 1s equal to MODE_TY-
PE_INTER and W 1s equal to 16 and H 1s equal to 4,
vertical TT spit 1s disallowed.

2'7. In one example, whether horizontal TT split 1s allowed
for a block with dimensions WxH may depend on modeType
combined with dimensions.

a. For example, 11 modeType 1s equal to MODE_TY-
PE_INTER and W 1s equal to 4 and H 1s equal to 16,
horizontal T'T spit 1s disallowed.

28. In one example, whether vertical BT split 1s allowed
for a block with dimensions WxH may depend on modeType
combined with dimensions.

a. For example, 1 modeType 1s equal to MODE_TY-

PE_INTER and W 1s equal to 8 and H 1s equal to 4,

vertical BT spit 1s disallowed.

10

15

20

25

30

35

40

45

50

55

60

65

32

29. In one example, whether horizontal BT split 1s
allowed for a block with dimensions WxH may depend on
modeType combined with dimensions.

a. For example, 11 modeType 1s equal to MODE_TY-
PE_INTER and W 1s equal to 4 and H 1s equal to 8,
horizontal BT spit 1s disallowed.

30. In one example, whether the prediction mode of a CU
1s inferred by modelype may depend on color components
and/or block dimensions WxH.

a. For example, the prediction mode of a chroma CU 1s
inferred by modeType; but the prediction mode of a
luma CU 1s signaled instead of inferred by modeType.

1. For example, the prediction mode of a luma CU 1s

signaled 1nstead of inferred by modeType if W>4 or
H>4.

31. When SCIPU 1s applied, whether to and/or how to

signal the information related to delta QP of a first compo-
nent may depend on the splitting way of the first component.

a. In one example, when SCIPU 1s applied, whether to
and/or how to signal the information related to delta QP

of a first component may depend on the splitting way
of the
way of a second component.

first component and decoupled from the splitting

b. In one example, the first component 1s luma and the
second component 1s chroma.

c. In one example, the first component 1s chroma and the
second component 1s luma.

32. Any vanable related to delta QP of a first component
cannot be modified during the decoding or parsing process
ol a second component when dual tree and/or local dual tree
coding structure 1s applied.

a. In one example, the local dual tree coding structure may
be used according to SCIPU.

b. In one example, the first component 1s luma and the
second component 1s chroma.

1. The variable may be IsCuQpDeltaCoded.

c. In one example, the first component 1s chroma and the
second component 1s luma.

1. The variable may be IsCuChromaQpOfiisetCoded.

33. When SCIPU 1s applied, the information related to
delta QP of a component (such as luma or chroma) may be

signaled at most once 1n a specific region wherein the luma

component and the chroma component are required to share
the same mode type (such as MODE_TYPE_INTER or
MODE_TYPE_INTRA).

a. In one example, the specific region 1s a regarded as a

quantization group.
5. Embodiments

Newly added parts are enclosed in {{ }}, and the deleted
parts from VVC working draft are marked with double
brackets (e.g., [[a]] denotes the deletion of the character
“a’”). The modifications are based on the latest VVC working
drait (JVET-02001-v11)

US 11,601,652 B2

33

5.1 An Example Embodiment #1

The embodiment below 1s about the constraints on small
block partitions and prediction modes are applied to 4:2:0
and 4:4:4 chroma formats only (not apply to 4:0:0 and 4:4:4
chroma formats).

7.4.9.4 Coding Tree Semantics

The variable modeTypeCondition 1s derived as follows:

If one of the following conditions is true, modeTypeCon-

dition 1s set equal to O
slice_type==I and qtbtt_dual_tree_intra_flag is equal to
1

modeTypeCurr 1s not equal to MODE_TYPE_ALL
{{chroma_format_idc is equal to O

chroma_format_idc is equal to 3}}

Otherwise, 1f one of the following conditions 1s true,
modeTypeCondition 1s set equal to 1
cbWidth * cbHeight 1s equal to 64 and split_qt_flag 1s
equal to 1
cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER
cbWidth * cbHeight 1s equal to 32 and MttSplitMode
[X0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER
Otherwise, 1f one of the following conditions 1s true,
modeTypeCondition 1s set equal to 1+(slice_type =] ?
1:0)
cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER
cbWidth * cbHeight 1s equal to 128 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER
Otherwise, modeTypeCondition 1s set equal to 0
5.2 An Example Embodiment #2
The embodiment below 1s about the signaling of Palette

mode flag not depend on the modeTlype.
7.3.8.5Coding Unit Syntax

coding unit(x0, y0, cbWidth, cbHeight, cqtDepth, treeType, modeType) {
chlype = treeType = = DUAL_TREE CHROMA? 1 : 0
if(slice_type !=1| sps_ibc_enabled_flag || sps_palette_enabled_flag) {
if(treeType = DUAL_TREE_CHROMA &&

10

15

20

25

30

35

34
5.3 An Example Embodiment #3

The embodiment below 1s about the IBC prediction mode

flag 1s inferred depending on the CU SKIP flag and the
modeType.

[[pred_mode_ibc_flag]] equal to 1 specifies that the cur-
rent coding unit 1s coded 1n IBC prediction mode. pred_mo-
de_ibc_flag equal to O specifies that the current coding unit
1s not coded 1n IBC prediction mode.

When pred_mode_1bc_flag 1s not present, it 1s inferred as
follows:

If cu_skip_tlag|x0][y0] 1s equal to 1, and cbWidth 1s equal
to 4, and cbHeight 1s equal to 4, pred_mode_ibc_flag 1s
inferred to be equal 1.

Otherwise, 11 both cbWidth and cbHeight are equal to 128,
pred_mode_ibc_flag 1s inferred to be equal to O.

{{Otherwise, if cu_skip_flag[x0][y0] is equal to 1, and
modeType 1s equal to MODE_TYPE_INTRA, pred_
mode_ibc_flag is inferred to be equal to 1.}}

Otherwise, 11 modelype 1s equal to MODE_TY-
PE_INTER, pred_mode_1bc_flag 1s inferred to be equal
to 0.

Otherwise, 1f treelype 1s equal to DUAL_

TREE_CHROMA, pred_mode_ibc_flag 1s inferred to
be equal to O.

Otherwise, pred_mode_ibc_tlag 1s infered to be equal to
the value of sps_ibc_enabled_flag when decoding an 1
slice, and O when decoding a P or B slice, respectively.

When pred_mode_ibc_flag 1s equal to 1, the variable
CuPredMode[chType][x][v] 1s set to be equal to MOD-
E_IBC for x=x0 . . . x0+cbWidth-1 and y=y0 . . .
yO+cbHeight-1.

5.4 An Example Embodiment #4

The embodiment below 1s about the signaling of IBC
prediction mode flag depend on MODE_TYPE_INTRA,
and/or IBC mode 1s allowed for luma blocks regardless of
whether 1t 1s small block size.

Descriptor

VU (((cbWidth = = 4 && cbHeight = = 4) || modeType = = MODE_TYPE _INTRA)

&& ! sps_ibc_enabled_flag))

[[cu_skip_flag]][X0][yO]
1f(cu_skip_flag] x0][yO | = =0 && slice_type =1

ae(v)

&& ! cbWidth = = 4 && cbHeight = =4) && modelype = = MODE_TYPE_ALL)

[[pred_mode_1flag]]
if(((slice type==1&& cu_skip flag[x0 J[y0O]==0) |

ae(v)

(slice_type !=1 && (CuPredMode[chType][X0][vO] != MODE_INTRA |
(cbWidth = = 4 && cbHeight = =4 && cu_skip_flag[xO [[yO]==0)))) &&
cbWidth <= 64 && cbHeight <= 64 && modeType != MODE_TYPE_INTER &&

sps_ibc_enabled_flag && treeType != DUAL_TREE_CHROMA)
[[pred_mode_ibc_flag]]

ae(v)

if((((slice_type==1]| (cbWidth = = 4 && cbHeight = = 4) || sps_ibc_enabled_flag

) &&
CuPredMode[x0 [[yO | = = MODE_INTRA) ||
(slice_type !=1 && !{ cbWidth = =4 && cbHeight = =4) &&
'sps_1ibc_enabled_flag

&& CuPredMode [X0][vO] '= MODE_INTRA)) && sps_palette_enabled_flag

&&

cbWidth <= 64 && cbHeight <= 64 && && cu_skip_flag] xO J[yO | = =0 [[&&

modeType = MODE_INTER]])
[[pred_mode_plt_flag]]

ae(v)

US 11,601,652 B2

35
7.3.8.5Coding Unit Syntax

coding_unit{ x0, y0, cbWidth, cbHeight, cqtDepth, treeType, modeType) {
ch'lype = treeType = = DUAL_TREE_CHROMA? 1 : O
if(slice_type !=1 | sps_ibc_enabled_flag || sps_palette_enabled flag) {
if(treeType '= DUAL_TREE_CHROMA &&

36

Descriptor

' ((cbWidth = = 4 && cbHeight = =4) || modeType = = MODE_TYPE_INTRA)

&& !sps_ibc_enabled flag))

[[cu_skip_flag]][%O][yO]
1f(cu_skip_flag] x0][yO] = =0 && slice_type =1

ae(v)

&& ! cbWidth = = 4 && cbHeight = =4) && modelype = = MODE_TYPE ALL)

[[pred_mode_flag]]
if(((slice_type ==1 && cu_skip_flag[xO][yvO] = =0) ||

ae(v)

(slice_type =1 && (CuPredMode[chType][X0][vO] '= MODE_INTRA ||
{{(modeType = = MODE_TYPE_INTRA && cu_skip_flag[x0][yO] ==0) }}|
(cbWidth = = 4 && cbHeight = =4 && cu_skip_flag[xO [[yO]==0)))) &&
cbWidth <= 64 && cbHeight <= 64 && modelype = MODE_TYPE_INTER &&

sps_ibc_enabled_flag && treeType != DUAL_TREE_CHROMA)
[[pred_mode_ibc_flag]]

5.5 An Example Embodiment #5

The embodiment below 1s about applying different intra
blocks constraints for 4:2:0 and 4:2:2 color formats.

7.4.9.4 Coding Tree Semantics

The variable modeTypeCondition 1s derived as follows:

If one of the following conditions is true, modeTypeCon-

dition 1s set equal to O

slice_type==I and qtbtt_dual_tree intra_flag 1s equal to
1

modeTypeCurr 1s not equal to MODE_TYPE_ALL

Otherwise, 1 one of the following conditions 1s true,

modeTypeCondition 1s set equal to 1

cbWidth * cbHeight 1s equal to 64 and split_qt_flag 1s
equal to 1

cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

cbWidth * cbHeight 1s equal to 32 and MttSphitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

Otherwise, 1f one of the following conditions 1s true,
modeTypeCondition 1s set equal to 1+(slice_type =1 ?

1:0)

cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER {{and chroma_format_idc is equal
to 1}}

cbWidth * cbHeight 1s equal to 128 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER {{and chroma_format_idc is equal
to 1}}

{{cbWidth is equal to 8 and cbHeight is equal to 8 and
MttSplitMode[x0][yO][mttDepth] 1s equal to
SPLIT_BT_VER and chroma_format_idc 1s equal to
2

cbWidth 1s equal to 4 and cbHeight 1s equal to 16 and
MttSplitMode[x0][yO][mttDepth] 1s equal to
SPLIT_BT_HOR and chroma_format_idc 1s equal to

2

cbWidth 1s equal to 16 and cbHeight 1s equal to 8 and
MttSplhitMode[x0][yO0][mttDepth] 1s equal to
SPLIT_ TT_VER and chroma_format_idc 1s equal
to 2

cbWidth 1s equal to 4 and cbHeight 1s equal to 32 and
MttSplhitMode[x0][yO0][mttDepth] 1s equal to

20

25

30

35

40

45

50

55

60

65

ae(v)

SPLIT_ TT_HOR and chroma_format_idc 1s equal

to 2}}

Otherwise, modeTypeCondition 1s set equal to O
5.6 An Example Embodiment #6
The embodiment below 1s about disallowing 2xN chroma
intra blocks 1n single tree.
7.4.9.4 Coding Tree Semantics
The variable modeTypeCondition 1s derived as follows:
I1 one of the following conditions 1s true, modeTypeCon-
dition 1s set equal to O
slice_type==I and qtbtt_dual_tree 1intra_flag 1s equal to
1
modeTypeCurr 1s not equal to MODE_TYPE_ALL

Otherwise, 1f one of the following conditions is ftrue,

modeTypeCondition 1s set equal to 1

cbWidth * cbHeight 1s equal to 64 and split_qt_flag 1s
equal to 1

cbWidth * cbHeight 1s equal to 64 and MttSphitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

cbWidth * cbHeight 1s equal to 32 and MttSphitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER
Otherwise, 1f one of the following conditions is ftrue,
modeTypeCondition 1s set equal to 1+(slice_type =1 ?
1:0)
cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

cbWidth * cbHeight 1s equal to 128 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

{cbWidth is equal to 8 and MttSplitMode[x0][yO0]
[mttDepth] 1s equal to SPLIT_BT_VER

cbWidth 1s equal to 16 and MttSplitMode[x0][y0]
[mttDepth] is equal to SPLIT_TT_VER}}

Otherwise, modeTypeCondition 1s set equal to O

5.7 An Example Embodiment #7

The embodiment below 1s about disallowing 2xN chroma

intra blocks in dual tree.

6.4.2Allowed Binary Split Process

The variable allowBtSplit 1s derived as follows:

If one or more of the following conditions are ftrue,
allowBtSplit 1s set equal to FALSE:
cbSize 1s less than or equal to MinBtSi1zeY
cbWidth 1s greater than maxBtSize

US 11,601,652 B2

37 38

cbHeight 1s greater than maxBtSize treeType 1s equal to DUAL_TREE_CHROMA and
mttDepth 1s greater than or equal to maxMttDepth (cbWidth/SubWidthC) * (cbHeight/SubHeightC) i1s
treeType 1s equal to DUAL_TREE_CHROMA and less than or equal to 16

(cbWidth/SubWidthC) * (cbHeight/SubHe1ghtC) 1s {{modeType is equal to MODE_TYPE_INIER and and

less than or equal to 16 3 cbWidth* cbHeight is less than or equal to 32}}
11btSplit is equal to SPLIT_BT_VER and treeType is treeType is equal to DUAL_TREE_CHROMA and

equal to DUAL TREE CHROMA and (Cledth/ modeType g equal to MODE TYPE INTRA

SubWidthC) is less than or equal to 411
treeType 1s equal to DUAL_TREE_CHROMA and
modeType 1s equal to MODE_TYPE_INTRA 10
6.4.3Allowed Ternary Split Process
The variable allowTtSplit 1s derived as follows:

If one or more of the following conditions are true,
allowTtSplit 1s set equal to FALSE:

6.4.3Allowed Ternary Split Process

The variable allowTtSplit 1s derived as follows:

If one or more of the following conditions are ftrue,
allowTtSplit 1s set equal to FALSE:
cbSize 1s less than or equal to 2 * MinTtS1zeY
cbWidth 1s greater than Min(Max'TbSizeY, maxTtSize)
cbHeight 1s greater than Min(MaxTbS1zeY, maxTtS1ze)

cbSize 1s less than or equal to 2 * MinTtSi1zeY 15 _
cbWidth is greater than Min(MaxTbSizeY, maxTtSize) mttDepth 1s greater than or equal to maxMttDepth
cbHeight 1s greater than Min(MaxTbSi1zeY, maxTtSize) xO+cbWidth 1s greater than pic_width m lu-
mittDepth 1s greater than or equal to maxMttDepth ma_sal}lples | | | |
x0+cbWidth 1s greater than pic_width_in_lu- yO+cbHeight 1s greater than pic_height in_lu-
ma_samples 20 ma_samples
yO+cbHeight 1s greater than pic_height in_lu- treeType 1s equal to DUAL_TREE_CHROMA and
ma_samples (cbWidth/SubWidthC) * (cbHeight/SubHeightC) 1s
treeType 1s equal to DUAL_TREE_CHROMA and less than or equal to 32
(cbWidth/SubWidthC) * (cbHeight/SubHeightC) is HmodeType is equal to MODE_TYPE_INTER and
less than or equal to 32 25 and cbWidth* cbHeight is less than or equal to 64} }
I{btSplit is equal to SPLIT_TT_VER and treeType is treeType 1s equal to DUAL_TREE_CHROMA and
equal to DUAL_TREE_CHROMA and (cbWidth/ modeType 1s equal to MODE_TYPE_INTRA
SubW1dthC) is less than or equal to 8}!} Otherwise, allowTtSplit 1s set equal to TRUE.
tree’Type 1s equa to DUAL_TREE_CHROMA and 5.10 An Example Embodiment #10 on Disallowing Block
modeType 1s equal to MODE_TYPE_INTRA 30 Partition when modeType 1s MODE_TYPE_INTER (Solu-
Otherwise, allowTtSplit 1s set equal to TRUE. tion 2)
5.8 An Example Embodiment #8 6.4.2Allowed Binary Split Process
The embodiment below 1s about enabling MODE_IBC The variable allowBtSplit 1s derived as follows:
for SCIPU chroma blocks. If one or more of the following conditions are ftrue,
7.3.8.5Coding Unit Syntax allowBtSplit 1s set equal to FALSE:
[[Descriptor]]
coding_unit(x0, y0, cbWidth, cbHeight, cqtDepth, treeType, modeType) {
ch'lype = treeType = = DUAL_TREE CHROMA? 1 : 0
if(slice_type !=1 || sps_ibc_enabled_flag || sps_palette_enabled_flag) {
if(treeType != DUAL_TREE _CHROMA &&
' ((cbWidth = = 4 && cbHeight = =4) || modeType = = MODE_TYPE_INTRA)
&& !sps_ibc_enabled_flag))
[[cu_skip_flag]][xO][yO] ae(v)
1f(cu_skip_flag] xO][yvO | == 0 & &slice_type =1
&& ! cbWidth = = 4 && cbHeight = =4) && modelype = = MODE_TYPE _ALL)
[[pred_mode flag]] ae(v)
if(((slice_type ==1 && cu_skip flag[xO][yO] ==0) |
(slice_type !=!&&(CuPredMode[chType |[X0 |[vO] '= MODE_INTRA ||
{{(modeType = = MODE_TYPE_INTRA && cu_skip_flag[X0][y0O] ==0) }}|
(cbWidth = =4 && cbHeight = =4 && cuskip flag[X0 [[vO]| ==0)))) &&
cbWidth <= 64 & & cbHeight <= 64 && modeType != MODE_TYPE_INTER &&
sps_ibc_enabled_flag && {{!(modeType == MODE_TYPE_ALL && treeType = =
DUAL_TREE_CHROMA)}} [[treeType != DUAL_TREE_CHROMA]])
pred_mode_ibc_flag ae(v)
55
5.9 an Example Embodiment #9 on Disallowing Block cbSize 1s less than or equal to MinBtSi1zeY
Eartltll;:rn when modelype 1s MODE_TYPE_INTER (Solu- cbWidth is greater than maxBtSize
10n o _
6.4.2 Allowed binary split process cbHeight 1s greater than maxBtSize
The variable allowBtSplit 1s derived as follows: 60 mttDepth 1s greater than or equal to maxMttDepth
If one or more of the following conditions are ftrue, treeType 1s equal to DUAL_TREE_CHROMA and
allowBtSplit 1s set equal to FALSE: (cbWidth/SubWidthC) * (cbHeight/SubHeightC) 1s
cbSize is less than or equal to MinBtSizeY less than or equal to 16
cbWidth is greater than maxBtSize o5 {modeType is equal to MODE_TYPE_INTER}}

cbHeight 1s greater than maxBtSize treeType is equal to DUAL_TREE_CHROMA and
mttDepth 1s greater than or equal to maxMttDepth modelype 1s equal to MODE_TYPE_INTRA

US 11,601,652 B2

39
6.4.3Allowed Ternary Split Process

The variable allowTtSplit 1s derived as follows:

If one or more of the following conditions are true,
allowTtSplit 1s set equal to FALSE:
cbSize 1s less than or equal to 2 * MinTtSi1zeY
cbWidth 1s greater than Min(MaxTbSizeY, maxTtSize)
cbHeight 1s greater than Min(MaxTbSi1zeY, maxTtSize)
mttDepth 1s greater than or equal to maxMttDepth
x0+cbWidth 1s greater than pic_width_in_lu-

ma_samples

yO+cbHeight 1s greater than pic_height in_lu-
ma_samples
treeType 1s equal to DUAL_TREE_CHROMA and
(cbWidth/SubWidthC) * (cbHeight/SubHeightC) 1s
less than or equal to 32
H{modeType is equal to MODE_TYPE_INTER}}
treeType 1s equal to DUAL_TREE_CHROMA and
modeType 1s equal to MODE_TYPE_INTRA
Otherwise, allowTtSplit 1s set equal to TRUE.
5.11 An Example Embodiment #11
The embodiment below 1s about the constraints further
splitting of a coding tree when MODE_TYPE_INTER 1s
derived.
7.3.8.4 Coding Tree Syntax

10

15

20

25

40
cbWidth * cbHeight 1s equal to 32 and MttSphitMode

[x0] [vO] [mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

Otherwise, 1f one of the following conditions is ftrue,

modeTypeCondition 1s set equal to 1+(slice_type =1 ?
1:0)
cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0][y0] [mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER
cbWidth * cbHeight 1s equal to 128 and MttSplitMode
[x0] [vO] [mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER
Otherwise, modeTypeCondition 1s set equal to O
5.13 An Example Embodiment #13

The embodiment below 1s about the small chroma intra

block constraints for 4:2:2 color formats.
7.4.9.4 Coding Tree Semantics
The variable modeTypeCondition 1s derived as follows:
I1 one of the following conditions 1s true, modeTypeCon-
dition 1s set equal to O
slice_type==I and qtbtt_dual_tree_intra_tlag 1s equal to
1
modeTypeCurr 1s not equal to MODE_TYPE_ALL
Otherwise, if one of the following conditions 1s true,

modeTypeCondition 1s set equal to 1

Descriptor

coding tree(x0, yvO, cbWidth, cbHcight, qgOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth, depthOfiset,

partldx, treeTypeCurr, modeTypeCurr) {

treeType = (modeType = = MODE_TYPE_INTRA) 7 DUAL_TREE LUMA : treeTypeCurr

{{if (modeType = = MODE_TYPE_INTER)
mttDepth = max(mttDepth, maxMttDepth — 1)} |
if(tsplit_gt_flag) {

5.12 An Example Embodiment #12

The embodiment below 1s about the constraints on small
block partitions and prediction modes are not applied when
palette mode 1s enabled.

7.4.9.4 Coding Tree Semantics
The variable modeTypeCondition 1s derived as follows:

If one of the following conditions is true, modeTypeCon-
dition 1s set equal to O

slice_type==I and qtbtt_dual_tree 1intra_flag 1s equal to
1

modeTypeCurr 1s not equal to MODE_TYPE_ALL
I{sps_palette_enabled_flag is equal to 1}}

Otherwise, 1f one of the following conditions 1s true,
modeTypeCondition 1s set equal to 1

cbWidth * cbHeight 1s equal to 64 and split_qt_flag 1s
equal to 1

cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0] [y0] [mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

45

50

55

60

65

cbWidth * cbHeight 1s equal to 64 and split_qt_flag 1s

equal to 1

cbWidth * cbHeight 1s equal to 64 and MttSplitMode
[x0] [vO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

cbWidth * cbHeight 1s equal to 32 and MttSplitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

Otherwise, if {{chroma_format_idc is equal to 1 and}})
one of the following conditions 1s true, modeTypeCon-
dition 1s set equal to 1+(slice_type =1 ? 1:0)

cbWidth * cbHeight 1s equal to 64 and MttSphitMode
[x0][yO][mttDepth] 1s equal to SPLIT_BT_HOR or
SPLIT_BT_VER

cbWidth * cbHeight 1s equal to 128 and MttSphitMode
[x0][yO][mttDepth] 1s equal to SPLIT_TT_HOR or
SPLIT_TT_VER

Otherwise, modeTypeCondition 1s set equal to O

US 11,601,652 B2

41
5.14 Example #1 of Delta QP Signaling in SCIPU

coding tree(x0, vO, cbWidth, cbHeight, qgOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth, depthOfiset,

partldx, treeTypeCurr, modeTypeCurr) {
((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor || allowSplitQT)
&&(X0 + cbWidth <= pic_width_in_luma_samples)
&& (vO + cbHeight <= pic_height n_luma samples))
[[split_cu_flag]]
if(cu_qp_delta_enabled_flag && qgOnY && cbSubdiv <= cu_qp_delta_subdiv) {
[sCuQpDeltaCoded = 0
CuQpDeltaVal = 0
CuQgTopLeftX = x0
CuQgTopLeftY = yO
h
if(cu_chroma_qp_offset enabled flag && qgOnC & &
cbSubdiv <= cu_chroma_qp_oflfset_subdiv)
[sCuChromaQpOflsetCoded = O
if(split_cu_flag) {
if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor) &&
allowSplitQT)
[[split_qt_tlag]]
if(tsplit_gt_flag) {
if((allowSplitBtHor || allowSplitTtHor) &&
(allowSplitBtVer || allowSplitTtVer))
[[mtt_split_cu_vertical flag]]
if((allowSplitBtVer && allowSplitTtVer && mitt_split_cu_vertical_flag) ||
(allowSplitBtHor && allowSplitTtHor && !mtt_split_cu_vertical flag))
[[mtt_split_cu_binary_ flag]]
h
1f{ modeTypeCondition ==1)
modeType = MODE_TYPE_INTRA
else if(modeTypeCondition = =2) {
[[mode_constraint_flag]]
modeType = mode_constraint_flag ? MODE_TYPE_INTRA : MODE_TYPE_INTER

I else {

modeType = modeTypeCurr
h
treelype = (modeType = = MODE_TYPE_INTRA) ? DUAL_TREE LUMA : treeTypeCur
if(tsplit_gt_flag) {
if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_VER) {
depthOffset += (X0 + cbWidth > pic =_width_in_luma_samples)7 1 : O
x1 = x0 + (cbWidth / 2)
coding_tree(x0, yO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
1f(x1 < pic_width_in_luma_samples)
coding_tree(x1, vO, cbWidth / 2, cbHeightY, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, 1, treeType, modeType)
} else if(MttSplitMode[x0][yvO][mttDepth] = = SPLIT_BT_HOR) {
depthOflfset += (yO + cbHeight > pic_height_in_luma_samples) 7 1 : O
yl = yO + (cbHeight / 2)
coding tree(x0, yO, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
if(vl < pic_height in_luma samples)
coding_tree(x0, v1, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, 1, treeType, modeType)
I else if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_TT VER) {
x1 =x0 + (cbWidth / 4)
x2 =%x0 + (3 * cbWidth/4)
{{qgOnY¥Ynext}} = qgOnY && (cbSubdiv + 2 <= cu_gp_dclta_subdiv)
{{qgOnCnext}} = qgOnC &&(cbSubdiv + 2 <= cu_chroma_qp_offset_subdiv)
coding_tree(x0, y0, cbWidth / 4, cbHeight, {{qgOnYnext, qggOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
coding_tree(x1, yO, cbWidth / 2, cbHeight, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, 1, treeType, modeType)
coding_tree(x2, yO, cbWidth / 4, cbHeight, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOflset, 2, treeType, modeType)
}else { /* SPLIT_TT_HOR */
yl = yvO + (cbHeight / 4)
y2 =vy0 + (3 * cbHeight / 4)
{{qgOnY¥Ynext}} = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
{{qgOnCnext}} = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_offset_subdiv)
coding_tree(x0, y0, cbWidth, cbHeight / 4, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOflset, O, treeType, modeType)
coding_tree(X0, y1, cbWidth, cbHeight / 2, {{qgOnYnext, gqgOnCnext,}} cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)

42

Descriptor

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

US 11,601,652 B2
43 44

-continued

Descriptor

coding_tree(x0, y2, cbWidth, cbHeight /4, {{qgOnYnext, qgOnCnext, }} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)
h

I else {

x1 = x0 + (cbWidth / 2)
yl = yO + (cbHeight / 2)
coding_tree(x0, yO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cqtDepth + 1, 0, 0, O, treeType, modeType)
1f(x1 < pic_width_in_luma_samples)
coding_tree(x1, vO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cqtDepth + 1, 0, O, 1, treeType, modeType)
1f(v1 < pic_height_in_luma_samples)
coding_tree(x0, v1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cqtDepth + 1, 0,0, 2, treeType, modeType)
1f(y1 <pic_height_in luma_samples && x1 < pic_width_in_luma_samples)
coding_tree(x1, v1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC,
cqtDepth + 1, 0, O, 3, treeType, modeType)

h

if{ modeTypeCur = = MODE_TYPE_ALL && modeType = = MODE_TYPE_INTRA) {
coding_tree(x0, yO, cbWidth, cbHeight, ggOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth, O, 0O
DUAL_TREE_CHROMA, modeType)
h

} else
coding_unit(X0, yO, cbWidth, cbHeight, cqtDepth, treeTypeCurr, modeTypeCurr)

5.15 Example #2 of Delta QP Signaling in SCIPU

[[Descriptor]]

coding tree(x0, vO, cbWidth, cbHeight, qgOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth,
depthOflset,
partldx, treeTypeCurr, modeTypeCurr) {

if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor || allow-
SplitQT)
&&(x0 + cbWidth <= pic_width_in_luma_samples)
&& (yvO + cbHeight <= pic_height_in_luma_samples))
[[split_cu_flag]] ae(v)
if(cu_ap_delta_enabled_flag && qgOnY && cbSubdiv <= cu_gp_delta_subdiv) {
[sCuQpDeltaCoded = 0
CuQpDeltaVal = 0
CuQgTopLcitX = x0
CuQgTopLeftY = yO
h
if(cu_chroma_qp_ofiset enabled flag & & qgOnC & &
cbSubdiv <= cu_chroma_qp_ofiset_subdiv)
[sCuChromaQpOftsetCoded = O
if(split_cu flag) {
if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor) &&
allowSplitQT)
[[split_qgt_flag]] ae(v)
if(tsplit_qt_flag) {
if((allowSplitBtHor || allowSplitTtHor) &&
(allowSplitBtVer || allowSplitTtVer))
[[mtt_split_cu_vertical_flag]] ae(v)
if((allowSplitBtVer && allowSplitTtVer && mitt_split_cu_vertical flag) ||
(allowSplitBtHor && allowSplitTtHor && !mtt_split_cu_vertical flag))

[[mtt_split_cu_binary_ flag]] ae(v)

h

1f{ modeTypeCondition ==1)
modeType = MODE_TYPE_INTRA

else if(modeTypeCondition = =2) {
[[mode_constraint_flag]] ae(v)
modeType = mode_constraint_flag ? MODE_TYPE_INTRA : MODE_TYPE_INTER

}else {

modeType = modeTypeCurr

h

treelype = (modeType = = MODE_TYPE_INTRA) ? DUAL_TREE_LUMA : tree-
TypeCurr
if(tsplit_qt flag) {

if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_VER) {
depthOffset += (X0 + cbWidth > pic_width_in_luma_samples) 71 : 0
x1 =x0 + (cbWidth / 2)
coding_tree(x0, yO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,

cqtDepth, mttDepth + 1, depthOflset, O, treeTypc, modeType)

US 11,601,652 B2
45

-continued

[[Descriptor]]

1f(x1 < pic_width_in_luma_samples)
coding tree(x1, yO, cbWidth/ 2, cbHeightY, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, 1, treeType, modeType)
I else if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_HOR) {
depthOffset += (yO + cbHeight > pic_height in_luma_samples) 71 : 0
yl = yO + (cbHeight / 2)
coding_tree(x0, yO, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOflset, 0, treeType, modeType)
if(v1 < pic_height in_luma_samples)
coding_tree(x0, yv1, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
} else if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_TT_VER) {
x1 =x0 + (cbWidth / 4)
x2 =%x0+ (3 * cbWidth / 4)
{{qgOnY¥Ynext}} = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
{{qgOnCnext}} = qgOnC &&(cbSubdiv+ 2 <= cu_chroma_qp_offset_subdiv)

coding_tree(x0, y0, cbWidth / 4, cbHeight, {{qgOnYnext, qgOnCnext,}} cbSub-
div + 2,

cqtDepth, mttDepth + 1, depthOflset, O, treeType, modeType)
coding_tree(x1, y0, cbWidth / 2, cbHeight, {{qgOnYnext, ggOnCnext,}} cbSub-
div + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding_tree(x2, y0, cbWidth/4, cbHeight, {{qgOnYnext, qgOnCnext,} } cbSubdiv
+ 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)
\ else {/* SPLIT_TT_HOR */
yl = yO + (cbHeight / 4)
y2 =vy0 + (3 * cbHeight / 4)
{{qgOnY¥Ynext}} = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
{{qgOnCnext}} = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_offset_subdiv)
coding_tree(x0, y0, cbWidth, cbHeight / 4, {{qgOnYnext, qgOnCnext,}} cbSub-

div + 2,
cqtDepth, mttDepth + 1, depthOflset, O, treeType, modeType)
coding_tree(X0, y1, cbWidth, cbHeight / 2, {{qgOnYnext, qgOnCnext,}} cbSub-
div + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding_tree(x0, y2, cbWidth, cbHeight / 4, {{qgOnYnext, qgOnCnext,}} cbSub-
div + 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)
h
}else {

x1 =x0 + (cbWidth / 2)
yl = yO + (cbHeight / 2)
coding_tree(x0, yO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0, O, O, treeType, modeType)
1f{ x1 < pic_width_in_luma_samples)
coding tree(x1, yO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0, 0, 1, treeType, modeType)
1f(v1 < pic_height_in_luma_samples)
coding_tree(x0, v1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0,0, 2, treeType, modeType)
1f(v1 < pic_height in_luma_samples && x1 < pic_width_in_luma_samples)
coding_tree(x1, v1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0,0, 3, tree’Type, modeType)

h

1f(modeTypeCur = = MODE_TYPE_ALL && modeType = = MODE_TYPE_IN-
TRA) {

coding_tree(x0, vO, cbWidth, cbHeight, gqgOnY, 0, cbSubdiv, cqtDepth, mtt-
Depth, 0, O

h
} else

coding unit(X0, yO, cbWidth, cbHeight, cqtDepth, treeTypeCurr , modeTypeCurr

DUAL_TREE_CHROMA, modeType)

5.16 Example #3 of Delta QP Signaling in SCIPU

coding tree(x0, yO, cbWidth, cbHcight, qgOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth, depthOffset,

partldx, treeTypeCurr, modeTypeCurr) {
if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor || allowSplitQT)
&&(X0 + cbWidth <= pic_width_in_luma_samples)
&& (yO + cbHeight <= pic_height_in_luma_ samples))
[[split_cu_flag]]

Descriptor

ae(v)

46

US 11,601,652 B2
47

-continued

{{if(cu_qp_delta_enabled_flag && qgOnY && cbSubdiv <= cu_qp_delta_subdiv &&

tree TypeCurr != DUAL_TREE_CHROMA) { }}
[sCuQpDeltaCoded = 0

CuQpDeltaVal = 0
CuQgTopLetX = x0
CuQgTopLeftY = yO

h

1f(cu_chroma_qp_oflset enabled_flag && qgOnC &&
cbSubdiv <= cu_chroma_qp_offset_subdiv && {{&& treeTypeCurr !=
DUAL_TREE LUMA}})

[sCuChromaQpOfisetCoded = O
if(split_cu_flag) {
if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor) &&
allowSplitQT)
[[split_gt_flag]] ae(v)
if(tsplit_gt_flag) {
if((allowSplitBtHor || allowSplitTtHor) &&
(allowSplitBtVer || allowSplitTtVer))
[[mtt_split_cu_vertical flag]] ae(v)
if((allowSplitBtVer && allowSplitTtVer && mitt_split_cu_vertical flag) ||
(allowSplitBtHor && allowSplitTtHor && !mtt_split cu_vertical flag))

[[mtt_split_cu_binary_flag]] ae(v)

h

1f{ modeTypeCondition ==1)
modeType = MODE_TYPE_INTRA

else if(modeTypeCondition = =2) {
[[mode_constiaint_flag]] ae(v)
modeType = mode_constramnt_flag 7 MODE_TYPE_INTRA : MODE_TYPE_INTER

}else {

modeType = modeTypeCurr
h
treelype = (modeType = = MODE_TYPE_INTRA) ? DUAL_TREE_LUMA : treeTypeCurr
if(split_gt_flag) {
if{ MttSplitMode[x0][yO][mttDepth] == SPLIT_BT_VER) {
depthOflset += (X0 + cbWidth > pic_width_in_luma samples) 71 : 0
Xl =x0+ (cbWidth / 2)
coding_tree(x0, yO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
1f{ x1 < pic_width_in_luma_samples)
coding_tree(x1, vO, cbWidth / 2, cbHeightY, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
b else if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_HOR) {
depthOflfset += (yO + cbHeight > pic_height_in_luma_samples) 7 1 : O
yl = yO + (cbHeight / 2)
coding_tree(x0, yO, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
if(v1 < pic_height_in_luma_samples)
coding_tree(x0, v1, cbWidth, cbHeight / 2, qgOnY, qgOnC , cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
} else if(MtSplitMode[x0][vO][mttDepth] = = SPLIT_TT_VER) {
x1 =x0 + (cbWidth / 4)
x2=%x0+ (3 *cbWidth / 4)
{{qgOnY¥Ynext}} = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
{{qgOnCnext}} = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_offset_subdiv)
coding_tree(x0, y0, cbWidth / 4, cbHeight, {{qgOnYnext, qggOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
coding_tree(x1, yO, cbWidth/ 2, cbHeight, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding_tree(x2, yv0, cbWidth / 4, cbHeight, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)
}else {/* SPLIT_TT_HOR */
yl = yO + (cbHeight / 4)
y2 =vy0 + (3 * cbHeight / 4)
{{qgOnY¥Ynext}} = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)
{{qgOnCnext}} = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_offset_subdiv)
coding_tree(x0, y0, cbWidth, cbHeight / 4, {{qgOnYnext, gqgOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
coding_tree(x0, yv1, cbWidth, cbHeight / 2, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding_tree(x0, y2, cbWidth, cbHeight / 4, {{qgOnYnext, qgOnCnext,}} cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)
h

I else {

x1 =x0 + (cbWidth / 2)

yl = yvO + (cbHeight / 2)

coding_tree(x0, vO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0, 0, O, treeType, modeType)

US 11,601,652 B2
49

-continued

1f{ x1 < pic_width_in_luma_samples)
coding_tree(x1, yO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1,0,0,1, treeType, modeType)
if(v1 < pic_height _in_luma samples)
coding_tree(x0, v 1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0,0, 2, treeType, modeType)
1f{ v1 < pic_height_in_luma samples && x1 < pic_width_in_luma_samples)
coding_tree(x1, y1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth + 1, 0,0, 3, treeType, modeType)

h

if{ modeTypeCur = = MODE_TYPE_ALL && modeType = = MODE_TYPE_INTRA) {
coding_tree(x0, yO, cbWidth, cbHeight, qgOnY, 0, cbSubdiv, cqtDepth, mttDepth, O, O

DUAL_TREE_CHROMA, modeType)

h
I else

coding_unit(X0, yvO, cb Width, cbHeight, cqtDepth, treeTypeCurr, modeTypeCurr)

5.17 Example #4 of Delta QP Signaling in SCIPU

coding tree(x0, vO, cbWidth, cbHeight, qgOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth, depthOfiset,

partldx, treeTypeCurr, modeTypeCurr) {

if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor || allowSplitQT)

&&(X0 + cbWidth <= pic_width_in_luma_samples)
&& (vO + cbHeight <= pic_height n_luma samples))
[[split_cu_flag]]

if(cu_qp_delta_enabled_flag && qgOnY && cbSubdiv <= cu_qp_delta_subdiv) {

)

[sCuQpDeltaCodcd = 0
CuQpDeltaVal = 0

CuQgTopLeftX = x0
CuQgTopLeftY = yO

if(cu_chroma_qp_offset enabled_flag && qgOnC &&

cbSubdiv <= cu_chroma_qp_ofiset subdiv)
[sCuChromaQpOflsetCoded = O

if(split_cu_flag) {

if((allowSplitBtVer || allowSplitBtHor || allowSplitTtVer || allowSplitTtHor) &&
allowSplitQT)
[[split_qt_flag]]

if(tsplit_gt_flag) {

if ((allowSplitBtHor || allowSplitTtHor) &&
(allowSplitBtVer || allowSplitTtVer))
[[mtt_split_cu_vertical flag]]
if((allowSplitBtVer && allowSplitTtVer && mitt_split_cu_vertical flag) ||
(allowSplitBtHor && allowSplitTtHor && !mtt_split_cu_vertical flag))
[[mtt_split_cu_binary_flag]]
h
1f{ modeTypeCondition ==1)
modeType = MODE_TYPE _INTRA
else if(modeTypeCondition = =2) {
[[mode_constraint_flag]]
modeType = mode_constraint_flag ? MODE_TYPE_INTRA : MODE_TYPE_INTER

}else {

modeType = modeTypeCurr

h

{{if(modeTypeCondition > 0)} }
{{qgOnY = qgOnC = 0}}
treeType = (modeType = = MODE_TYPE_INTRA) ? DUAL TREE_LUMA : treeTypeCurr
if(!split_gt_flag) {
if{ MttSplitMode[x0][yO][mttDepth] = = SPLIT_BT_VER) {
depthOffset += (X0 + cbWidth > pic_width_in_luma_samples) 71 : 0
X1 =x0 + (cbWidth / 2)
coding_tree(x0, vO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
11 x1 < pic_width_in_luma_samples)
coding_tree(x1, vO, cbWidth / 2, cbHeightY, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
I else if({ MttSplitMode[x0][vO][mttDepth] = = SPLIT_BT_HOR) {
depthOflset += (vO + cbHeight > pic_height_in_luma_samples) 7 1 : O
yl = yvO + (cbHeight / 2)
coding_tree(x0, vO, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
1f{ v1 < pic_height_in_luma_samples)

50

Descriptor

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

US 11,601,652 B2
51

-continued

coding_tree(x0, y1, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOffset, 1, treeType, modeType)

} else if(MttSplitMode[x0][yO][mttDepth] = = SPLIT_TT_VER) {

xl =x0 + (cbWidth / 4)

x2=%x0+ (3 * cbWidth / 4)

qgOnY = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)

qgOnC = qgOnC && (cbSubdiv + 2 <= cu_chroma_qgp_oflset_subdiv)

coding_tree(x0, vO, cbWidth / 4, cbHeight, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)

coding_tree(x1, vO, cbWidth / 2, cbHeight, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)

coding_tree(x2, vO, cbWidth / 4, cbHeight, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, 2, treeType, modeType)

52

}else {/* SPLIT _TT _HOR */
vyl = vO + (cbHeight / 4)
y2 =vy0 + (3 * cbHeight / 4)
qgOnY = qgOnY && (cbSubdiv + 2 <= cu_qp_delta_subdiv)

qgOnC = qgOnC && (cbSubdiv + 2 <= cu_chroma_qp_oflset_subdiv)
coding_tree(x0, yO, cbWidth, cbHeight / 4, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOfiset, O, treeType, modeType)
coding_tree(x0, v 1, cbWidth, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 1,
cqtDepth, mttDepth + 1, depthOfiset, 1, treeType, modeType)
coding_tree(x0, v2, cbWidth, cbHeight / 4, qgOnY, qgOnC, cbSubdiv + 2,
cqtDepth, mttDepth + 1, depthOflset, 2, treeType, modeType)

h
}else {

X1 =x0 + (cbWidth / 2)
yl = yO + (cbHeight / 2)

coding_tree(x0, vO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,

cqtDepth + 1, 0, O, O, treeType, modeType)
1f{ x1 < pic_width_in_luma_samples)

coding tree(x1, yO, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,

cqtDepth + 1, 0, 0, 1, treeType, modeType)
1f(v1 < pic_height in_luma samples)

coding_tree(x0, y1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,

cqtDepth + 1, 0, 0, 2, treeType, modeType)

1f(v1 < pic_height_in_luma samples && x1 < pic_width_in_luma_samples)
coding_tree(x1, y1, cbWidth / 2, cbHeight / 2, qgOnY, qgOnC, cbSubdiv + 2,

cqtDepth + 1, 0,0, 3, treeType, modeType)

h

if{ modeTypeCur = = MODE_TYPE_ALL && modeType = = MODE_TYPE_INTRA) {
coding_tree(x0, vO, cbWidth, cbHeight, ggOnY, qgOnC, cbSubdiv, cqtDepth, mttDepth, O, O

DUAL_TREE_CHROMA, modeType)

;
} else

coding_unit(x0, yvO, cbWidth, cbHeight, cqtDepth, treeTypeCurr, modeTypeCurr)

FIG. 17 1s a block diagram of a video processing appa-
ratus 1700. The apparatus 1700 may be used to implement
one or more of the methods described herein. The apparatus
1700 may be embodied 1n a smartphone, tablet, computer,
Internet of Things (IoT) recerver, and so on. The apparatus
1700 may include one or more processors 1702, one or more
memories 1704 and video processing hardware 1706. The
processor(s) 1702 may be configured to implement one or
more methods described in the present document. The
memory (memories) 1704 may be used for storing data and
code used for implementing the methods and techniques
described herein. The video processing hardware 1706 may
be used to mmplement, 1n hardware circuitry, some tech-
niques described 1n the present document. In some embodi-
ments, the hardware 1706 may be at least partly within the
processor 1702, e.g., a graphics co-processor.

FIG. 18 1s a flowchart for a method 1800 of processing a
video. The method 1800 includes parsing (1802), for a
conversion between a video region of a video and a coded
representation of the video region, the coded representation

according to a syntax rule that defines a relationship between
a chroma block size and a color format of the video region;
and performing (1804) the conversion by performing the
parsing according to the syntax rule.

45

50

55

60

65

Some embodiments of the disclosed technology include
making a decision or determination to enable a video
processing tool or mode. In an example, when the video
processing tool or mode 1s enabled, the encoder will use or
implement the tool or mode 1n the processing of a block of
video, but may not necessarilly modily the resulting bit-
stream based on the usage of the tool or mode. That 1s, a
conversion from the block of video to the bitstream repre-
sentation of the video will use the video processing tool or
mode when 1t 1s enabled based on the decision or determi-
nation. In another example, when the video processing tool
or mode 1s enabled, the decoder will process the bitstream
with the knowledge that the bitstream has been modified
based on the video processing tool or mode. That 1s, a
conversion from the bitstream representation of the video to
the block of video will be performed using the video
processing tool or mode that was enabled based on the
decision or determination.

Some embodiments of the disclosed technology include
making a decision or determination to disable a video
processing tool or mode. In an example, when the video
processing tool or mode 1s disabled, the encoder will not use
the tool or mode 1n the conversion of the block of video to
the bitstream representation of the wvideo. In another
example, when the video processing tool or mode 15 dis-

US 11,601,652 B2

53

abled, the decoder will process the bitstream with the
knowledge that the bitstream has not been modified using
the video processing tool or mode that was disabled based on
the decision or determination.

In the present document, the term “video processing” may
refer to video encoding, video decoding, video compression
or video decompression. For example, video compression
algorithms may be applied during conversion from pixel
representation of a video to a corresponding bitstream
representation or vice versa. The bitstream representation of
a current video block may, for example, correspond to bits
that are either co-located or spread 1n diflerent places within
the bitstream, as 1s defined by the syntax. For example, a
macroblock may be encoded i terms of transformed and
coded error residual values and also using bits in headers and
other fields 1n the bitstream.

The following first set of clauses may be implemented in
some embodiments.

The following clauses may be implemented together with
additional techniques described 1n 1tem 1 of the previous
section.

1. A method of video processing, comprising: parsing, for
a conversion between a video region of a video and a coded
representation of the video region, the coded representation
according to a syntax rule that defines a relationship between
a chroma block size and a color format of the video region;
and performing the conversion by performing the parsing
according to the syntax rule.

2. The method of clause 1, wherein the color format 1s
4:4:4 and where the syntax rule specifies that the chroma
block 1s subject to a same size constraint as that for a luma
blocks.

3. The method of clause 1, wherein the color format 1s
4:2:2 and where the syntax rule specifies that the chroma
block 1s subject to a same size constraint as that for 4:2:0
color format.

4. The method of any of clauses 1-3, wherein the syntax
specifies that a prediction modes and small block partitions
are used 1n a chroma-format dependent manner.

5. The method of clause 1, wherein the syntax rule defines
that a smallest allowed size feature 1s enabled for the
conversion of the video region based on the color format of
the video region.

The following clauses may be implemented together with
additional techniques described 1n 1tem 2 of the previous
section.

6. A method of video processing, comprising: determin-

ing, based on a property of a video and a chroma format of

the video, a coding mode of a coding tree node of the video;
and performing a conversion between a coded representation
of the video and a video block of the coding tree node using
the determined coding mode.

7. The method of clause 6, wherein the coding mode 1s
determined to be MODE TYPE ALL for the chroma for-

mat being 4:2:2, MODE_TYPE_INTRA or MODE_TY-
PE_INTER for the chroma format being 4:2:0 1in case the
property 1s:

1. the coding node 1s an MxN coding tree node with a
horizontal binary tree split;

11. the coding node 1s an MxN coding tree node with a
vertical binary tree split;

111. the coding node 1s an MxN coding tree node with a
horizontal ternary tree split; or

1v. the coding node 1s an MxN coding tree node with a

vertical ternary tree split.
8. The method of clause 7, wherein M=8, or 16 or 32 and

N=4 or 8 or 16.

5

10

15

20

25

30

35

40

45

50

55

60

65

54

The following clauses may be implemented together with
additional techniques described 1n 1tem 12 of the previous
section.

9. A method of video processing, comprising: determin-
ing, based on a rule, whether a certain size of chroma blocks
1s allowed 1n a video region of a video; and performing a
conversion between the video region and a coded represen-
tation of the video region based on the determining.

10. The method of clause 9, wherein the rule specifies that
2xN chroma blocks are disallowed due to the video region
including a dual tree partition.

11. The method of clause 9, wherein the rule specifies that
2N chroma blocks are disallowed due to the video region
including a single tree partition.

12. The method of clauses 10 or 11, wherein N<=64.

The following clauses may be implemented together with
additional techniques described 1n 1tems 13, 14 and 15 of the
previous section.

13.A method of video processing, comprising: determin-
ing, based on a rule that allows use of a coding mode for a
video condition, that a coding mode 1s permitted for a video
region; and performing a conversion between a coded rep-
resentation of pixels in the video region and pixels of the
video region based on the determining.

14. The method of clause 13, wherein the video condition
1s block size, and wherein the rule allows use of intra block
copy mode for small block sizes of luma blocks.

15. The method of clause 14, wherein the small block
sizes 1nclude 8x4, 8x8, 16x4 or 4xN luma block sizes.

16. The method of clause 13, wherein the rule allows use
of 1ntra block copy mode for conversion of the video region
using a MODE_TYPE_INTER mode of coding.

17. The method of clause 13, wherein the rule allows use
of palette coding mode for conversion of the video region
using a MODE_TYPE_INTER mode of coding.

The following clauses may be implemented together with
additional techniques described in items 16, 17, 18 of the
previous section.

18. A method of video processing, comprising: perform-
ing a conversion between a video block of a video and a
coded representation of the video block using a video coding
mode, wherein a syntax element signaling the coding mode
1s selectively included in the coded representation based on
a rule.

19. The method of clause 18, wherein the video coding
mode 1s an intra block coding mode and wherein the rule
specifies to use a type of the video coding mode to control
inclusion of the syntax element 1n the coded representation.

20. The method of clause 19, wherein the rule specifies
explicitly signaling a non-SKIP block.

21. The method of clause 18, wherein the rule specifies to
implicitly signal intra block copy flag based on a skip flag
and a mode type of the video block.

22. The method of clause 18, wherein the coding mode 1s
a palette coding mode and wherein the rule specifies to
selectively include a palette coding indicator based on mode
type of the video block.

The following clauses may be implemented together with
additional techniques described 1n 1tem 21 of the previous
section.

23. A method of video processing, comprising: determin-
ing, due to a chroma block having a size less than a threshold
s1ze, that a transform type used during a conversion between
the chroma block and a coded representation of the chroma
block 1s different from a transform type used for a corre-
sponding luma block conversion; and performing the con-
version based on the determining.

US 11,601,652 B2

3

24. The method of clause 23, wherein the threshold size
1S MxN, wherein M 1s 2.

The following clauses may be implemented together with
additional techniques described 1n i1tem 22 of the previous
section.

25. The method of any of clauses 1 to 24 wherein, the
conversion uses a combined inter and 1ntra prediction mode
as a MODE TYPE INTRA mode.

26. The method of any of clauses 18 to 22, wherein the
conversion uses a combined inter and 1ntra prediction mode
as a MODE_TYPE_INTER mode. For example, when con-

sidering CIIP as MODE_TYPE_INTER, methods described

in 1tem 14-17 1n the previous section may be applied. Or
when methods described 1n items 14-16 are applied, CIIP
can be considered as MODE TYPE INTER.

The following clauses may be implemented together with
additional techniques described in items 3-6 of the previous
section.

2'7. A method of video processing, comprising: determin-
ing, whether a smallest chroma block rule 1s enforced during
a conversion between a coded representation of a video
region and pixel values of the video region, based on a
coding condition of the video region; and performing the
conversion based on the determinming.

28. The method of clause 27, wherein the coding condi-
tion comprises a color format of the video region.

29. The method of clause 28, wherein the video region has
a width of M pixels and a height of N pixels, and wherein
the coding condition further depends on values of M and/or
N.

30. The method of clause 29, wherein the smallest chroma
block rule 1s enabled due to the video region having 4:2:2
color format and M*N=32 or M*N=64.

The following clauses may be implemented together with
additional techniques described 1n items 7-11 of the previous
section.

31. A method of video processing, comprising: determin-
ing, for a conversion between a coded representation of a
video region 1n a 4:2:2 format and pixel values of the video
region, a mode type to be used for the conversion based on
whether a smallest chroma block rule 1s enabled for the
video region; and performing the conversion based on the
determining.

32. The method of clause 31, wherein the mode type of

the video region 1s set to 1 due to the video region having
4.2:2 format and the smallest chroma block rule being
cnabled.

33. The method of clause 31, wherein the determining the
mode type includes determining the mode type to be an
INTRA type due to the smallest chroma block rule being
enabled for the video region.

34. The method of clause 31, wherein the determining the
mode type includes determining that the mode type INTER
1s disabled due to the smallest chroma block rule being
enabled for the video region.

The following clauses may be implemented together with
additional techniques described 1n items 7-11 of the previous
section.

35. A method of video processing, comprising: determin-
ing, for a conversion between a coded representation of a
video block and a video block of a video, whether block
partitioning 1s allowed during the conversion, based on a
mode type used during the conversion or a dimension of the
video block; and performing the conversion using the deter-
mining.

10

15

20

25

30

35

40

45

50

55

60

65

56

36. The method of clause 35, wherein the block portioning,
comprises a binary tree partitioning or a ternary tree parti-
tioning.

3’7. The method of any of clauses, 35-36 wherein, 1n case
that the mode type 1s INTER mode, the block partitioning 1s
based on a restriction rule that allows or disallows partition
types.

38. The method of any of clauses 1 to 37, wherein the
conversion comprises encoding the video into the coded
representation.

39. The method of any of clauses 1 to 37, wherein the
conversion comprises decoding the coded representation to
generate pixel values of the video.

40. A video decoding apparatus comprising a processor
configured to implement a method recited 1n one or more of
clauses 1 to 39.

41. A video encoding apparatus comprising a processor
configured to implement a method recited 1n one or more of
clauses 1 to 39.

42. A computer program product having computer code
stored thereon, the code, when executed by a processor,
causes the processor to implement a method recited 1n any
of clauses 1 to 39.

43, A method, apparatus or system described in the
present document.

The second set of clauses describe certain features and
aspects of the disclosed techniques in the previous section
(e.g., items 1, 3-11, 18, 19, and 24).

1. A method of video processing (e.g., method 2110
shown 1 FIG. 21A), comprising: determining (2112), for a
conversion between a video region of a video and a coded
representation of the video, an intra coding characteristic of
the video region based on a color format of the video
according to a rule; and performing (2114) the conversion
according to the intra coding characteristic.

2. The method of clause 1, wherein the rule specifies that
in case that the color format of the video region 1s 4:0:0 or
4:4:4, the 1intra coding characteristic 1s that all coding modes
are enabled for the video region and wherein the coded
representation includes a MODE_TYPE_ALL value for a
syntax element indicating a mode type used for the video
region.

3. The method of clauses 1-2, wherein the rule specifies
that 1n case that the color format 1s 4:0:0 or 4:4:4, the coded
representation includes a syntax element indicative of a
condition for determining a mode type 1s set to 0.

4. The method of any of clauses 1-3, wherein the rule
specifies that whether a restriction on a smallest allowed size
for an intra coded chroma block 1in the video region 1is
enabled depends on the color format.

5. The method of clause 4, wherein the rule specifies that
the restriction 1s enabled for 4:2:0 and 4:2:2 formats.

6. The method of clause 4, wherein the rule specifies that
the restriction 1s disabled for 4:0:0 and 4:4:4 formats.

7. A method of video processing (e.g., method 2120
shown 1 FIG. 21B), comprising: performing (2122) a
conversion between a current video block of a video and a
coded representation of the video, wherein the coded rep-
resentation conforms to a format rule, and wherein the
format rule specifies a syntax element, modeType, indicative
of a coding mode of the current video block, that 1s equal to
either MODE TYPE NO INTER that restricts use of the
inter coding mode for the conversion, or MODE_TYPE_
NO INTRA that restricts use of the intra mode for the
conversion.

8. A method of video processing (e.g., method 2120
shown 1 FIG. 21B), comprising: performing (2122) a

US 11,601,652 B2

S7

conversion between a video and a coded representation of
the video, wherein the coded representation conforms to a
format rule that specifies that a flag indicating a prediction
mode constraint 1s not included 1n the coded representation
in case that a chroma format of the video 1s 4:2:2, 4:0:0, or
4:4.4.

9. The method of clause 8, wherein 1n case that the flag 1s
not present, a corresponding value 1s inferred as 0 or 1.

10. A method of video processing (e.g., method 2130
shown 1 FIG. 21C), comprising: determining (2132), for a
conversion between a video region of a video and a coded
representation of the video, whether and/or how a restriction
on a size of a smallest chroma 1ntra prediction block to the
video region 1s enabled according to a rule; and performing,
(2134) the conversion based on the determining, wherein the
rule 1s dependent on whether a color format of the video 1s
4:2:0 or 4:2:2.

11. A method of video processing, comprising: determin-
ing, for a conversion between a video region of a video and
a coded representation of the video, whether a restriction on
a size of a smallest chroma intra prediction block to the
video region 1s enabled according to a rule; and performing,
the conversion based on the determining, wherein the rule 1s
dependent on a color format of the video and/or a width (M)
and a height (N) of the video region, and wherein the rule
turther specifies that, for the video region that 1s a coding
tree node with a BT (binary tree) split, then the restriction on
the smallest chroma 1ntra prediction block 1s disabled 1n case
that 1) the color format of the video 1s 4:2:2 and 2) that a
multiplication of M and N 1s a value from a set of values,
wherein the set of values includes 64.

12. The method of clause 11, wherein the rule further
specifies that the restriction on the smallest chroma intra
prediction block 1s enabled 1n case 1) that the color format
of the video 1s 4:2:2 and 2) that the set of values further
includes 32.

13. The method of clause 11, wherein the rule further
specifies that the restriction on the smallest chroma intra
prediction block i1s disabled 1n case 1) that the color format
of the video 1s 4:2:2 and 2) that the set of values further
includes 128.

14. The method of clause 11, wherein the rule further
specifies, for the video region that 1s a coding tree node with
a split_qt_flag equal to 1, that the restriction on the smallest
chroma intra prediction block 1s enabled in case that the
color format of the video 1s 4:2:2.

15. The method of clause 11, wherein the rule further
specifies, for the video region that 1s a coding tree node with
a 'TT (ternary tree) split, that the restriction on the smallest
chroma intra prediction block 1s enabled in case that the
color format of the video 1s 4:2:2.

16. The method of clause 11, wherein the rule further
specifies, for the video region that 1s a coding tree node with
a BT (binary tree) split, that the restriction on the smallest
chroma 1intra prediction block 1s enabled in case that 1) the
color format of the video 1s 4:2:2 and 2) that the set of values
turther includes 32.

17. The method of any of clauses 11 to 16, wherein the
rule further specifies, for the smallest chroma intra predic-
tion block in the video having a 4:2:2 color format, a
modeTypeCondition 1s always equal to 1.

18. The method of any of clauses 11 to 17, wherein the
rule further specifies, for the smallest chroma intra predic-
tion block 1n the video having a 4:2:2 color format, only
MODE_TYPE_ INTRA that allows use of an intra mode, a
palette mode, and an intra block copy mode for the conver-
s1on 1s allowed.

10

15

20

25

30

35

40

45

50

55

60

65

58

19. A method of video processing, comprising: perform-
Ing a conversion between a video region of a video and a
coded representation of the video according to a restriction
on a smallest chroma 1ntra prediction block size, wherein the
coded representation conforms to a format rule that specifies

a value of a syntax field in the coded representation, due to
a 4:2:2 color format of the video.

20. The method of clause 19, wherein the syntax field
corresponds to a modelTypeCondition of the SCIPU block
and wherein the format rule further specifies, due to the
4:2:2 color format, that the modeTypeCondition 1s always 1.

21. The method of clause 19, wherein the syntax field
corresponds to a modeTypeCondition of the SCIPU block
and wherein the format rule further specifies, due to the
4.:2:2 color format, that the modeTypeCondition 1s O or 1.

22. The method of clause 19, wherein the syntax field
corresponds to a modeTypeCondition of the SCIPU block
and wherein the format rule further specifies, due to the
4:2:2 color format, that the modeTypeCondition 1s not 2.

23. The method of clause 19, wherein the syntax field
corresponds to a modeType of the SCIPU block and wherein
the format rule further specifies, due to the 4:2:2 color
format, that the modeType 1s always equal to MODE_TY-
PE_INTRA that allows use of an intra mode, a palette mode,
and an intra block copy mode.

24. The method of clause 19, wherein the syntax field
corresponds to a modeType of the SCIPU block and wherein
the format rule further specifies, due to the 4:2:2 color
format, that the modeType 1s equal to 1) MOD-
E_TYPE_ALL that allows use of an inter coding mode, an
intra mode, a palette mode, and an 1ntra block copy mode for
the conversion or 2) MODE_TYPE_INTRA that that allows
use of an 1ntra mode, a palette mode, and an 1ntra block copy
mode.

25. The method of clause 19, wherein the syntax field
corresponds to a modeType of the SCIPU block and wherein
the format rule further specifies, due to the 4:2:2 color
format, that the modeType does not correspond to MOD-
E_TYPE_INTER that allows use of an inter mode only for
the conversion.

26. A method of video processing (e.g., method 2140
shown 1n FIG. 21D), comprising: determining (2142), for a
conversion between a current video block of a video and a
coded representation of the video, an applicability of a
partitioning scheme to the current video block according to
a rule; and performing (2144) the conversion based on the
determining.

2’7. The method of clause 26, wherein the rule specifies
that the determining determines the applicability based on at
least one of a mode type used during the conversion or a
dimension of the current video block, and wherein the
partitioning scheme comprises a BT (binary tree) split
and/or a TT (ternary tree) split.

28. The method of clause 27, wherein 1n case that the
mode type 1s equal to a MODE_TYPE_INTER that allows
use of an inter mode only for the conversion, the BT split 1s
disallowed for the current video block.

29. The method of clause 27, wherein 1n case that the
mode type 1s equal to a MODE_TYPE_INTER that allows
use of an inter mode only for the conversion, the TT split 1s
disallowed for the current video block.

30. The method of clause 27, wherein 1n case that M*N
1s less than or equal to 32 and the mode type 1s equal to
MODE TYPE INTER that allows use of an inter mode
only for the conversion, the BT split 1s disallowed, whereby
M and N correspond to a height and a width of the current
video block.

US 11,601,652 B2

59

3]1. The method of clause 27, wherein in case that M*N
1s less than or equal to 64 and the mode type 1s equal to

MODE TYPE INTER that allows use of an inter mode

only for the conversion, the TT split 1s disallowed, whereby
M and N correspond to a height and a width of the current

video block.

32. The method of clause 26, wherein the rule specifies to
restrict a certain partitioning scheme based on a syntax
clement, modeTypeCurr, that 1s included in the coded rep-
resentation and descriptive of a mode type used during the
conversion, and wheremn the certain partitioning scheme
comprises a BT (binary tree) split, a T'T (terary tree) split,
and/or QT (quaternary tree) split.

33. The method of clause 32, wherein, due to the mod-

¢lTypeCurr that 1s equal to MODE_TYPE_INTER that

allows use of an 1inter mode only for the conversion, the BT
split 1s disallowed.
34. The method of clause 32, wherein, due to the mod-

¢TypeCurr that 1s equal to MODE_TYPE_INTER that
allows use of an inter mode only for the conversion, the TT
split 1s disallowed.

35. The method of clause 32, wherein, due to the mod-
c¢TypeCurr that 1s equal to MODE_TYPE_INTER that
allows use of an inter mode only for the conversion, the QT
split 1s disallowed.

36. The method of clause 32, wherein the BT split 1s
disallowed 1n case that the modeTypeCurr that 1s equal to
MODE_TYPE_INTER that allows use of an inter mode
only for the conversion and that a luma block size 1s less than
or equal to 32.

37. The method of clause 32, wherein the TT split 1s
disallowed 1n case that the modeTypeCurr that 1s equal to
MODE_TYPE_INTER that allows use of an inter mode
only for the conversion and that a luma block size 1s less than
or equal to 64.

38. A method of video processing (e.g., method 2150
shown 1n FIG. 21E), comprising: determining (2152), for a
conversion between a video block of a video and a coded
representation of the video, whether an inter mode 1s enabled
according to a rule, and performing (21354) the conversion
based on the determining, wherein the rule specifies that the

inter mode 1s enabled in case that a dual tree partitioning of

luma samples 1s enabled for the video block.

39. The method of clause 38, wherein the coded repre-
sentation includes a syntax field that 1s equal to DUAL_
TREE_LUMA.

40. The method of clause 38, wherein the coding umit
coded 1n the inter mode contains the luma samples only for
color formats with multiple color components.

41. The method of clause 38, wherein the coded repre-
sentation includes a flag indicative of a prediction mode
applied to the video block and the flag 1s parsed for the video
block corresponding to a luma block having a dual tree type.

42. The method of clause 38, wherein the rule further
specifles to apply same constraints about the inter mode
regardless of whether the dual tree partitioning or a single
tree partitioning of the luma samples 1s enabled for the video
block.

43. A method of video processing (e.g., method 2160
shown in FIG. 21F), comprising: determining (2162), for a
conversion between a video region of a video and a coded

representation of the video, based on a rule, whether use of

a palette mode 1s permitted for the video region; and
performing (2164) the conversion based on the determining,
wherein the palette mode includes encoding the video region
using a palette of representative sample values.

10

15

20

25

30

35

40

45

50

55

60

65

60

44. The method of clause 43, the rule specifies that the
palette mode 1s allowed 1n case that a mode type of the video
region 1s equal to MODE_TYPE_INTRA that allows use of
an 1intra mode, a palette mode, and an 1ntra block copy mode
for the conversion or MODE TYPE INTER that allows use
of an inter mode only for the conversion.

45. The method of clause 43, wherein the rule specifies
that the palette mode 1s allowed independently of a mode
type of the video region.

46. The method of clause 43, wherein the rule 1s based on
a slice_type and a mode type of the video region.

4’7. The method of clause 46, wherein the rule specifies
that the palette mode 1s allowed for an I slice with the mode
type that 1s equal to MODE_TYPE_INTRA that allows use
of an intra mode, a palette mode, and an intra block copy
mode for the conversion.

48. The method of clause 46, wherein the rule specifies
that the palette mode 1s allowed for a PB slice with the mode
type that 1s equal to MODE_TYPE_INTRA that allows use

of an intra mode, a palette mode, and an intra block copy
mode for the conversion.

49. The method of clause 43, wherein the rule further
specifies that a local dual tree 1s disallowed i1n case that the
palette mode 1s allowed.

50. The method of clause 43, wherein a modeTypeCon-
dition 1s always set 0 1n case that the palette mode 1s enabled.

51.A method of video processing, comprising: performing
a conversion between a current video block of a video and
a coded representation of the video, wherein the coded
representation conforms to a format rule, wherein the format
rule specifies a syntax element, modeType, that includes a
MODE_TYPE_IBC that allows use of an intra block copy
mode for the conversion or MODE TYPE PALETTE that
allows use of a palette mode for the conversion, wherein the
intra block copy mode includes encoding the current video
block using at least a block vector pointing to a video frame
containing the current video block, and wherein the palette
mode 1ncludes encoding the current video block using a
palette of representative sample values.

52. The method of clause 51, wherein the format rule
further specifies that the coded representation does not
include a pred_mode_flag, a pred_mode_ibc_flag, and/or a
pre_mode_plt_flag, 1n case that the modeType 1s the MOD-
E_TYPE_IBC or the MODE_TYPE_PALETTE.

53. The method of clause 51, wherein the coded repre-
sentation includes an 1index indicating a mode type used for
the conversion instead of a mode_constraint_flag.

54. The method of any of clauses 1 to 53, wherein the
conversion includes encoding the video into the coded
representation.

55. The method of any of clauses 1 to 53, wherein the
conversion includes decoding the coded representation to
generate the video.

56. A video processing apparatus comprising a processor
configured to implement a method recited in any one or
more of clauses 1 to 55.

S7. A computer readable medium storing program code
that, when executed, causes a processor to implement a
method recited 1 any one or more of clauses 1 to 53.

58. A computer readable medium that stores a coded
representation or a bitstream representation generated
according to any of the above described methods.

The third set of clauses describe certain features and
aspects of the disclosed techniques in the previous section
(e.g., items 25-33).

1. A method of video processing, comprising: determin-
ing, for a conversion between a current video block of a

US 11,601,652 B2

61

video and a coded representation of the video, whether a
certain partitioning scheme 1s allowed for the current video
block according to a rule that depends on a coding mode
type used for representing the current video block in the
coded representation and a dimension of the current video
block; and performing the conversion based on the deter-
mining.

2. The method of clause 1, wherein the certain partitioning,
scheme comprises a QT (quaternary tree) split in which the
current video block 1s split into four parts 1n both horizontal
and vertical directions, a vertical TT (ternary tree) split 1n
which the current video block 1s split into three parts in a
vertical direction, a horizontal TT split 1n which the current
video block 1s split into three parts 1n a horizontal direction,
a vertical BT (binary tree) split 1n which the current video
block 1s split into two parts in a vertical direction, and/or a
horizontal BT split in which the current video block 1s split
into two parts in a horizontal direction.

3. The method of clause 1, wherein the rule specifies that
a QT (quaternary tree) split 1s disallowed for the current

video block 1n case 1) that the coded representation imncludes
a MODE_TYPE_INTER value corresponding to the coding
mode type 1 which an inter mode only 1s allowed for the
current video block and 2) that both of a width and a height
of the current video block are 8.

4. The method of clause 1, wherein the rule specifies that
a 'TT (temary tree) split 1s disallowed for the current video
block 1n case 1) that the coded representation includes a
MODE_TYPE_INTER value corresponding to the coding
mode type 1 which an inter mode only 1s allowed for the
current video block and 2) that a multiplication of a width
and a height of the current video block 1s 64.

5. The method of clause 4, wherein the rule further
specifies that a vertical TT (ternary tree) split 1s disallowed
in a case that the coded representation includes a MOD-
E_TYPE_INTER value and the width and the height of the
current video block are 16 and 4, respectively.

6. The method of clause 4, wherein the rule further
specifies that a horizontal TT (ternary tree) split 1s disal-
lowed 1n a case that the coded representation includes a
MODE_TYPE_INTER value and the width and the height
of the current video block are 4 and 16, respectively.

7. The method of clause 1, wherein the rule specifies that
a BT (binary tree) split 1s disallowed for the current video
block 1n case 1) that the coded representation includes a
MODE_TYPE_INTER value corresponding to the coding
mode type 1 which an iter mode only 1s allowed for the
current video block and 2) that a multiplication of a width
and a height of the current video block 1s 32.

8. The method of clause 7, wherein the rule further
specifies that a vertical BT (binary tree) split 1s disallowed
in a case that the coded representation includes a MOD-
E_TYPE_INTER value and the width and the height of the
current video block are 8 and 4, respectively.

9. The method of clause 7, wherein the rule specifies that
a horizontal BT (binary tree) split 1s disallowed 1n a case that
the coded representation includes a MODE_TYPE_INTER
value and the width and the height of the current video block
are 4 and 8, respectively.

10. A method of video processing, comprising: perform-
ing a conversion between a video block of a video and a
coded representation of the video, wherein the coded rep-
resentation conforms to a format rule, wherein the format
rule specifies that a characteristic of the video block controls
whether a syntax element 1n the coded representation 1ndi-
cates a prediction mode of the video block.

10

15

20

25

30

35

40

45

50

55

60

65

62

11. The method of clause 10, wherein the characteristic of
the video block includes at least one of color components or
a dimension of the video block.

12. The method of clause 10 or 11, wherein the format
rule further specifies that the syntax element indicates the
prediction mode of the video block corresponding to a

chroma block.

13. The method of any of clauses 10 to 12, wherein the
format rule further specifies that the syntax element does not
indicate the prediction mode of the video block correspond-
ing to a luma block and the prediction mode of the video
block corresponding to the luma block 1s included in the

coded representation.

14. The method of clause 13, wherein the video block has
a width and a height that are greater than 4.

15. A method of video processing, comprising: perform-
ing a conversion between a video region of a first component
of a video and a coded representation of the video, wherein
the coded representation conforms to a format rule, wherein
the format rule specifies whether and/or how a syntax field
1s configured in the coded representation to indicate a
differential quantization parameter for the video region
depends on a splitting scheme used for splitting samples of
the first component.

16. The method of clause 15, wherein the format rule
turther specifies whether and/or how the syntax field 1is
configured in the coded representation 1s mndependent of a
splitting scheme used for splitting samples of a second
component of the video.

17. The method of clause 15 or 16, wherein the first
component 1s a luma component and the second component
1s a chroma component.

18. The method of clause 15 or 16, wherein the first
component 1s a chroma component and the second compo-
nent 1s a luma component.

19. The method of clause 15, wherein the format rule
turther specifies to include information related to the difler-
ential quantization parameter at most once 1 a specific
region in which a luma component and a chroma component
share a same mode type.

20. The method of clause 19, wherein the specific region
corresponds to a quantization group.

21. A method of video processing, comprising: perform-
ing a conversion between a video region of a first component
of a video and a coded representation of the video according
to a rule, wherein the rule specifies, 1n case that a dual tree
and/or a local dual tree coding structure 1s applied to the
video region, that a variable related to a differential quan-
tization parameter of the first component 1s not modified
during a decoding or parsing process of a second component
of the video.

22. The method of clause 21, wherein the local dual tree
structure 1s applied to the video region in case that a
restriction on a smallest allowed size for a chroma block 1s
applied to the video region.

23. The method of clause 21 or 22, wherein the first
component 1s a luma component and the second component
1s a chroma component.

24. The method of clause 21 or 22, wherein the first
component 1s a chroma component and the second compo-
nent 1s a luma component.

25. A method of any of clauses 21 to 24, wherein the
differential quantization parameter indicates a difference 1n
a quantization value applied to the video block and a
previous quantization value applied to a neighboring video

block.

US 11,601,652 B2

63

26. The method of any of clauses 1 to 25, wherein the
performing of the conversion includes generating the coded
representation from the video.

2’7. The method of any of clauses 1 to 25, wherein the
performing of the conversion includes generating the video
from the coded representation.

28. A video processing apparatus comprising a processor
configured to implement a method recited in any one or
more of clauses 1 to 27.

29. A computer readable medium storing program code
that, when executed, causes a processor to 1mplement a
method recited 1n any one or more of clauses 1 to 27.

30. A computer readable medium that stores a coded
representation or a bitstream representation generated
according to any of the above described methods.

The disclosed and other solutions, examples, embodi-
ments, modules and the functional operations described in
this document can be mmplemented 1n digital electronic
circuitry, or in computer software, firmware, or hardware,
including the structures disclosed 1n this document and their
structural equivalents, or 1n combinations of one or more of
them. The disclosed and other embodiments can be 1mple-
mented as one or more computer program products, 1.€., one
or more modules of computer program instructions encoded
on a computer readable medium for execution by, or to
control the operation of, data processing apparatus. The
computer readable medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a memory
device, a composition of matter eflecting a machine-read-
able propagated signal, or a combination of one or more
them. The term “data processing apparatus™ encompasses all
apparatus, devices, and machines for processing data,
including by way of example a programmable processor, a
computer, or multiple processors or computers. The appa-
ratus can include, 1n addition to hardware, code that creates
an execution environment for the computer program 1in
question, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating,
system, or a combination of one or more of them. A
propagated signal 1s an artificially generated signal, e.g., a
machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode information for transmis-
sion to suitable receiver apparatus.

A computer program (also known as a program, software,
soltware application, script, or code) can be written 1n any
form of programming language, including compiled or
interpreted languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing,
environment. A computer program does not necessarily
correspond to a file 1n a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored 1n a markup language document),
in a single file dedicated to the program in question, or 1n
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

The processes and logic flows described 1n this document
can be performed by one or more programmable processors
executing one or more computer programs to perform func-
tions by operating on 1nput data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic

10

15

20

25

30

35

40

45

50

55

60

65

64

circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application specific itegrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random-access memory or both. The essential elements of a
computer are a processor for performing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to receive data from or transier data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Computer readable
media suitable for storing computer program instructions
and data include all forms of non-volatile memory, media
and memory devices, including by way of example semi-
conductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto optical disks; and CD
ROM and DVD-ROM disks. The processor and the memory
can be supplemented by, or incorporated 1n, special purpose
logic circuitry.

While this patent document contains many specifics, these
should not be construed as limitations on the scope of any
subject matter or of what may be claimed, but rather as
descriptions of features that may be specific to particular
embodiments of particular techniques. Certain features that
are described in this patent document 1n the context of
separate embodiments can also be implemented 1n combi-
nation 1n a single embodiment. Conversely, various features
that are described 1n the context of a single embodiment can
also be implemented 1n multiple embodiments separately or
in any suitable subcombination. Moreover, although features
may be described above as acting 1n certain combinations
and even 1n1tially claimed as such, one or more features from
a claimed combination can in some cases be excised from
the combination, and the claimed combination may be
directed to a subcombination or variation of a subcombina-
tion.

Similarly, while operations are depicted 1n the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all illustrated operations
be performed, to achieve desirable results. Moreover, the
separation of various system components i the embodi-
ments described in this patent document should not be
understood as requiring such separation 1n all embodiments.

Only a few implementations and examples are described
and other implementations, enhancements and variations
can be made based on what 1s described and illustrated 1n
this patent document.

The mvention claimed 1s:

1. A method of processing video data, comprising;:

determining, for a conversion between a video slice
including a luma parent block and a chroma parent
block and a bitstream of the video, whether to split the
luma parent block and the chroma parent block into one
or more luma blocks and one or more chroma blocks
respectively, wherein a mode type of the luma block or
a mode type of the chroma block 1s determined based
on a value of a variable, and wherein the value of the

US 11,601,652 B2

65

variable 1s derived based on a color format of the video
slice; and

performing the conversion based on the determining,

wherein the luma parent block 1s generated from a luma

coding tree block (CTB) based on a luma partition
scheme including recursive partition operations, and

wherein the chroma parent block 1s generated from a

chroma coding tree block (CTB) based on a chroma
partition scheme having same recursive partition opera-
tions with the luma partition scheme.

2. The method of claim 1, wherein when the color format
of the video slice 1s 4:0:0 or 4:4:4, the value of the variable
1s set to be O.

3. The method of claim 2, wherein when the value of the
variable 1s 0, the mode type of the luma block and the mode
type of the chroma block 1s MODE_TYPE_ALL, and

wherein the mode type having a value of MOD-
E_TYPE_ALL specifies that all coding modes are

available for the luma block and the chroma block.

4. The method of claim 3, wherein when the value of the
variable 1s 0, a mode constraint flag 1s not included 1n the
bitstream, and

wherein a value of the mode constraint flag specifies

whether inter prediction coding modes can be used.

5. The method of claim 1, wherein the value of the
variable 1s derived further based on a size of the luma parent
block and a first predetermined partition mode of the luma
parent block.

6. The method of claim S, wherein 1n response to the luma
parent block having a size of 64, the color format of the
video slice being not equal to 4:0:0 and 4:4:4, and the first
predetermined partition mode being QT (quaternary tree)
split, the varniable 1s equal to 1.

7. The method of claim 5, wherein 1n response to the luma
parent block having a size of 32, the color format of the
video slice being not equal to 4:0:0 and 4:4:4, and the first
predetermined partition mode being BT (binary tree) split,
the variable 1s equal to 1.

8. The method of claim 3, wherein 1 response to a
slice_type of the video slice being equal to I slice, the color
format of the video slice being 4:2:0, the luma parent block
having a size of 64, and the first predetermined partition
mode being BT (binary tree) split, the vaniable 1s set to be 1,
and

wherein 1n response to the color format of the video slice

being 4:2:2, the luma parent block having a size of 64,
and the first predetermined partition mode being BT
(binary tree) split, the variable 1s set to be 0.

9. The method of claim 3, wherein 1 response to a
slice_type of the video slice being equal to I slice, the color
format of the video slice being 4:2:0, the luma parent block
having a size of 128, and the first predetermined partition
mode beimng TT (ternary tree) split, the variable 1s set to be
1, and

wherein 1n response to the color format of the video slice

being 4:2:2, the luma parent block having a si1ze of 128,
and the first predetermined partition mode being TT
(ternary tree) split, the vanable 1s set to be O.

10. The method of claim 35, wherein 1n response to the
value of the vaniable being 1, the chroma parent block 1s not
allowed to be split and the first predetermined partition
mode 1s allowed for the luma parent block.

11. The method of claim 5, wherein 1n response to the
slice_type being not equal to I slice, the color format of the
video slice being 4:2:0, the luma parent block having a size
of 64, and the first predetermined partition mode being BT
(binary tree) split, the variable 1s set to be 2, and

5

10

15

20

25

30

35

40

45

50

55

60

65

06

wherein 1n response to the color format of the video slice
being 4:2:2, the luma parent block having a size of 64,
and the first predetermined partition mode being BT
(binary tree) split, the variable 1s set to be 0.

12. The method of claim 35, wherein 1n response to the
slice_type being not equal to I slice, the color format of the
video slice being 4:2:0, the luma parent block having a size
of 128, and the first predetermined partition mode being TT
(ternary tree) split, the vaniable 1s set to be 2, and

wherein in response to the color format of the video slice

being 4:2:2, the luma parent block having a size of 128,
and the first predetermined partition mode being TT
(ternary tree) split, the variable 1s set to be 0.

13. The method of claim 35, wherein in response to the
value of the variable being 2, a mode constraint flag 1s
included 1n the bitstream, and

wherein the mode constraint flag specifies whether inter

prediction coding modes can be used.

14. The method of claim 13, wherein 1n response to the
value of the variable being 2 and the mode constraint flag
specilying that inter prediction coding modes cannot be
used, the chroma parent block 1s not allowed to be split and
the first predetermined partition 1s allowed for the luma
parent block.

15. The method of claim 1, wherein the conversion
comprises encoding the video ito the bitstream.

16. The method of claim 1, wherein the conversion
comprises decoding the video from the bitstream.

17. An apparatus for processing video data comprising a
processor and a non-transitory memory with instructions
thereon, wherein the instructions upon execution by the
processor, cause the processor to:

determine, for a conversion between a video slice includ-

ing a luma parent block and a chroma parent block and
a bitstream of the video, whether to split the luma
parent block and the chroma parent block into one or
more luma blocks and one or more chroma blocks
respectively, wherein a mode type of the luma block or
a mode type of the chroma block 1s determined based
on a value of a variable, and wherein the value of the
variable 1s derived based on a color format of the video
slice; and

perform the conversion based on the determining,

wherein the luma parent block 1s generated from a luma

coding tree block (CTB) based on a luma partition
scheme including recursive partition operations, and

wherein the chroma parent block 1s generated from a

chroma coding tree block (CTB) based on a chroma
partition scheme having same recursive partition opera-
tions with the luma partition scheme.

18. The apparatus of claim 17, wherein when the color
format of the video slice 1s 4:0:0 or 4:4:4, the value of the
variable 1s set to be 0,

wherein when the value of the variable 1s 0, the mode type

of the luma block and the mode type of the chroma
block 1s MODE _TYPE_ALL, and

wherein the mode type having a value of MOD-
E_TYPE_ALL specifies that all coding modes are

available for the luma block and the chroma block.

19. A non-transitory computer-readable storage medium
storing 1nstructions that cause a processor to:

determine, for a conversion between a video slice includ-

ing a luma parent block and a chroma parent block and
a bitstream of the video, whether to split the luma
parent block and the chroma parent block into one or
more luma blocks and one or more chroma blocks
respectively, wherein a mode type of the luma block or

US 11,601,652 B2

67

a mode type of the chroma block 1s determined based
on a value of a variable, and wherein the value of the
variable 1s derived based on a color format of the video
slice; and

perform the conversion based on the determining,

wherein the luma parent block 1s generated from a luma

coding tree block (CTB) based on a luma partition
scheme 1ncluding recursive partition operations, and

wherein the chroma parent block 1s generated from a

chroma coding tree block (CTB) based on a chroma
partition scheme having same recursive partition opera-
tions with the luma partition scheme.

20. A non-transitory computer-readable recording
medium storing a bitstream of a video which 1s generated by
a method performed by a wvideo processing apparatus,
wherein the method comprises:

determining, for a video slice including a luma parent

block and a chroma parent block, whether to split the

10

15

08

luma parent block and the chroma parent block 1into one
or more luma blocks and one or more chroma blocks

respectively, wherein a mode type of the luma block or
a mode type of the chroma block 1s determined based
on a value of a variable, and wherein the value of the
variable 1s derived based on a color format of the video
slice; and

generating the bitstream based on the determining,

wherein the luma parent block 1s generated from a luma

coding tree block (CTB) based on a luma partition
scheme including recursive partition operations, and

wherein the chroma parent block 1s generated from a

chroma coding tree block (CTB) based on a chroma
partition scheme having same recursive partition opera-
tions with the luma partition scheme.

¥ K H oK ¥

	Front Page
	Drawings
	Specification
	Claims

