12 United States Patent

Chamarty et al.

US011599471B2

(10) Patent No.: US 11,599,471 B2
45) Date of Patent: Mar. 7, 2023

(54) LOW-POWER CACHED AMBIENT

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(63)

(60)

(1)

(52)

(58)

COMPUTING

Applicant: Google LLC, Mountain View, CA (US)

Inventors: Vinod Chamarty, Sunnyvale, CA (US);
Lawrence J. Madar, 111, San
Francisco, CA (US)

Assignee: Google LLC, Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 17/325,899

Filed: May 20, 2021

Prior Publication Data

US 2021/0342269 Al Nov. 4, 2021

Related U.S. Application Data

Continuation of application No. 16/518,644, filed on
Jul. 22, 2019, now Pat. No. 11,023,379,

Provisional application No. 62/8035,207, filed on Feb.

13, 2019.

Int. CI.

GO6l 12/0862 (2016.01)

U.S. CL

CPC .. GOG6F 12/0862 (2013.01); GO6F 2212/1028
(2013.01); GO6F 2212/6022 (2013.01)

Field of Classification Search

CPC GO6F 12/0862; GO6F 2212/1028; GO6F
2212/6022

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,174,471 B2* 2/2007 Komarla GO6F 1/3203
713/320

7,809,835 Bl 1/2011 Zu

7,937,526 B1* 5/2011 Sutardja GOO6F 12/0866
711/113

9,710,265 Bl 7/2017 Temam et al.
9,778,728 B2 10/2017 Dalal et al.
11,023,379 B2 6/2021 Chamarty et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 16533531 5/2006
TW 1609260 12/2017
TW 1628599 7/2018

OTHER PUBLICATTONS

EP Office Action in European Appln. No. 19821484.3, dated Apr.
23, 2021, 3 pages.

(Continued)

Primary Examiner — Mark A (iardino, Jr.
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Methods, systems, and apparatus, including computer pro-
grams encoded on computer storage media, for performing
a prefetch processing to prepare an ambient computing
device to operate 1 a low-power state without waking a
memory device. One of the methods includes performing, by
an ambient computing device, a prefetch process that popu-
lates a cache with prefetched instructions and data required
for the ambient computing device to process inputs to the
system while 1n the low-power state, and entering the
low-power state, and processing, by the ambient computing
device 1n the low-power state, inputs to the system using the
prefetched instructions and data stored 1n the cache.

20 Claims, 5 Drawing Sheets

|
i 1
: Audic | |
y | Sensors -— |
1| 882 1! | | Ir oL C T 1
| N 1 PCUs22 !
; B ¥ ey
i { | R B
j | Radar | I PMU 822 11
{ | Sensors +—+» - : : .
: .EE j . | I i
! | 4| Cloek | !
| N P

: Touch i ‘; E I control 523 b
! | sensors —jmﬂ Q o '
i m 1 : ..E
i ; D
} | E
] GPS] @
: Sensor _1__,,1 . E
1 2 |8 DMA
: REP controllers

|
1] 528
1| Accel. | i
| se8 [T

| :
; ; Timer 529
:Feﬁpheraii .
y Sensors ot Ii i
L - ¥ SR ontrol |
b Subsystem 520

Ambient ML | | ! Main CPU Cluster

i | Low-FPower P
' CPU Engine | " g 540
532 524 i
Intermupt
Controllers
324
Low-Power
DSP '
536 5 _ o
SRAM < . Mazin ML Engine
323 N | 550
High-Power | | |
DSP |
538

......................................

US 11,599,471 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2007/0055795 Al1* 3/2007 Seo ..ocooiiiiiiiiiiiinnnn HO4L 12/12
710/15
2010/0275049 Al1* 10/2010 Balakrishnan GOG6F 1/3203
713/324
2012/0316838 Al 12/2012 Wheeler et al.
2016/0019158 Al 1/2016 Palacharla et al.
2016/0274648 Al 9/2016 Chu
2016/0295447 Al1* 10/2016 Braun HO4B 7/0686
2017/0024145 Al 1/2017 Zghal et al.
2017/0038813 Al 2/2017 Vanka et al.
2017/0286066 Al 10/2017 Gathala et al.
2018/0074566 Al1* 3/2018 Fukada GO6F 12/0842
2018/0173627 Al 6/2018 Hsu et al.
2019/0228036 Al* 7/2019 Becker GO6F 16/22
2020/0210070 Al1* 7/2020 Durham GO6F 3/0646

OTHER PUBLICATIONS

PCT International Search Report and Written Opinion in Interna-
titonal Appln. No. PCT/US2019/063274, dated Mar. 4, 2020, 13

pages.

TW Of

Mar. 30, 2021, 19 pages.

* cited by examiner

ice Action 1n Taiwan Application No. 108143750, dated

U.S. Patent Mar. 7, 2023 Sheet 1 of 5 US 11,599,471 B2

1002
ACD Client 1 Client 2 Client N
160 110a 110b . o 110n

SOC fabric
150

SLC
120

152

Memory

controller
130

SOC 102

154

Memory
140

FIG. 1

U.S. Patent Mar. 7, 2023 Sheet 2 of 5 US 11,599,471 B2

200 204
'g‘ 206 Cache| 208 HPM

210;

Prep for SLEEP entry 212

Determine whether ACD should
use cache during low-power
stgte

— 214
Perform prefetch process
to prepopulate the cache | Prefetch loads
and stores

Done prepping for SLEEP

218

Configure data path for
cache in low-power
~state

222

Start cache flush

Prep for SLEEP entry

Done prepping for SLEEP entr)é

§Change cache RAM power state

Power down portion of cache
for low-power state

236

Power down voltage rails

FIG. 2

U.S. Patent Mar. 7, 2023 Sheet 3 of 5 US 11,599,471 B2

o
206 208
Cache HPM

Prep for SLEEP exit § 479

30

Done prepping for SLEEP exit

314

|[dentify voltage rails to be powered
up during SLEEP exit
Trigger cache power up 53 16

k K |
rnm T TR =l P ph i oo ph e N e w mb:

318 :
Restore cache
siate

Done with cache power up 920

322
' Power up cache RAM

324

Notify client that caused power up

328 |
Service cache requests from

memory Jevices

326 ':' | ,
Perform cache allocation
algorithm

FIG. 3

U.S. Patent Mar. 7, 2023 Sheet 4 of 5 US 11,599,471 B2

4002‘

202 SPM 204 ACD 206

410

ACD running locally while
system is in low-power state

412

ACD determines that non-
prefetched memory is required

Request SLEEP exit for the portion
of memory

414

4162

Power up data path to the portion of
memory

Acknowledge the portion is

powered up - Enable ACD partition of the

418 e cache _ _

i Fetch required information
T T T T T T 5T T
426 5 424

ACD use case continues in low-power state

FIG. 4

US 11,599,471 B2

Sheet 5 of 5

Mar. 7, 2023

U.S. Patent

G Old

~ararara

A JL e L L IR AFS P PSS P SRS P R W L LA IR AP. P PSS P SRS AP LR LW B L IR AAe P dRe AP Sd SRS LR LW L

0SS

auIbug A ue iy

Lo e a e e e o e e e e b e e e A e e ek e A e A e A ek e e A e e e e e

rararaeararar

orS

121N NdO UEIN

— . = = ———y = — ——— T = T— = = —— ——r = = = = = = — — = — — — — — Y= — — — = —— = T— = T— = — — — —— —— — — — T— —

0¢S walsAsgng buisseoold

A JUSIqUY | | JaMO4-MOT

8ts

| dsa

| Jemod-ybiH

65
— NVYS
W 9¢%

| dsd

| JaMOd-MOT]

Z4]

m $J9||0JU0D)
ite[gFNENINT
PeS 49

| subuz Ndd

AN SR AW W aE ame

PR AR A A W WY AT AP IR rA

T T TIE M T TS M T A T A T M T M T T M I M TIE T TIE e YT M T T M T T TIF T O TIE e MIE M T T A YT T TIF T TIE A TIE M M T S TIE T OTIF T T mA TR M T T A YT TR OTIF T TIE e TIE M T T A ST T TIF T OMIE A TIE M T TV A YT T OTIF TR T A TIE e T T M P TIE T O TIE T T e T T M T A T e T e 1 e e e

r—-— ™+ - —— = T T T T T — T — - —

026 WoalsAsgng
[e¥}{¥]e%g

rororoa PR ELErEE Er R

625 JoWli |

SJOSUBS
lelaydusd

605

8¢S
SJ9||0JJU0o

VINd

1909y

Lo nrra, R ET T nErET R ET)

;
g0

losuag
Sdo

905

IR AT AR AR VR OW AR VAR WAR TR T TR TR IR IRA IR IF N AR R RAL IR IRY AT AT AF T TR STF AP ROIR I IR IR 11 AT AT AR R R IR IR IR e aea o r

£26 |0JJU0D
A0

7LG seoels)u] |eisudiied

¢2s NING

slosuss
4yono|

i P

roS

AOAR IR AT AN WY W W LI A A TR TR TR IR IR IE AT D ST R RAL IR IR TR IR WP P N AR R ral

. e . = T e e T oy = | | ——r . mp i — =y ——————p — o —

o o o e e e Y e o o L e L e L e L e e I o e o o e e Y e Y e o L o o el o o o L o el P o o P P o P P o AL Tt o B o ol o I o ol P P Y Pl

b R L R e el

— g ey e e — — e m— e mpm e e e — — — — — e e M ey e — — — —

————— — e —— —— — — — — — o —— ke —— — — — — — e — — — — — — — — — o b —— — — — — — — e —— — — — — — — b b —— — — — — — — — e — — — — — — — — e b — — — — — — — e — — — — — — — — e mhe m— — — — — — — — —

SIOSUDS
lepey

c0s

SIOSU9Q |
olpny

US 11,599,471 B2

1

LOW-POWER CACHED AMBIENT
COMPUTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/518,644, entitled “Low-Power Cached

Ambient Computing,” filed Jul. 22, 2019, which claims the
benefit under 35 U.S.C. § 119(e) of U.S. Patent Application
No. 62/805,207, entitled “Low-Power Cached Ambient
Computing,” filed Feb. 13, 2019, both of which are incor-

porated herein by reference 1n their entirety.

BACKGROUND

This specification relates to systems having integrated
circuit devices.

A cache 1s a device that stores data retrieved from memory
or data to be written to memory for one or more different
hardware devices 1n a system. The hardware devices can be
different components integrated into a system on a chip
(SOC). In this specification, the devices that provide read
requests and write requests through caches will be referred
to as client devices. Some caches service memory requests
for multiple different client devices integrated into a single
system, e€.g., an SOC, as a last cache before reaching
memory. Such caches can be referred to as system-level
caches (SLCs).

Caches can be used to reduce power consumption by
reducing overall requests to main memory. In addition, as
long as client devices can access the data they need 1n the
cache, power can further be saved by placing the main
memory as well as data paths to the main memory in a
low-power state. Therefore, cache usage 1s correlated with
overall power consumption, and increasing cache usage
results 1n a decrease in overall power consumption. There-
tore, devices that rely on battery power, e.g., mobile com-
puting devices, can extend their battery life by increasing
cache usage for the itegrated client devices.

Some SOC client devices are ambient computing devices
that are capable of monitoring and processing sensor mputs
while the SOC remains 1n a low-power state. If the ambient
computing device detects a sensor mput, €.g., sound arriving
at a microphone, a the ambient computing device can trigger
the SOC to exit the low-power state 11 additional processing,
power 1s needed to handle the sensor mput.

SUMMARY

This specification describes techniques for an ambient
computing device to perform a cache preparation process so
that the ambient computing device can operate during a
low-power state using only the data stored in the cache. This
allows the system to power down other high-power devices
during a low-power state 1n which the ambient computing
device can still process sensor mputs. For example, these
techniques allow the system to power down the main
memory, other larger caches 1n the cache hierarchy, as well
as related data pathways and power domains for these
components.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. The computing device
can process sensor inputs while the device 1s 1n a low-power
state. While 1n the low-power state, the computing device
can power down one or more of its power consuming

10

15

20

25

30

35

40

45

50

55

60

65

2

components such as RAMs, client devices, data pathways
and interfaces between the components and controllers, e.g.
memory controllers.

The computing device can include one or more ambient
computing devices (ACDs) that are configured to process
the sensor inputs during the low-power state of the comput-
ing device. The ACD 1s capable of determining the data and
instructions that may be needed to process the inputs while
the computing device i1s 1n the low-power state. The ACD
prefetches such data and instructions into a local cache
memory portion before the computing device enters the
low-power state. By using the prefetched data and instruc-
tions, the ACD can process sensor inputs without waking the
memory controller or a memory device, which helps to
minimize power consumption during the low-power state.

In addition, the ACD may need only a portion of the local
cache memory for processing the mputs during the low-
power state. Accordingly, the rest of the local cache memory
can be powered down during the low-power state, resulting
In even more savings ol power consumption.

In case that the ACD needs more resources than the
portion of the local cache memory that 1s dedicated to the
ACD operations during the low-power state, the ACD can
trigger the computing device to exit the low-power state.
Alternatively or in addition, the ACD can determine a
particular portion of a memory device that has the resources
that the ACD needs and trigger that particular portion of the

memory device to exit the low-power state. Accordingly,
other components of the computing device can remain 1n the
low-power mode while the ACD {fetches the data it needs
from the particular portion of the memory.

The details of one or more embodiments of the subject
matter of this specification are set forth 1n the accompanying
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram of an example system.

FIG. 2 1s a sequence diagram illustrating an example
process for transitioning 1mnto a low-power state.

FIG. 3 1s a sequence diagram 1llustrating an example
process for exiting a low-power state.

FIG. 4 1s a sequence diagram 1llustrating an example
process for performing a partial power transition from a
low-power state.

FIG. 5 15 a diagram of an example computing device that
includes a low-power, ambient computing system.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 1s a diagram of an example system 100. The system
100 includes a system on a chip (SOC) 102 communica-
tively coupled to a memory device 140. The SOC 102 has an
ambient computing device 160, multiple other client devices
110a-», and a hierarchy of caches 120 and 122. The cache
122 1s a local cache that services only memory requests from
the ambient computing device. The cache 120 1s a system-
level cache that services memory requests from all of the
client devices including the ACD 160. The techniques
described 1n this specification can also be used for systems
having additional layers of caches between the ACD 160 and
the memory 140.

US 11,599,471 B2

3

The SOC 102 1s an example of a device that can be
installed on or integrated into any appropriate computing
device, which may be referred to as a host device. Because
the techmiques described 1n this specification are particularly
suited to saving power consumption for the host device, the
SOC 102 can be particularly beneficial when 1nstalled on a
mobile host devices that rely on battery power, e.g., a smart
phone, a smart watch or another wearable computing device,
a tablet computer, or a laptop computer, to name just a few
examples. While in a low-power mode, the SOC 102 can
receive mputs, such as sensor mputs from integrated sensor
of the host device. Examples of such sensors include loca-
tion sensors, presence sensors, gesture sensors, heart rate
sensors, and audio sensors, to name just a few examples.

The SOC 102 has multiple client devices 110a-#. Each of
the client devices 110a-z can be any appropriate module,
device, or functional component that 1s configured to read
and store data in the memory device 140 through the SOC
tabric 150. For example, a client device can be a CPU, an
application-specific integrated circuit or lower-level compo-
nents of the SOC 1tself that are capable of mitiating com-
munications through the SOC fabric 150.

One or more of the client devices can be an ambient
computing device (ACD) 160. An ambient computing
device 1s a component that 1s configured to perform com-
puting operations while the SOC 102 1s 1n a low-power state.
The ambient computing device 160 1s configured to process
inputs to the SOC 102 while the SOC 102 i1s in the
low-power state. In addition, the ambient computing device
160 can operate like any other client device during other
power states of the SOC 102.

The SOC fabric 150 1s a communications subsystem of
the SOC 102. The SOC fabric 150 includes communications
pathways that allow the client devices 110a-7 to communi-
cate with one another as well as to make requests to read and
write data using the memory device 140. The SOC fabric
150 can include any appropriate combination of communi-
cations hardware, e.g., buses or dedicated interconnect cir-
cuitry.

The system 100 also mncludes communications pathway
152 that allow communication between the SLC 120 and the
memory controller 130 as well as an inter-chip communi-
cations pathway 154 that allows communication between the
memory controller 130 and the memory device 140.

During a low-power state, the SOC 102 can save power
by powering down one or more of the communications
pathways 152 and 154. Alternatively or 1n addition, SOC
102 can power down the memory device 140, the memory
controller 130, and/or one or more of the client computing
devices 110a-» to further conserve power. As another
example, the SOC 102 can enter a clock-shut-ofl mode 1n
which respective clock circuits are powered down for one or
more devices.

The caches 120 and 122 are positioned in the data
pathway between the ACD 160 and the memory controller
130. The memory controller 130 can handle requests to and
from the memory device 140. Thus, requests from the
ambient computing device 160 to read from or write to the
memory device 140 pass through the caches 120 and 122.
For example, the ACD 160 can make a request to read from
the memory device 140, which passes through the local
cache 122, the SOC {fabric 150 and on to the SL.C 120. The
SLC 120 can handle the request before forwarding the
request to the memory controller 130 for the memory device
140.

The SLC 120 can cache read requests, write requests, or
both from client devices 110a-» and ambient computing

10

15

20

25

30

35

40

45

50

55

60

65

4

device 160. The SLC 120 can cache read requests by
responding to the request with data stored 1n the cache rather
than fetching the data from the memory device 140. Simi-
larly, the SLLC 120 can cache write requests by writing the
new data in the cache rather than writing the new data 1n the
memory device 140. The SLC 120 can perform a write-back
at a later time to store the updated data 1n the memory device
140.

While the SOC 102 1s in the low-power state, the ambient
computing device 160 can process inputs to the SOC 102
using only 1nstructions and data stored 1n one of the caches
120 or 122. Theretfore, the SOC 102 can reduce or remove
power to one or more other components of the system or all
other components of the system. For example, in some
implementations, while 1 the low-power state, even though
the ambient computing device 160 1s processing inputs, the
SOC 102 can still power down the memory device 140
because the ambient computing device 160 does not need to
access the memory device 140. For the same reasons, the
SOC 102 can also power down the memory controller 130.

To prepare to enter the low-power state, the SOC 102 can
pre-fetch, into one of the caches 120 or 122, the instructions
and data required to process iputs to the SOC 120 during
the low-power state. The SOC 102 can then enter the
low-power state by powering down other components, and
the ambient computing device 160 can use the instructions
and data stored 1n the cache to process mputs to the SOC 102
while the SOC 102 1s 1n the low-power state.

FIG. 2 1s a sequence diagram 1illustrating a sequence of
events 200 of an example process for transitioning a systems-
on-a-chip (SOC) into a low-power state. In this example, the
low-power state 1s named SLEEP. The example process 200
can be performed by the components of the SOC 102.

The process 1llustrated 1n FIG. 2 1s performed by four
main components: a software power manager SPM (SPM)
202, an ambient computing device (ACD) 204, a cache 206,
and a hardware power manager (HPM) 208. The SPM 202
controls one or more voltage rails, each corresponding to a
data path between multiple components of the SOC. For
example, the ACD 204 can be in communication with
multiple portions of the cache 206 and each portion can be
connected to the ACD 204 through a data path. When the
SPM 202 powers down one or more voltage rails, the ACD
204 and the cache 206 can lose their connection through data
paths associated with the one or more voltage rails.

The HPM 208 controls the power of the components of
the SOC. For example, the HPM 208 indicates which
components are powered up and which components are
powered down.

Betfore the SOC 102 enters a low-power state, the SPM
202 sends a notification 210 to the ACD 204. Upon receiving
the notification 210, the ACD 204 prepares for operating
during the SOC’s low-power state. The ACD 204 makes a
C
C

letermination on whether the ACD should use the cache 206
luring the low-power state (212). In some 1implementations,
this determination can be based on which of several low-
power states the device 1s entering. For example, the device
can support multiple low-power states, and 1n some of them,
the ACD can exclusively use a cache without accessing
memory.

As part of this process, the ACD 204, or another compo-
nent, can determine which cache 1 a hierarchy of caches
should be used for the low-power state. In general, as caches
get closer to memory, their speeds decrease and their storage
s1zes and power consumption increase. Therefore, the ACD
204 can determine a size ol a low-power procedure to be
executed during the particular low-power state and can

US 11,599,471 B2

S

select the smallest cache that can accommodate the instruc-
tions and data needed to execute the low-power procedure
during the low-power state.

To prepare the cache 206 for use during SOC’s low-power
state, the ACD 204 executes instructions ol a prefetch
process to prepopulate the cache (214). The nstructions of
the prefetch process include prefetch loads and prefetch
stores that prepopulate the cache. This prefetch process
prepares the cache by ensuring that all instruction reads and
data reads that will be needed during the low-power state get
stored in the cache. In other words, the ACD 204 issues
instructions for all reads that will be needed 1n the low-
power state. If any of the reads result in a cache miss, the
requested data will be populated into the cache from DRAM
or from a larger cache that 1s lower 1n the cache hierarchy.

In addition, the prefetch process 214 can also prepare the
cache by performing writes that are likely to be needed
during the low-power state. In other words, the ACD 204
executes write mstructions so that the corresponding cache
lines are preallocated for use by the ACD 204 during the
low-power state. It 1s not necessary for the write instructions
of the prefetch process to use actual data. Rather, 1t 1s only
important that the cache allocate a cache line for the write so
that future write nstructions by the ACD 204 1n the low-
power state will result in a cache hit and will not wake the
memory controller, the memory device, or any data path-
ways to these components. Therefore, the ACD 204 can use
dummy data values, e.g., all zeros or random values, when
performing the prefetch writes.

The prefetch process 214 may also evict other data and
instructions from the cache that will not be used during the
low-power state. If the cache 206 1s a system-level cache, the
evicted data can be data that was stored on behall of the
AQOC 204 or other client devices of the system.

In some 1mplementations, the 1nstructions of the pretfetch
process can be generated by simulating the behavior of the
cache 206 1n response to the ACD 204 executing read and
write 1nstructions. Generating the instructions of the
prefetch process can then include adding prefetch load and
prefetch store instructions to the prefetch process until 1t 1s
suiliciently likely that an actual load and store performed
during the low-power state will not result 1n a cache miss.
This simulation technique can also be used to determine how
much of the cache to allocate to the ACD 204 during the
low-power state. For example, 1f the simulation indicates
that there are likely to be cache misses during the low-power
state, the system can increase the cache partition size for the
ACD 204.

Other cache partitions that are not used by the ACD 204
can be powered ofl before entering the low-power state.
Before being powered ofl, the state of the cache 206 can be
saved 1n order to restore the state of those non-ACD cache
partitions after exiting the low-power state.

When the prefetch process (214) 1s complete, the ACD
204 sends a notification to the SPM 202, notitying the SPM
202 that the ACD 204 1s done prepping for SLEEP (216). In
some 1mplementations, the ACD 204 also provides 1denti-
fication information for the portion of the cache 206 that will
be used during the low-power state. For example, the ACD
204 can choose one or more cache ways of the cache 206 for
operation during the low-power state. In some 1implementa-
tions, the SOC dedicates a default portion of the cache 206
for the ACD 204 operations during the low-power state.

The SPM 202 can configure a data pathway for commu-
nications between the ACD 204 and the selected cache 206
during the low-power state (218). This process involves
determining which data pathways are required for commu-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

nication between the ACD 204 and the selected cache. For
example, 1f the selected cache 1s local to the ACD 204, the
SPM 202 may only configure a data pathway between those
two components. But 1f the selected cache 1s a system-level
cache, the SPM 202 may need to configure additional
pathways through other, smaller caches on the way to the
system-level cache.

The SPM 202 instructs the cache 206 to prepare for the
low-power state (220). In response, the cache 206 can
perform a cache flush (222) to write non-ACD partitions of
cached data into a memory device that allows for retrieval
alter the low-power state ends. For example, the memory
device can be a nonvolatile memory device or a memory
device that will remain 1n retention mode only during the
low-power state. In retention mode, the memory device can
save power by maintaining previously stored values, but by
not supporting the update of the previously stored values.

The cache 206 can thus save a state of the non-ACD
partitions ol the cache 206 before the SOC enters the
low-power state. The saved state of the cache 206 indicates
a state of the cache ways belfore the SOC enters the low-
power state. For example, the saved state of the cache 206
can indicate a state of the cache ways betfore the ACD 204
initiates the prefetch process 214 to prefetch instructions and
data 1nto the cache 206. The cache 206 can save the cache
state 1nto a non-volatile memory or a memory device that
will remain in retention mode. Upon exiting the low-power
state, the cache 206 can restore the saved cache state and
overwrite the cache portions, ¢.g., the cache ways, allocated
to the ACD 204 during the low-power state. The cache 206
sends a notification 226 to the SPM 202, indicating that
cache 206 1s ready for the SOC to enter the low-power state.

In response, SPM 202 iitiates the low power state. For
example, the SPM 202 can instruct the cache 206 to change
its RAM power state (226). This cache 205 can then power
down portions of the cache that will not be used by the ACD
204 during the low-power state (228). For example, the
cache can power down cache ways or entire partitions that
are not used by the ACD 204. The cache 205 then informs
the SPM 202 that the power down process 1s done (230).

The SPM 202 powers down one or more voltage rails
(236) that are to be powered down during the low-power
state. The one or more voltage rails generally do not include
the voltage rails that are dedicated to the communications
between the ACD 204 and the prefetched portion of cache
206.

The cache 206 can respond back with a verification
message verifying that prepping for sleep entry i1s done
(230). The system can then enter the low-power state.
During the low-power state, the ACD 204 can process sensor
inputs without waking the memory controller or a memory
device. Instead, the ACD 204 can process all sensor inputs
using only the instructions and data that were pretetched into
the cache 206.

The SPM 202 can also power down other components
having a connection with the ACD 204. For example, if the
SPM 202 can power down one or more voltage rails asso-
ciated with devices that will be powered down during the
low-power state (236). The SPM 202 can also power down
the memory controller associated with the memory device,
the memory device 1tsell, and one or more communication
interfaces, e.g., DDR PHY interfaces, between the memory
controller and the memory device. To do so, the SPM 202
can communicate the information of the voltage rails that are
powered down or information of the components associated
with the respective voltage rail, to the HPM 208 so that the
HPM 208 can power down these respective components.

US 11,599,471 B2

7

The SOC can also power down any other caches that are
lower 1n the cache hierarchy than the cache selected for the
low-power state. For example, as illustrated in FIG. 1, the
system can power down the SLC 120 1f the local cache 122
was selected for the low-power state. In that case, the HPM
208 can save the SLC state before changing the cache power

state. Upon exiting the low-power state, the HPM 208 can
restore the saved SLC state.

FIG. 3 1s a sequence diagram illustrating a sequence of
events 300 of an example process for exiting a system on
chuip (SOC) from a low-power state. The example process
300 can be performed by the components of the SOC 102.

The SOC may exit the low-power state in response to
receiving a service request that requires more resources than
what ACD 204 can access or provide using only the cache
206. Examples of such service request can include inputs
related to any of the sensors of the device, e.g., receiving a
phone call, activation of a power-on sensor, or recognizing,
a voice command. Accordingly, the ACD 204 may trigger
the exiting process.

For example, the SOC may be part of a user interactive
computing device. The user interactive computing device
may enter a sleep mode aifter being 1dle for 60 seconds. The
user interactive computing device may include an ACD
capable of voice recognition. Once the ACD detects the
voice of a user, the ACD can trigger the computing device
to exit the sleep mode.

Referring to FIG. 3, before the SOC exits a low-power
state, the SPM 202 may send a notification 310 to the ACD

204. Upon receiving the notification 310, the ACD 204
prepares for SOC’s exit from the low-power state. The ACD
204 may send a notification 312 to the SPM 202, indicating
that the ACD 204 1s prepared for the SOC to exit the
low-power state.

In response, the SPM 202 1dentifies the voltage rails that
are to be powered up for exiting the low-power state. In
some 1implementations, the SPM 202 restores a record of the
voltage rails that were powered down at 236 when the SOC
entered the low-power state. The SPM 202 powers up all or
part of the voltage rails whose information were restored
from the record.

In some implementations, the ACD 204 can provide an
identification information of the cache portions that the ACD
204 used for prefetching at 214 or used during the low-
power state of the SOC. Using this identification informa-
tion, the SPM 202 can identily the cache portions that were
powered down during the low-power state and can power up
one or more voltage rails associated with such cache por-
tions.

In some 1mplementations, the SPM 202 powers up all
voltage rails associated with the SOC components that need
to be operative while the SOC 1s not 1n the low-power mode,
regardless of the identification information of the compo-
nents that were operative during the low-power state.

In either case, the SPM 202 sends a notification 316 to the
HPM 208, notitying the HPM 208 that the SOC 1s to be
powered up. In response, the HPM 208 powers up the
respective components. The HPM 208 can send a notifica-
tion 320 to the SPM 202, notitying the SPM 202 that HPM
208 1s done with powering up or restoring power ol the
respective SOC components.

In some implementations, the HPM 208 restores the cache
power state (318) that was saved at 234, before the SOC
entering the low-power state. In these implementations, 1f
one or more cache ways of the cache 206 had no power

betore the SOC entered the low-power state, the HPM 208

10

15

20

25

30

35

40

45

50

55

60

65

8

keeps the power of these one or more cache ways down
when the SOC exits the low-power state.

In addition to the voltage rails, the SPM 202 can deter-
mine the SOC components that were powered down during
the low-power state. For example, the SPM 202 may have
stored a list of the memory controllers and communication
interfaces, e.g., DDR PHY, that were powered down when
the SOC entered the low-power state and trigger the HPM
208 to power up the respective memory controllers and
communication interfaces.

The SPM 202 can trigger the cache 206 to exit the
low-power state, for example, by sending a message to the
cache 206. To exit the low-power mode, the cache 206
powers up cache RAM(s) (322).

Upon powering up the respected components, the SOC
exits the low-power state and the SOC can process the input
that caused exiting of the SOC from the low-power state.
The input may be a request submitted by a client device. The
SPM 202 can notily the client device (324) that the SOC 1s
ready to process the request.

In some implementations, the cache 206 powers up all
cache RAM when the SOC exits the low-power state. In
some 1mplementations, the cache 206 restores a record of the
cache RAM that were operative before the SOC entered the
low-power state and powers up only the respective cache
RAM. For example, the cache 206 may have stored such a
record 1n a non-volatile memory before entering the low-
power state.

As noted above, 1n some implementations, the cache 206
can save a state of the cache 206 before the SOC enters the
low-power state. Upon exiting the low-power state, the
cache 206 can restore the saved state and overwrite the cache
portions, €.g., cache ways, allocated to the ACD 204 during
the low-power state.

When the SOC exits the low-power state, the cache 206
can start operating as 1t was operating before the SOC
entered the low-power state. For example, the cache 206 can
perform a cache allocation algorithm (326) in order to
allocate cache partitions for servicing memory requests after
exiting the low-power state.

Similarly, other components of the SOC can start oper-
ating as they were operating before the SOC entered the
low-power state. For example, the cache 206 can start
communicating with a memory device, e.g., the memory
device 140, to service memory requests (328) submitted by
one or more client devices.

The SOC may exit the low-power state 1n response to
receiving an input that requires using more resources than
what the ACD 204 and the pretfetched portion of the cache
206 can provide. The ACD 204 may determine that the
prefetched information in the cache 206 1s not suflicient to
process a particular input. For example, the ACD 204 may
receive a fingerprint iput from a fingerprint sensor. The
ACD 204 may determine that the fingerprint does not match
any fingerprint patterns stored 1n the prefetched cache por-
tion. Accordingly, the ACD 204 may trigger the SOC to exat
from the low-power mode to access a memory that has
stored more fingerprint patterns.

In some implementations, there may be no need to exit the
whole SOC from the low-power mode; rather, powering up
just a portion of the SOC may be enough for processing a
particular input that requires more resources than the ACD
204 and the prefetched cache portion. In these implemen-
tations, the SOC performs a transition in the low-power
state, where some, but not all, of the SOC components are
powered up for the purpose of processing the particular
input.

US 11,599,471 B2

9

In the example above, the SOC may determine that
providing access to more fingerprint patterns can give the
ACD 204 the mnformation 1t needs. Accordingly, the SOC
may determine a portion of the cache 206 or a non-volatile
memory device that has stored the fingerprint patterns, and
power up only the respective SLC portion or path to the
non-volatile memory device to provide the ACD 204 the
information that the ACD 204 needs for processing the
received fingerprint mnput.

FIG. 4 1s a sequence diagram illustrating a sequence of
cevents 400 of an example process for performing a partial
power transition from a low-power state of a SOC. The
example process 400 can be performed by the components
of the SOC 102. The SOC performs the transition by
powering up one or more additional components of the SOC
without fully powering up the entire system. The one or
more components are powered up to provide the resources
that the ACD 204 needs for processing a particular input that
the ACD 204 cannot process by only using the information
prefetched in the cache 206.

While the ACD 204 processes inputs to the SOC during
the SOC’s low-power state (410), the ACD 204 may deter-
mine that it needs particular information that the ACD 204
did not prefetch 1nto the cache 206 betfore the SOC entered
the low-power state. For example, the ACD 204 may deter-
mine that processing a particular sensor iput requires
non-prefetched information. (412). The required informa-
tion can be stored in a downstream cache in the cache
hierarchy or in RAM. Thus, the system can power up
additional components necessary to obtain the information
in order for the ACD 204 to continuing processing without
waking the entire system.

The ACD 204 sends a request to the SPM 202, requesting,
that the SPM 202 enable the data path needed to access to
the particular information. The ACD 404 can determine the
location of the mformation and request that the data path to
the location 1s enabled (414).

The SPM 202 powers on the data path to the determined
location (416). For example, the SPM 202 can power up
voltage rails on the required data path. The SPM 202 can
also communicate with an HPM to power up the respective
downstream cache or memory device includes the particular
information. The SPM 202 can send a confirmation message
418 to the ACD 204, acknowledging that the data path and
memory portion are powered up.

As part of this process, the ACD 204 can make use of the
cache 206. Thus, the ACD 204 can enable an ACD partition
of the cache (420). This allows the required information to
be fetched from the cache 206 if 1t 1s already stored there or
cached 1f it needs to be fetched from other downstream
caches or memory. Enabling the ACD partition can cause the
cache 206 to perform a partitioning algorithm to determine
how many and which cache ways to allocate to the ACD
204. During this time, the ACD can poll the cache 206 for
completion of the partitioning algorithm (422).

When the partitioning algorithm 1s finished, the ACD
partition of the cache 1s ready for use. Thus, the ACD 204
can fetch (424) the required information, which can result 1in
such information being stored in the ACD partition of the
cache 206. The ACD use case can then continue in the
low-power state (426). In other words, the system can
resume the low-power state without waking all components
of the system, e.g., all the client devices. In addition, once
the ACD 204 1s done fetching the particular information, the
memory portion from which it was fetched can be powered
down again and join the other mactive components of the
SOC 1n the low-power state.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

In the present disclosure, any of the nofifications or
communication messages sent between any two components
may be 1n form of an interrupt or be provided 1n response to
a polling. For example, a first device may send a message to
a second device 1n response to receiving a poll from the
second device inquiring whether a job has been performed
by the first device. Alternatively, the first device may send
the message to the second device once the first device
finishes the job, regardless of whether the second device sent
a poll.

FIG. 5 15 a diagram of an example computing device 100
that includes a low-power, ambient computing system 510.
The ambient computing system 510 1s an example of a
system can perform the functionalities of the ambient com-
puting device described above. The functionality described
below uses two other example computing systems, a main
CPU cluster 540 and a main machine learning (ML) engine

550. FEach of these two components can function as one of
the client devices 110a-r of the SOC 102 described above
with reference to FIG. 1. In other words, the ambient
computing system 510, the main CPU cluster 540, and the
main ML engine 550 can all be integrated into the same SOC
and share a same system-level cache, e.g., the SLC 120.

The example device 500 can include a system i1mple-

mented 1n an any appropriate computing device, €.g., a smart
phone, a smart watch, a fitness tracker, a personal digital
assistant, an electronic tablet, a laptop, to name just a few
examples. The system of computing device 500 can be used
so that the computing device 500 can remain in a low-power
state yet continually monitor and respond to 1mputs from the
environment by sequentially waking appropriate processing
components of the system. In this specification, the terms
wake and activate will be used to mean supplying an
increased amount of power to a particular processing com-
ponent or other electronic circuitry. The system may or may
not have been supplying power to a processing component
or other circuitry that 1s being awoken or activated. In other
words, a component being awoken or activated may or may
not have been completely powered down previously. Wak-
Ing or activating a processing component can result in the
processing component performing a boot process and caus-
ing instructions and data for the processing component to be
loaded 1nto random-access memory. Alternatively or 1n
addition, waking or activating a processing component can
include resuming from a previously suspended state.
The one or more components of the computing device 500
can be implemented on a system on a chip (SoC) within the
computing device. An SoC can be an integrated circuit that
includes each component of the system on a single silicon
substrate or on multiple interconnected dies, e.g., using
silicon interposers, stacked dies, or interconnect bridges.
Other components of the computing device, including a
main CPU cluster 540, can be implemented on the same or
on a separate die. The computing device 500 may include
components, including the sensors 512, one or more dis-
plays, a battery, and other components, that are separate
from and independent of the SoC, and may for example be
mounted on a common housing.

Briefly, and as described in further detail below, the
device 3500 includes a number of peripheral sensors 512
configured to generate sensor signals based on input from
the environment of the computing device. The device 500
includes a control subsystem 520 for controlling the supply
of power and sensor signals to components 1n the system.
And the device 500 1includes a processing subsystem 530 for
processing sensor signals and generating outputs.

US 11,599,471 B2

11

The device 500 also includes a main CPU cluster 340. The
main CPU cluster 540 1s a component of the computing
device that includes one or more general-purpose processors

that are separate from the devices in the processing subsys-
tem 530. The processors of the main CPU cluster 540
generally have more computing power than any of the
devices 1n the processing subsystem 530, and therefore, the
processors of the main CPU cluster 540 may also consume
more power than any of the devices 1n the processing
subsystem 530.

The device 500 can also optionally include a main
machine learning (ML) engine 550. The main ML engine
550 1s a special-purpose processing device that 1s configured
to perform inference passes through one or more machine
learning models. Each inference pass uses inputs and
learned parameter values of a machine learning model to
generate one or more outputs predicted by the learned
model. The main ML engine 550 can include one or more
compute tiles. In general, a compute tile 1s a self-contained
computational component configured to execute a set of
computations independently. The tiles of the main ML
engine 350 can be arranged 1n a network and programmed
so that each tile of the main ML engine 350 1s configured to
perform operations of one portion of an inference pass
through the machine learning model. For example, 1t the
machine learning model 1s a neural network, each tile in the
main ML engine 550 can be configured to compute the
computations of one layer of the neural network. A suitable
machine learning engine having multiple compute tiles 1s
described 1n U.S. Pat. No. 9,710,265, which 1s incorporated
herein by reference. The main ML engine 550 also provides
higher performance computing power than any of the
devices 1n the processing subsystem 330 of the ambient
computing system 510. Therefore, the main ML engine 550
also consumes more power than any of the devices in the
processing subsystem 530.

The processing subsystem 530 includes an ambient
machine learning engine 534. The ambient ML engine 534
1s also a special-purpose processing device that 1s configured
to perform inference passes through one or more machine
learning models. When the device 500 includes both a main
ML engine 550 and an ambient ML engine 534, the ambient
ML engine 534 has fewer compute tiles and therefore has
less processing power than the main ML engine 550 and
consumes less power than the main ML engine 550. For
example, the ambient ML engine 534 can be implemented as
one or two tiles, whereas the main ML engine 350 can have
8-16 or more interconnected tiles.

Although not depicted, the computing device 500 can also
include one or more other components commonly found on
such computing devices, e.g., a display, a modem, a graphics
processing unit, a display processor, or a special-purpose
1mage processor, to name just a few examples. These com-
ponents can be powered down during the low-power states
described below and activated if the system determines that
the sensor signals match an application requiring their
activation.

The device 500 includes a number of peripheral sensors
512. The peripheral sensors 512 include one or more audio
sensors 502, one or more radar sensors 504, one or more
touch sensors 506, a Global Positioning System (GPS)
sensor 308, and an accelerometer 510. The system can
include additional, fewer, or alternative peripheral sensors.
For example, the system can include a Wi-F1 signal detector,
a cellular signal detector, a barometer, a thermometer, a
magnetometer, or other types of peripheral sensors.

10

15

20

25

30

35

40

45

50

55

60

65

12

The peripheral sensors 512 can be devices configured to
generate sensor signals 1n response to environmental inputs.
The one or more audio sensors 502, ¢.g., microphones, can
generate audio signals based on sounds 1n the environment.
For example, the audio sensors 502 can generate audio
signals corresponding to human speech. The one or more
radar sensors 504 can detect radar signals based on reflected
radio waves emitted by a transmitter of the computing
device. Varniations in reflected radio waves can indicate
movement in the environment. For example, the radar
sensors 504 can generate radar signals that are received due
to being reflected ofl of the user, e.g., when the user 1s
making gestures in proximity to the computing device.
Similarly, the one or more touch sensors 506 can generate
signals due to touch gestures made by a user of the com-
puting device on a presence-sensitive or pressure-sensitive
interface of the device. The GPS sensor 508 can generate
signals 1n response to received location data communica-
tions. And the accelerometer 510 can generate signals due to
accelerations experienced by the computing device. In this
specification, whenever sensor signals are described as
being mputs to other processing components, the iputs can
be analog electrical signals generated by the sensors them-
selves, digital representations of the sensor signals, or pro-
cessed digital representations of the sensor signals that
represent one or more properties of the original signals. The
peripheral sensors of the computing device 500 can also
include an i1nertial measurement sensor, a barometer, a
specific absorption rate proximity sensors, and WiF1 net-
work name sensors, to name just a few other examples.

The ambient computing system 3510 includes one or more
peripheral interfaces 514. The peripheral interfaces 514 can
be a component of the computing device 500 that 1s powered
on even when the device 1s 1n 1ts lowest power state. The
peripheral interfaces 514 can 1include any appropnate
peripheral interface for converting inputs received from the
peripheral sensors 512 into sensor signals to be used by the
ambient computing system 510. For example, the peripheral
interfaces 514 can include a pulse density modulation
(PDM) 1nterface, an inter-IC sound (I125) interface, an inter-
integrated circuit (I12C) mterface, an I3C interface, a time
division multiplexed (TDM) interface, and a serial periph-
eral interface (SPI), to name just a few examples.

Each of the peripheral interfaces 514 1s configured to
generate a respective mterrupt upon detecting an environ-
mental mnput. In general, each interrupt can identify a source
of the sensor data, e.g., an 1dentifier of a peripheral interface
or sensor responsible for the interrupt. The interrupts are
received and processed by one or more interrupt controllers
524. For example, upon receiving an interrupt, the interrupt
controller 524 can wake a power control unit (PCU) 521,
which includes a power management unit (PMU) 522 and a
clock control umit 523. The PMU 522 can control which
components of the device 500 receive power and how much
power each component receives. The clock control unit 523
can control the frequency at which the components of the
device 500 operate. In some 1implementations, each process-
ing component has a different clock frequency that 1s a
multiple or a fraction of a base clock frequency. By having
a clock frequency that 1s a multiple or a fraction of a base
clock frequency, each processing component can more eili-
ciently exchange signals with other processing components.

Upon recerving an interrupt, the PCU 521 can determine
based on the source of the interrupt which other components
of the ambient computing system 510 should be activated 1n
order to further process the sensor signals causing the
interrupt. In order to provide processing support for such

US 11,599,471 B2

13

components, the PCU 521 can wake the static random access
memory (SRAM) 539 and the system communications fab-
ric. The fabric 1s a communications subsystem that commu-
nicatively couples the internal components of the ambient
computing system 3510, their communications to external
components, or some combination of these. The fabric can
include any appropriate combination of communications
hardware, e.g., buses or dedicated interconnect circuitry.

The static random access memory (SRAM) 539 can be a
general purpose random-access memory device that can be
shared by multiple processing components of the processing
subsystem 330. For example, the SRAM 539 can store
sensor signals, processor instructions and data, system out-
puts, and other data, e.g., neural network parameters of
neural network models that are or will be implemented by
the ambient ML engine 534. In general, an SRAM 1s
distinguishable from dynamic random-access memory
(DRAM) 1 that an SRAM need not be periodically
refreshed. As described 1n more detail below, the SRAM 539
1s accessible to the processing components 1n the processing
subsystem 530 directly or through one or more DMA
controllers. In some implementations, the SRAM 539
includes multiple banks, which can each store substantially
similar amounts of data, e.g., 1, 10, or 100 MB each. In
addition, each individual bank can include multiple blocks
that can be individually powered-down when entering the
low-power state. By carefully sequencing the order that the
blocks are powered-down amongst the four banks, the
SRAM address space can remain contiguous.

When the PCU 521 wakes the SRAM 539, the PCU 521
can wake fewer than all of the blocks or all of the memory
banks of the SRAM 539. The PCU 521 can instead wake
only a number of blocks that 1s suflicient for the next
component ol the processing subsystem 330 to determine
whether to further escalate powering up of components of
the device 500.

The PCU 521 can also supply diflerent power levels to
different blocks of the SRAM 539. For example, 1n the
monitoring power state, the PMU 522 can supply a lower,
retention voltage to the entire SRAM 539 to reduce its power
consumption. The PMU 522 can also supply the retention
voltage to the SRAM 539 11 no processing components need
to access to the SRAM 539. In the processing power state,
the PMU 522 can provide normal voltage to all or portions
of the SRAM 539 and lowered or no voltage to other parts
of the SRAM 539.

During the process of handling an interrupt, the ambient
computing system 510 can also wake one or more DMA
controllers 3528. The DMA controllers 528 can manage
DMA pathways that allow higher data bandwidth for incom-
ing sensor signals. For example, a DMA controller 528 can
be used to continuously stream audio data from a micro-
phone 1nto the SRAM 539 for access by processing com-
ponents 1n the processing subsystem 530. Conversely, a
DMA controller can also be used to continuously stream
audio data stored in the SRAM 539 for output as sound
through one or more speakers. The DMA controllers 528 can
also be used to stream any appropriate sensor data into the
SRAM 3539, but using programmed 10 may be computa-
tionally cheaper than activating a DMA controller for small
quantities of data. Thus, the ambient computing system 510
can activate and use the DMA controllers 528 for relatively
high-bandwidth sensor data, e.g., audio data and radar data,
and can used programmed 10 for other types of sensor data.

After preparing the fabric and the SRAM 339, the PCU
521 can then use the interrupts to determine which other
component of the processing subsystem 530 to wake. For

10

15

20

25

30

35

40

45

50

55

60

65

14

example, the PMU 522 can control whether power 1s pro-
vided to the low-power CPU 532, the low-power DSP 536,
or other components of the processing subsystem 530
depending on which of one or more sensors generated an
interrupt. In some implementations, the peripheral interfaces
514 and the components of the control subsystem 3520 are the
only components of the device 500 that are powered on 1n
a monitoring power state, which 1s a power state in which the
system 1s waiting to receive iterrupts due to environmental
inputs to the computing device.

The processing components of the processing subsystem
530 include a low-power CPU 532, an ambient ML engine
534, a low-power DSP 536, and a high-power DSP 538. In
some 1mplementations, the processing subsystem has mul-
tiple instances of one or more of these components, e.g.,
multiple low-power DSPs or multiple high-power DSPs. For
example, the processing subsystem 530 can have one high-
power DSP that 1s dedicated to processing audio signals and
a separate high-power DSP that 1s dedicated to processing
radar signals. Alternatively or in addition, the processing
subsystem 530 can have a high-power DSP that 1s dedicated
to processing 1image data.

When performing the prefetch process describe above
with reference to FIG. 2, the ambient computing system 510
can 1ssue prefetch load and store mstructions for any appro-
priate combination of the devices 1n the processing subsys-
tem 130. In other words, the ambient computing system 510
can prefetch instructions for the low-power CPU, the ambi-
ent ML engine 534, the low-power DSP 536, the high-power
DSP 538, or some combination of these. In some 1mple-
mentations, the ambient computing system 310 only
prefetches 1nstructions for components that consume the
least amount of power. For example, the ambient computing
system 310 can prefetch instructions for only the low-power
CPU 3532 and the low-power DSP 536. This will allow the
system to process most sensor signals during the low-power
state without waking the memory controller or the memory
device. If additional processing 1s needed, the system can
tetch such 1nstructions using the DMA controllers 528 after
waking the memory controller and memory device.

The prefetch process ellectively extends the size of
memory available to the ambient computing system 510 in
the low-power state. In other words, instead of only being
limited to the amount of internal SRAM 539 during the
low-power state, the ambient computing system 510 can
also have access to SRAM of the cache used for the prefetch
process. This eflective extends the available memory to be
at least the same of the mternal SRAM 3539 plus the size of
the cache allocated to the ambient computing system 310.

In the monitoring power state, the processing components
in the processing subsystem 530 can be maintained 1n a
retention mode. The PCU 521 can maintain a component in
retention mode by reducing or eliminating power that 1s
provided to the component. For example, in the retention
mode, the PCU 521 can supply a processing component with
Just enough power to maintain register states, but not enough
power to process data 1n the registers.

The low-power CPU 532 can be a general-purpose pro-
grammable processor that includes registers, control cir-
cuitry, and an arithmetic logic umt (ALU). In general, the
low-power CPU 532 consumes less power than the main
CPU cluster 540 of the computing device, and may contain
fewer processing cores. In some implementations, the low-
power CPU 532 1s primarily a scalar processor that operates
on single instructions and single data inputs.

The low-power CPU 532 can receive interrupts and
sensor signals when the system enters the processing power

US 11,599,471 B2

15

state. Based on the type of sensor signals the lower-power
CPU 532 receives and based on the properties of those
sensor signals, the low-power CPU 532 can determine that
other components of the system should be activated, e.g., the
communications fabric, the DMA controllers 528, the
SRAM 539, or some combination of these. After activating
these components, the low-power CPU 532 can optionally
return to a non-operational state.

The low-power CPU 532 can provide the sensor signals,
or a processed version thereof, to the ambient ML engine
534 for further interpretation. For example, if the low-power
CPU 3532 receives sensor signals corresponding to acceler-
ometer input, the low-power CPU 532 can determine that the
ambient ML engine 334 should further process the sensor
signals. For example, the ambient ML engine 534 can then
turther process the sensor signals to determine that the
signals represent walking, jogging, biking, falling, or trav-
cling 1n a car.

The low-power CPU 532 can also bypass the ambient ML
engine 534 for some signals. If, for example, the low-power
CPU 3532 receives a sensor signal corresponding to a simple
touch 1input on a touch interface of the computing device, the
low-power CPU 532 can process the touch input without the
aid of other processing components, e.g., by causing the
display of the computing device to be turned on by the main
CPU cluster 340 or a graphics processor. The low-power
CPU 532 can also determine that the main CPU cluster 540
of the computing device, or another component of the
computing device outside of the device 500, should further
process certain sensor signals. The low-power CPU 532 can
make such a determination, for example, if 1t determines that
no other processing components in the device 500 can
properly process the sensor signals.

One task of the ambient ML engine 534 1s to use sensor
signals to perform an inference pass over a model to
generate an output that may trigger waking other processing
components to further process the sensor signals. In other
words, the ambient ML engine 334 can receive sensor
signals, or a processed version therecol generated by the
low-power CPU 532 or another processing component, and
the ambient ML engine 534 can generate an output that
represents which other processing components should fur-
ther process the sensor signals. The output generated by the
ambient ML engine 534 can explicitly specily a combination
of processing component IDs or an i1dentifier of an enumer-
ated power state or the output can be a representation of a
power state that 1s iterpreted by a low-power processing,
component, e.g., the low-power CPU or the low-power DSP,
in order to identily other higher-power processing compo-
nents that should process the sensor signals. As part of this
process, the low-power processing component can explicitly
or implicitly determine whether any other processing 1is
required. For example, the low-power processing compo-
nent can determine, based on the output of the machine
learning engine, that no further processing 1s required and
that the system can transition back to the monitoring power
state.

In the lowest-level monitoring power state, the PCU 521
can keep the ambient ML engine 534 in a low-power state
or powered down completely. In the processing power state,
the PCU 521 may or may not provide power to the amblent
ML engine 334 depending on what sensor signals are
available at the peripheral interfaces 314 and how the
low-power CPU 532 or the low-power DSP 536 interpret the
signals. In some 1mplementations, the low-power DSP 3536
or the low-power CPU 532 interpret the signals to instruct
the PCU 521 to provide power for an additional, interme-

10

15

20

25

30

35

40

45

50

55

60

65

16

diate power state, 1n which the ambient ML engine 534 is
also powered on for the inference pass, but no other high-
power processing components are yet powered on.

The ambient ML engine 534 can also implement other
machine learning models for processing sensor signals. For
example, the ambient ML engine 534 can implement a
simplified speech recognition model that allows the ambient
ML engine 534 to recognize some voice-based commands.
Because the model may be 1nstalled on a mobile computing
device with limited memory capacity, the number of recog-
nized commands may be smaller than for online voice
recognition processes.

The ambient ML engine 534 can alternatively or in
addition implement a machine learning model that provides
on-chip automatic speech recognition. In other words, the
ambient ML engine 534 can perform inference passes
through the model in order to generate a live transcription of
speech captured 1n the audio signals.

As another example, the ambient ML engine 3534 can
implement a text-to-speech model that generates audio out-
put signals from particular text inputs, 1n which the audio
output signals can be interpreted as human speech 1n a
particular language by users. In some implementations, the
device 500 can use a speech recognition model and the
text-to-speech model 1n tandem to provide a low-power
dialogue engine. For example, after the ambient ML engine
534 recognizes a particular command, the low-power CPU
532 can take particular actions to efl

ectuate the command
and also to provide a particular text response back to the
ambient ML engine 534. The ambient ML engine 534 can
then use the text-to-speech model to generate an audio
output representing a response to the mitial command. In
some 1mplementations, the entire data flow of speech rec-
ognition, action execution, and text-to-speech response can
be performed without ever waking up the main CPU cluster
540 of the device.

For example, if a user provides the voice command,
“louder,” the ambient ML engine 534 can generate an output
representing that the audio signals corresponding to a voice
command to increase the volume of music being played by
the device. The machine-learning engine 534 can provide
the output to the low-power CPU 532, which can eflectuate
the command by 1ssuing a signal to one or more 1ntegrated
speaker subsystems. The low-power CPU 532 can then
provide a text response, “volume at level 5,” to the ambient
ML engine 534. The ambient ML engine 534 can then
process the text response with the text-to-speech model to
generate an audio output, which the device can play over the
one or more integrated speaker subsystems. Thus, the ambi-
ent computing system 510 process the entire dialogue
sequence without waking up the main CPU of the device.

The ambient ML engine 334 can also implement any of a
variety of other models. The ambient ML engine 534 can
also implement a gesture recognition model that interprets
features of hand gestures made by a user of the computing
device. For example, the mputs to the model can be pro-
cessed radar signals received by the computing device, and
the output of the model can be predictions of gestures that
the user has made. Each hand gesture can correspond to a
particular command, and the ambient ML engine 534 can
provide the output to the low-power CPU 532, or another
processing component, for further action.

The ambient ML engine 534 can include one or more
memory banks for storing model parameters and other
model configuration information. For example, the machine-
learning engine 534 can store data representing neural
network connections and neural network parameters. The

US 11,599,471 B2

17

ambient ML engine 534 can include one or more multiply
accumulate (MAC) umts and one or more sum registers for
computing neural network activations or other neural net-
work layer outputs, and a controller for controlling data
exchange between the memory banks and the MAC unaits.
The ambient ML engine 334 can also include instruction
memory, direct memory access paths, registers, and other
processing components. In some implementations, the ambi-
ent ML engine 534 1s a machine learning compute tile that
1s configured to accelerate the computation of machine
learning inference passes.

The low-power DSP 536 and the high-power DSP 538 are
special-purpose processors configured for eflicient decoding
and processing of highly-vectorized signals. The processing
subsystem 530 can include a variety of DSPs that are
designed for different purposes. For example, the processing
subsystem 530 can include a DSP that 1s configured to
process radar signals, a DSP that 1s configured to process
audio signals, a DSP that 1s configured to perform dataplane
algorithms, a DSP that 1s configured to process wireless
communications signals, and a DSP that 1s configured to
process GPS signals, to name just a few examples.

As described above, the low-power DSP 536 can perform
the 1mitial interpretation of sensor signals from the control
subsystem 520. The low-power DSP 336 can also perform
other signal processing tasks as well. In general, high-power
DSPs consume higher levels of power than low-power DSPs
because they have more active registers, they access and
process more data in parallel, because they rely more heavily
on memory operations, or some combination of these.

The control subsystem 520 can also include a timer 529,
which 1s an electronic timer that can detect system malfunc-
tions and resolve those malfunctions. During normal opera-
tion, the system can regularly reset the timer 529 to prevent
the timer 329 from timing out. If, e.g., due to a hardware
fault or a program error, the system fails to reset a timer, the
timer will elapse and generate a timeout signal. The timeout
signal can be used to 1nitiate one or more corrective actions.
A corrective action can include placing the system 1n a safe
state and restoring normal system operation.

Embodiments of the subject matter and the functional
operations described in this specification can be imple-
mented 1n digital electronic circuitry, 1n tangibly-embodied
computer software or firmware, in computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non-transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially-generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode information for transmis-
s1on to suitable recerver apparatus for execution by a data
processing apparatus.

The present embodiments 1n imncludes systems and meth-
ods to enter the system in a low-power state. The system
includes multiple integrated client devices, including an
ambient computing device that 1s configured to control
operation of the system while the system 1s 1n a low-power
state, a memory controller configured to read data from a

10

15

20

25

30

35

40

45

50

55

60

65

18

memory device for consumption by the client devices, and
a cache configured to cache data requests to the memory
controller 1ssued by the ambient computing device. The
system 1s configured to enter the low-power state by per-
forming operations including performing, by the ambient
computing device, a prefetch process that populates the
cache with prefetched instructions and data required for the
ambient computing device to process mputs to the system
while in the low-power state, and entering the low-power
state. In the low-power state, the ambient computing device
1s configured to process mnputs to the system using the
prefetched instructions and data stored in the cache.

In some embodiments, the cache 1s a system-level cache
configured to cache data requests to the memory controller
for each of the multiple integrated client devices. In some
embodiments, 1s a local cache that 1s configured to service
memory requests only for the ambient computing device and
not for any of the other integrated client devices.

Performing the prefetch process can increase an amount
of SRAM memory available to the ambient computing
device during the low-power state. In some embodiments,
the memory available to the ambient computing device
during the low-power state includes an internal SRAM of
the ambient computing device and SRAM of the cache.

In some embodiments, 1n the low-power state, the ambi-
ent computing device 1s configured to process the inputs to
the computing device using the prefetched mstructions and
data without waking the memory device or waking the
memory controller.

Performing the prefetch process can include 1ssuing
prefetch store memory requests that allocate cache lines in
the cache for data that the ambient computing device will be
store during the low-power state. The prefetch may store
memory requests each write dummy data to the cache.

In some embodiments, the system includes a hierarchy of
multiple caches including a system-level cache configured to
cache data requests to the memory controller for each of the
multiple integrated client devices. Entering the low-power
state can include determining a memory size for a low-
power procedure to be executed by the ambient computing
device i the low-power state, determining, based on the
memory size for the low-power procedure to be executed by
the ambient computing device in the low-power state, which
cache in the hierarchy of multiple caches should be used to
store the prefetched instructions and data required for the
ambient computing device to process mputs to the system
while 1n the low-power state, and selecting the cache from
among the multiple caches in the hierarchy based on the
determination.

Entering the low-power state can include powering down
all caches that are lower 1n the hierarchy of caches than the
selected cache. Entering the low-power state can include
powering down all data paths to the caches that are lower in
the hierarchy of caches than the selected cache. Powering
down all caches that are lower 1n the hierarchy of caches
than the selected cache can include powering down the
system-level cache.

The term ““‘data processing apparatus” refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
turther include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation-specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, €.g., code

US 11,599,471 B2

19

that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code) can be
written 1n any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing,
environment. A program may, but need not, correspond to a
file 1n a file system. A program can be stored in a portion of
a file that holds other programs or data, e.g., one or more
scripts stored 1n a markup language document, 1n a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub-programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

For a system of one or more computers to be configured
to perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that 1n operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

The processes and logic flows described 1n this specifi-
cation can be performed by special purpose logic circuitry,
¢.g., an FPGA or an ASIC, or by a combination of special
purpose logic circuitry and one or more programmed com-
puters.

Computer-readable media suitable for storing computer
program 1nstructions and data include all forms of non-
volatile memory, media and memory devices, mcluding by
way ol example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a host device having a display device, e.g., an
clectronic display, for displaying information to the user and
a keyboard and pointing device, e.g., a mouse, trackball, or
a presence sensitive display or other surface by which the
user can provide mput to the host device. Other kinds of
devices can be used to provide for mteraction with a user as
well; for example, teedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, including acoustic, speech, or tactile
input. In addition, a host device can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s device 1n response to
requests recerved from the web browser. Also, a host device
can 1nteract with a user by sending text messages or other
forms of message to a personal device, e.g., a smartphone,
running a messaging application, and receiving responsive
messages from the user i return.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-

10

15

20

25

30

35

40

45

50

55

60

65

20

tions on the scope of any imnvention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described 1n this speci-
fication 1n the context of separate embodiments can also be
implemented in combination 1n a single embodiment. Con-
versely, various features that are described 1n the context of
a single embodiment can also be implemented 1n multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting 1n certain combinations and even 1nitially be claimed
as such, one or more features from a claimed combination
can 1n some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed 1n the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. In certain cir-
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
modules and components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally
be 1ntegrated together 1n a single software product or pack-
aged into multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain some cases, multitasking and
parallel processing may be advantageous.

What 1s claimed 1s:
1. A system comprising:
multiple integrated client devices, including an ambient
computing device that 1s configured to control opera-
tion of the system while the system 1s 1n a low-power
state;
a cache configured to cache data requests issued by the
ambient computing device; and
a hardware power manager that controls power of com-
ponents of the system,
wherein the system 1s configured to perform a partial
power transition from the low-power state by perform-
Ing operations comprising:
determining, by the ambient computing device and
while the system 1s in the low-power state, that a
service request to the ambient computing device
requires particular information that 1s missing from
the cache of the system,
activating a partition of the cache dedicated to the
ambient computing device,
fetching the required imnformation from a downstream
component of the system into the partition of the
cache dedicated to the ambient computing device,
and
resuming, by the ambient computing device, operation
of the system in the low-power state using the
information fetched into the partition of the cache
dedicated to the ambient computing device without
waking up all components of the system.

US 11,599,471 B2

21

2. The system of claim 1, wherein the operations further
comprise:

determining, by the ambient computing device, a particu-

lar location where the particular information 1s stored;
and

providing, by the ambient computing device and to the

hardware power manager, a request to power up a data
path to the particular location.

3. The system of claim 1, wherein the operations further
comprise:

fetching, by the ambient computing device, the particular

information to the cache; and

powering down, by the hardware power manager, the one

or more components of the system in response to the
fetching.

4. The system of claim 3, wherein the cache 1s partitioned
to 1include particular ways for mstructions and data required
for the ambient computing device to process inputs to the
system while 1n the system 1s in the low-power state, and

wherein the particular information i1s fetched into the

particular ways.

5. The system of claim 1, wherein at least one of the
integrated client devices 1s a sensor, and the operations
turther comprise receiving, by the ambient computing
device, the service request from the sensor.

6. The system of claim 1, wherein the cache 1s a system-
level cache configured to cache data requests for each of
multiple integrated client devices of the system.

7. The system of claim 1, wherein the cache 1s a local
cache that 1s configured to service memory requests only for
the ambient computing device and not for any other inte-
grated client devices of the system.

8. The system of claim 1, wherein the system 1s config-
ured to read data from a memory device, and

wherein paths to the memory device are powered down

during the low-power state.

9. The system of claim 1, wherein at least some of the
integrated client devices are powered down during the
low-power state.

10. The system of claim 1, wherein the cache 1s a
particular cache 1n a hierarchy of caches 1n the system, and

wherein during the low-power state, all caches that are

lower 1n the hierarchy of caches than the particular
cache are powered down.

11. A computer-implemented method for processing
mputs to a system comprising multiple integrated client
devices including an ambient computing device, the method
comprising;

receiving, by the ambient computing device and from a

client device of the system, a service request while the
system 1s 1n a low-power state;

determining, by the ambient computing device, that the

service request requires particular information that 1s
missing from a cache of the system, wherein the cache

10

15

20

25

30

35

40

45

50

22

1s populated with prefetched instructions and data
required for the ambient computing device to process
inputs to the system while 1 the system 1s in the
low-power state,

activating a partition of the cache dedicated to the ambient

computing device,
fetching the required information from a downstream
component of the system into the partition of the cache
dedicated to the ambient computing device, and

resuming, by the ambient computing device, operation of
the system 1n the low-power state using the information
fetched 1nto the partition of the cache dedicated to the
ambient computing device without waking up all com-
ponents of the system.

12. The method of claim 11, further comprising:

determiming, by the ambient computing device, a particu-

lar location where the particular information is stored;
and

providing, by the ambient computing device, a request to

power up a data path to the particular location.

13. The method of claim 11, further comprising:

tetching, by the ambient computing device, the particular

information to the cache; and

powering down the one or more components of the

system 1n response to the fetching.

14. The method of claim 13, further comprising partition-
ing the cache to include particular ways for the istructions
and data required for the ambient computing device to
process 1puts to the system while 1n the system 1s 1n the
low-power state, wherein the particular information 1is
fetched into the particular ways.

15. The method of claim 11, wherein the client device 1s
a sensor of the system.

16. The method of claim 11, wherein the cache 1s a
system-level cache configured to cache data requests for
cach of the multiple integrated client devices of the system.

17. The method of claim 11, wherein the cache 1s a local
cache that 1s configured to service memory requests only for
the ambient computing device and not for any other inte-
grated client devices of the system.

18. The method of claim 11, wherein the system 1s
configured to read data from a memory device, and

wherein paths to the memory device are powered down

during the low-power state.

19. The method of claim 11, wherein at least some of the
integrated client devices are powered down during the
low-power state.

20. The method of claim 11, wherein the cache 1s a
particular cache 1n a hierarchy of caches in the system, and

wherein during the low-power state, all caches that are

lower in the hierarchy of caches than the particular
cache are powered down.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

