12 United States Patent

US011599453B2

(10) Patent No.: US 11,599,453 B2

Jang et al. 45) Date of Patent: Mar. 7, 2023
(54) VEHICLE FUNCTION TEST APPARATUS (52) U.S. CL
AND METHOD OF CONTROLLING THE CpPC ... GO6F 11/3684 (2013.01); GO6F 11/0739
SAME (2013.01); GO6F 11/3013 (2013.01); GO6F
11/3692 (2013.01)
(71) Applicants: HYUNDAI MOTOR COMPANY, (358) Field of Classification Search
Seoul (KR); KIA MOTORS CPC GO6F 11/3684; GO6F 11/3692; GO6F
CORPORATION, Seoul (KR); Ewha 11/0739; GO6F 11/3013; GO6F 11/3688;
University—Industry Collaboration (Continued)
Foundation, Scoul (KR)
(56) References Cited
(72) Inventors: Hoon Jang, Seoul (KR); Hyeon A -
Chae, Secoul (KR); Byoung Ju Choi, U5 PATENT DOCUMENTS
Seoul (KR) 8,752,027 B2* 6/2014 Noureddine GOGF 11/3688
717/130
(73) Assignees: Hyundai Motor Company, Seoul 8,954,807 B2 2/2015 Ma et al.
(KR); Kia Motors Corporation, Seoul (Continued)
(KR); Ewha University—Industry | |
Collaboration Foundation, Seoul (KR) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this KR 1_01291817 Bl 712013
patent is extended or adjusted under 35 Primary Examiner — Joseph D Manoskey
U.S.C. 154(b) by 386 days. (74) Attorney, Agent, or Firm — Slater Matsil, LLP
21) Appl. No.: 16/908,307 57) ABSTRACT
(21) Appl. No.: ’ A test apparatus for generating a test case based on a fault
o injection technmque and a method of controlling the same are
(22) Filed Jun. 22, 2020 disclosed. The method includes identifying at least one
_ L function 1 a program to be tested based on a software
(65) Prior Publication Data detailed design, generating a test design document based on
US 2021/0001870 A1 Jan. 7, 2021 fault location that can be generated in connection with the
identified at least one function and a fault type to be injected
(30) Foreign Application Priority Data into the fault location, searching for the fault location to be
injected based on the generated test design document and
Jul. 5, 2019 (KR) weeoveeveeeeeenn. 10-2019-0081419 source code of the program, determining a fault injection
scheme and the fault type, and predicting a result by
(51) Int. CL applying a fault injection corresponding to the fault injection
GOG6F 11/00 (2006.01) scheme and the fault type into the searched location to
GO6F 11/36 (200601) generate a test case.

(Continued)

E-l-- ——— =y =maa

20 Claims, 6 Drawing Sheets

101 102

- 200

e mmamm s o e [.]

UNIT

, | PROGRAM CODE
USER ' ; DOCUMENT
INTERFACE | 1< [MANAGEMENT | yacewenr

P S AP A O S

REQUIREMENTS

UNIT

103 104
| TEST RANGE TEST DESIGN
| DETERMINATION DOCUMENT
L UNIT GENERATION
UNIT
105
TEST CASE

GENERATION
UNIT

[=) ———— —t

v 300

TEST CASE
m

US 11,599,453 B2

Page 2
(51) Int. CL
GO6F 11/07 (2006.01)
GO6F 11/30 (2006.01)

(58) Field of Classification Search
CPC . GO6F 11/263; GO6F 11/366; B60W 50/0203;

B60W 2050/021
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

10,108,536 B2* 10/2018 Li .ccoovvivviniinnnnns, GOOF 11/3684
2010/0287535 Al* 112010 Kim GO6F 11/3688
717/127

2013/0159964 Al* 6/2013 Szpak GOO6F 11/3688
717/124

2014/0351797 Al* 11/2014 Kalaycr GOOF 11/3624
717/127

2019/0050308 Al* 2/2019 Chaudhart GOOF 11/2284
2019/0205233 Al* 7/2019 Jungcoeevvvvninnnn, GOO6F 11/263

* cited by examiner

U.S. Patent Mar. 7, 2023 Sheet 1 of 6 US 11,599.453 B2

““““““““““““““““““ ““““““““““““““““““““““““““““ 192
USE' ; PROGRAM CODE REQUIREMENTS] |
rereace | 1=] MANAGEMENT
| UNIT

DOCUMENT
MANAGEMENT

UNIT

| TEST RANGE TEST DESIGN

- |DETERMINATION DOCUMENT

UNIT GENERATION
UNIT

105

| TEST CASE
GENERATION
UNIT

ek Ll by s, R s k) . s, Rl R bl R R G kb st

U.S. Patent Mar. 7, 2023 Sheet 2 of 6 US 11,599.453 B2

W 410 420 430
; y \, \
_ \ f f |
int g_vari; [/ "’
_ I . W
| FuncA() { FuncB() { | FuncC(int a) {
intvars; o
return 5; - 3=a+s;
_var+=1; g
var2=FuncB(}, } 1}
FuncC{var2); B . s
;

U.S. Patent

Software '
Detailed Design

] FIT Faults —t—»

Software
Detailed Design

FIT Faults

Mar. 7, 2023 Sheet 3 of 6 US 11,599.453 B2
FIG, 3
- 521 |
IDENTIFY SW UNIT {(FUNCTION)
> AS UNIT TEST Swggrgﬁfﬁgg :
TARGET OF SW FIT . _

..........’..

I S22

" EXTRACT LOCATION OF FAULT

THAT CAN BE GENERATED
IN CONNECTION WITH
FUNCTION OF UNIT FUNCTION

l 523

DETERMINE
APPLICABLE FAULT TYPE

I -S4

CONFIRM STATE
BEFORE FAULT INJECTION

I 925

MECHANISM AT TIME
OF FAULT GENERATION

.

(" CONFIRM SEARCH/SOLUTION) T TEST DESION
DOCUMENT

o
i ~926
SEARCH FOR FAULT

LOCATION TO BE INJECTED y

\.
-§27
DETERMINE FAULT
_ INJECTION SCHEME

DETERMINE FAULT
TO BE INJECTED
~949
PREDICT EXPECTED FIT TEST

"l RESULT |

- CASE

U.S. Patent

Software

Mar. 7, 2023 Sheet 4 of 6

F1G. 4

531

SORT FUNCTIONS HAVING

Detaited Design

I FIT Faults

Software
Detailed Design

FIT Faults

e e e e e e e o L e e o e o e o o e e e e s e e o sl ol o o e i e i (]

CALL RELATIONSHIP
IN TEST TARGET

-932

EXTRACT LOCATION OF FAULT
THAT CAN BE GENERATED
AT TIME OF CALL

BETWEEN FUNCTIONS

- 933
DETERMINE APPLICABLE
FAULT TYPE

~S534

CONFIRM STATE
BEFORE FAULT INJECTION

- 535

CONFIRM SEARCH/SOLUTION

MECHANISM AT TIME OF
FAULT GENERATION

(SEARCHFORFAULT |
| LOCATION TO BE INJECTED

US 11,599,453 B2

FIT TARGET l
SYSTEM TABLE

FIT TEST DESIGN
DOCUMENT

' 937
DETERMINE FAULT '
INJECTION SCHEME

538
DETERMINE FAULT

TO BE INJECTED

539
> PREDICT EXPECTED RESULT

FIT TEST
CASE

U.S. Patent Mar. 7, 2023 Sheet 5 of 6 US 11,599.453 B2

FIG. 5

g g s e
qqqqqqqqqqqqqqq

| o .| Injecting Details " N
_ i ’ |
 Runnabie injecting Location (Fault Type! Normal Condition Detection | Handing 510

- -]

-

- - T Tr-r -—-rTre Tl - gl ™ - r - TTrwT T - A - e - . ™ w-T - L - e L ok b [o b - - -_—r AT . - - - - -r F
.
1 N F . 1 =
L 1 . L T - . L . 4 +
i F . r
3 3)] 1 1 X r
. 1 s 1] . . T
L . L . - : : : : k i
Y e e A S b i b e A LN ™. S e e e -t bl [T % W} I.h'h.‘_ L L e e b - £ - e « i b e e 'I*.*.‘.. = e i A e ek e e e b e b [N o=l b w e . e bl e _‘h'ﬁ.* I-.-I-.l-.ll._ e e e b b - + i - i e - e e e L RN o e rimnie ' “_ _'I.'h.h.ﬁ_ L% nh e e A e T e bl ;r
. . 1 4
b pmrn pmme g | oy At e - ."'l-
1
1|‘

|FuncB() |TS0012|R |
(FuncA) |TSO0L31P jver2

mopymr amamr
o

 Thvalid Value no greater than 10 TSR 083 TSR 004
TSR_003 |TSR 004 |

Invalid Value | no greater than 10

. - mmman s
ki il el o, Il il

-
.

e e e

U.S. Patent Mar. 7, 2023 Sheet 6 of 6 US 11,599,453 B2

F1G. 6

o . injected Fault
SWC | Runnabie ;ID "Hné‘ ***** L Code Expectad Results 610
SWCc | |FuncA{) |TS.00111 {00126 |gvar=1,
o K T e e
7500131 1002 114 fFuncC{ll) {Setvardted, 4

BOP UP WaTTing MESSage.

F
t
L
I] L
A 4
iy ¥ o
A ds e 4 = sk B odm — == . A e - e wds b4 LW R s b w I dm A B e LRI W] e B LR I % e B - LW I e e v Ik e & i s - LB I %] i i s - LN 9 i B = s - A = s L W == s i B e - +
rh e i et Ol T Wt oo =l ool ' bkl Tl il rh o phart o i ok S " i ing e’ ' e
»r L T mmn LR) 1™ *w bk L B W] T =w

| FuncBl} {T5.601_2 1

g By Pug Far dag day Ty iy

PO Y S S T VU UU W URF VIR W A VR S Y P T VI U VI YA WU Y TP VR SR PO W SUNF T TN W WU N WU VUN T VR N

POV S U SR SR S U T U VUL YA VUF VU T SR T PO WU Y SN VUL T VU SU T S UUN VUL Y VI VU N VK SU N VAP VR S Y
bl

US 11,599,453 B2

1

VEHICLE FUNCTION TEST APPARATUS
AND METHOD OF CONTROLLING THE
SAME

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims priority to and the benefit
of Korean Patent Application No. 10-2019-0081419, filed
on Jul. 5, 2019, which 1s incorporated herein by reference 1n
its entirety.

TECHNICAL FIELD

The present disclosure relates to an apparatus for testing
vehicle functional safety and a method of controlling the
same, and more particularly to a test apparatus capable of
generating a test case based on a fault injection technique
and a method of controlling the same.

BACKGROUND

The statements 1n this section merely provide background
information related to the present disclosure and may not
constitute prior art.

ISO 26262, which 1s a vehicle functional safety standard,
recommends a fault ijection test (FIT) as a method of
determining whether a safety mechanism 1s properly oper-
ated at the time of unit and mtegrated tests ol software.
However, there 1s limitation 1n securing reliability of the
fault injection test for verifying the functional safety of
software only through standardization of requirements on
functional safety of software for vehicles.

A method capable of generating a test case by applying a
software design document and a safety requirements docu-
ment dertved 1n a design step at the time of performing a
fault 1njection test of software for vehicles may be desired.

SUMMARY

Accordingly, the present disclosure 1s directed to a vehicle
function test apparatus and a method of controlling the same
that substantially obviate one or more problems due to
limitations and disadvantages of the related art.

The present disclosure provides a test apparatus for
vehicles providing more convenient functions and a method
of controlling the same.

The present disclosure provides a test apparatus capable
ol generating a test case based on a fault injection technique
and a method of controlling the same.

A method of controlling a test apparatus may include
identifying at least one function to be tested 1n a program to
be tested based on a software detailed design, generating a
test design document based on locations of faults that can be
generated 1n connection with a function of the at least one
identified function to be tested and fault types to be injected
into the fault locations, searching for a fault location to be
injected among the extracted fault locations based on the
generated test design document and source code of the
program to be tested, determining a fault injection scheme
and a fault type, and predicting an expected result based on
fault 1njection corresponding to the fault injection scheme
and the fault type into the searched location to generate a test
case.

In another aspect of the present disclosure, a test appa-
ratus for software may include a test range determination
unit configured to extract a test range based on a function

10

15

20

25

30

35

40

45

50

55

60

65

2

related to a safety mechanism and a call relationship from a
program to be tested, a test design document generation unit
configured to generate a test design document including the
location of a fault to be injected, the type of the fault, or a
normal condition to be violated according to the test range
and at least one requirements document, and a test case
generation unit configured to generate a test case based on
source code of the program to be tested and the test design
document.

Further areas of applicability will become apparent from
the description provided herein. It should be understood that
the description and specific examples are intended for pur-
poses of illustration only and are not intended to limit the
scope of the present disclosure.

DRAWINGS

In order that the disclosure may be well understood, there
will now be described various forms thereof, given by way
of example, reference being made to the accompanying
drawings, in which:

FIG. 1 1s a block diagram showing an example of the
construction of a test apparatus 1n one form of the present
disclosure:

FIG. 2 1s a view showing an example of the form of a
program input through a user interface in one form of the
present disclosure;

FIG. 3 1s a flowchart showing an example of a unit test
process performed by the test apparatus 1n one form of the
present disclosure;

FIG. 4 15 a flowchart showing an example of an integrated
test process performed by the test apparatus in one form of
the present disclosure;

FIG. 5 1s a view showing an example of the form of a test
design document 1n one form of the present disclosure; and

FIG. 6 1s a view showing an example of the form of a test
case 1 one form of the present disclosure.

The drawings described herein are for illustration pur-
poses only and are not mtended to limit the scope of the
present disclosure 1n any way.

DETAILED DESCRIPTION

The following description 1s merely exemplary 1n nature
and 1s not mtended to limit the present disclosure, applica-
tion, or uses. It should be understood that throughout the
drawings, corresponding reference numerals indicate like or
corresponding parts and features.

The term “comprises” or “includes™ used herein should be
interpreted not to exclude other elements but to further
include such other elements, unless mentioned otherwise. In
addition, the same reference numerals denote the same
constituent elements throughout the specification.

In some forms of the present disclosure, a test apparatus
capable of automatically generating a necessary test case
through 1nput of a requirements/design document and pro-
gram code at the time of performing a fault injection test for
verilying safety of soiftware installed 1n a component con-
stituting a vehicle and a method of controlling the same are
proposed.

In particular, in some forms of the present disclosure, a
test apparatus capable of automatically generating a mean-
ingiul test case through text processing from a requirements/
design document and program code at the time of perform-
ing a fault injection test for automotive open system

architecture (AUTOSAR) based software and a method of

US 11,599,453 B2

3

controlling the same are proposed. Preferably, the require-
ments/design document 1s written 1n natural language.

First, the construction of a test apparatus in some forms of
the present disclosure will be described with reference to
FIG. 1.

FIG. 1 1s a block diagram showing an example of the
construction of a test apparatus 1n some forms of the present
disclosure.

Referring to FIG. 1, the test apparatus in some forms of
the present disclosure includes a program code management
unit 101 for storing/managing code of a program to be
tested, a requirements document management umt 102 for
storing/managing requirements documents about the pro-
gram to be tested, a test range determination unit 103 for
extracting a test range based on a function related to a satety
mechanism and a call relationship from the program to be
tested, a test design document generation unit 104 for
generating a test design document including the location and
type of a fault to be test injected and normal conditions to be
violated according to the test range and the requirements
documents, and a test case generation unit 105 for generat-
ing a test case 300 based on the program code and the test
design document.

Here, the test apparatus may receive or output test-related
information through a user interface 200. For example, the
user interface 200 may acquire various kinds of information
for generating the test case from an mput device, such as a
keyboard or a mouse, and may display/output the test design
document, the result of generating the test case, other
contents stored 1n a server through a display means or a
printing means.

Hereinafter, the respective components of the test appa-
ratus 1 some forms ol the present disclosure will be
described 1n more detail.

First, the program code management unit 101 stores code
of a test program such that a detailed fault injecting location
1s included at the time of generating a fault injection test case
based on code. Here, the code of the test program may mean
source code. In this case, source code of software installed
in an actual vehicle component (e.g. a controller) 1s to be
verified, not simply a model based on system requirements,
whereby usability and effectiveness of a test may be guar-
anteed.

The detailed code management form of the program code
management unit 101 will be described with reference to
FIG. 2 and Table 1. FIG. 2 1s a view showing an example of
the form of a program iput through a user interface in some
forms of the present disclosure.

Referring to FIG. 2, a program 400 including three
tfunctions 410, 420, and 430 may be input to the test

10

15

20

25

30

35

40

45

4

apparatus through the user interface 200. As a result, the
program code management unit 101 may manage/store the
program 400 input 1n the form shown 1n Table 1 below.

TABLE 1
Line Code
001 1 int var2;
001_2 g var += 1;
001_3 var2 = FuncB();
001_4 FuncC(var2);
002 1 return 3;
003_1 a=a+ 2;

In Table 1 above, line items are stored in the form of
“function ID number of lines 1n function,” and the function
ID means function ID 1n a software detailed design. In
conclusion, 1t can be seen from Table 1 that each function 1s
managed while having an individual ID 1n the software
detailed design.

Referring back to FIG. 1, the requirements document
management unit 102 may manage/store all documents 1n an
intermediate step for generating the test case 300 as well as
documents acquired from a user 1n order to generate the test
case, and may store information necessary for traceability
between documents.

The test range determination unit 103 may determine a
range to be tested of the entire program using the software
detailed design stored in the requirements document man-
agement unit 102. The test range may be determined
depending on relation to the safety mechanism, 1.e. depend-
ing on whether the program corresponds to a function 1n
which technical safety requirements (ISRs) are retlected
and to a function having a call relationship with the function.
Here, the technical safety requirements may be defined 1n
the ISO 26262 standard.

The test design document generation unit 104 may search
for safety description (SD) using a soitware detailed design
about functions included 1n the test range. The test design

document generation unit 104 adds a fault injecting location
to a test design document from FIT-related information
corresponding to SD. At this time, 1n the case 1n which an
error type related to SD 1s not generated at the injecting
location, the same 1s excluded. When the 1njecting location
1s determined, the test design document generation unit 104
may add the type of a fault to be injected (1injecting details)
to the test design document from the SD based on a fault
type system table (FIT faults). The detailed form of the fault
type system table 1s shown 1n Table 2 below.

TABLE 2
Test step Fault generating location Fault type Id
Unit test Runnable Variable — Global variable Data Error Invalid Value 1
SW-SW Runnable- Caller Parameter Data Error Invalid Value 2
integrated Runnable Call syntax Program Flow Error Uncalled Function 3
test Bypass Function Call 4
Illegal Instruction 5
Callee Global variable Data Error Invalid Value 6
Access Error Invalid Address 7
Return statement Data Error Invalid Value 8
Program Flow Error Illegal Instruction 9
Timing Error Data Loss 10
CPU Clock Corruption 11
SWC- Caller Parameter Data Error Invalid Value 12
RTE Timing Error Data Delay 13
Data Loss 14

US 11,599,453 B2

~
TABLE 2-continued

Test step Fault generating location Fault type Id
Call syntax Program Flow Error Uncalled Function 15
Bypass Function Call 16
Illegal Instruction 17
Timing Error CPU Clock Corruption 18
Callee Global variable Data Error Invalid Value 19
Access Error Invalid Address 20
Return statement Data Error Invalid Value 21
Program Flow Error Illegal Instruction 22
Timing Error Data Loss 23
No Response 24
CPU Clock Corruption 25
Asymmetric Error Asymmetric Value 26
SWC- Caller Parameter Data Error Invalid Value 27
BSW Timing Error Data Delay 28
Call syntax Program Flow Error Uncalled Function 29
Bypass Function Call 30
Illegal Instruction 31
Timing Error CPU Clock Corruption 32
Callee Global variable Data Error Invalid Value 33
Access Error Invalid Address 34
Return statement Data Error Invalid Value 35
Program Flow Error Illegal Instruction 36
Timing Error Data Loss 37
No Response 3%
CPU Clock Corruption 39
Asymmetric Error Asymmetric Value 40
SWC- Caller Parameter Data Error Invalid Value 41
ECU HW Timing Error Data Delay 42
Call syntax Program Flow Error Uncalled Function 43
Bypass Function Call 44
Illegal Instruction 45
Timing Error CPU Clock Corruption 46
Callee Global variable Data Error Invalid Value 47
Access LError Invalid Address 48
Return statement Data Error Invalid Value 49
Program Flow Error Illegal Instruction 50
Timing Error Data Loss 51
No Response 52
CPU Clock Corruption 53
Asymmetric Error Asymmetric Value 54

Referring to Table 2, the fault type system table (FIT
faults) 1s defined by classifying fault types having IDs
individually assigned there to into a plurality of categories.
For example, the largest category is a test step, and sub fault
types are defined according to the fault generating location
and fault type category by test unmit. Of course, the fault type
system table 1s illustrative, and 1t 1s not necessary to be the
same as what 1s shown 1n Table 2.

When the fault type to be injected (injecting details) 1s
added, the test design document generation unit 104 may
coniirm a mechanism for performing search/solution at the
time of fault generation from the technical satfety require-
ments (I'SRs) to finally generate a test design document. At
this time, the test design document generation unit 104 may
derive a mechanism for performing search/solution at the
time of fault generation from TSRs written using natural
language, an SDD, a description of which will follow, etc.
through text processing.

Next, the test case generation umit 105 may generate a test
case 300 based on the test design document generated by the
test design document generation unit 104 and the program
code stored 1n the program code management unit 101. The
test case may include 1D, injected fault (line, type, and code)
and expected results. Here, the injected fault line may be
extracted by searching for the mnjecting location of the test

45

50

55

60

65

design document 1n the program code, and one of generation
(G) and mutation (M) may be selected as the injected fault
type. The injected fault code may be generated so as to
violate a normal condition 1tem of the test design document,
and the expected results may be generated through a han-
dling 1tem of the test design document.

As shown 1n Table 2, the test may be mainly divided into
a unit test and an integrated test. The unit test may mean a

test for a single function, and the integrated test may mean
a test for two or more functions that are related to each other
(e.g. that have a call relationship therebetween). Hereinatter,
unit test and ntegrated test processes will be described with
reference to FIGS. 3 and 4 based on the construction of the
test apparatus described above with reference to FIG. 1.

FIG. 3 1s a flowchart showing an example of the unit test
process performed by the test apparatus 1n some forms of the
present disclosure.

Betore describing the sequence of the tlowchart shown 1n
FIG. 3, mput and output values will be described first.

A software detailed design means a soiftware detailed
design (SDD) complemented to more easily perform a test
target 1dentification process for fault injecting test and a
subsequent test case generation process. An example of the
soltware detailed design 1s shown in Table 3 below.

US 11,599,453 B2

TABLE 3
FIT related information
Global Return
SWC Runnable Description Map SWR TSR variable statement Callee Parameter
SWC.c UD_ 001 FuncA() SWUD_001.01 The FuncA shall TSR 001 g wvarl
define g wvarl with TSR__ 002
range O to 10
SWUD_ 001.02 The value of var2 TSR__ 003 FuncB()
shall be no greater TSR__004
than 10.
TSR 003 FuncC() Var2
TSR 004
UD_ 002 FuncB() SWUD_ 002.01 Return 5 SWR_ 001 return 3;
UD_ 003 FuncC() SWUD__003.01 Add 2 from the SWR_ 002
given parameter
Referring to Table 3, the SDD may include the construc- [Table 5]
tion ol a map about functions constituting software, related
technical safety requirements (ITSRs) information, and »q TABIE 5
global variable, return statement, call function, and param-
cter information related to a fault injection test. Technical Safety Requirements
The SDD 1s preferably written based on the following TSR_001 Check the value of g_varl.
precautions. _ ' ‘ o TSR__ 002 If ¢ var <0 or g wvar > 10, then pop up warning message.
The software detailed design must include a description ,s TSR_003 Check the value of var2
about a safety mechanism designed therein (safety descrip- TSR_004 If var2 > 10, then set var2 to O.

tion; SD) as well as functional action of software, and must
be written 1n natural language, and the writing form of the
SD 1s classified based on the AUTOSAR error type as shown
in Table 4 below.

TABLE 4

AUTOSAR Error Type SD Form

Data Value Requirement
Program Flow Requirement
Access Address Requirement
Timing Constraint Requirement
Asymmetric Requirement

Data Error

Program Flow Error
Access Error
Timing Error
Asymmetric Error

The details of Table 4 may be defined as follows.
1) Data Value Requirement
The SWC shall define VAR1 with range C1 to C2.

The value of VARI shall be no greater (less) than C1.

2) Program Flow Requirement

The correct reading of VAR1 through BSW/RTE shall be
ensured.

The correct transformation of VAR1 to CAN/SPI shall be
ensured.

3) Access Address Requirement

The reading/writing of VARI1 shall be done through
BSW/RTE.

4) Timing Requirement

The SWC shall set VAR1 on command, if a fault on VAR1
1s detected for more than C1.

5) Asymmetric Requirement

The correct routing of the output VARI1 shall be ensured.

In the above definition, SWC indicates a software com-

ponent, VAR# indicates a variable, C# indicates a constant,
CAN/SPI 1ndicates a CAN/SPI interface-related function,

and BSW/RTE indicates a BSW/RTE layer function.
In addition, the fault type system table (FIT faults) 1s the

same as what has been described previously with reference
to Table 2.

Next, the technical safety requirements may mean tech-

nical safety requirements (1'SRs) defined 1n the ISO 26262
standard. An example of the TSRs 1s shown in Table 35
below.

30

35

40

45

50

55

60

65

Furthermore, the program code may mean program code
automatically generated by a model-based development
support tool, such as MATLAB or Simulink, or directly
written by a developer

Referring to FIG. 3, in the unit test step, first, the test
range determination umt 103 may i1dentily a software umt
(1.e. a function) as a umt test target ol a software fault
injection test (SW FIT) (S21). The test target 1s preferably a
function 1 which a safety mechanism 1s retlected, among
functions in a soitware component (.c file). The 1dentified
test target may be stored/managed in the requirements
document management unit 102 in the form of an FIT target
system table.

Subsequently, the test design document generation unit
104 may extract the location of a fault that can be generated
in connection with the function of a unit function (S22).
Here, the fault that can be generated may mean a fault that
causes soltware to deviate from a safe state. Specifically, the
test design document generation unit 104 may identify a
safety mechanism in the function and a global vanable
related thereto through the software detailed design for the
function 1dentified as the test target, and may extract a fault
that can be generated due to pollution of the value of the
global variable (potential causes of failure).

In addition, upon confirming that a safety mechanism
capable of searching for and solving the fault that can be
generated, extracted 1n the previous step (S22), 1s present 1n
the system, the test design document generation unit 104
may determine an applicable fault type among types defined
in the fault type system table (FIT faults) (e.g. 54 FIT fault
types 1n Table 1) (S23).

Subsequently, the test design document generation unit
104 may confirm the state before fault injection (S24). Here,
the state before fault injection means the state of a function
or a variable before fault injection, 1.e. a normal condition,
and the test case may be designed so as to deviate from the
state. The state before fault imjection may be confirmed
through the software detailed design (SDD), and a detailed
method may be configured 1n a form that confirms a normal
condition table as shown in Table 6 below.

US 11,599,453 B2

TABL.

T
o)

SD Form SD Detail

Data Value The SWC shall define VAR1 with range C1 to C2.
Requirement The value of VARI1 shall be no greater(less) than Cl1.

Program Flow The correct reading of VAR1 through BSW/RTE shall be

Requirement ensured.
The correct transformation of VAR1 to CAN/SPI shall be
ensured.
Access The reading/writing of VARI shall be done through
Address BSW/RTE.
Requirement
Timing The SWC shall set VAR1 on command, 1f a fault on

Requirement VARI1 1s detected for more than CI.
Asymmetric The correct routing of the output VAR1 shall be ensured.
Requirement

Referring to Table 61, the normal condition 1s defined by
SD detail based on the SD form.

Next, the test design document generation unit 104 con-

10

Normal Condition

range C1 to C2.

no greater(less) than
ClI.

correct reading of VAR

correct transformation to
CAN/SPI
reading/writing through
BSW/RTE

transformation of VARI1

in C1.
correct routing of VAR1

be replaced with a process of extracting the location of a
fault that can be generated at the time of call between

20 functions (S32).

firms whether there 1s a safety mechanism capable of Subsequent processes (S33 to S39) correspond to the

performing search/solution when a fault 1s actually gener-
ated with reference to the techmical safety requirements
specification written 1n a system level design step (S235).

Through the above processes (522 to S235), the test design
document generation unit 104 may generate a test design
document.

When the test design document 1s generated, the test case
generation unit 105 may search for the fault location
extracted at the time of generating the test design document
in the program code (526).

When a fault location to be injected 1s searched for, the
test case generation unit 105 may determine a fault injection
scheme between mutation (M) and generation (), which are
compile type fault injection schemes (527).

Next, the test case generation unit 105 may determine the
details of a fault to be 1njected into actual code (S28). Here,
the mjected fault 1s preferably designed so as to deviate from
the normal condition before fault injection confirmed at the
time of generating the test design document.

Subsequently, the test case generation unit 105 may
predict the result of the system/software after fault injection
(S29). At this time, fault 1injection 1s performed 1n software
in which a safety mechanism 1s realized, whereby the
expected result may be the operation of an error processing
mechanism.

Through the above processes, the test case generation unit
105 may generate an FI1 test case.

Next, the integrated test process will be described with
reference to FIG. 4.

FIG. 4 1s a flowchart showing an example of the inte-
grated test process performed by the test apparatus 1n some
forms of the present disclosure.

Since the process shown 1n FI1G. 4 1s similar to the unit test
process shown 1n FIG. 3, only differences will be described
for clarity of the specification.

In the integrated test process, a design document for each

AUTOSAR layer 1s used as an iput value of the test range
determination unit 103 and the test design document gen-
eration unit 104, mstead of the SDD applied to the unit test.
Consequently, the function 1dentification process (521) may
be replaced with a process of sorting functions having a call
relationship 1n a test target (S31), and the process of extract-
ing the location of the fault that can be generated in
connection with the function of the umt function (S22) may

above processes (S23 to S29), and therefore a duplicate
description will be omatted.

Heremnaiter, the operation of the test apparatus will be
described again with reference to the program illustrated 1n
FIG. 2.

First, a tester receives the technical safety requirements
(TSRs) and the software detailed design (SDD) through the
user interface 200, and stores the same 1n the requirements
document management unit 102. The TSRs may have the
form shown i1n Table 5, and the SDD have the form shown
in Table 3.

Similarly, source code of the illustrated program may be
35 stored in the program code management unit 101 through

the user interface 200, and the storage form thereof may be

converted 1nto the form of Table 1, as previously described.

In the unit test, the test range determination unit 103 may

determine only FuncA() 410 in which a safety mechanism

40 1s realized (1.e. TSRs are retlected), among FuncA() 410,
FuncB() 420, and FuncC() 430, as a test target.

In the mtegrated test, the test range determination unit 103
may determine a call relationship with FuncA() in which a
safety mechamsm 1s realized (e.g. a function call between
FuncA() and FuncB() or a function call between FuncA()
and FuncC() as a test target.

In the unit test, the test design document generation unit
104 may determine global vanable “g_varl™ of the function
FuncA() as a candidate of an injecting location. Since the
contents described 1 the SDD correspond to “data value
requirements” of the SD form and the data error can be
generated at the global vanable according to Table 2, the test
design document generation unit 104 may select “g_varl™ as
55 a fault injecting location.

In the integrated test, the test design document generation
umt 104 may determine function call syntax FuncB() and a
return statement “returnS;” of FuncB() as candidates of an
injecting location 1n the function call between FuncA() and

60 FuncB() and determine function call syntax FuncC() and a
parameter “var2” as candidates of an 1njecting location in
the function call between FuncA() and FuncC(). Since the
contents described 1 the SDD correspond to “data value
requirements’” but the data error can be generated only at the

65 global vanable, the parameter, and the return statement
according to Table 2, FuncB() and FuncC() are excluded
from the fault injecting location.

25

30

45

50

US 11,599,453 B2

11

The form of the test design document generated by the test
design document generation unit 104 through the above
processes 1s shown 1n FIG. 5.

FIG. § 1s a view showing an example of the form of a test
design document in some forms of the present disclosure.

Referring to FIG. 5, the ID, imjecting location, fault type,
normal condition, detection, and handling value of a single
function may be defined in the test design document for a
unit test 510, and the ID, injecting location, fault type,
normal condition, detection, and handling value of each of
two functions corresponding to a fault injecting location,
among functions having a call relationship therebetween,
may be defined 1n the test design document for an integrated
test 520.

Next, the operation of the test case generation unit 105
based on the test design document generated as shown in
FIG. § will be described with reference to FIG. 6.

FIG. 6 1s a view showing an example of the form of a test
case 1n some forms of the present disclosure.

Referring to FIG. 6, for a umit test 610, the test case
generation unit 105 may determine, as 1njected fault code,
code by which the location “001_2" of “g_var” becomes an
injected fault line 1 connection to ““I'S_001_1" of the test
design document 510 and the value of g_var becomes -1 and
11, which are boundary values, in order to violate “normal
condition (range O to 10)” of the test design document.
Expected results may become a handling item TSR_002 of
the test design document.

For an integrated test 620, the test case generation unit
105 may determine, as mjected fault code, code by which the
location “002_1” of the return statement “return5;” becomes
an 1njected fault line 1n connection to “T'S_001_2" of the test
design document 520 and the return value becomes 11,
which 1s a boundary value, 1n order to violate “normal
condition (no greater than 10)” of the test design document
520. Expected results may become a handling item
TSR_004 of the test design document. The test case gen-
eration process from the “TS_001_3” of the test design
document 520 1s also similar to “T'S 001 2.” and therefore
a duplicate description will be omitted.

In some forms of the present disclosure, at least of the
program code management unit 101 or the requirements
document management unit 102 of the test apparatus may be
replaced with a separate device, or may be separately
realized as a program recording device (a memory, etc.) or
an electronic control unit (ECU).

In addition, the test case generation unit 105 may auto-
matically perform and determine a fault injection test of a
program target, such as an ECU, may output the result of the
fault injection test, and may smooth code modification
through recommendation of fail and safe logic when a
program error 1s generated due to lack of fail and safe logic
at the time of fault mjection, 1n addition to output of an
automatically generated test case.

Furthermore, in FIG. 3 or 4, a fault pattern that was
mainly generated in vehicle software for mass-produced
vehicles 1n the past may be input instead of the SDD, and the
test design document generation unit 104 may be configured
not only to confirm the presence of a search/solution mecha-
nism at the time of fault generation but also to recommend
an appropriate search/solution mechanism in the case 1n
which the search/solution mechanism 1s omitted.

The forms of the present disclosure described above have
the following eflects.

The forms of the present disclosure relate to a method and
apparatus for generating a test case of AUTOSAR-based
soltware, wherein a test case for confirming the operation of

5

10

15

20

25

30

35

40

45

50

55

60

65

12

a safety mechanism in the software may be automatically
generated for source code through text processing from
requirements documents (TSRs, SD, and the like) written in
natural language, whereby convenience 1s improved.

In addition, in some forms of the present disclosure, it 1s
possible to secure reliability of the test process at the time of
performing the unit and integrated tests of the AUTOSAR-
based software using the fault injection techmque and to
reduce a development period.

Furthermore, the types of faults that can be generated 1n
the AUTOSAR-based software may be defined as
AUTOSAR standards, the form of software safety require-
ments may be prescribed, whereby it 1s possible to objectily
preparation of requirements 1in which subjectivity intervenes
and to automatically generate a test case through text
processing.

The present disclosure described above may be imple-
mented as a computer-readable program stored in a com-
puter-readable recording medium. The computer-readable
medium may be any type of recording device in which data
1s stored 1 a computer-readable manner. The computer-
readable medium may include, for example, a hard disk
drive (HDD), a solid-state disk (SSD), a silicon disk drive
(SDD), a read-only memory (ROM), a random access
memory (RAM), a compact disc read-only memory (CD-
ROM), a magnetic tape, a floppy disk, and an optical data
storage device.

As 1s apparent from the above description, the test appa-
ratus in some forms of the present disclosure constructed as
described above 1s capable of more conveniently and reli-
ably veritying safety of vehicle software.

In particular, in some forms of the present disclosure, a
test case for confirming the operation of a safety mechanism
for source code 1s automatically generated, whereby 1t 1s
possible to secure reliability of the test process at the time of
performing a test based on a fault injection technique and to
reduce a development period.

The description of the disclosure 1s merely exemplary 1n
nature and, thus, variations that do not depart from the
substance of the disclosure are intended to be within the
scope of the disclosure. Such variations are not to be
regarded as a departure from the spirit and scope of the
disclosure.

What 1s claimed 1s:
1. A method of controlling a test apparatus, the method
comprising;

identifying at least one function 1n a program to be tested
based on a software detailed design;

generating a test design document based on fault location
that can be generated in connection with the 1dentified
at least one function and based on a fault type to be
injected into the fault location, wherein generating the
test design document comprises confirming a normal
condition before the fault injection based on the soft-
ware detailled design and confirming a search and
solution mechanism based on technical satety require-
ments when a fault occurs;

searching for the fault location to be 1njected based on the
generated test design document and source code of the
program,

determining a fault mnjection scheme and the fault type;
and

predicting a result by applying a fault mjection corre-
sponding to the fault injection scheme and the fault
type 1nto the searched fault location to generate a test
case.

US 11,599,453 B2

13

2. The method according to claim 1, wherein 1dentifying,
the at least one function comprises 1dentifying a unit func-
tion for a unit test.

3. The method according to claim 2, wherein generating,
the test design document comprises extracting the fault
location that can be generated 1n connection with the 1den-
tified unit function.

4. The method according to claim 1, wherein identifying
the at least one function comprises sorting functions having,
a call relationship for an integrated test.

5. The method according to claim 4, wherein generating,
the test design document comprises extracting the fault
location that can be generated at a time of call among the
sorted functions.

6. The method according to claim 1, wherein the test case
comprises at least one of an identifier (ID), a line corre-
sponding to the fault injection, the fault type, a fault code,
or the predicted result.

7. The method according to claim 6, wherein the method
comprises generating the fault code to violate the normal
condition.

8. The method according to claim 1, wherein identifying
the at least one function comprises identifying a function
reflecting a safety mechanism and a function having a call
relationship with the function reflecting the satety mecha-
nism.

9. A non-transitory computer readable recording medium
containing a program for performing a method of controlling
a test apparatus comprising;:

identifying at least one function 1n a program to be tested

based on a software detailed design;

generating a test design document based on fault location

that can be generated 1n connection with the 1dentified
at least one function and based on a fault type to be
injected nto the fault location, wherein generating the
test design document comprises confirming a normal
condition before the fault injection based on the sofit-
ware detailled design and confirming a search and
solution mechanism based on technical safety require-
ments when a fault occurs;

searching for the fault location to be 1njected based on the

generated test design document and source code of the
program;

determining a fault injection scheme and the fault type;

and

predicting a result by applying a fault imjection corre-

sponding to the fault imjection scheme and the fault
type into the searched fault location to generate a test
case.

10. The computer readable recording medium according
to claim 9, wherein the method comprises identifying the at
least one function by 1dentifying a unit function for a unit
test.

11. The computer readable recording medium according
to claim 10, wherein the method comprises generating the
test design document by extracting the fault location that can
be generated 1n connection with the identified unit function.

12. The computer readable recording medium according
to claim 9, wherein the method comprises identifying the at

10

15

20

25

30

35

40

45

50

55

14

least one function by sorting functions having a call rela-
tionship for an integrated test.

13. The computer readable recording medium according
to claim 12, wherein the method comprises generating the
test design document by extracting the fault location that can
be generated at a time of call among the sorted functions.

14. A test apparatus for soltware, the test apparatus
comprising:

a processor; and

a non-transitory memory for storing instructions execut-

able by the processor;

wherein the processor 1s configured to:

extract a test range based on a function related to a
safety mechanism and a call relationship from a
program to be tested;

generate a test design document including at least one
of a fault location to be injected, a fault type, or a
normal condition to be violated based on the test
range and at least one requirements document;

generate a test case based on source code of the
program to be tested and the test design document;

search for a safety mechanism 1n the test range based on
a software detailed design; and

determine the fault location to be 1njected based on a
fault type system table.

15. The test apparatus according to claim 14, wherein the
processor 1s further configured to manage the source code
based on a function identifier 1n a software detailed design
and a line of a function corresponding to the function
identifier.

16. The test apparatus according to claim 14, wherein the
processor 1s further configured to:

identily a unit function as the test range for a unit test;

sort Tunctions having a call relationship; and

identily the sorted functions as the test range for an

integrated test.

17. The test apparatus according to claim 16, wherein the
processor 1s further configured to:

extract the fault location that can be generated 1n connec-

tion with a function of the i1dentified unit function for

the unit test; and

extract the fault location that can be generated at a time of

call among the sorted functions for the integrated test.

18. The test apparatus according to claim 14, wherein the
processor 1s further configured to:

exclude the fault location at which an error type related to

the safety mechanism 1s not generated, from the fault

location to be 1mjected.

19. The test apparatus according to claim 14, wherein the
processor 1s further configured to:

confirm a search and solution mechanism when a fault

occurs through text processing from the at least one

requirements document written 1n natural language.

20. The test apparatus according to claim 14, wherein the
test case comprises at least one of an 1dentifier (ID), a fault
injection line, the fault type, fault code corresponding to the
normal condition to be violated, or an expected result.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

