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METHODS FOR ADAPTIVE OPTIMIZATION
OF ENHANCED OIL RECOVERY

PERFORMANCE UNDER UNCERTAINTY

PRIORITY

The present application claims the benefit of U.S. Appli-
cation Ser. No. 62/083,528 filed Nov. 24, 2014, which

application 1s incorporated herein, in 1ts entirety, by refer-
ence.

TECHNICAL FIELD

The subject disclosure relates to the hydrocarbon industry.
More particularly, the subject disclosure relates to enhanced
o1l recovery (EOR) methods.

BACKGROUND

Enhanced o1l recovery allows for higher recovery efli-
ciency which could not be achieved by traditional recovery
mechanisms. An oilfield installation for EOR 1is seen 1n prior
art F1IG. 1 which shows an EOR 1installation 13 including an
injection well 30 and a production well 38. During an EOR
process, mjection fluid 43 1s injected through the injection
well 30 into a reservoir formation 46 and establishes a tluid
front 47 that moves through a rock matrix within the
reservoir formation 46. The injection fluid 43 1ncreases
pressure within the reservoir formation, mobilizes bypassed
o1l and forces hydrocarbons toward the production well 38.
The location of the fluid front 47 may be monitored by
various means such as a monitoring well (not shown).

EOR performance 1s evaluated using prescribed perfor-
mance metrics (e.g., mcremental o1l production, recovery
tactor, displacement efliciency, financial 1indicators of proj-
ect profitability, etc.) computed by running a reservoir
simulation. For example, EOR performance may be pre-
dicted using numerical simulations such as ECLIPSE (a
trademark of Schlumberger), or a more specialized tool such
as the one disclosed by U.S. Pat. No. 8,311,743 to Gurpinar
entitled “Method for Generating an Estimation of Incremen-
tal Recovery From a Selected Enhanced Oi1l Recovery
(EOR) Process” which 1s hereby incorporated by reference
herein 1n 1ts entirety. The tool receives nputs relating to the
well locations, production/injection schedule, formation and
fluid properties, selected EOR process etc., and provides a
prediction of the EOR performance including total and
incremental o1l produced, recovery factor, displacement
ciliciency, etc.

In the presence of uncertainty i formation and fluid
properties, optimal EOR strategies will result 1in inherently
uncertain predictions of a prescribed performance metric. A
standard approach to optimization under uncertainty is based
on original Markovitz portiolio theory and more recently
was tailored to oilfield applications with a modified defini-
tion of efhicient frontier. See, U.S. Pat. No. 6,775,578 to B.
Couet, et al. entitled “Optimization of O1l Well Production
with Deference to Reservoir and Financial Uncertainty™
which 1s hereby incorporated by reference herein in its
entirety, and Raghuraman, B., et al., “Valuation of Technol-

[ 1

ogy and Information for Reservou‘ Rlsk Management,” SPE
86568, SPE Reservoir Engineering, 6, No. 5, pp. 307-316,
October 2003. These methods employ a mean-variance
approach. Including sensitivity analysis in an optimization

under uncertainty workiflow 1s shown U.S. Patent Applica-
tion Publication No. 2010/0185427 by P. Tilke et al. The
sensitivity 1s defined for a figure of merit with respect to
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2

uncertain formation properties and computed using an
experimental design approach. Value of information is then
computed based on a mean-variance objective function
related to a figure of mertt.

SUMMARY

In one embodiment, a method for adaptive optimization
of an FOR project under uncertainty involves using a
predictive physics-based reservoir simulation (model) to
estimate performance of an EOR project. Performance may
be measured with respect to one or more quantities such as
total or incremental o1l production, recovery factor, dis-
placement efliciency, net present value (INPV), etc. The input
parameters ol the model are divided into control variables
such as target well production, injection rates, injector/
production well spacing, chemical composition of an EOR
agent, etc., and uncertain variables related to uncertain
formation and fluid properties such as porosity, permeability,
parametric dependence of relative permeability curves, vis-
cosity as a function of an EFOR agent, EOR agent adsorption
by the formation rock, etc. The reservoir model 1s first
optimized to obtain values of control variables maximizing
mean value of the chosen performance metric under nitial
uncertainty ol formation and fluid properties. An eflicient
frontier may be obtained at this step to characterize depen-
dence between the optimized mean value of the performance
metric and its uncertainty expressed by the standard devia-
tion. Global sensitivity analysis (GSA) 1s then applied to
quantily and/or rank contributions from uncertain input
parameters to the standard deviation of the optimized values
of the performance metric. Uncertain parameters are ranked
according to their calculated sensitivity indices and addi-
tional measurements can be performed to reduce uncertainty
in the high-ranking parameters. The additional measure-
ments can include downhole and laboratory measurements
and an FOR pilot designed to reduce uncertainty in the
identified high-ranking parameters. Constrained optimiza-
tion of the model with reduced ranges of uncertain param-
eters 1s performed and a new eflicient frontier 1s obtained. In
most cases, the results will show a reduction 1n the risk
associated with achieving the desired performance of an
EOR project.

In one embodiment, after uncertain parameters are quan-
tified and/or ranked for their contributions to the standard
deviation of optimized values of the performance metric,
one or more uncertain parameters that are identified as
contributing little to the standard deviation may be assigned
fixed values, thereby reducing the computational resources
necessary for practicing the disclosed methods.

In one aspect, disclosed methods provide an adaptive

GSA-optimization approach that results in uncertainty
reduction for optimized EOR performance.
In one aspect, disclosed methods allow the progressive
reduction of uncertainty in the predicted performance of an
iteratively optimized EOR operational strategy by guided
reduction of uncertainty in identified properties of the res-
Crvolr.

In further embodiments, any of the methods described
above can be mmplemented by a system that includes a
measurement tool and a processing system.

Additional aspects, embodiments, objects and advantages
of the disclosed methods may be understood with reference
to the following detailed description taken in conjunction
with the provided drawings.
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BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic of a prior art EOR 1nstallation.

FIG. 2 1s a flow chart of a method for adaptively opti-
mizing EOR performance 1n the presence of uncertainty.

FIG. 3 1s a two dimensional map of a permeability profile
1N a reservoilr.

FI1G. 4 1s a plot of optimal polymer concentration profiles
betore utilizing the method of FIG. 2, and after utilizing the
method of FIG. 2

FIG. 5 1s a plot of an eflicient frontier for an EOR
performance metric (incremental o1l recovery) before utiliz-
ing the method of FIG. 2, and after utilizing the method of
FIG. 2.

FIG. 6 1s a plot of optimal values of an objective function
based on an EOR performance metric (incremental o1l
recovery) corresponding to three levels of risk tolerance
betfore utilizing the method of FIG. 2, and after utilizing the
method of FIG. 2.

FI1G. 7 shows a measurement tool 1n accordance with one
embodiment of the present disclosure.

DETAILED DESCRIPTION

Before turning to the Figures, 1t 1s useful to understand the
scientific basis of the disclosed methods. Consider a general
case when an underlying physical process 1s modeled by a
function y=f(c, ), where a={a, ... a} and f={B, . .. B}
are two sets of parameters. Here, a represents a set of control
parameters (to be used 1n optimization), and [ denotes a set
of uncertain parameters. Mathematically, [ are considered to
be random variables represented by a joint probability
density function (pdf). Therefore, for each vector of control
variables ¢, the output of the model 1s itself a random
variable with its own pdf due to uncertainty in 3.

A mean-variance approach 1s commonly used for optimi-
zation, 1.e. a function of the form

Fla,p)=p(a,p)-yola,p) (1)

where 1 and o are the mean and standard deviation of the
output v of the numerical simulation, and A 1s a non-negative
parameter defining a tolerance to risk (uncertainty), 1s maxi-
mized (or minimized). Note that u and o vary with o for a

given sampling over 3. The optimization problem may then
be formulated as

max £ (0,p) (2)

For each optimization iteration, a number of samples of
the random vector p are chosen, and the values of y(a, p) are
first computed using this sample for a given ¢ and then
averaged over 3. Various optimization algorithms can then
be used to find the optimal value of o. The process of
optimizing under uncertainty will lead to a set of parameters
., that provide the optimum ot the objective function F.
Therefore, an optimized model 1s now available:

Y=0opnP) (3)

Note that the optimized model still has inherent uncertainty
due to the uncertainty 1n parameters 3.

A set of solutions to the optimization problem can be
plotted in (u, o) coordinates, where optimal points corre-
sponding to pre-defined values of A will form an eflicient
frontier as described 1n more detail hereinafter with respect
to FIG. 5. The slope of the objective function values on the
frontier 1illustrates the penalty for additional uncertainty

(risk).
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From the operational perspective, the goal 1s to reduce this
risk while maintaining the same level of expected perior-
mance (represented by n). In order to reduce the uncertainty,
it 1s useful to understand where 1t 1s coming from. Therelore,
a quantitative link between uncertainties 1n input parameters
([3) and uncertainty in the output can be desirable. According
to one aspect, this link can be quantified using Global
Sensitivity Analysis (GSA) based on vanance decomposi-
tion.

Global sensitivity analysis based on variance decompo-
sition may be used to calculate and apportion the contribu-
tions to the variance of the model prediction Var(Y) from the
uncertain input parameters {f,} of the subsurface model.
See, Saltelll, A., et al., Sensitivity Analysis 1n Practice. A
Guide to Assessing Scientific Models: John Wiley & Sons
(2004).

For independent {f3,}, the Sobol” variance decomposition
(See, Sobol, I. M., “Sensitivity estimates for nonlinear
mathematical models”, Mathematical Modeling and Com-
putational Experiment, 1, pp. 407-414 (1993)) can be used
to represent Var(Y) as

Var (nzzleNﬂ+zlgfaj£NKj+- AT,

(4)

where V =Var[E(YIj3,)] are the variance in conditional
expectations (E) representing first-order contributions to the
total variance Var(Y) when p, 1s fixed 1.e., Var({3,)=0. Since
the true value of {3, 1s not known a priori, the expected value
ol Y should be estimated when 3, 1s fixed anywhere within
its possible range, while the rest of the mput parameters
{B_,} are varied according to their original probability
distributions. Thus, the first-order eflect

S1,=V,/Var(Y) (5)

1s an estimate of relative reduction 1n total variance of Y 1f
the variance 1n 3, 1s reduced to zero.

Similarly, V, =Var[E(YIj,, p,)]-V,-V, 1s the second-order
contribution to the total variance Var(Y) due to interaction
between [3, and [3,. It should be noted that the estimate of
variance Var[E(YI[,, [,)] when both {3, and 5, are fixed
simultaneously should be corrected for individual contribu-
tions V, and V.

For additive models Y([3), the sum of all first-order etlects
S1. 1s equal to 1. This 1s not applicable for the general case
of non-additive models, where second, third and higher-
order eflects (1.e., interactions between two, three or more
input parameters) play an important role. The contribution
due to higher-order effects can be estimated via a total
sensitivity index ST:

ST={ Var(Y)-Var[E(YIB_,)] }/Var(¥), (6)

where Var(Y)-Var[E(YI[3_,)] 1s the total variance contribu-
tion from all terms 1n equation (4) that include {3,. It 1s noted
that ST,251, and the difference between the two represents
the contribution from the higher-order interaction eflects
that include 3.

There are several methods available to estimate S1, and
ST, and a comprehensive review ol those methods can be
seen 1n Saltelli, A., et al., Global Sensitivity Analysis: The
Primer, Wiley-Interscience (2008).

In one embodiment, Polynomial Chaos Expansion (PCE)
(See, Wiener, N., “The homogeneous chaos”, Am. J. Math
60, pp. 897-936 (1938)) 1s applied to approximate the
underlying optimized tunction y=t(a.,,.[3). An advantage of
applying PCE may be that all GSA sensitivity indices can be
calculated explicitly once the projection on the orthogonal
polynomial basis 1s computed (See, Sudret, B., “Global
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sensitivity analysis using polynomial chaos expansions”,
Reliability Engineering and System Safety, 93(7) pp. 964-
979 (2008)).

In another embodiment, GSA sensitivity indices can be
calculated using an algorithm developed by Saltelli, A.,
“Making the best use of model valuations to compute
sensitivity 1ndices”, Computer Physics Communications
145, pp. 280-297 (2002) that further extends a computa-
tional approach proposed by Sobol, I. M., 1990, “Quasi
Monte-Carlo methods™, Progress in Nuclear Energy, 24, pp.
55-61 (1990), and Homma, T. and Saltell1, A., “Importance
measures 1n global sensitivity analysis of model output™,
Reliability Engineering and System Safety, 52(1), pp. 1-17,
(1996). The computational cost of calculating both S1, and
ST, is N(k+2), where k is a number of input parameters {f3,}
and N 1s a large enough number of model calls (typically
between 1000 and 10000) to obtain an accurate estimate of
conditional means and variances. However, with underlying
physical model taking up to several hours to run even on the
most sophisticated computer systems, this computational
cost can be prohibitively high. Therefore, proxy-models that
approximate computationally expensive original simulators
can be used. Quasi-random sampling strategies such as LPt
sequences (Sobol, 1. M., “Quas1 Monte-Carlo methods”,
Progress 1n Nuclear Energy, 24, pp. 55-61 (1990)) can be
employed to improve the statistical estimates of the com-
puted GSA idices.

Once sensitivity indices are computed, uncertain [-pa-
rameters can be ranked according to values of S1. Param-
cters with the highest values of S1 can be selected for a
targeted measurement program. Reduction in uncertainty of
these parameters will result 1 largest reduction 1n uncer-
tainty of predicted model outcome. In one embodiment,
parameters with lowest values of ST (typically, below 0.05)
can be fixed at their base case value, thus reducing dimen-
sionality of the underlying problem and improving the
computational cost of the analysis.

Turning now to FIG. 2, one method for adaptive optimi-
zation under uncertainty 1s shown. At 102, control vaniables
(c.) and uncertain parameters () are defined. By way of
example only and not by way of limitation, and as described
hereinafter, the control variables may include variables such
as a target rate ol a production well, a target rate of an
injection well, an EOR agent concentration in the injected
fluid at various stages of the project, etc., while the uncertain
parameters may include parameters such as porosity, per-
meability, multipliers for functions such as the viscosity of
water as a function of an EOR agent concentration, surface
tension of water-o1l interface as a function of an EOR agent
concentration, saturated concentration of an FEOR agent
adsorbed by the rock formation, miscibility of o1l and water
with an FOR agent as a function of the logarithm of the
capillary number, two-phase relative permeability to water
and o1l as a function of water saturation, two-phase relative
permeability to gas and o1l as a function of gas saturation,
ctc. In one embodiment, if applicable, ranges for control
variables may be defined. Probability distribution functions
(pdis) for uncertain parameters are also defined. At 104,
optimization under uncertainty is performed; e.g., (max F(a.,
3), where F=u(a, )-Ao(c, 3)), and relevant points on the
ellicient frontier for one or more values of A are constructed.
At 106, in one embodiment, in a first pass through, a
determination 1s made as to whether the rnisk-reward (o, )
for a given A 1s acceptable. IT it 1s, at 108, the current values
of the optimized a parameters (a,,,) are recorded and no
turther processing 1s required, although, 1t desired, addi-
tional processing may be conducted. At this point, the EOR
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operation can be performed on the formation using the
optimized control variables. If the risk-reward 1s not accept-
able, or 11 fturther processing 1s desired, at 110, for a given
point on the eflicient frontier (defined by prescribed value of
A and corresponding values of control parameters o, ), one
or more GSA sensitivity indices are calculated (e.g., S1
and/or ST) for the uncertain parameters using the optimized
parameters ¢, and the uncertain parameters [3 are ranked
according to values of S1 and/or ST. At 112, in one embodi-
ment, a determination 1s optionally made as to whether it 1s
possible to reduce uncertainty 1n one or more of the uncer-
tain parameters 3 having a high value of S1. If reduction of
uncertainty 1s not possible, the process 1s completed. How-
ever, 1f reduction of uncertainty 1s possible, at 114 measure-
ments are made to reduce uncertainty i one or more
uncertain parameters. The measurements may include mea-
surements of the formation and/or the fluids properties
within the formation. For example, a core sample may be
obtained from the formation and the core sample can be
analyzed to obtain a measure of permeability and/or porosity
of the formation. Core flooding experiments can be per-
formed to determine relative permeability curves and/or
EOR agent adsorption by the rock. Laboratory experiments
can be performed to characterize rheology of an EOR agent.
In another example, a wireline tool 1s used to sample fluid
from the formation and draw the fluid into the tool. The fluid
can then be analyzed within the tool and/or brought to the
surface 1n a sample bottle to be analyzed 1n a laboratory
environment. The flmd can be analyzed to determine 1ts
chemical composition (e.g., gas content, asphaltene content,
light hydrocarbon, heavy hydrocarbon, hydrogen sulfide
content, and/or mercury content) and/or 1ts physical char-
acteristics (e.g., viscosity, density, bubble point, asphaltene
onset pressure, and/or dew point). These measurements are
then used to reduce the uncertainty of one or more of the
parameters. Having made measurements to reduce uncer-
tainty, the method continues at 104, 106, etc., until the
risk-reward for a given tolerance to risk A 1s acceptable at
106 (and the EOR project 1s performed using optimized
control variables) or until it 1s the risk-reward for a given
tolerance to risk 1s not acceptable and 1t 1s no longer possible
at 112 to reduce uncertainty 1n an uncertain parameter.

In one embodiment, after calculating global sensitivity
indices at 110, and prior to repeating steps 104, 106, etc., the
values of parameters 3 with ST values below a threshold
value (e.g., values of ST less than 0.05) are fixed 1n order to
reduce the dimensionality of the optimization problem.

In one embodiment, the method of FIG. 2 1s applied to a
problem of EOR performance optimization. In particular, a
simplified yet realistic model of a reservoir under polymer
flooding may be considered. The permeability map of the
reservoir model 1s shown 1 FIG. 3 and 1s based on layer 3
of the SPE-10 benchmark (Christie, M. A. and Blunt, M. 1.
2001. Tenth SPE Comparative Solution Project: A Compari-
son of Upscaling Techniques. Presented at SPE Reservoir
Simulation Symposium, Houston, Tex., 11-14 February.
SPE-66599-MS). Porosity 1s assumed constant at 0.2. The
objective 1n this study is to design a polymer tlood over 20
years (1983-2002) followed by a water chase for another 4
years (2003-2006). The scenarios are simulated using the
INTERSECT™ (a trademark of Schlumberger) reservoir
simulator.

Cumulative o1l production can be used as an EOR per-
formance metric subjected to analysis using the method of
FIG. 2. However, other examples of performance metrics
that can be used include incremental o1l production, recov-
ery factor, displacement efliciency, financial indicators of
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project profitability, etc. Thus, control variables (o) and
uncertain parameters () are defined. Control variables (o)
include polymer concentrations in the injected agent that can
be adjusted every year during the polymer flood phase of the
project. There are a total of 18 control vaniables in the
considered problem (the last adjustment to polymer concen-

tration 1s made 1n 2000 and 1s applied until 2002). The total
amount of injected polymer cannot exceed 110% of the

amount of polymer mjected 1n the base case: the scenario
with a constant polymer concentration profile of 0.01 mole
fraction (equivalent to 1.25 kg/sm3 or 60 kg/day injection
for 14 years). Each vyear, the value of polymer concentration
1s allowed to vary between 0.0 and 0.05 mole fraction
(equivalent to up to 200 kg/day 1njection).

(Given that the considered reservoir model 1s based on a
well-defined benchmark model, uncertain varniables ({3) are
considered that correspond to parameters associated with the
physical processes mvolving the presence of polymer (see
INTERSECT Technical and Reference Manual v. 2013.1 for
technical description of the models and Table 1 for param-
cter base values). The values for these parameters are
typically obtained from fitting the corresponding models to
laboratory data. However, given the associated cost and time
required to perform detailed experimental studies, the under-
lying data might be incomplete or even non-existent (par-
ticularly 1n the early stages of the project). The uncertainty
1s modeled by varying the underlying physical quantity by a
factor of (1x[,).

TABLE 1

Uncertain parameters for polvmer models.

Parameter Base value Polymer model

A 41 Polynomial viscosity model (zero shear-rate)
A 1600 Polynomial viscosity model (zero shear-rate)

\.’ 10 0 Aqueous phase viscosity at non-zero shear rate
K 2 Aqueous phase viscosity at non-zero shear rate
C 3.97 Aqueous phase viscosity at non-zero shear rate
b, 41 Permeability reduction

C, . 0.001 Permeability reduction

A, 0.0165 Polymer adsorption model

B, 100 Polymer adsorption model

While underlying physical processes described by the
variables above are interrelated, for simplicity, 1n one
embodiment, it 15 assumed that the multipliers p are 1nde-
pendent. Otherwise, possible dependency among 3 can be
taken into account both during optimization (by ensuring
proper sampling of p) and during global sensitivity analysis
(GSA).

Corresponding ranges for other uncertain properties may
be obtained based on underlying knowledge, previously
published information, or both. Initial ranges for multipliers
corresponding to uncertain variables were set at [-0.2; 0.2].
Variables were assumed to be uniformly distributed.

With the control variables and uncertain variables defined,
an optimization under uncertainty (max F(a, [3), where
F=u(a, B)-ro(a, p)) 1s performed and relevant points on the
ellicient frontier for various values of A are constructed. The
underlying quantity being optimized 1s the gain 1n cumula-
tive o1l production compared to the base case scenario.
Results of the optimization under uncertainty (max F(a),
where F=u(a)-Ao(a)) for three values of A={0, 1, 2} are
provided 1n Table 2. The values are given in terms of
incremental o1l production with respect to the base case
(constant concentration of polymer). Recasted solution
points were obtained by recalculating values of the objective
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function for runs performed for all values of A and updating
the optimum for each individual A if a better solution 1s
found. In this case, optimal solutions for all three considered
values of A are given by the same vector of control param-
cters. The optimal profile of polymer concentration provid-

ing solution for A={0, 1, 2} is shown in FIG. 4 (“before

GSA”). Corresponding ethicient frontier 1s shown 1 FIG. 5
(“before GSA”). It will be appreciated that lower values of
the objective function (u-Ao) for increasing values of A

illustrate the inherent penalty for risk. This 1s evident from
FIG. 6, showing values of the objective function for points

in Table 2 (A={0, 1, 2}).

TABLE 2

Results of optimization with initial uncertainty (incremental
o1l production with respect to the base case).

Ah=20 h=1 h=2
Mean gain, STB 43950 43950 43950
Standard deviation, STB 4977 4977 4977
Objective function, STB 43950 38973 33996

For a given point on the eflicient frontier (defined by
prescribed value of A and corresponding values of control
parameters o, ), GSA sensitivity indices are calculated and
the uncertain parameters 3 are ranked according to values of
a first-order sensitivity index S1 and/or a total sensitivity
index ST.

According to one aspect, GSA sensitivity indices may be
calculated 1n various manners. In one embodiment, the
previously referenced Polynomial Chaos Expansion
approach 1s applied to calculate GSA sensitivity indices for
optimized models corresponding to value A=1.

The values for first-order sensitivity index (S1) and total
ellects (ST) for each uncertain parameter p are given 1n
Table 3. Values of GSA indices are computed at the end of
polymer injection (2003) and at the end of the project
(2007). The largest contribution to uncertainty in cumulative
o1l recovery comes from uncertainty in parameters of shear
thinning model (aqueous phase viscosity at non-zero shear
rate), specifically from shear rate exponent coeflicient T
(86% 1n 2003 and 67% 1n 2007). Contribution from adsorp-

tion increases at the later phase of the project.

TABLE 3

(GSA first-order and total effects for A =
{0, 1, 2} (uncertain parameters are ranked from
highest to lowest S1 at the end of the project).

S1 n ST SI m ST in
Parameter Polymer model 2003 2003 2007 2007
K Aqueous phase 0.863 0.914 0.667 0.809
viscosity at non-
zero shear rate
B, Polymer adsorption 1.24E-04 1.40E-04 0.102 0.122
model
C,z Permeability reduction  6.98E-05 8.73E-05 0.053 0.056
A Polymer adsorption 9.27E-05 9.35E-05 0.039 0.044
model
\.’ . Aqueous phase 0.04 0.046 0.023 0.025
viscosity at non-
zero shear rate
Ao Polynomuial viscosity 0.035 0.045 0.022 0.025
model (zero shear-rate)
b, Permeability reduction  2.93E-05 3.32E-05 0.009 0.011
C Aqueous phase 0.039 0.040 0.005 0.006

viscosity at non-
zero shear rate
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TABLE 3-continued

GSA first-order and total effects for A =
{0, 1, 2} (uncertain parameters are ranked from
highest to lowest 81 at the end of the project).

S1 1n ST in S1 m ST in
Parameter Polymer model 2003 2003 2007 2007
Ay Polynomial viscosity 0.003 0.003 0.004 0.004

model (zero shear-rate)

Results of the analysis that 1dentify the largest contribu-
tors to the total uncertainty allow an 1dentification of gaps in
available data about the uncertain properties {3 and therefore
permit development of a targeted measurement program to
reduce uncertainty in those parameters. A targeted measure-
ment program may include additional downhole measure-
ments, lab measurements, and pilot projects that include
injection of a limited amount of EOR agent at preselected
locations of a reservoir utilizing a log-inject-log sequence.

As previously mentioned, parameters of the model for
aqueous phase viscosity at non-zero shear rate were 1denti-
fied as the largest contributors to variance of cumulative o1l
production. For illustration, additional measurements (e.g. a
set of rheology experiments in the lab) were performed to
reduce the uncertainty range of these parameters from initial
+20% range to £5% range. With the additional information,
optimization and GSA are repeated.

Results of the optimization step for A={0, 1, 2} with
recast points are given in Table 4. Relative reduction in
standard deviation 1s compared to results of optimization
with 1nitial uncertainty ranges (“before GSA™). It should be
noted that now, optimal solutions for A=0 and A={1, 2} are
given by two different vectors of control parameters (poly-
mer concentration profiles). The optimal concentration pro-

file Tor polymer 1njection corresponding to the recast points
for values A={1, 2}) is shown in FIG. 4 (“After GSA”).

TABLE 4

Results of optimization after GSA (incremental
o1l production with respect to the base case).

h=20 h=1 A=2
Mean gain, STB 44690 44460 44460
Standard deviation, STB 3930 3656 3656
Relative reduction in standard deviation 21% 27% 27%
compared to optimization with mitial
uncertainty ranges
Objective function, STB 44690 40804 37148

N

As seen 1n FIG. 5, the updated eflicient frontier (“‘after
GSA”) moves to the left (desired reduction 1n uncertainty)
relative to the nitial analysis (“before GSA™). The vertical
direction of the shift in eflicient frontier depends on under-
lying values 1n the physical quantity of interest (cumulative
o1l production) in the updated range of the uncertain param-
eter. FIG. 6 examines the points corresponding to A={0, 1,
2}. The shift to the left (compared to “before GSA”)
represents a relative reduction 1n standard deviation of 21%
for A=0, and 27% for A={1, 2}. The shift of efficient frontier
to the left in FIG. 5 15 expected in most cases, with the rare
exception being when the local variance underlying values
in the physical quantity of interest in the updated range of
the uncertain parameter 1s higher than that in the nitial
range. However, even for this exceptional case, the disclosed
approach provides an iterative manner of accurately esti-
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mating risk-reward profile for a given EOR scenario and
allows avoidance of costly mistakes that could result 1n an
underperforming reservorr.

In one embodiment, the values of uncertain parameters {3
with low values of S1 and/or ST (e.g., <0.05) may be fixed
in order to reduce the dimensionality of the optimization
problem. Thus, 1 the provided example, the values of
multipliers for parameters ol polynomial viscosity model
(zero shear-rate), ST values are very close to zero (see Table
3). Fixing these parameters 1n the middle of their original
uncertainty range would not significantly affect the outcome
ol the subsequent analysis, but would improve the compu-
tational cost since the dimensionality of the problem 1s
reduced.

In one aspect, the described predictive physics-based
reservolr simulation 1s used to estimate performance of an
EOR project such as, by way of example and not by way of
limitation, total or incremental o1l production, recovery
factor, displacement ethiciency, the net present value (NPV)
ol a project, eftc.

The measurements of the formation and/or the fluids of
the formation, which are used to reduce uncertainty in one
Oor more uncertain parameters, can be made using a mea-
surement tool. The measurement tool can be a surface tool,
such as a core analysis tool, that 1s used to determine
permeability and/or porosity of the formation by measuring
a characteristic of the formation or a formation sample (e.g.,
a core sample). In another example, the measurement tool
can be a different surface tool, such as a seismic survey
system that performs a seismic evaluation of the formation.
The measurement tool may also be a wellbore tool, such as
a wireline logging tool or a logging-while-drilling tool. FIG.
7 shows one example of a wireline logging system 700 at a
well site. The system includes a wireline logging tool 702
that 1s lowered into a wellbore 704 and that traverses the
formation 706 using a cable 708 and a winch 710. The
wireline tool 702 makes a number of measurements of the
adjacent formation 706. The data from these measurements
1s communicated through the cable 708 to surface equipment
712, which may include a processing system for storing and
processing the data obtained by the wireline tool 702. The
surface equipment 712 includes a truck that supports the
wireline tool 702. In other embodiments, the surface equip-
ment may be located 1n other locations, such as within a
cabin on an ofl-shore platform. The wellbore tool may
include various different modules for performing measure-
ments on the formation. For example, the wellbore tool may
include a fluid sampling module for capturing fluid from the
formation and/or for analyzing the fluid within the wellbore
tool. Other examples include modules for making electrical
measurements of the formation (e.g., resistivity and dielec-
tric), acoustic measurements of the formation (e.g., sonic),
and/or nuclear measurements of the formation (e.g., gamma-
way and neutron). The term “measurement tool” should not
be construed to limit the embodiments disclosed herein to
any particular sensor or measurement device.

A processing system can be used to implement or perform
any of the methods and processes for adaptive optimization
of EOR performance under uncertainty described above.
The term “processing system” should not be construed to
limit the embodiments disclosed herein to any particular
device type or system. The processing system may be a
laptop computer, a desktop computer, or a mainirame com-
puter. The processing system may also include a processor
(e.g., a microprocessor, microcontroller, digital signal pro-
cessor, or general purpose computer) for executing any of
the methods and processes described above (e.g. processes
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102-114 in FIG. 2). The processing system may further
include a memory such as a semiconductor memory device
(e.g., a RAM, ROM, PROM, EEPROM, or Flash-Program-
mable RAM), a magnetic memory device (e.g., a diskette or
fixed disk), an optical memory device (e.g., a CD-ROM), a
PC card (e.g., PCMCIA card), or other memory device. This
memory may be used to store, for example, control vari-
ables, uncertain parameters, reservolr models, and/or
instructions for performing the processes described above.

Any of the methods and processes described above (e.g.
processes 102-114 1n FIG. 2) can be implemented as com-
puter program logic for use with the processing system. The
computer program logic may be embodied 1n various forms,
including a source code form or a computer executable form.
Source code may include a series of computer program
instructions 1n a variety of programming languages (e.g., an
object code, an assembly language, or a high-level language
such as C, C++, or JAVA). Such computer instructions can
be stored 1n a non-transitory computer readable medium
(e.g., memory) and executed by the processing system. The
computer instructions may be distributed in any form as a
removable storage medium with accompanying printed or
clectronic documentation (e.g., shrink wrapped software),
preloaded with a computer system (e.g., on system ROM or
fixed disk), or distributed from a server or electronic bulletin
board over a communication system (e.g., the Internet or
World Wide Web).

There have been described and illustrated herein several
embodiments ol methods for adaptive optimization of
enhanced o1l recovery project performance under uncer-
tainty. While particular embodiments and aspects have been
described, 1t 1s not intended that the disclosure be limited
thereto, and 1t 1s intended that the claims be as broad in scope
as the art will allow and that the specification be read
likewise. Thus, while particular control variables and uncer-
tain variables were described, 1t will be appreciated that
other control variables and/or other uncertain variables
could be utilized. Thus, by way of example only, control
variables may include target production and 1njection rates,
injector/production well spacing, chemical composition and
concentration of an EOR agent, etc. Also by way of example
only, uncertain variables may include porosity, permeability,
parametric dependence of relative permeability curves, vis-
cosity as a fTunction of an FOR agent concentration, an EOR
agent adsorption by the rock, etc. In addition 1t will be
appreciated that while particular GSA computation
approaches such as Polynomial Chaos Expansion were
described, other GSA approaches could be utilized. Further,
while particular sensitivity indices were described, other
indices could be utilized. Similarly, while a particular uncer-
tainty contribution threshold value was described for the
purpose of fixing the value of an uncertain variable, other
thresholds could be utilized. It will therefore be appreciated
by those skilled 1n the art that yet other modifications could
be made. Accordingly, all such modifications are mtended to
be 1included within the scope of this disclosure as defined in
the following claims. In the claims, means-plus-function
clauses, if any, are intended to cover the structures described
herein as performing the recited function and not only
structural equivalents, but also equivalent structures. It 1s the

express intention of the applicant not to imnvoke 35 U.S.C. §
112, paragraph 6 for any limitations of any of the claims
herein, except for those i which the claim expressly uses
the words ‘means for’ together with an associated function.
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What 1s claimed 1s:

1. A method of performing an enhanced oil recovery
(EOR) project for a formation contaiming fluids, the method
comprising:

defining a performance metric, a plurality of control

variables, and a plurality of uncertain varnables of the
EOR project;
applying the plurality of control variables and the plural-
ity of uncertain variables as mput parameters into a
predictive physics-based reservoir model;

optimizing the performance metric under initial uncer-

tainty of the plurality of uncertain variables to obtain a
set of optimized values of the control varniables that
provide an initial optimum of an objective function
based on the performance metric;

conducting a global sensitivity analysis for the plurality of

uncertain variables using the set of optimized values of
the control variables, wherein the sensitivity analysis
comprises a first order sensitivity index;
performing a measurement, using at least one of a core
analysis surface tool or a seismic survey surface tool,
on at least one of the plurality of uncertain variables to
reduce uncertainty 1n at least one of the plurality of
uncertain variables:
optimizing the performance metric with reduced uncer-
tainty in the at least one of the plurality of uncertain
variables to obtain an updated set of optimized values
of the control variables that provide an updated opti-
mum ol the objective function based on the perfor-
mance metric;
running the reservoir model with the updated set of
optimized values of the control variables 1n order to
determine performance of the EOR project; and

performing the EOR project on a formation according to
the updated set of optimized values of the control
variables, wherein performing the EOR project
includes altering an operation of a production well or
an 1njection well based upon, at least in part, the
updated set of optimized values of the control vari-
ables.

2. The method according to claim 1, further comprising:
repeating the conducting, the performing, the optimizing
with reduced uncertainty, and the running a plurality of
times.

3. The method according to claim 1, further comprising:
determining contributions of the plurality of uncertain vari-
ables to total uncertainty of the performance metric.

4. The method according to claim 3, further comprising:
ranking the plurality of uncertain variables based on their
contribution to total uncertainty of the performance metric,
wherein the reducing comprises selecting an uncertain vari-
able from the plurality of uncertain variables contributing to
the total uncertainty.

5. The method according to claim 4, wherein the selecting,
comprises selecting a highest ranked uncertain variable, and
wherein the sensitivity analysis comprises a total sensitivity
index.

6. The method according to claim 3, further comprising;:
comparing the contribution of the at least one uncertain
variable to a threshold value.

7. The method according to claim 6, further comprising:
setting a value of at least one uncertain variable to a fixed

value prior to the repeating based on whether a contribution
of the at least one uncertain variable 1s less than the

threshold value.
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8. The method according to claim 7, wherein the setting
a value comprises setting the value to a midpoint value for
the uncertain variable.

9. The method according to claim 7, wherein the objective
function 1s F(o,p)=u(c, )-Ao(c, p) where a are the plu-
rality of control variables, [ are the plurality of uncertain
variables, u and o are the mean and standard deviation of the
performance metric computed based on an output of the
reservolr model respectively, and A 1s a non-negative param-
cter defiming a tolerance to risk.

10. The method according to claim 9, wherein the plu-
rality of uncertain variables include at least two of:

viscosity of water as a function of an EOR agent concen-

tration,

surface tension of water-oil interface as a function of an
EOR agent concentration,

saturated concentration of an EOR agent adsorbed by the

formation, and

miscibility of o1l and water with an

function of the capillary number.

11. The method according to claim 9, wherein the plural-
ity ol control variables include at least one of:

target rate of a production well,

target rate of an 1njection well, and

an EOR agent concentration in the injected fluid in the

injection well corresponding to at least one period of
injection.

12. The method according to claim 1, wherein the defining
comprises defining probability distribution functions (pdis)
for the uncertain variables.

13. The method according to claim 1, wherein the objec-
tive function 1s F(a, p)=w(a, p)-ro(a, p) where o are the
plurality of control variables, {3 are the plurality of uncertain
variables, u and o are the mean and standard deviation of the
performance metric computed based on an output of the
reservoir model respectively, and A 1s a non-negative param-
cter defimng a tolerance to risk.

14. The method according to claim 1, wherein the plu-
rality of uncertain variables include at least two of:

water relative permeability at residual o1l saturation,

gas relative permeability at residual o1l saturation,

viscosity of water as a function of an EOR agent concen-

tration,

surface tension of water-oil interface as a function of an
EOR agent concentration, saturated concentration of an
EOR agent adsorbed by the formation, and

miscibility of o1l and water with an EOR agent as a

function of the capillary number.

15. The method according to claim 1, wherein the plu-
rality of control varniables include at least one of:

target rate ol a production well,

target rate of an 1njection well, and

an EOR agent concentration in the injected fluid in the

injection well corresponding to at least one period of
injection.

16. The method according to claim 1, wherein the per-
formance metric include at least one of: o1l recovery etli-
ciency, incremental o1l production, total o1l production, and
financial indicator of project profitability.

17. The method according to claim 1, wherein performing
the measurement on at least one of the plurality of uncertain
variables comprises:

performing a measurement of at least one of the formation

and the fluids within the formation.

18. The method according to claim 1, further comprising:
performing the EOR project using the updated set of opti-
mized values of the control vanables.

EOR agent as a
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19. The method according to claim 1, wherein:

the plurality of uncertain variables include an aqueous
phase viscosity at a non-zero shear rate, and

the objective function 1s F(a, B)y=uw(a, B)-Ao(a, ) where
c. are the plurality of control variables, 3 are the
plurality of uncertain variables, u and o are the mean
and standard deviation of the performance metric com-
puted based on an output of a the reservoir model
respectively, and A 1s a non-negative parameter defin-
ing a tolerance to risk.

20. A method for performing an enhanced o1l recovery
(EOR) project under uncertainty, the method comprising:
utilizing a predictive physics-based reservoir model to
estimate the performance of the EOR project;

identifying a plurality of input parameters into predictive
physics-based reservoir the model as control variables
and uncertain variables;

optimizing the predictive physics-based reservoir model
to obtain values of control variables maximizing a
mean value of a chosen performance metric under
initial uncertainty of formation and tluid properties;

applying a global sensitivity analysis to quantily and rank
contributions from uncertain mput parameters to the
standard deviation of the optimized values of the per-
formance metric, wherein the sensitivity analysis com-
prises a first order sensitivity index;

obtaining additional information using a wellbore mea-
surement tool regarding at least one high-ranking of the
uncertain variables 1 order to reduce uncertainty
therein;

optimizing the predictive physics-based reservoir model
with at least one uncertain parameter having reduced
uncertainty, to obtain a set of updated set of optimized
values of the control variables;

using the model to provide a performance analysis for the
EOR project; and

performing an EOR project on a formation according to
the updated set of optimized values of the control
variables, wherein performing the EOR project
includes altering an operation of a production well or
an 1njection well based upon, at least in part, the
updated set of optimized values of the control vari-
ables.

21. A system for adaptive optimization of an enhanced o1l
recovery (EOR) project for a formation containing fluids,
the system comprising:

a wireline logging system measurement tool configured to
perform a measurement on at least one of the formation
and a sample from the formation; and

a processing system configured to:

(1) define a performance metric, a plurality of control
variables, and a plurality of uncertain variables of the

EOR project;

(11) apply the plurality of control variables and the
plurality of uncertain variables as input parameters
into a predictive physics-based reservoir model;

(11) optimize the performance metric under 1nitial
uncertainty of the plurality of uncertain variables to
obtain a set of optimized values of the control
variables that provide an mmitial optimum of an
objective function based on the performance metric;

(1v) conduct a global sensitivity analysis for the plu-
rality of uncertain variables using the set of opti-
mized values of the control variables, wherein the
sensitivity analysis comprises a first order sensitivity
index:
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(v) reduce uncertainty in at least one of the plurality of
uncertain variables using measurements performed
by the wireline logging system measurement tool;

(vi) optimize the performance metric with reduced
uncertainty in the at least one of the plurality of 5
uncertain variables to obtain an updated set of opti-
mized values of the control vanables that provide an
updated optimum of the objective function based on
the performance metric;

(vi1) running the reservoir model with the updated set 10
of optimized values of the control variables 1n order
to determine performance of the EOR project; and
wherein the wireline logging system measurement
tool 1s used, 1n part, to perform the EOR project on
a formation according to the updated set of opti- 15
mized values of the control variables,

wherein performing the EOR project includes altering an
operation of a production well or an jection well
based upon, at least 1n part, the updated set of optimized

values of the control vanables. 20
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