12 United States Patent

US011593643B2

(10) Patent No.: US 11,593,643 B2

Martinez-Canales et al. 45) Date of Patent: Feb. 28, 2023
(54) COMPUTATIONALLY-EFFICIENT (52) U.S. CL
QUATERNION-BASED CPC GO6N 3/08 (2013.01); GO6F 17/16
MACHINE-LEARNING SYSTEM (2013.01); GO6K 9/6256 (2013.01):;
(Continued)
(71) Applicant: Intel Corporation, Santa Clara, CA (58) Field of Classification Search
(US) CPC ... GO6N 20/10; GO6N 3/0454; GO6N 3/0481;
GO6N 3/084; GO6N 5/046; GO6N 10/00;
(72) Inventors: Monica Lucia Martin-ez-Can-ales, Los (Continued)
Altos, CA (US); Sudhir K. Singh,
Dublin, CA (US); Vinod Sharma, (56) References Cited
Menlo Park, CA (US); Malini
Krishnan Bhandaru, San Jose, CA U.S. PATENT DOCUMENTS
(US)
9,767.410 Bl 9/2017 Guevara et al.
(73) Assignee: Intel Corporation, Santa Clara, CA 10,262,218 B2 4/2019 _Lee et al
(US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 CN 110574050 19/9015
U.S.C. 154(b) by 591 days. CN 110574051 12/2019
Continued
(21) Appl. No.: 16/613,365 (Continued)
(22) PCT Filed: May 31, 2018 OTHER PUBLICATIONS
Kominami et al., “Convolutional Neural Networks with Multi-
(86) PCI No.: PCT/US2018/035439 valued Neurons”, May 19, 2017, 2017 International Joint Confer-
§ 371 (c)(1), ence on Neural Networks (IJCNN), pp. 2673-2678 (Year: 2017).*
(2) Date: Nov. 13, 2019 (Continued)
(87) PCT Pub. No.: W02018/222900 Primary Examiner — Brent Johnston Hoover
PCT Pub. Date: Dec. 6. 2018 (74) Attorney, Agent, or Firm — Schwegman Lundberg &
' ' C Woessner, P.A.
(65) Prior Publication Data (57) ABRSTRACT
US 2020/0202216 Al Jun. 25, 2020 A quaternion deep neural network (QTDNN) includes a
L plurality of modular hidden layers, each comprising a set of
Related U.5. Application Data QT computation sublayers, including a quaternion (QT)
(60) Provisional application No. 62/513,390, filed on May general matrix multiplication sublayer, a QT non-linear
31, 2017. activations sublayer, and a QT sampling sublayer arranged
along a forward signal propagation path. Each QT compu-
(51) Int. CL tation sublayer of the set has a plurality of QT computation
GO6N 3/08 (2006.01) engines. In each modular hidden layer, a steering sublayer
GO6N 10/00 (2022.01) precedes each of the QT computation sublayers along the
(Continued) (Continued)
Eﬂ\%‘ 3 GO0
L weur J
ﬁﬂ\q* ﬁzzi
QT HIDDEN LA@
65 11r
N

QT HIDDEN LAYER 2

D&

L Al

6510

N
QT HIDDEN LAYER L

N

OFTIMIZATION

612

N

D ou

PUT

-

US 11,593,643 B2
Page 2

tforward signal propagation path. The steering sublayer
directs a forward-propagating quaternion-valued signal to a
selected at least one QT computation engine of a next QT
computation subsequent sublayer.

24 Claims, 15 Drawing Sheets

(51) Int. CL

GOGF 17/16 (2006.01)
GO6K 9/62 (2022.01)
GO6N 3/04 (2023.01)
GO6N 3/084 (2023.01)
GO6N 20/10 (2019.01)
GO6N 5/046 (2023.01)
(52) U.S. CL
CPC ... GO6K 9/6262 (2013.01); GO6N 3/04

(2013.01); GO6N 3/0481 (2013.01); GO6N
3/084 (2013.01); GO6N 5/046 (2013.01);
GO6N 10700 (2019.01); GO6N 20/10 (2019.01)

(58) Field of Classification Search
CPC . GO6N 3/04; GO6N 3/08; GO6F 17/16; GO6K
9/6256; GO6K 9/6262

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

10,891,537 B2
11,263,526 B2

1/2021 Wang et al.
3/2022 Martinez-Canales et al.

2013/0297541 A1 11/2013 Piekniewski et al.
2014/0219497 Al 8/2014 Richert
2016/0253466 9/2016 Agaian et al.
2017/0091581 3/2017 Watanabe et al.
2017/0337468 11/2017 Bruestle et al.
2018/0096457 4/2018 Savvides et al.
2018/0121791 5/2018 O’connor et al.
2019/0108651 4/2019 Gu et al.
2019/0171936 6/2019 Karras et al.
2019/0266485 8/2019 Singh et al.
2019/0294108 9/2019 Ozcan et al.
2019/0304568 10/2019 Wel et al.
2019/0354844 11/2019 Brasnett et al.
2019/0354894 11/2019 Lazovich et al.
2019/0356394 11/2019 Bunandar et al.

ANAAAAAASAAAAA AN A A AN A

2020/0026992 Al* 1/2020 Zhang GO6N 3/0454
2020/0042796 2/2020 Kim et al.
2020/0058106 2/2020 Lazarus et al.
2020/0117993 4/2020 Martinez-Canales et al.
2020/0192726 6/2020 Joo et al.
2020/0193235 6/2020 Martinez-Canales et al.
2020/0302265 9/2020 Wang et al.
2021/0019633 1/2021 Venkatesh
2021/0042613 2/2021 Oztireli et al.
2021/0125380 4/2021 Lee et al.
2021/0160522 5/2021 Lee et al.

FOREIGN PATENT DOCUMENTS

CN 110603544 12/2019
JP 2006140952 A 6/2006
WO WO-2015054666 Al 4/2015
WO WO-2018222896 Al 12/2018
WO WO0-2018222900 A1l 12/2018
WO WO0-2018222904 Al 12/2018

OTHER PUBLICATIONS

Parcollet et al., “Quaternion Neural Networks for Spoken Language
Understanding™, Feb. 9, 2017, 2016 IEEE Spoken Language Tech-

nology Workshop (SLT), pp. 362-368 (Year: 2017).*

“U.S. Appl. No. 16/613,380, Preliminary Amendment filed Nov. 13,
20197, 9 pgs.

“International Application Serial No. PCT US2018 035431, Inter-
national Preliminary Report on Patentability dated Dec. 12, 20197,
9 pgs.

“International Application Serial No. PCT US2018 035439, Inter-
national Preliminary Report on Patentability dated Dec. 12, 20197,
10 pgs.

“International Application Serial No. PCT US2018 035446, Inter-
national Preliminary Report on Patentability dated Dec. 12, 20197,
8 pgs.

“Maths—Quaternion Arithmetic”, www.euclideanspace.com maths
algebra realNormed Algebra quaternions arithmetic index.htm, (added
Mar. 2, 2020), 4 pgs.

“Intel 64 and TA-32 Architectures Software Developer’s Manual”,
Part 1 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and TIA-32 Architectures Software Developer’s Manual”,
Part 2 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and TA-32 Architectures Software Developer’s Manual”,
Part 3 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and IA-32 Architectures Software Developer’s Manual”,
Part 4 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and IA-32 Architectures Software Developer’s Manual”,
Part 5 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and IA-32 Architectures Software Developer’s Manual”,
Part 7 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and IA-32 Architectures Software Developer’s Manual”,
Part 6 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and TA-32 Architectures Software Developer’s Manual”,
Part 8 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and TA-32 Architectures Software Developer’s Manual”,
Part 9 of 10, (Oct. 2019), 500 pgs.

“Intel 64 and TA-32 Architectures Software Developer’s Manual”,
Part 10 of 10, (Oct. 2019), 538 pgs.

Lomont, Chris, “Introduction to Intel Advanced Vector Extensions”,
Intel Software Developer Zone https: software.intel.com en-us
articles introduction-to-intel-advanced-vector-extensions, (Jun. 21,

2011), 32 pgs.

“International Application Serial No. PCT/US2018/035431, Inter-
national Search Report dated Sep. 20, 2018, 3 pgs.
“International Application Serial No. PCT/US2018/035431, Written
Opinion dated Sep. 20, 2018, 7 pgs.

“International Application Serial No. PCT/US2018/035439, Inter-
national Search Report dated Oct. 16, 20187, 4 pgs.
“International Application Serial No. PCT/US2018/035439, Written
Opinion dated Oct. 16, 20187, 8 pgs.

“International Application Serial No. PCT/US2018/035446, Inter-
national Search Report dated Sep. 20, 2018, 3 pgs.
“International Application Serial No. PCT/US2018/035446, Written
Opinion dated Sep. 20, 2018, 6 pgs.

Che, Ujang, et al., “Quaternion Valued Neural Networks and
Nonlinear Adaptive Filters”, [Online] Retrieved from the Internet :
<https://www.commsp.ee.ic.ac.uk/~mandic/research/Nonlinear
Quaternion_TR_2010.pdf>, (Jul. 16, 2010).

Janovska, D, et al., “Givens’ transformation applied to quaternion
valued vectors™, BIT Numerical Mathematics, vol. 43, 1ssue 5, (Dec.
2003), 991-1002.

Yuki, Kominami, et al., “Convolutional Neural Networks with
Multi-valued Neurons™, In: 2017 International Joint Conference on
Neural Networks (IJCNN 2017), (May 16, 2017), 2673-2678.
Zhang, Liangpel, et al., “Deep Learning for Remote Sensing Data”,
IEEE Geoscience and Remote Sensing Magazine, vol. 4, Issue 2,
(Jun. 13, 2016), 22-40,

“Chinese Application Serial No. 201880028672.X, Voluntary Amend-
ment filed Sep. 24, 20207, w o English Claims, 197 pgs.
“European Application Serial No. 18809472.6, Extended European
Search Report dated Feb. 12, 20217, 13 pgs.

“European Application Serial No. 18808832.2, Extended FEuropean
Search Report dated Feb. 24, 2021, 13 pgs.

“European Application Serial No. 18809474.2, Extended European
Search Report dated Feb. 24, 20217, 12 pgs.

US 11,593,643 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Dongpo, Xu, “Quaternion Derivatives: The GHR Calculus™, arxiv.

org, Cornell University Library, 201 Olin Library Cornell Univer-
sity Ithaca, NY 14853, (Sep. 25, 2014).

Gaudet, Chase, “Deep Quaternion Networks”, International Joint
Conference on Neural Networks (IJCNN), (Jan. 30, 2018), 1-8.
Greenblatt, Aaron B, “Introducing quaternion multi-valued neural
networks with numerical examples”, Information Sciences vol. 423,
(Jan. 31, 2018), 326-342.

Grigoryan, Artyom M, “Tensor representation of color images and
fast 2D quaternion discrete Fourler transform”, Proceedings of
SPIE, IEEE, US, vol. 9399, (Mar. 16, 2015), 93990N-93990N.
Gui, Yunduan, “Remarks on quaternion neural network based
controller with application to an inverted pendulum”, Proceedings
of the Sice Annual Conference (SICE), SICE, (Sep. 9, 2014),
137-142,

Hata, Ryusuke, “Multi-valued autoencoders for multi-valued neural
networks”, International Joint Conference on Neural Networks
(IJCNN), IEEE, (Jul. 24, 2016), 4412-4417.

Meysam, Madadi, “End-to-end Global to Local CNN Learning for
Hand Pose Recovery in Depth Data”, arxiv.org, Cornell University
Library, 201 Olin Library Cornell University Ithaca, NY, (May 26,
2017).

Risojevic, Vladimir, “Unsupervised learning of quaternion features
for image classification”, 11th International Conference on Tele-
communications 1n Modern Satellite, Cable and Broadcasting Ser-
vices (TELSIKS), IEEE, (Oct. 16, 2013), 345-348.

Saad, Saoud, “A novel method to forecast 24 h of global solar
irradiation”, Energy Systems, Springer Berlin Heidelberg, Berlin
Heidelberg, vol. 9, No. 1, (Aug. 30, 2016), 171-193.

Suzuki, Satoshi, “An Architecture Design Method of Deep Convo-
lutional Neural Network™, Big Data Analytics in the Social and
Ubiquitous Context : 5th International Workshop on Modeling

Social Media, Msm 2014, 5th International Workshop on Mining
Ubiquitous and Social Environments, Muse 2014 and First Inter-
national Workshop on Machine LE, (Sep. 29, 2016).

Yan, Chao, “Multi-attributes gait 1dentification by convolutional
neural networks”, 8th International Congress on Image and Signal
Processing (CISP) IEEE, (Oct. 14, 2015), 642-647.

Zeng, Rui, “Color 1mage classification via quaternion principal
component analysis network™, Neurocomputing, Elsevier, Amster-
dam, NL, vol. 216, (Aug. 8, 2016), 416-428.

“European Application Serial No. 18809472.6, Response filed Sep.
9, 2021 to Extended European Search Report dated Feb. 12, 20217,
22 pgs.

“European Application Serial No. 18809474.2, Response filed Sep.
23,2021 to Extended European Search Report dated Feb. 24, 20217,
21 pgs.

“European Application Serial No. 18808832.2, Response filed Sep.
27,2021 to Extended European Search Report dated Feb. 24, 20217,
18 pgs.

“U.S. Appl. No. 16/613,349, Notice of Allowance dated Oct. 22,
20217, 13 pgs.

“U.S. Appl. No. 16/613,349, Corrected Notice of Allowability dated
Nowv. 5, 20217, 2 pgs.

“U.S. Appl. No. 16/613,349, 312 Amendment filed Jan. 3, 20227, 3
pgs.

“U.S. Appl. No. 16/613,349, PTO Response to Rule 312 Commu-
nication mailed Jan. 12, 20227, 2 pgs.

Nitzan, Guberman, “On Complex Valued Convolutional Neural
Networks”, arXiv:1602.09046v1 [cs.NE], (Feb. 29, 2016), 41 pgs.
U.S. Appl. No. 16/613,349, filed Nov. 13, 2019, Gradient-Based
Tramning Engine for Quaternion-Based Machine-Learning Systems.
U.S. Appl. No. 16/613,380, filed Nov. 13, 2019, Tensor-Based
Computing System for Quaternion Operations.

“U.S. Appl. No. 16/613,380, Notice of Allowance dated Aug. 2,
20227, 13 pgs.

* cited by examiner

]
o'
.
-3 8¢ 1
e
n [7ouN0D B Aw__/_,_,“m@ .,, E
— NOILYNLOY
- & O 31NdNOJ IV d0194 1109
" | T V.1vVQ
= Al 91 (601937109 g7/ _ _
HOSNIS e .
Vel
gl | %_azw A
S 11MdANOD
. = QHYANYLS |
- s \ mwm % b N 0¢t 4, \M\\Qovﬁ
= 44 S b,
2 8 __ “%
7 P,
va/
» A ;, V1v(Q
o (NNQLD) INIONT MY
A\ ONINIVHL IV
2._., Y J
% Wl
P - ﬁ_\{ F 4] vousaoni) %
O 1 -) v1V({
e Y 1Ya ONINIYYL (NNALD) INI9NT |
" J/ . m_‘Sn_S_DO E‘
981

J4X40Ni J1NdNOD | pLL

- QHVANYLS 0L}
T\ J anoo

U.S. Patent

U.S. Patent Feb. 28, 2023 Sheet 2 of 15 US 11,593,643 B2

200
208 ¥y
210
202
PROCESSOR VIDEQ DISPLAY
224 o
_SOFTWARE ALPHANUMERIC INPUT
DEVICE
204 »
224 Ul NAVIGATION DEVICE
SOFTWARE
216
206
STORAGE DEVICE 299
294 « MACHINE-READABLE
= MEDIUM
SOFTWARE 294
290 SOFTWARE
NETWORK INTERFACE 218

DEVICE
SIGNAL GENERATION
DEVICE
e / 2206

TRANSMISSION MEDIUM

FiG. 2

U.S. Patent Feb. 28, 2023 Sheet 3 of 15 US 11,593,643 B2

APPLICATION PROGRAMS
‘ LIBRARIES
i RUNTIME

OPERATING SYSTEM

PRE- 05 ENVIRONMENT

PROCESSING DEVICES

INTERCONNECT W

/0
f CONTROLLERS CONTROLLER
/O DEVICES NV MEM
AND

309
NETWORKING VIEMORY

312 \
HG. 5

oW
316

308

U.S. Patent

410

416

Feb. 28, 2023

"ROC
302
CPU
H NN
412

CARETAKER

"ROCESSOR

Sheet 4 of 15

~SSING

414

418

DEVICES

GPU

/0

CONTROLLER

US 11,593,643 B2

FIG. 4

U.S. Patent Feb. 28, 2023 Sheet 5 of 15 US 11,593,643 B2

410

CPU
CONTROLLER

500 003

NV
VIEM

510

FIG. 5

U.S. Patent Feb. 28, 2023 Sheet 6 of 15 US 11,593,643 B2

000

J

604

608
610 ____________________
OPTII\AIZATION
012
N

e FIG. 6

.‘. .»
8¢/ ALILNAQ] g7 INI00d JIVdIAY 10)7) INITO0d XVIN LD 01

INITAYS L0 W

." I, AT
(d0Sd) NOILOF T3S ONY NOILILHYd

US 11,593,643 B2

. J‘ ——' J' —— 010!
= INIINVL SLINM 01
= IN0FYIdAH 1D | JIOARIS 1D 812 = ¥YANIT Q31411934 /ASIMIDIId 1D ALLINAQL
= _
Z —q SNOLLYALLOV VNI KON 1D [L
Al 4 'n I 4
- (40Sd) NOILDFT3S ANV NOILILHYd
~ !-' 4 "
~ Al -
g
S SN VM) STANYIN 1Y
- 1ONA0Hd H3INNI 1D NOILNTOANOD 1D 00,
NINID-LD
(40Sd) NOILOTT3S ONY NOILILHYd

wove amd Uel
ONIOTT

00/

U.S. Patent

§ OIA

US 11,593,643 B2

'S 'S W) AdYHS 40 HOSNAL NOINYILYND ar

SIHIIEM
‘M

Sheet 8 of 15

i S AR e
_ Y= STANHIN 40 #
o ‘M d'g Uz NOINH3LYND Y
2
N
M 3dVHS 40 HOSNIL NOINYALYND alL ¢08

U.S. Patent
)

U.S. Patent

p—

/2

908

pm—

QUATERNION POOLING EXAMPLE
3™ 3 WINDOW WITH STRIDE 2

e

906

Feb. 28, 2023

Sheet 9 of 15

904

O\l
T
i

Y

US 11,593,643 B2

1-.1;1;1;1;1:&1-.1;11;11:1;1;1111..'\1\.111.*:111;1;11\\11;1;1;11:"\.11111:111111;&11-.1;1;1;:111111?111\.11&111111:
" 5 y n Y . y n Y .
1 Y N 'y LY by . 'y LY L] .
\ N \ n N y v . n N y N, .
3 y . \ . y . y .
"- 5 y n Y " y n Y "
1 Y N 'y LY N Y 'y LY & Y
\ N \ n N y v . n N y N, .
1 Y N Ll b, LY Yy . Ll b, LY L .
1 Y N Ll N, LY N : Ll N, LY & :
X N \ N . y . . N . y v .
\ N \ " N y v . " N y v .
1 Y N Ll N, LY N Ll N, LY &
h hy b . hy ~. .
" 5 hy Y . hy Y .
1 Y N L] . LY N . L] . LY y .
\ N \ " N y v . " N y v .
N N \ v N \ y . v N \ v .
1 Y N L] . LY N L] . LY y
\ N \ n N y v . n N y N, .
N N \ v N \ y . v N \ v .
X N \ N . y . N . y v
h hy N . hy y .
, \ y n Y . y n Y .
1 Y N Ll b, LY Yy . Ll b, LY L .
\ N \ n N y v . n N y M, .
\ N \ " N y n " N y v
[b N Ll % : Ll % LY b :
b, 4 N L | ~ . L | ~ LY 4 .
LY b, N W .‘ . W .‘ L & .
N N \ v N \ y . v N \ v .
1 Y N L] . LY N . L] . LY y .
N Y . "' Y . "' Y
) N Y N N Y N
\ b \ n \ h n \ ; h
X N \ N . y . N . y v .
, y y . . y . . . y N .
N N \ " . \ " . \ v
" . " .
:\.-h.-\..-\..-\..\.:.-h.-\..-\..-\..\.\L\..\.\.1.«.11:\.1\.«.\.\.:.11\.115:&.1\.11\. \.-h.x\.-h.:-.n.-\.-h.\.-\.w:\.-\.n.ﬂ.xn.:u.xn.\.\. -“_ h-\..\.-\.-\..\.-\.:-
" y Y " y h . " .‘ .
N b b y . "'| " . y . .
" b b y .] N " y . "
X N y "' Y y "'
y 5 - " 4 " - "
\ N N N N y N N N '
N " N
\ : . . : N : . y : N
\ " . N N . " . y . .
y " ™ N N . " ™ 5 : .
y " . N N . " . 5 N .
\ N y N N \ N N
.:.-\.\.-\..\.-\..1:'-\. ..\.-\..-\..-\..::.-\..\.-\.\.-\.1..‘\.-\.\.111?1\.111\.}\.11\.11:1\.1\.11::\.\.\.-\.-\..\,‘\.-\..-\.\.-\.. -\..\.-\.\.-\.-\.:..\.-\.-\..\.\.E‘u.n.t.xn.t.wh:.xt.\.xt.\,‘k\.\.x-\.\.w:-\.\.\.-\..\.-\..:..\.-\..-h.\.-\.-mﬁ‘h.-\.x\.-\.xt-\.x\.-\.x\.:.x\.-\.-\.\.-n:'-\..\.-\.-\.\.x::.\.x-\.\.xn.\\.x-\.\.x-\.w:x-\.\.-_-\..\.:_-\..\.-\._-\..\.-n:'-
. . y N \ . . y » \ N \ » \ N y . . y y . .
\ . y N \ \ . y , . N \ , . . N \ N . y v N N .
y hy o y . §) 4 § ») 4 " hy y . " hy
i Y b N Y b W & N b LY N
. . y N \ . . y » \ N \ » \ N y . . y y . .
. N y N \ . N y N . \ N \ N . \ N N N N y N » N N
\ . y N \ \ . y v . \ N \ v . \ N \ " N y v . " N
y . 3 y . y . " h y . " h y . y . y .
Y b Y W b W & N b LY N
N N \\\ y N N N N y N \ y N N \ y N N 5 y N
L] b LY Y N L] ‘ LY N . i, Y N N . i, Y N L] . LY y h L] .
. N y N \ . . y N N \ y \ N N \ y \ . . y N » . .
" hy . b . " . . '-. - \ 4 '-. - \ 4 " hy y . " hy
N " " h " h " by " "
L] LY % N L] LY & . [Y N & . [Y N Ll LY & . Ll
. N y N \ . N y N \ N \ N \ N N N N y N N N
. N y N \ . . y N N \ y \ N N \ y \ . . y N » . .
L] N LY % N L] n LY & . [Y N & . [Y N Ll N, LY & y Ll N,
" " Y " " y y " Y y y " Y " '~ \ b " '~
% & % . & & . N & N .
. N y N \ . N y N N \ N \ N N N N y N N N
. N y N \ . . y N N y \ N N \ y \ . . y N » . .
N N y N N N N y N . y N N . \ y N N N 5 y h N N
y . . 3 . y . . \ . 3 \ . " 3 y . y . y .
N " " h " & " 4 " "
\ . y N \ \ . y , . N \ , . N \ N . y v N .
\ . y N \ \ . y v . \ N \ v . \ N \ " N y v . " N
. . y N \ . . y » » \ N \ » » \ N y . . y y » . .
. N y N \ . N y N . \ N \ N . \ N N N N y N » N N
y hy o y . § ») 4 § ») 4 " hy y . " hy
% Y % . 5 Y . 5 & X Y " X
v . \ N \ v . \ y . \ N \ y . \ N \ v N \ v N v N
. N y N \ . N y N . \ N \ N . \ N N N N y N » N N
\ . y N \ \ . y v . \ N \ v . \ N \ " N y v . " N
. N y y \ . N y N . , y \ N . , y y . . y N "' . .
v . \ N \ v . \ y . \ N \ y . \ N \ v N \ v N v N
. N y N \ . N y N . \ N \ N . \ N N N N y N » N N
. N y y \ . N y N . , y \ N . , y y . . y N "' . .
y . 3 y . y . h y . h y . y . y .
b Y \ b Y " " \ " " \ b Y " b
. . y N \ . . y » \ \ » \ N y . . y y . .
\ . y N \ \ . y , . . \ , . . N \ N . y v N N .
\ . y N \ \ . y v . \ \ v . \ N \ " N y v . " N
" . y N \ " . y » » \ \ » » \ N y . . y y » . .
. . y N \ . . y » » \ N \ » » \ N y . . y y » . .
. N y N \ . N y N . \ N \ N . \ N N N N y N » N N
\ . y N \ \ . y v . \ N \ v . \ N \ " N y v . " N
. . y N \ . . y » » \ N \ » » \ N y . . y y » . .
y . 3 y . \ . 3 \ . 3 v . y . v .
h N \ h N " " \ " " \ hy Y . hy
. N y N \ . N y N \ N \ N \ N N N N y N N N
\ . y N \ \ . y v . \ N \ v . \ N \ " N y v . " N
v . \ N \ v . \ y . \ N \ y . \ N \ v N \ v N v N
. N \ N \ . N \ N . \ N \ N . \ N N N . y N p N .
. N y N \ . N y N . N \ . \ N N N N y N » N N
. N y N \ . . y N N y \ N \ y \ . . y N » . .
N N y N N N N y N . y N . \ y N N N 5 y h N N
. N y N \ . N y N . N \ . \ N N N N y N » N N
, Y " \ hy Y hy Y " \ h "
':'\-'\.'\.'\.'\.'\.:n.'\.'\.'\.'\.L'\.'\.'\.'\.'\.4;'\.'\.'\.'\.'\.1&"\.1'\.11'\.':'\.'\.11'\.1}'\.11'\.1 "1.'\.'\.'\.'\.'\.4:'\.'\.1.'\.'\. B 4;'\.1"\.-\.1"\"\.11-\.1 1-1-1-1-1-1-'.-1.-\.-\.-\.-\.-:-\.-\.-\.-\.-\.-\.::.-\.11-\.1"\:\.11'\.11':11'\.11'\.}11.11'\. ""\.'\.11'51":..'511'51%}111\\":\1111-\.:;
y Y \ y Y " \ " \ y Y . y
\ . y N \ \ . y v N \ \ N \ " N y v " N
N N N N \ N . N N » \ \ CY-.) : . N . N y : h N N
\ . y N \ \ . y , . N \ . N \ N . y v N N .
\ . y N \ \ . y v . N \ \ N \ " N y v . " N
. N y N \ . . y N N y \ N \ y \ . . y N » . .
N N \ N N N N y N . y N . \ y N N N 5 y h N N
. N N \ . N y N . N \ . \ N N N N y N » N N
. , Y . " \ hy Y hy " Y I " \ h I "
i b N Y W b W & N b LY N
W % W b N % N b N
i b N Y W W & N b LY N
P S S S - S T R S - T
b \ b Y " " \ b Y b
y . 3 y . y . " y . " h y . y . y .
Y b Y W W & N b LY N
L] N LY % N L] n LY & [& [Y N Ll LY & Ll
y . 3 . y . . \ . " : \ . " 3 . y . . y . y .
y hy o . y . . § ») y . § ») 4 N " hy . y . " hy
. " Y . . " . y y N Y y y N Y " " \ y " "
N " " h " h " by " "
L] % N L] LY & [Y N & [Y N Ll LY & Ll
y . 3 . y . . \ . " 3 . \ . " 3 . y . . y . y .
. N y N \ . . y N N \ y \ N N \ y \ . . y N » . .
L] N LY % N L] n LY & . [Y N & . [Y N Ll N, LY & y Ll
" " Y " " y y " Y y y " Y " '~ \ " "
.:..'\.'\.'\.\.'\.":'\.'\.\.'\.'\.'\.\ \.-\.\.-\..-\\"'\.-\..\.\.\.-\."':.-\..\.-\.-\..-\..xi.\.\.x\.\.ﬁﬂ:'\.ﬁ.\.\.x\.::.x\.\.-\.xthkx\.\.-\..\.-:-\..\.-\.\.-\.-\.:..\.-\.-\..\.xwﬁ\t-\.\.\.\.\.t\.\.\.x\.-{t\.\.x\.\.{\.\.-\.\.\.-\..:-.\.-\..1.\.1.1:&.-\.1\.-\.1::.-\.1\.-\.1\.‘\.1\.-\.11'-h—-_ '\.\.'\.\.\.‘\. -...-v:-
Y § Y " § " y N
h ‘ :l : N N . N N N N y N N N N N y v " N
. . y N \ . . y » » \ N \ » » \ N y . y y .
y . . 3 . y . . \ . " 3 \ . " 3 y y y .
N " " h " & 4 "
L] b LY Y N L] ‘ LY N i, Y N N i, Y N L] LY y L] .
. N y y \ . N y N . , y \ N . , y y . y N . .
L] N LY % N L] n LY & . [Y N & . [Y N Ll LY & Ll N,
y . 3 y . \ . 3 \ . 3 y y y .
S L R UUUUUL SO VUUUUR JUVUUEE VU UUUUE UU SUUUUN JUVUUEE UV UUUUE JUUT SUUUNN U N o
:.11111\:111111\ 111*\.\.1'I.'I.'l,.'l.'l.'l.'I.'I.'I.:..'I.'I.'I.'I.'I.'I:I.'I.'I.'I.'I.1\1'I.'I.'I.'I.'I.LI.'I.'I.'I.'I.'I.'l:'l.'l.'l.'I.'I.'I.‘H.'I.'I.'I.'I.'I.'I.:;I.'I.'I.'I.'I.'I.'l,.'l.'I.'I.'I.'I.'I.L'I.'I.'I.'I.'I.'I.'l:'l.'l.'l.'I.'I.'I.‘l..'l.'l.1111}11111\111111:11111 -.F
Yy 5 Yy w N 5 w N b
v . \ N \ v . \ y . \ N \ y . \ N \ v v
\ . y N \ \ . y , . . N \ , . . N \ N N
y hy o y . § ») 4 § ») 4 " "
i Y y N Y N y N)
\ . y N \ \ . y v \ N \ v \ N \ " y "
. . y N \ . . y » » \ N \ » » \ N N . y .
. 3 y . \ . 3 \ . 3 y
» : \ N N : N) : N \ } N : : \ } 3 .
N \ b " N " " \ " " y
LY N L] " LY & . [Y N & . [Y Ll
Y '-. , . Y » " " b '-. » " " b . "
Y ~. " . Y N " " b ~. N " " b 5 " "
\ \ " \ . . " b \ . . " b \ n n
. y . h y . h ’
N h " N " " \ " " \ hy N Y . hy N
5 (Y) : A 5 N . : \ \ N " : \ N . N — : N N
LY L] " LY & . [Y N & . [Y N Ll & . Ll
Y Y N Y N y "' Y y "'
\ N N » \ N \ . . y N \ . . y N . \ \ . . \
N N y . \ N N N N y y N N N y y . \ N N . \
W Y y i, Y & L'} ‘ L y & L'} ‘ L) [1 Y N L] [1
n % b . . % N " . . b N " . . y » n b . , » n
Y \ y Y " " \ " " \ y Y . y
"i."h."h."h."h."h."i."h."h."l11‘\\11\1":111\11\.1\.\111 "i."h."h."l"h.‘.."i."h."h."h."h."h,,"h."h."h."l"h."h.'\\"l"l"l\"h."i."h."h."i."h."h."i.'_i."h."h."h."h."i."h.‘.."i."h."h."l"h."h,,"h."h."h."l"h."h.":‘"h."h."i."h."h."i."h."h."i."h."h."l"i._"h.\"l"h."l"l":"l"h."h."l"h."h."h."l"l"l"l"l'\ II\\IH\\\I\“EI\\I\‘:

US 11,593,643 B2

Sheet 10 of 15

Feb. 28, 2023

U.S. Patent

M
3dVHS 40 JOSNZL NOING4LYN0 ¢!

‘M@ 'y Plg 7

01 "OIA

I 3dYHS 40 HOSNAL NOINHALYND Q¢
SIHOAM : ‘.

SEIENDY

19Np0.d Jaul

]
3dVHS 40 HOSNZL O} SY (3d¥HS4 10 "M 'HI 3dVHS =0 HOSNAL
NOINGILYND Q€ ¥ 4O L] 3dVHS 40 HOSNIL NOINHILYND

d3AV 11114 SN0INHda
v 20 LNalf0 g0 LNdNEFIV

T%wu

1 3dYHS 40 HOSNAL NOINYALYND a1

4‘/

Q)

US 11,593,643 B2

[] OIH
- YIAYT TYNI4 40 LNdLNO
- ._N
2
SO0 | 1397 HLNYL ANNOYD
40 BNIJOINT 1D

Feb. 28, 2023

™

4

U.S. Patent

US 11,593,643 B2

Sheet 12 of 15

Feb. 28, 2023

U.S. Patent

P) T
D0l S [T ly

N3108UL07 AJInd ¢ Jake

(IPUIS LIME, € 115

004 e 1)

7100d + 7AUD & 7 Jake]

61 OIH

SETE 704
JaNp0I4 Jau| [i

31980007 AJInS - JokeT

oUIAN G § ()
10IN|0AUOY) |7

¢ IPUIS UIME, €
j00d X2)

SENE

1anp0I4 JaU| [

IpaUIT pajaauLon Aing -6 Jake]

119 S[3ten G« G N

10 UoHnjoAoy [0

1000 + (AU : | JafeT

1Nd 10

= A

US 11,593,643 B2

Sheet 13 of 15

Feb. 28, 2023

U.S. Patent

o OTTEHIM =35 SSO1
SNOLLIOAN! HO4 HOV3 INO SH ‘ZH ‘IH 40 STL¥HNAPNOD . orel

0Bl LM 740 STAILYAIA TWILHYd NOINHILYND ¥ R o
- HLHM 740 IN3IOYED NOINHILYND b8 Lo 1 o e
H {1~ \
X' SNOLLTIOAN MIHM”” /mz 18 J LM 140 IN3UVEd vzl 9 dviN N N
YT IALYAMI YLV NG ATNG NOINHALYND 7.8 /f- . [HNWYHTEATIHBIHWIO S
8 P4 €8 40 STLYONINOD LHM — (68 ‘SM) ‘(rg T (89 'EM)] a,m NIC 8 40 STANYIM € :19NA0Yd H3aNNI 1D
140 INFOVHS NOINHILYNO Lol AE

G AL EM 40 SALYENINDD TH M 4 UH M 40 NIV =ls RINEE
140 INAIOVED NOINGAIVID 14848 NOINHALYD ¥.8 Sdd Wi 8
aeel” JdVHSFH= %w&

140 INAIAYED NOINGALYTITD 74 CxC € - m,%? { Aa1LV3d ANOD ¢x«¢

0861 3081
2010
2010 40 SIUVONINOD LY M SN FHNLY3H
140 INJIAYHD NOINHILYID ¥ob o7.2 ANOD GILYALLOY 7.
26817
90¢ |

AN A F A

20 10 40 S31vH TNOO LY M
T SNOILNTOAN! FHL HO+ —~ %zmmza V¥4l xC SV FHALYIS ANOD ¥.b
NG

LON ROV JAILLYAIEEA WILEVd ANO A

¢ 19 40 STLYHNPNOD 'L'H M

140 INSHVED NOINGALVID L bl _

S LAY 0 STLVONMNDD THM \»
L1

140 INAAY D NOINGFLYND «CxlxC rOEL

20e 1 00¢}

U.S. Patent Feb. 28, 2023 Sheet 14 of 15 US 11,593,643 B2

1400

\

1402

INPUT:
1) NEURAL NETWORK
ARCHITECTURE

2) LEARNING RATE

3) TRAINING PATTERNS/DATA
4)

O)

MAXIMUM # OF EPOCHS

RACY CRITERIA

1) MODIFY NEURAL NETWORK

1494 [TINITIALIZE VARIABLE PARAMS ARCHITECTURE (# LAYERS /
INTANTIATE NEURAL NETWORK KERNELS / OPERATIONS)
- 7) SEEK MORE TRAINING DATA

VAX O
| ITERATION? VES 1418
NO

FOR EACH TRAINING PATTERN:
TRAIN:

1) FORWARD PASS,
) COMPUTE ERROR,

3) BACKPROPAGATE,
) UPDATE VARIABLE

TEST ON EST DATA
1412
ERROR =
THRESHOLD?
1414 '
OUTPUT: NETWORK = ACCURACY
1416
FRROR <
THRESHOLD?

1420

1408

PARAMS

FIG. 14

US 11,593,643 B2

Sheet 15 of 15

Feb. 28, 2023

U.S. Patent

9T "OIA

'NIN] IdVYHS
10 HOSNIL QINTVA-TY3Y Q8

I 3dYHS
40 HOSN4L NOINHALYNO Q¢

NOING4LVND dAXAN

Q9T IA

7'N] 3dVHS
10 HOSNIL QINTYATYIY Q¢

IN] 3dVHS
40 40SN4L NOINH4LYND d}

NOINE4LYNO dN

Vel “OIH

7] 3dVHS 40
HOSNIL AINTYA- V3 Q)

[} 3dVHS 40
dOSN4L NOING4LvNO Al

NOINg4.1VNO a1}

US 11,593,643 B2

1

COMPUTATIONALLY-EFFICIENT
QUATERNION-BASED
MACHINE-LEARNING SYSTEM

RELATED APPLICATIONS

This Application 1s a U.S. National Stage Application
under 35 U.S.C. 371 from International Application No.

PCT/US2018/033439, filed May 31, 2018, published as WO
2018/222900, which claims the benefit of U.S. Provisional
Application No. 62/513,390 filed May 31, 2017/, the disclo-
sures of which are incorporated by reference into the present

Specification. This Application 1s related to International
Patent Applications filed on May 31, 2018, GRADIENT-

BASED TRAINING ENGINE FOR QUATERNION-
BASED MACHINE-LEARNING SYSTEMS, PCT/
US2018/035431, published as WO 2018/222896 and
TENSOR-BASED COMPUTING SYSTEM FOR
QUATERNION OPERATIONS, PCT/US2018/035446,
published as WO 2018/222904, both of which are filed

commensurately herewith.

TECHNICAL FIELD

Embodiments described herein generally relate to
improvements i1n information-processing performance for
machine-learning systems having numerous practical appli-
cations, such as 1mage processing systems, complex data
centers, seli-driving vehicles, security systems, medical
treatment systems, transaction systems, and the like. Certain

embodiments relate particularly to artificial neural networks
(ANNSs).

BACKGROUND

Machine learning, deep learning 1n particular, 1s receiving,
more attention by researchers and system developers due its
successiul application to automated perception, such as
machine vision, speech recognition, motion understanding,
and automated control (e.g., autonomous motor vehicles,
drones, and robots). Modern multi-layered neural networks
have become the framework of choice for deep learning.
Conventional neural networks are mostly based on the
computational operations of real-number calculus.

Quaternion algebras, based on a multi-dimensional com-
plex number representation, has drawn attention across
digital signal processing applications (motion-tracking,
image processing, and control) due to the significant reduc-
tion in parameters and in operations and more accurate
physics representation (singularity-iree rotations) compared
to one-dimensional real or two-dimensional complex alge-
bras. Because QT operations necessitate reconciliation
across geometry, calculus, interpolation, and algebra, to
date, quaternions have not been well adapted to deep multi-
layered neural networks. There have been attempts to incor-
porate quaternions 1n machine-learning applications to make
use of their desirable properties. However, those approaches
either perform coordinate-wise real-valued gradient based
learning, or enfirely forgo traimng of hidden layers. Con-
ventional coordinate-wise real-number calculus applied to
quaternions fails to satisty standard product or chain rules of
calculus for quaternions, and tends to dissociate the relation
between the non-scalar components of the quaternion. Con-
sequently, pseudo-gradients are generated 1n place of quater-
nion differentials for encoding of error 1n the backpropaga-
tion algorithm.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components in different
views. Like numerals having different letter suilixes may
represent diflerent instances of similar components. Some
embodiments are illustrated by way of example, and not
limitation, in the figures of the accompanying drawings.

FIG. 1 1s a system block diagram illustrating a distributed
control system for an autonomous vehicle as an 1llustrative
example of one of the applications 1n which aspects of the
present subject matter may be mmplemented according to
various embodiments.

FIG. 2 1s a block diagram 1llustrating a computer system
in the example form of a general-purpose machine. In
certain embodiments, programming of the computer system
200 according to one or more particular algorithms produces
a special-purpose machine upon execution of that program-
ming, to form a machine-learning engine such as an artificial
neural network, among other subsystems.

FIG. 3 1s a diagram illustrating an exemplary hardware
and software architecture of a computing device such as the
one depicted 1n FIG. 2, in which various interfaces between
hardware components and software components are shown.

FIG. 4 1s a block diagram 1llustrating processing devices
according to some embodiments.

FIG. 5 1s a block diagram 1illustrating example compo-
nents of a CPU according to various embodiments.

FIG. 6 1s a high-level diagram illustrating an example
structure of quaternion deep neural network architecture
with which aspects of the embodiments may be utilized.

FIG. 7 1s a block diagram illustrating an example of a
structure for a hidden layer, and types of sublayers according
to various embodiments.

FIG. 8 1s a diagram illustrating a quaternion (Q1) con-
volution sublayer as an illustrative example of a convolution
engine.

FIG. 9 1s a diagram illustrating an example pooling
operation 1n 2D space.

FIG. 10 1s a diagram 1illustrating a QT inner product
sublayer, as an illustrative example of a QT 1nner product
engine.

FIG. 11 1s a diagram illustrating an example scalar-valued
QT loss function engine.

FIG. 12 15 a diagram 1llustrating an example embodiment
for 1mplementing a quaternion deep neural network
(QTDNN) for classitying an image ito object classes.

FIG. 13 1s a diagram 1llustrating forward pass and back-
propagation operations 1n an example 2-layer deep quater-
nion neural network.

FIG. 14 1s a high-level tlow diagram illustrating process
for producing and training a QT deep neural network accord-
ing to an example.

FIGS. 15A-15C 1llustrate tensor representations of quater-
nion values of wvarious dimensionality as illustrative
examples.

DETAILED DESCRIPTION

Aspects of the embodiments are directed to automated
machine-learning systems, components thercof, and meth-
ods of their operation. In the present context, a machine-
learning system 1s a device, or tangible component of a
device or greater computer system, that 1s constructed,
programmed, or otherwise configured, to execute prediction
and machine-learning-related operations based on 1nput
data. Examples of decision systems include, without limi-

US 11,593,643 B2

3

tation, association rule systems, artificial neural networks,
deep neural networks, clustering systems, support vector
machines, classification systems, and the like.

Input data may be situational data representing one or
more states ol a system, one or more occurrences of events,
sensor output, 1magery, telemetry signaling, one or more
stochastic variables, or the like. In some embodiments, the
situational data may include sensed data monitored by a
sensor system, such as in a self-driving vehicle. In other
embodiments, the sensed data may include monitored data
from a data-processing system such as a data center, 1ntru-
sion detection system, or the like.

Some aspects of the embodiments relate to improved
neural network operation and training by adapting each
neuron to store input, output, weighting, bias, and ground
truth, values as n-dimensional quaternions, and to perform
activation and related operations (e.g., convolution, rectified
linear unit (ReLLU) pooling, and mner product), as well as
machine-learning operations (e.g., gradient-based training),
using quaternion-specific computations. Specific embodi-
ments described herein include computationally and repre-
sentationally etlicient structures and methods to implement
computation of QT gradients and implementation 1n back-
propagation for training QQTDNNs.

Quaternions are a four-tuple complex representation of
data with elegant properties such as being singularity ifree
and representationally efficient, making them attractive for
digital signal processing (DSP). More formally, a quaternion
q may be defined as g=qg,1+q, 1+q, j+q, k, with quaternion
basis {1.i,j,k}. The coefficient q,, associated with basis
clement 1 1s the scalar component of the quaternion, whereas
the remaining coeflicients comprise the 1imaginary compo-
nents of the quaternion. Computationally, a quaternion can
be represented as a 4 tuple, with three of them 1maginary:
QT: A+1.B+1.C+k.D, where the coeflicients A, B, C, and D
are real numbers. In various example implementations, the
coellicients may be single-precision or double-precision real
numbers. For the purposes of machine learning, lower
precision may be adequate, providing computational efli-
ciency while still providing practical accuracy. Also, 1n some
embodiments, the coeflicients may be integers, fixed or
floating-point decimals, or complex numbers.

Notably, quaternion calculus according to aspects of the
embodiments 1s not merely the application of co-ordinate-
wise real number calculus along the four dimensions. Con-
sistent quaternion (QT) computations, as will be detailed
below, enable training of models that exploit richer geomet-
ric properties of quaternions such as invariance to rotation in
space as well as color domain. QT computations with
training further provides desirable properties such as fast
convergence, better generalization capacity of the trained
model, and data efliciency.

These properties facilitate training of digital signal pro-
cessing systems (such as image recognition, speech-recog-
nition, and many others) with better accuracy, computational
elliciency, better generalization capability and desirable
invariances (such as rotational invariance). Aspects of the
embodiments may be applied 1n myriad implementations,
including perception, mapping, planning, and end-to-end
policy learning 1n fields such as autonomous vehicle control,
among others.

FIG. 1 15 a system block diagram 1llustrating a distributed
control system 110 for an autonomous vehicle as an 1llus-
trative example of one of the applications in which aspects
of the present subject matter may be implemented according
to various embodiments. Notably, distributed control system
110 makes use of quaternion-based deep neural network

10

15

20

25

30

35

40

45

50

55

60

65

4

(QTDNN) technology. Aspects of the embodiments may
apply true, consistent, QT computation techniques.

As 1llustrated, system 110 1s composed of a set of sub-
systems, components, circuits, modules, or engines, which
for the sake of brevity and consistency are termed engines,
although 1t will be understood that these terms may be used
interchangeably. Engines may be realized 1in hardware, or 1n
hardware controlled by software or firmware. As such,
engines are tangible entities specially-purposed for perform-
ing specified operations and may be configured or arranged
in a certain manner.

In an example, circuits may be arranged (e.g., internally
or with respect to external entities such as other circuits) 1n
a specified manner as an engine. In an example, the whole
or part of one or more hardware processors may be config-
ured by firmware or software (e.g., instructions, an applica-
tion portion, or an application) as an engine that operates to
perform specified operations. In an example, the software
may reside on a machine-readable medium. In an example,
the software, when executed by the underlying hardware of
the engine, causes the hardware to perform the specified
operations. Accordingly, an engine 1s physically constructed,
or specifically configured (e.g., hardwired), or temporarily
(e.g., transitorily) configured (e.g., programmed) to operate
in a specified manner or to perform part or all of any
operation described herein.

Considering examples in which engines are temporarily
configured, each of the engines need not be instantiated at
any one moment in time. For example, where the engines
comprise a general-purpose hardware processor core con-
figured using soitware; the general-purpose hardware pro-
cessor core may be configured as respective different
engines at different times. Software may accordingly con-
figure a hardware processor core, for example, to constitute
a particular engine at one nstance of time and to constitute
a diflerent engine at a different instance of time.

System 110 1s distributed among autonomous-driving car
112 and cloud service 114. Autonomous-driving car 112
includes an array of various types of sensors 116 such as
cameras, global positioning system (GPS), radar and light
detection and ranging (LiDAR) sensors. Data from these
sensors are collected by one or more data collectors 118
(only some of the communicative connections are shown for
the sake of clanty). Data collectors 118 may further obtain
relevant data from other vehicles 120 (e.g., that a nearby car
going to break or change lanes), as well as external contex-
tual data 122 via a cloud application such as weather,
congestion, construction zones, etc. Collected data 120, 122
1s passed to compute engines 124, 126. Compute engine 124
1s a standard compute engine that performs such basic
operations as time synchronization of the various input
signals, preprocessing or fusing of the sensor data, etc.).
Compute engine 126 1s an artificial-intelligence (Al) com-
pute engine performs machine learning and control opera-
tions based on the sensor data and external data to interpret
the car’s environment and determine the actions to take,
such as control of the throttle, braking, steering, signaling,
etc.

Al compute engine 126 uses a QTDNN to perform
perceptual tasks such as lane detection, pedestrian detection
and recognition, drivable path segmentation, general
obstacle and object detection and recognition with 2D or 3D
bounding boxes and polyhedrals, scene recognition, tracking
and trajectory estimation, for example. The QTDNN opera-
tions performed by Al compute engine 126 include machine
learning operations that may be achieved via application of
backpropagation techniques described 1n detail below. For

US 11,593,643 B2

S

example, the 1mage data coming from the car’s cameras are
processed by a quaternion-based deep convolutional neural
network implemented by Al compute engine 126 to detect
cars, trucks, pedestrians, traflic lights, and motorbikes, etc.,
along with their bounding boxes.

Standard compute engine 124 and Al compute engine 126
may exchange data, such as the passing of preprocessed or
aggregated sensor data from standard compute engine 124 to
Al compute engine 126, and the passing of object detection
output data from Al compute engine 126 to standard com-
pute engine 124 for storage, output aggregation, statistical
data collection, and the like. Outputs from standard compute
engine 124 and Al compute engine 126 are passed to
actuation and control engine 128 to generate output signal-
ing to the electromechanical systems ol autonomous-driving
car 112 1n order to navigate and avoid collision accordingly.

All or a subset of the data collected by one or more of data
collectors 118, standard compute engine 124, and Al com-
pute engine 126 of autonomous-driving car 112, may be
passed to cloud 114 for storage or further analysis. Data
ingestion engine 130 1s configured to receive various data
from autonomous-driving car 112 (or from multiple autono-

mous-driving cars), such as data from data collectors 118,
standard compute engine 124, and Al compute engine 126.

Cloud Al Compute Engine 132 resides 1n cloud 114, and
operates to create intelligent metadata that can be used for
indexing, search, and retrieval. For example, the camera data
(1.e. 1mages, videos) may be processed by cloud AI Compute
132 engine to detect and recognize relevant objects (e.g.
cars, trucks, pedestrians, bikes, road signs, traflic lights,
trees, etc.). These determinations may be associated with
other data, such as position, time, weather, environmental
condition, etc., by standard compute engine 134, and stored
as indexed data 136, which may include the intelligent
metadata.

Cloud compute engine 132 1s configured to implement
QTDNNSs which are trained via QT backpropagation tech-
niques described below.

Notably, the in-vehicle QTDNN algorithms carried out by
Al compute engine 126 in autonomous-driving car 112 may
be substantially different from those carried out by Al
compute engine 132 of cloud 114. For instance, the algo-
rithms of cloud 114 may be more computationally intensive
(e.g., more neural network layers, more frequent training,
ctc.) by virtue of the availability of greater computing power
on the servers that make up cloud 114. In addition, these
differences may also be attributable to the need for real-time
or near-real-time computation in the moving autonomous-
driving car 112.

In some embodiments, Al Compute Engine 126 and cloud
Al compute engine 132 each implements a QTDNN that 1s
trained using quaternion-based backpropagation methodol-
ogy detailed below. In some examples, the QTDNN training
1s performed 1n cloud 114 by Al training engine 138. In some
embodiments, Al training engine 138 uses one or more
training Q' T-DNN algorithms based on labeled data that 1s in
turn based on the ground truth, with the selection and
labeling of the training data generally performed manually
or semi-manually. Traiming data preparation engine 140
takes a subset of raw data 142 collected from the sensors and
cameras in autonomous-driving car 112 and operates to
obtain labels for the items of data (e.g., by humans) with
various tags such as objects, scenes, segmentations etc. In a
related embodiment, training data preparation engine 140
may take data immdexed automatically by a labeling algo-
rithm, and verified and curated by humans.

10

15

20

25

30

35

40

45

50

55

60

65

6

The training data produced by training data preparation
engine 140 1s used by Al training engine 138 to train Al
compute engines 126 and 132. In general training involves
having each QTDNN process successive items of training
data, and for each item, comparing the output produced by
the respective QTDNN against the label associated with the
item of training data. The diflerence between the label value
and the processing result 1s stored as part of a loss function
(which may also be referred to as a cost function). A
backpropagation operation 1s performed by Al traiming
engine 138 to adjust parameters of each layer of the QTDNN
to reduce the loss function.

Related aspects of the embodiments facilitate eflicient
implementation of the QT operations detailed below. Com-
putations of gradients and backpropagation operations using
the QT operations provide fast execution of the QTDNNSs
and updating of their parameters during training, as well as
hyper-parameter tuning. In turn, the ability to train fully-
QTDNNs faster, as facilitated by the techniques detailed 1n
the present disclosure, allows more training experiments to
be performed on large datasets with a greater number of
model parameters, thereby enabling the development of
more accurate models with better generalization and 1nvari-
ance properties. Moreover, the faster execution of the
learned models according to various aspects of the embodi-
ments enables these models to be deployed 1n time-critical
or mandatory-real-time applications such as autonomous
driving.

It will be understood that a suitable variety of implemen-
tations may be realized 1n which a machine-learning system
1s provided as one or more dedicated units, such as one or
more application-specific integrated circuits (ASICs), one or
more lield-programmable gate arrays (FPGAs), or the like.
Other implementations may include the configuration of a
computing plattorm through the execution of program
instructions. Notably, the computing platform may be one
physical machine, or may be distributed among multiple
physical machines, such as by role or function, or by process
thread 1n the case of a cloud computing distributed model.
In various embodiments, certain operations may run in
virtual machines that in turn are executed on one or more
physical machines. It will be understood by persons of skill
in the art that features of the embodiments may be realized
by a variety of different suitable machine implementations.

FIG. 2 1s a block diagram 1llustrating a computer system
in the example form of a general-purpose machine. In
certain embodiments, programming of the computer system
200 according to one or more particular algorithms produces
a special-purpose machine upon execution of that program-
ming, to form a machine-learning engine such as an artificial
neural network, among other subsystems. In a networked
deployment, the computer system may operate 1n the capac-
ity of either a server or a client machine 1n server-client
network environments, or 1t may act as a peer machine in
peer-to-peer (or distributed) network environments.

Example computer system 200 includes at least one
processor 202 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU) or both, processor cores,
compute nodes, etc.), a main memory 204 and a static
memory 206, which communicate with each other via a link
208 (e.g., bus). The computer system 200 may further
include a video display unit 210, an alphanumeric nput
device 212 (e.g., a keyboard), and a user interface (UI)
navigation device 214 (e.g., a mouse). In one embodiment,
the video display umit 210, mput device 212 and UI navi-
gation device 214 are incorporated mnto a touch screen
display. The computer system 200 may additionally include

US 11,593,643 B2

7

a storage device 216 (e.g., a drive unit), a signal generation
device 218 (e.g., a speaker), a network interface device
(NID) 220, and one or more sensors (not shown), such as a
global positioning system (GPS) sensor, compass, acceler-
ometer, or other sensor.

The storage device 216 includes a machine-readable
medium 222 on which 1s stored one or more sets of data
structures and instructions 224 (e.g., software) embodying
or utilized by any one or more of the methodologies or
functions described herein. The instructions 224 may also
reside, completely or at least partially, within the main
memory 204, static memory 206, and/or within the proces-
sor 202 during execution thereof by the computer system
200, with the main memory 204, static memory 206, and the
processor 202 also constituting machine-readable media.

While the machine-readable medium 222 1s 1llustrated in
an example embodiment to be a single medium, the term
“machine-readable medium”™ may include a single medium
or multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more 1nstructions 224. The term “machine-readable
medium” shall also be taken to include any tangible medium
that 1s capable of storing, encoding or carrying instructions
for execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
disclosure or that 1s capable of storing, encoding or carrying
data structures utilized by or associated with such instruc-
tions. The term “machine-readable medium” shall accord-
ingly be taken to include, but not be limited to, solid-state
memories, and optical and magnetic media. Specific
examples ol machine-readable media include non-volatile
memory, including but not limited to, by way of example,
semiconductor memory devices (e.g., electrically program-
mable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM)) and flash
memory devices; magnetic disks such as mternal hard disks
and removable disks; magneto-optical disks; and CD-ROM
and DVD-ROM disks.

NID 220 according to various embodiments may take any
suitable form factor. In one such embodiment, NID 220 1s 1n
the form of a network interface card (NIC) that interfaces
with processor 202 via link 208. In one example, link 208
includes a PCI Express (PCle) bus, including a slot to
which the NIC form-factor may removably engage. In
another embodiment, NID 220 1s a network interface circuit
laid out on a motherboard together with local link circuitry,
processor interface circuitry, other input/output circuitry,
memory circuitry, storage device and peripheral controller
circuitry, and the like. In another embodiment, NID 220 1s
a peripheral that interfaces with link 208 via a peripheral
input/output port such as a universal serial bus (USB) port.
NID 220 transmits and receives data over transmission
medium 226, which may be wired or wireless (e.g., radio
frequency, inira-red or visible light spectra, etc.), fiber
optics, or the like.

FIG. 3 1s a diagram 1illustrating an exemplary hardware
and software architecture of a computing device such as the
one depicted 1n FIG. 2, in which various interfaces between
hardware components and software components are shown.
As 1mdicated by HW, hardware components are represented
below the divider line, whereas software components
denoted by SW reside above the divider line. On the
hardware side, processing devices 302 (which may include
one or more microprocessors, digital signal processors, etc.,
cach having one or more processor cores, are interfaced with
memory management device 304 and system interconnect
306. Memory management device 304 provides mappings

10

15

20

25

30

35

40

45

50

55

60

65

8

between virtual memory used by processes being executed,
and the physical memory. Memory management device 304
may be an integral part of a central processing unit which
also 1ncludes the processing devices 302.

Interconnect 306 i1ncludes a backplane such as memory,
data, and control lines, as well as the interface with mput/
output devices, e.g., PCI, USB, etc. Memory 308 (e.g.,
dynamic random access memory—DRAM) and non-volatile

memory 309 such as flash memory (e.g., electrically-eras-
able read-only memory— EEPROM, NAND Flash, NOR
Flash, etc.) are interfaced with memory management device
304 and interconnect 306 via memory controller 310. This
architecture may support direct memory access (DMA) by
peripherals 1n some embodiments. I/O devices, including
video and audio adapters, non-volatile storage, external
peripheral links such as USB, Bluetooth, etc., as well as
network 1nterface devices such as those communicating via
Wi-F1 or LTE-family interfaces, are collectively represented
as /O devices and networking 312, which interface with
interconnect 306 via corresponding I/O controllers 314.

On the software side, a pre-operating system (pre-OS)
environment 316, which 1s executed at initial system start-up
and 1s responsible for mitiating the boot-up of the operating
system. One traditional example of pre-OS environment 316
1s a system basic input/output system (BIOS). In present-day
systems, a unified extensible firmware interface (UEFI) 1s
implemented. Pre-OS environment 316, 1s responsible for
initiating the launching of the operating system, but also
provides an execution environment for embedded applica-
tions according to certain aspects of the invention.

Operating system (OS) 318 provides a kernel that controls
the hardware devices, manages memory access for programs
in memory, coordinates tasks and facilitates multi-tasking,
organizes data to be stored, assigns memory space and other
resources, loads program binary code into memory, mitiates
execution of the application program which then interacts
with the user and with hardware devices, and detects and
responds to various defined interrupts. Also, operating sys-
tem 318 provides device drivers, and a variety ol common
services such as those that facilitate interfacing with periph-
erals and networking, that provide abstraction for applica-
tion programs so that the applications do not need to be
responsible for handling the details of such common opera-
tions. Operating system 318 additionally provides a graphi-
cal user iterface (GUI) that facilitates interaction with the
user via peripheral devices such as a monitor, keyboard,
mouse, microphone, video camera, touchscreen, and the
like.

Runtime system 320 implements portions of an execution
model, including such operations as putting parameters onto
the stack before a function call, the behavior of disk mnput/
output (I/0), and parallel execution-related behaviors. Run-
time system 320 may also perform support services such as
type checking, debugging, or code generation and optimi-
zation.

Libraries 322 include collections of program functions
that provide further abstraction for application programs.
These include shared libranies, dynamic linked libraries
(DLLs), for example. Libraries 322 may be integral to the
operating system 318, runtime system 320, or may be
added-on features, or even remotely-hosted. Libraries 322
define an application program interface (API) through which
a variety of function calls may be made by application
programs 324 to invoke the services provided by the oper-
ating system 318. Application programs 324 are those pro-
grams that perform useful tasks for users, beyond the tasks

US 11,593,643 B2

9

performed by lower-level system programs that coordinate
the basis operability of the computing device itsell.

FIG. 4 1s a block diagram 1llustrating processing devices
302 according to some embodiments. In one embodiment,
two or more of processing devices 302 depicted are formed
on a common semiconductor substrate. CPU 410 may con-
tain one or more processing cores 412, each of which has
one or more arithmetic logic units (ALU), instruction fetch
unit, instruction decode unit, control unit, registers, data
stack pointer, program counter, and other essential compo-
nents according to the particular architecture of the proces-
sor. As an illustrative example, CPU 410 may be a x86-type
ol processor. Processing devices 302 may also include a
graphics processing unit (GPU) 414. In these embodiments,
GPU 414 may be a specialized co-processor that offloads
certain computationally-intensive operations, particularly
those associated with graphics rendering, from CPU 410.
Notably, CPU 410 and GPU 414 generally work collabora-
tively, sharing access to memory resources, 1/0O channels,
etc.

Processing devices 302 may also include caretaker pro-
cessor 416 1 some embodiments. Caretaker processor 416
generally does not participate in the processing work to
carry out soltware code as CPU 410 and GPU 414 do. In
some embodiments, caretaker processor 416 does not share
memory space with CPU 410 and GPU 414, and 1s therefore
not arranged to execute operating system or application
programs. Instead, caretaker processor 416 may execute
dedicated firmware that supports the technical workings of
CPU 410, GPU 414, and other components of the computer
system. In some embodiments, caretaker processor 1s 1mple-
mented as a microcontroller device, which may be physi-
cally present on the same 1ntegrated circuit die as CPU 410,
or may be present on a distinct integrated circuit die.
Caretaker processor 416 may also include a dedicated set of
[/O facilities to enable 1t to communicate with external
entities. In one type of embodiment, caretaker processor 416
1s 1mplemented using a manageability engine (ME) or
platform security processor (PSP). Input/output (I/0) con-
troller 418 coordinates information tlow between the various
processing devices 410, 414, 416, as well as with external
circuitry, such as a system interconnect.

FIG. 5 1s a block diagram illustrating example compo-
nents of CPU 410 according to various embodiments. As
depicted, CPU 410 includes one or more cores 502, cache
504, and CPU controller 506, which coordinates interopera-
tion and tasking of the core(s) 502, as well as providing an
interface to facilitate data flow between the various internal
components of CPU 410, and with external components
such as a memory bus or system interconnect. In one
embodiment, all of the example components of CPU 410 are
formed on a common semiconductor substrate.

CPU 410 includes non-volatile memory 508 (e.g., flash,
EEPROM, etc.) for storing certain portions of foundational
code, such as an mitialization engine, and microcode. Also,
CPU 410 may be interfaced with an external (e.g., formed on
a separate IC) non-volatile memory device 510 that stores
foundational code that 1s launched by the imtialization
engine, such as system BIOS or UEFI code.

FIG. 6 1s a high-level diagram illustrating an example
structure of deep neural network architecture with which
aspects of the embodiments may be utilized. Deep neural
network 600 1s a QTDNN containing input layer 602, output
layer 612, and a plurality of hidden layers that include QT
hidden layer 1 indicated at 604, QT hidden layer 2 indicated
at 606 and, optionally, additional QT hidden layers (up to L)
as mdicated at 608. Input layer 602 accepts an input signal

10

15

20

25

30

35

40

45

50

55

60

65

10

represented using quaternion values. An example of an input
signal 1s 1mage data (e.g., a bitmap with red/green/blue
(RGB) channels for each pixel). Input layer 602 may process
the input signal by applying weights to portions of the input
signal, for instance. The operations performed by input layer
602 may be QT operations (e.g., QT addition and non-
commutative QT multiplication).

Hidden layers 604-608 may vary in structure from one
another. In general, each hidden layer may include a group
of sublayers to perform partition and selection operations, as
well as QT operations, such as QT convolution, QT inner
product, QT non-linear activations, and QT sampling opera-
tions.

To perform classification, deep neural network 600 facili-
tates propagation of forward-propagating signal 622 through
the layers, from input layer 602, to output layer 612,
performing QT operations by the various layers and sublay-
ers. Deep neural network 600 1s trained by a backpropaga-
tion algorithm that proceeds in backward-propagating direc-
tion 632, performing QT gradient operations by the various
layers and sublayers.

FIG. 7 1s a block diagram illustrating an example of a
structure for a hidden layer such as lidden layer 604-608,
and types of sublayers according to various embodiments.
As depicted, modular hidden layer 700 receives input 702,
which may be an 1image or output signal from a prior layer,
1s propagated in forward direction 730 as shown by the
downward-facing arrows, though the sublayers. The for-
ward-propagating signal may be a set of feature maps with
varying size and dimensionality resulting from processing
by the various sublayers.

In some examples, as illustrated, modular hidden layer
700 includes partition and selection operations (PSOP)
sublayers 704 A, 7048, 704C, each of which operates to steer
the forward-propagating signal to a selected computation
engine of the next sublayer. For instance, as an mput to QT
general matrix multiplication (QT-GEMM) sublayer 706,
the forward-propagating signal may be steered to QT con-
volution engine 712, QT inner product engine 714, or to a
combination of these engines, by PSOP sublayer 704A.
Similarly, PSOP sublayer 704B may steer the forward-
propagating signal to a non-linear activation engine from
among those in Q1 non-linear activations sublayer 708,
namely, 1dentity (e.g., pass-through) block 716, QT piece-
wise/rectified linear units 718, QT sigmoid engine 720, or
QT hyperbolic tangent engine 722. PSOP sublayer 704C
may likewise steer the forward-propagating signal to QT
sampling sublayer 710, and select one or more of QT max
pooling engine 724, QT average pooling engine 726, or
identity (e.g., pass-through) block 728.

In a related aspect, each PSOP sublayer 704 accepts a set
of values, either direct input signals or from the output of a
previous operation, and prepares 1t for the next operation.
The preparation involves partitioning of the data and selec-
tion the next set of operations. This partition and selection
does not need to be mutually exclusive and can be an empty
selection as well. For example, 1f the images are to only go
through QT convolution engine 712 1n the first hidden layer
and not through QT inner product engine 714, then PSOP
704 A selects the whole data as a first partition to go through
QT convolution engine 712, and empty data as a second
partition to go through the QT inner product engine 714.

In a related example, PSOP 704 A partitions or duplicates
the data into portions to be directed to different kernels of a
given QT computation operation. For instance, an input
signal may be duplicated to different kernels of QT convo-
lution engine, with the different kernels having differing

US 11,593,643 B2

11

variable parameter values, or differing filter content. In a
related example, an mput signal may be split mnto a first
portion and a second portion, and the different portions
directed to the different kernels for QT convolution process-
ing.

In another related embodiment, each PSOP sublayer may
be dynamically adjusted to vary the data-partitioning opera-
tions, the QT computation engine selection operations, or
both. Adjustment may be made by a QTDNN traiming
engine, such as Al training engine 138 (FIG. 1) carrying out
a machine-learning process such as the process described
below with reference to FIG. 14, for example.

The various hidden layers 604-608 may thus be composed
ol a convolution engine 712, an mner product engine 714, a
non-linear activation operational block, or bypass, of
sublayer 708, and a sampling operational block, or bypass,
of sublayer 710. Each engine or operational block within a
given hidden layer may have a same, or a diflerent, size or
structure from a similar type of engine of a diflerent hidden
layer. For example, QT convolution engine 712 may have a
layer-specific number of kemels (e.g., convolution matri-
ces), dimensionality, weighting, bias, or other variable
parameters.

In an example, QT-GEMM sublayer 706 selectively
applies a linear operation on the whole or a subset of the
input. It may include a set of convolution operations and
inner product operations in the quaternion domain. Notably,
the QT convolution operations performed by QT convolu-
tion engine 712 may ensure spatial translational 1invariance.
The output from QT-GEMM sublayer 706 proceeds through
PSOP sublayer 704B to prepare for the next set of opera-
tions.

In a related example, the QT mner product 1s utilized to
build a QT operation for generalized matrix multiplication
by using the fact that each output entry in the result of a
matrix multiplication 1s a result of an mner product between
a row vector and a column vector. These operations are
exemplified 1 the code portions provided in Appendix 1,
namely, 1n routines qtmatmul, gtvec2Zmatmult, gtdotprod,
and the base QT operations of addition and multiplication.

QT non-linear activations sublayer 708 allows the net-
work to approximate potentially any function or transior-
mation on the input. As depicted, there are a variety of
choices of non-linear activations according to various
embodiments, and QT non-linear activations sublayer 708
may apply one or more of them and their composition.

In an embodiment, QT-RelLU 718 performs the operation
of a rectified linear unit, particularized to quaternions. In
general, for a given quaternion, the output of QT-ReLLU 718
1s the the quaternion value 1tself, so long as each of the real
and 1maginary units i1s a positive real number; everywhere
else, the QT-ReLLU 718 returns a zero quaternion value. In
related embodiments, sigmoid and hyperbolic tangent func-
tions directly applied to the input quaternion and not via the
coordinate-wise operation. The output from QT non-linear
activations sublayer 708 further passes through PSOP
sublayer 704C to prepare for the next set of operations 1n QT
sampling sublayer 710 depending on the type of sampling
procedure.

QTDNNs according to aspects of the embodiments pro-
vide various levels of abstraction at various level of granu-
larity and the QT sampling sublayer 710 is specifically
adapted to enable that. In various examples, the sampling
involves pooling operations to be performed by QT max
pooling engine 724, QT average pooling engine 726, or a
combination thereot, in a given window around each point
in the mput.

10

15

20

25

30

35

40

45

50

55

60

65

12

As these examples demonstrate, a Q1 hidden layer pri-
marily executes a set of linear QT operations, followed by a
set of non-linear QT operations, followed by QT sampling
operations, all performed with consistent quaternion alge-
bra, on specifically-selected partitions of quaternion-valued
inputs to each sublayer.

According to embodiments, replicating the structure of
the QT hidden layer depicted 1n the example of FIG. 7, with
architectural variation in the number of layers, input and
output format, and the choice of PSOP routing at each
sublayer, facilitates construction and implementation of a
variety of QTDNNs.

Referring again to the example deep neural network
architecture depicted 1n FIG. 6, the output of hidden layer
608 may be optionally propagated to optimization layer 610.
Examples of optimization engines include a normalization
engine, an equalization engine, or the like. A normalization
engine may expand the dynamic range of the contrast, for
example. An example equalization engine may operate to
adjust the 1mage to contain an equal or comparable quantity
of pixels at each intensity level. Optimization layer 610
propagates the signal to output layer 612, which may be a
tully-connected layer, for example. The ultimate output, or
QTDNN result, may be 1n various output formats (e.g.,
quaternion-valued or real-valued) depending on the appli-
cation. Such formats may include, for example, a set of
object or scene class labels and respective confidence score,
bounding boxes of the objects detected, semantic labels for
cach pixel 1n the 1mage, and a set of 1mages synthesized by
this network.

In tramning the deep neural network architecture, loss
function 614, (which may also be referred to as a cost
function), and represents the error between the output and
the ground truth, 1s used to compute the descent gradient
through the layers to minimize the loss function. Consistent
quaternion computations to produce QT partial derivatives
of loss function 614 with respect to the variable parameters
of the various layers are carried out accordingly at the QT
convolution and QT mner product sublayers 706, QT non-
linear activation sublayers 708, and QT sampling sublayers
710.

Training may be performed periodically or occasionally.
In general, training 1nvolves providing a QT training pattern
as input 702, and propagating the training patter through the
QT deep neural network in forward direction 730, and
backward direction 732, along with operations to tune
various parameters of the sublayers. According to aspects of
the embodiments, the training operations implement QT
computations that preserve and utilize the properties of
quaternion values.

In each training epoch, for each traiming pattern, forward
path 730 1s traversed sublayer-by-sublayer, starting from
iput 702 and advancing to the output from QT sampling
sublayer 710. There may be one or more additional modular
hidden layers 700, through which forward path 730 would
extend, for example, as part of forward path 622 to produce
output 612 and loss function 614. Subsequently, loss func-
tion 614 1s propagated backward through the network 600,
layer by layer, propagating the error and adjusting weights.
In modular hidden layer 700, the back propagation 1s shown
as backward tlow direction 732, which may be considered as
part of backward flow direction 632.

In modular lhidden layer 700, as part of the backpropa-
gation operation, PSOP sublayers 704 A, 7048, 704C oper-
ate to re-assign the respective QT partial derivatives. For
example, 11 an 1nput variable x, 1s mapped to x,;, by PSOP
layer 704C, then the QT partial derivative of any function

US 11,593,643 B2

13

with respect to X, 1s equal to the QT partial derivative of that
function with respect to x_,. If an input 1s discarded by PSOP
704C, the QT partial dertvative of any function with respect
to this mput 1s assigned a value of zero. If an mmput X, 1s
replicated to K values x,,, X5, . . ., X, then the QT partial
derivative of any function with respect to X, 1s the sum of the
QT partial dertvatives of that function with respect to x,,,
Xiny o+ v 3 Xz

Notably, in the QT computations for computing QT
gradients and partial dertvatives according to aspects of the
embodiments, for every variable there are four partial
derivatives. These four partial derivatives correspond to the
orthogonal basis for quaternions, such as the anti-involu-
tions.

Referring again to FIG. 6, 1n carrying out backpropaga-
tion, the QT partial derivatives of loss function 614 with
respect to the variable parameters are computed. These QT
partial dernivatives are then propagated through each hidden
layer 1n backward direction 632. Note that at each layer, QT
partial derivative computation also uses the mput values to
the operations where backpropagation 1s being performed.
At the end of the QT backpropagation through the entire
network, the process will have computed QT gradients of
loss function 614 with respect to all the parameters of the
model at each operation 1n the network. These gradients are
used to adjust one or more of the variable parameters during,
the training phase.

To facilitate etlicient implementation of the QTDNN
architecture and operations, aspects of the embodiments are
directed to ethicient QT representation. For example, all
inputs, outputs, and the model parameters (e.g., propagating
signal values, or images, for instance) are encoded as
quaternions. These quantities may be computationally rep-
resented and stored as tensors of various shapes 1n quater-
nion space. Multiple different approaches for providing
ellicient quaternion representations and operations are con-
templated according to various embodiments.

According to one such embodiment, a native datatype for
quaternion values 1s constructed, along with a library of QT
operations such as addition, multiplication, exponentiation,
etc. Such operations may be executed efliciently 1n software
running on a hardware platform, such as a suitable hardware
platiorm as described above with reference to FIGS. 2-5. In
a related embodiment, optimized compilers are deployed to
translate the QT software libraries into eflicient hardware
instructions.

According to another embodiment, QT data types and QT
operations may be represented and processed 1n program-
mable hardware, such as 1n a field-programmable gate array
(FPGA) circuit, or in an application-specific integrated cir-
cuit (ASIC), for example, having circuitry optimized for
storage and processing of quaternion values and operations,
respectively.

Referring to the example modular hidden layer 700 of
FIG. 7, the arrangement of sublayers 704A-710 may be
instantiated 1n software-controlled hardware, or as hardware
circuitry, with the arrangement being repeated and intercon-
nected 1 sequence, to produce a series of hidden layers of
a QTDNN. PSOP sublayers 704 of the various instances of
modular hidden layer 700 may selectively configure their
respective sublayers with various diflerent operational
blocks or engines enabled, disabled, or combined. In related
embodiments, as described in greater detail below, the
configurations of sublayers may be varied in response to
training of the QTDNN.

In various embodiments, quaternion values may be
encoded using data types based on real-numbers. For

10

15

20

25

30

35

40

45

50

55

60

65

14

example, a real-valued 4-tuple (q,, q,, 9,, 93), a real-valued
r

1x4 array [q, q; 95 95], a real-valued 4x1 array [q, 9, 9, 93]
or, a 1-dimensional real-valued tensor of shape [,4] or [4,]

may be used. In addition, a native encoding using a “gfloat™
data type may be employed.

In embodiments where quaternion values are represented
as a tensor of real components, QT operations may be
cllectively implemented as real-valued tensor operations.

As stated above, according to various aspects, the training
of deep neural network 600 1s performed using consistent
QT operations. Once neural network 600 1s trained, 1t can be
applied to new test data sets (e.g. images) to generate a set
of outputs (e.g. new 1mages, semantic labels, class labels and
confidence scores, bounding boxes, etc.).

As an 1llustrative example, for a quaternion q (defined as
q=qo1+q, 1+q, j+q; k, with quaternion basis {1.i,j.k}), the
coellicient cm associated with basis element 1 1s the scalar
component of the quaternion, whereas the remaining coet-
ficients comprise the 1maginary components of the quater-
nion. For quaternion q and with u, with u=0, a 3-dimensional
rotation of Im(q) by angle 20 about Im(u) 1s defined as g*:
ugu~"', where

6= CDS_I(SC(#)]

|

Here, Im(q) returns the imaginary component of quaternion
g, which corresponds to a look-up into q’s data register.
Sc(q) returns the scalar component (sometimes called the
real component) of quaternion g, which corresponds to a
look-up 1nto q’s data register.

The norm of quaternion q is ||q|[*=qq*=q*q=q,*+q, *+q-,"+
q,°. It should be noted that the operations Sc(q) and ||g||°
return scalar (real) values.

When p 1s a pure unit quaternion, g 1s an (ant1) involution
with g": =—ugu. And, in particular, g'.¢f, q*, are all (anti)
involutions, so that g’=-iqi,qi=—jqj, q=-kqk.

The QT conjugate of a quaternion gq=q, 1+q, 1+q, j+95 k
1s q*=q, 1-q, 1—q,]—-q; k. Notably, all imaginary values are
negated, which corresponds to a simple sign bit change to
the 1imaginary components in the quaternion data register or
applying a negation on the Im(q) operation. In the present
disclosure, unless otherwise mentioned explicitly, all opera-
tions (multiplication, addition, etc.) are QT operations. The
notations & and & are used redundantly at times as enforce-
ment reminders to make clear that consistent quaternion
algebraic addition and non-commutative quaternion alge-
braic multiplication operations are respectively carried out.

Some embodiments utilize Generalized Hamilton Real
(GHR) calculus. The left GHR derivatives, of 1(q) with
respect to g and g", are defined as follows with g=g,1+q;,
1+q,]+q; K, as:

=

df lydf Of . af . af Eq. 1A

—J _(___Iﬂ__jﬂ__kﬂ]

dgt 4\ dgy Jgqi dgr dgs

and

df lydf Of af af Eq. 1B
- = —(— + i+ — 4+ —k”],

dg*” 4\dgy Jq dq; dq3

where 1 1s a non-zero quaternion and the four partial
derivatives of 1, on the right side of the equations, are:

US 11,593,643 B2

15

taken with respect to the components of g, that 1s, of g,

d;> 9-, g5 respectively; and

quaternion-valued;
wherein the set {1, 1", j*, k"} 1s a general orthogonal basis
for the quaternion space.

Note that the left-hand-side GHR derivatives are not
merely defined as coordinate-wise real-valued derivatives,
but are a rich composition of the partial derivatives in the
gquaternion domain along an orthogonal basis. In general, for
every function of a quaternion, there are four partial deriva-
tives, each one associated with a component of the orthogo-
nal basis.

With the above definition, the usual rules of calculus such
as product rule and chain rule are extended to the quaternion
domain. In particular, the QT chain rule may be written as:

dfg@) Z df dg Eq. 2A
5@“ vell.ij.kl 53“” ﬁq,u

0fg(@) _ Z df dg’ Eq. 2B
o ve{l.i, jk} g o

In general, the QT chain rule can be applied with respect
to any orthogonal basis of quaternion space. Here, the basis
11.1,1,k} may be selected for notational simplicity. Notably,
a QT application of the chain rule according to embodiments
involves the use of a partial derivative with respect to a QT
conjugate g*, and contemplates values of v other than 1.

Some aspects of the embodiments, recognize that, 1n
quaternion optimization, the derivatives with respect to QT
conjugates may be more 1mportant than the corresponding
quaternion 1tself. One feature of GHR calculus i1s that the
gradient of a real-valued scalar function f with respect to a
quaternion vector (tensor) q 1s equal to:

Eq.3

Thus, the gradient of f 1s computed using partial deriva-
tives with respect to QT conjugates of the variables, and not
the quaternion variables themselves.

Specifically, in applying the hackpropagation algorithm,
the partial derivatives to be used are computed using QT
conjugate partial derivatives along an orthogonal basis of the
gquaternion space.

Backpropagation through an operation i1n the present
context means that, given the partial derivatives of the loss
function with respect to the output of the operation, the
partial derivatives are computed with respect to the imputs
and the parameters of the operation.

FIG. 8 1s a diagram 1illustrating a QT convolution sublayer
802, as an 1illustrative example of convolution engine 712.
Input signal A (which may be an image, feature map, time
series, etc.) and filter W are represented as N-dimensional
and S-dimensional quaternion vectors, respectively. If these
iputs are based on non-quaternion values, they are first
transformed 1nto quaternion values. The 1D convolution of
the filter W with A over a sliding window of size S 1s
computed as the QT sum of the QT multiplication of each
coordinate x of the filter W by the corresponding shifted
coordinate x+sx of the input A .

For mput signal A4 and filter W as quaternion-valued
vectors of size N and S, respectively, an unbiased one-

10

15

20

25

30

35

40

45

50

35

60

65

16

dimensional (1D) QT convolution with a right filter may be
expressed as 1n Equation 4A as follows:

Eq.4A

)

sxe{0,1,... ,5—1)

Zom = A @ W

where € and & are QT addition and QT multiplication,
respectively, and Z " denotes the x™ term in the output
after QT convolution

Because QT multiplication 1s not commutative, switching
the order of multiplier and multiplicand 1n Equation 4A
provides a convolution with a left filter as in Equation 4B:

Eq. 4B

X+5x

mmzzﬂe o, ..., S-11 w S;r@ A

Hereinafter, for the sake of brevity, operations based on
right filters are described. However, 1t will be understood
that various other embodiments contemplate QT operations
based on left filters. The following pseudocode embodies an
example algorithm to produce a general unbiased 1D QT
convolution:

Given:
Quaternion-valued signal A , quaternion-valued filter or kernel W ;
Integer N representing the dimension of the signal A ;

Integer S representing the dimension of filter W ;
And, use QT addition & and QT multiplication :
Intialize: Z <
For: x=0, ... , N—1
For: sx =0, ..., S — 1
L LD (A x+sx O W)

Return: 2 €%

A guaternion-valued bias term may be added to Equation
4A to obtain a biased 1D QT convolution that 1s amenable
to usage 1n a neural network:

o CV=BD(X _ _ .1, ..., S-1} A oW

X .S'I)

where € and & are QT addition and QT multiplication,

respectively, and Z ,““" denotes the x™ coordinate (index)
of the output after QT convolution.

The following pseudocode embodies an example algo-
rithm to produce a General Biased 1D QT convolution

Eq. 4C

Given:
Quaternion-valued signal <A , Quaternion-valued filter W, quaternion-

valued bias B :
Integer N, the dimension of the signal A ;

Integer S, the dimension of filter W ;
Using QT addition & and QT multiplication :
[nitialize: & €%
For: x=0, ... , N—1

For: sx =0, S — 1

L e Z VD (A O W)

25 «— B DL
Return: 2Z o™

Similarly, a 2D convolution of a grayscale input image
A (with height H, width W) with a filter/kernel (of window
size S) and an additive bias 1s computed as:

VA

XX

"= B $(Zsy,sx,e {o,1, ..., S5-1}% c)q }f+5y,x+sx®
Eq. 4D

sy,sx)

Where 1ndices (y,x) correspond to the pixel indices of the
input H-pixels-by-W-pixels 1image. One reason that Equa-
tion 4D 1s appropriate for an input grayscale image 1s that the
image only has one channel to represent the range from
white to black.

US 11,593,643 B2

17

In a related embodimen
replaced by a QT geometric

, the QT multiplication 1s
product.

The following pseudocode embodies an example algo-
rithm to produce a general biased 2D QT convolution for a

grayscale image: :

Given:
Quaternion-valued signals <A of a grayscale image, Quaternion-valued
filter W, Quaternion-valued bias B.
Integer W = N_, the x-dimension of the signal A4 ;
Integer H = N, the y-dimension of the signal <A ;
Integer S, the dimension of filter W (it will have a size S*S);
Using QT addition <& and QT multiplication &:
Initialize: Output £
For: x =0, ..., N_—1
For:y=0, ..., N, — 1
For:sx =0, ..., S —1
For: sy =0, ..., S —1
AN S Z D (A
zEC’HF e ﬁ @ ZCC’HF

Return: & <%

10

15

QW

V+5V,X+5X sy,s;r)

20

In other types of i1mages, there are usually additional
channels. For instance, a red-green-blue (RGB) color image
has 3 channels. One particular pixel may have a different
value 1n each of its channels. Thus, Equation 4A may be
generalized to process these types of 1images as follows.

25

Notably, use of a single channel with quaternion values 1s
not necessarily limited to representing grayscale images. In
some embodiments, an RGB 1mage may be encoded using
a single channel with quaternion values (e.g. R, G, B as three
imaginary components of a quaternion, respectively. In the
context of QT convolution, more than one channel may be
used to facilitate operational structures 1n which the hidden

layers of the QTDNN have more than one channel.

30

35

A 2D convolution of an input image (with height H, width
W, and C channels) with a filter/kernel (of window size S)
and an additive bias may computed as:

40

Eq.4F

)

S—1},¢(0,1,...

conv __
Zij =5 B ﬂy+sy,x+sx,c & Wsy,s;::,f:

L1}

spsxef0l, ...

45
Where 1ndices (y,x) correspond to the pixel indices of the

input H-pixels-by-W-pixels image. Here, the pixel (y,x) may
have a different value for each of its C channels. Thus, 1n
equation 4E, the convolution summation will be taken
across the C channels. In a related embodiment, the QT
multiplication & 1s replaced by a QT geometric product.

50

The following pseudocode embodies an example algo-
rithm to produce a general biased 2D QT convolution:

35

Given:
Quaternion-valued signals { A _}r o 13
Quatemnion-valued filter 147,
Quatermnion-valued bias B.
Integer C, the number of channels of input signal;
Integer W = N_, the x-dimension of the signal A ;
Integer H = N, the y-dimension of the signal A ;
Integer S, the dlmensmn of filter W (it will have a size S*S);
Using QT addition € and QT multiplication :
Initialize: Z°°™
For:c=10, ...,C—-1

For: x =0, ..., N_—1

For:y=0, .., N, -1

60

65

18

-continued
For: sx =0, ..., S — 1
For: sy =0, ..,5—1
z COMV — z COMV @ (dq ® w 5};35;-;3.:)

V5V X+5X,C

ZC‘DHV% E 69 ZC‘G"HV

Return: Z<“*"

In a related example, the sequential order of the for-loops
1s changed to produce a type of embodiment in which the
ordering may be optimized for read/load and compute
efficiency 1n a computer architecture.

In related embodiments, the 2D 1mage 1s represented as a
3D quaternion tensor of size H*W*C. For mstance, an RGB
image that 1s 32 pixels by 32 pixels has H=32, W=32, C=3;
a grayscale 1mage that 1s 32-pixelsx32z-pixels has H=32,
W=32, C=1. Each pixel in the 2D 1mage has coordinates or
indices (y,x). A regular (square) shding-window of dimen-
sion S=3 can be represented as a quaternion 3D tensor of
size S*S*C.

In the above examples, ID and 2D convolution operations
are described; however, 1t will be understood that the con-
volution operation may be extended to higher-dimensional
guaternion tensors of any practical size.

Further, this QT convolution operation may be used to
form a neural network convolution layer by combining one
or more kernels or filters (e.g., weights W s and biases
B ’s) as depicted 1n FIG. 8. In this example, which may be
applicable for machine-vision applications, a 2D convolu-
tion of an 1nput 1mage (our output from a prior layer of a
deep neural network) having a height H, a width W, and C
channels, 1s convolved with a filter/kernel having a widow
s1ze S.

To compute the output of the QT convolution block, let 1
refer to the layer number, so that, given the input A |,
weights W ,, and bias B ,, the output £, 1s computed as
follows:

Eq. 4F

ﬂf—ljy—l—sij—l—sxjc ® Wfﬁcy
-1}

)

S—1}cel0,1,...

Ziysi =Bri @

spsxel0l,. ..

In Equation 4F, £, . 1s the k™ output in layer 1, B, is
the k™ bias in layer l. In practlce all the quantities may be
computed for a min1 batch of images, but for notational
convenience the index for the mini-batches 1s dropped.
Equation 4F represents QT convolution operation with K
kernels, 1n layer 1 of a neural network, of window size S*S
that are used to define a 2D convolution layer on 1mages or
intermediate feature maps. The 1nput signal A thus corre-
sponds to either input 1mages or feature maps output by
previous neural layers i1n the deep neural network. Further,
note that the K kernels may have different window sizes as
well as different heights and widths 1n general. For example,
to facilitate bookkeeping, window sizes may be denoted by
S, for regular (square) window sizes, or as a look-up table
or matrix of the different (H’s,W’s) for each kernel or within
a tensor implementation.

The corresponding convolution operation associated with
FIG. 8, computing the convolution of the mput signals (the
output from the previous layer) with the K filters (the
welghts corresponding to the contributing signals) and the
addition of a bias to each of the K resultant feature maps
produce the convolution output, as described by Z ,, ., In

Equation 4F.

US 11,593,643 B2

19

The following pseudocode embodies an example algo-
rithm to produce a general 2D QT convolution 1n a neural
network.

Given:

Quaternion-valued signals “A¢-1 from the previous layer £ — 1

Quatermnion-valued filters Wey , that will be applied at the current layer
£ -

k.

Quaternion-valued biases Be , that will be applied at the current
layer € to

the final outcome form the k? filter:
Integer K;, the total number of kernals in layer € ;

Integer Ne—1x , the (width) x-dimension of the input signal <4 from the
previous layer € — 1;

Integer thl.y, the (height) y-dimension of the input signal
A from the previous layer £ — 1;

Integer 55,;.: _the dimension of k™ filter W in layer € ;
Integer C, the number of channels;

Using QT addition €& and QT multiplication &:
[nitialize: 2¢ — for current layer £
For: k=0, ..., K, — 1;

For:c=0, ..., C—-1

For: x =0, ..., Ne—1x — 1
For: y =0, ..., Nf—l,y — 1

, Ser — 1
For: sy =0 ,..., Ser — 1

2,57 2,5 DA e ©

Yok

For: sx =0, ...

w K, 5V, 5%, c‘)
z kr:crnv «— Bk @ Z kr:crnv

CoOnY
Return: z{'

As mentioned earlier, noting that QT multiplication 1s
non-commutative, switching input to the right and filter to
the left in the multiplication & gives another type of QT
convolution than 1n as represented by Equation 4G below:

Eq.4G
Ly yxk —

)

sysxe{0l,... ,S-1}Les{O]l,... (-1}

g{"',ﬁc B W{; ky.x.c X ﬂf—l,y—l—sy,x—l—sx,c

where Z, . refers to the y,x-coordinates of the pixels in
layer ¢ resulting from the k™ filter.

For backpropagation through the convolution layer, given
the gradient of loss function € with respect to Z , the
partial derivatives of C are computed with respect to A ,_;,

aC
0Lt

W ,, and B, Specifically, the QT partial derivatives are
computed with respect to QT conjugates of these variables.
Equations SA-5C have been developed to compute these
partial derivatives according to example embodiments:

%
(3' ‘Zf",y,:::,k

>

*
Je{0,1,... 5-1} J {y—tx—sk

0C
0By

VX

AT e i[

f—1,y.x,c 2

oC

‘Ia 71?4:
) J fhtsc

20

-continued

oC
— |®v
f.y.x.k

: _ i iSﬁ(v & ﬂf—lﬁy—l—r,x—l—sjc)
d W{?,kﬁrﬁs,c vell,d, juk [7

Yok

Equation 5A represents the QT partial derivative of the
loss function with respect to the k™ bias ‘B * in layer ¢ given
the QT partial derivative of loss function € with respect to
the k™ output Z * of layer 1 over all y,x elements (pixel
indices).

Equation 3B represents the QT partial denvative of the
loss function with respect to all the activations A 1n the
previous layer £ —1 given all the QT partial derivatives of
loss function € with respect to the output Z of layer ¢ .

Equation 3C represents the QT partial derivative of the
loss function with respect to the k™ weight W in layer I,
over all y,x elements (pixel indices), given the QT partial
derivative of C with respect to the output Z of layer ¢ .

In a related aspect, a non-linear activation function 1s
provided 1n true quaternion domain (e.g., not merely coor-
dinate-wise real domain). A QT rectified linear unit (QT
RelLU) according to embodiments 1s a piece-wise linear
function 1n quaternion space, which 1s computed as follows:
for a quaternion q=q,1+q, 1+q,j+q;k the value of QT-Rel.U
at q 1s q 1tself, so long as each of the real and 1maginary
components 1s a positive real number (1.e. g,>0, q,>0, q,>0,
g5;>0), and everywhere else the QT-Rel.U 1s the zero quater-
nion 1.e. when any of the scalar or imaginary parts are zero
or negative, the QT-Rel.LU outputs zero:

10

15

20

25

30

Eq. 6
OT—ReLU(q) := b

{q it o, q1, g2, g3 =20, for g = gol + i+ qa2j + g3k;
0 otherwise '

35
Additionally, sigmoid and hyperbolic tangent functions

can be directly applied on the input quaternion (not coordi-
nate-wise) and used as non-linear activation functions as
well.

According to an example embodiment, the backpropaga-
tion through QT-Rel.U, as 1n Equation 7 below, 1s computed
accordingly: 1in general, for the non-zero outputs, all the
derivatives propagate to the mput, and are zero elsewhere.
Particularly, for each non-zero linear part of the piecewise
linear function, the derivatives with respect to the output
directly propagate to the input. The derivatives are zero
elsewhere.

40

45

aC
0 Ay,

Eq.7

if g0, g1, q2, g3 =0, where Z;,, =qol +q1i + g2 + q3k;

otherwise

In a related aspect of the embodiments, QT pooling

55 operations are provided. Given a quaternion 1D, 2D or any
dimensional tensor (e.g. corresponding to a time series, an
image or a higher dimensional signal, or a combination
thereof, the QT pooling operation downsamples, or
upsamples the signal to a lower-dimensional, or higher-
dimensional signal, respectively, and computes output val-
ues at a coordinate or pixel based on the values of the input
signal 1 the neighborhood of that coordinate/pixel. This
neighborhood-based pooling can be one of various types
such as, for example, based on maximum values average
values, etc. The downsampling or upsampling 1s character-
1zed by a stride parameter T and the neighborhood 1is
characterized by a window of size S.

60

65

US 11,593,643 B2

21

FIG. 9 1s a diagram 1illustrating an example pooling
operation 1n 2D space. The pooling operation maps 1nput
902 to output 904. In a given neighborhood 906 of input 902,
the pooling operation selects or determines a value for a
mapped output pixel 908. One technique for selection or
determination of the value of output pixel 908 1s selection of
the pixel from neighborhood 906 that has the highest value
of QT norm, and the actual quaternion value of this max-
norm pixel becomes the value of output pixel 908. In the
example depicted, when the neighborhood 906 1s a window
of size S=3, one of the 3*3=9 pixel values, with maximum
QT norm, becomes the output 908. As depicted, the stride T
has a size of 2 pixels. Therefore, the H and W dimensions of
iput 902 map to H/2 and W/2output 908.

Equation 8A below represent QT max pooling via QT
norm:

oot Eq. 8A

a0

= Am ,m . whete:
yi=Tey+ "

x* =Txx+i"

Jo,i = drgmax ”ﬂT*y—l—syﬁT#cx—l—sxjcllz
sp.sxe{0,1,... ,S-1}
and where ||-|[* is a QT norm whose computed value is a

scalar and can be ordered.

This approach contrasts to real-valued (or mteger) max
pooling, where the largest value 1s easily extracted from the
naturally-ordered set of values. In a quaternion-valued set of
pixels, there 1s no such ordering of lowest to highest (e.g.,
maximum), so an ordering 1s 1imposed according to various
embodiments. In the example depicted, the ordering 1is
imposed through the application of the QT norm to quater-
nion-valued pixels, which evaluates to a real value.

In another embodiment, mnstead of using the QT norm for
to 1mpose an ordering for the quaternion-valued pixels, the
scalar, or real, component of the quaternion pixels 1s used,
as represented 1n Equation 8B.

Fq. B

AP = A m m . where

Va0 AT S &

yrETxy+j"

x" =T wx+i"

-t

J i = drgmax SC(ﬂS#y+sy,S:+cx+sx,c)

sp.sxe{0,1,... ,5S—-1}

In the quaternion-valued average pooling operation, the
output value 1s actually the average of the quaternion values
of all the pixels in the neighborhood of size S, and the
average 1s computed using consistent QT addition and
consistent QT multiplication/division.

In QT backpropagation through QT pooling operation
(QT-pooling) according to embodiments, from the backward
pass perspective, max pooling eliminates all input to this
pooling layer except that mput which contributes to an
output. Therefore, only partial derivatives with respect to
those contributory inputs survive. Thus, i this pooling
layer, the sum of all partial derivatives 1s taken of all the
output variables to which the inputs contribute. Hence,
backpropagation 1nvolves maintaining argmaxes for each
stride during pooling.

In the average pooling case, every input in the pooling
window contributes to the corresponding output, so partial

10

15

20

25

30

35

40

45

50

35

60

65

22

derivatives with respect to all mputs survive. The pooling
outcome 1s calculated as the sum over all the partial deriva-
tives of all the output variables, according to some embodi-
ments.

FIG. 10 1s a diagram 1llustrating a QT 1nner product
sublayer 1002, as an 1illustrative example of QT 1inner
product engine 714. In general, inner products of a quater-
nion filter W of size N with the input quaternion A of size
N 1s the QT sum of the QT multiplication of the correspond-
ing coordinates of the mput and the filter:

Eq. SA

VAR i A, W,

x=0,1,... N

Notably, the operations €& and & consistent QT addition and
QT multiplications, and not merely coordinate-wise real-
valued operations. Further, in another embodiment, the QT
multiplication & 1s replaced by QT geometric product.
The following pseudocode embodies an example algo-

rithm to produce a QT 1ner product

Given
Quaternion-valued signal 4 of dimension N;
Quaternion-valued filter W of dimension N;

Initialized output Z9°% of dimension N;
For: x=0, ... , N—1

ZPt g A (1 QW)

Return: Z 9ot

A Tully connected quaternion neural network layer may be
obtained by adding a bias term:

Eq. 10

.....

For a layer 1n a QT deep neural network implementing k
kernels, the QT 1nner product operation 1s defined as shown
in Equation 11;:

Fq. 11
Lo =Bep B iﬂf—ljm O Wi

where the W terms are the weights, B ’s are the biases, and
A ’s are the mputs used to compute the output <& ’s.

For the backpropagation through an mner product opera-
tion, given the gradient with respect to the output 2, the
gradient with respect to weights W/, bias B, and input
A are to be computed. In some examples, backpropagation
through QT mner product (e.g., dot product) operation 1s
very similar to that through the QT convolution operation,
except that all inputs participate 1in the computation of all
outputs and the partial derivative contributions from output
are accounted for accordingly. The equations work out to be:

oc 0C Eq. 12A
0B, 0Zis
AL, “HOZY bk
— = Sc(v® Ay_1.m) —|®v
J £.mk J £,k)

ve{l.7, j.ic}

US 11,593,643 B2

23

FIG. 11 1s a diagram 1llustrating an example scalar-valued
QT loss function engine 1102. While training a deep neural
network, the cost or loss function 1s optimized based on a
training set via a gradient-based 1iterative algorithm. In QT
deep learning according to some embodiments, the loss
function 1s a real-valued function of quaternion inputs. In
general, this function may be a quaternion-valued function
as long as a total order or partial order on the quaternion
space 1s maintained. According to embodiments, the gradi-
ent of the real-valued loss function 1s the vector of partial
derivatives of the loss function with respect to the conju-
gates of the output of the final layer of the neural network.

For an error or loss function formulated as a mean square
error, Equation 13 provides:

CW. Z1)=) I Zex - Yill Fq. 13
k

where, £ ; , 1S the k™" component of the output in the final
layer L, U , 1s the le1 component of the ground truth target.
Note that the summand 1n Equation 13 1s a QT norm, the
final value of which 1s real-valued; thus, the loss function 1s
real-valued, but the partial derivatives of the loss function
are not real-valued.

It should be noted that the partial derivatives of the loss
function are based on the conjugate of the outputs 2, ,.
These partial derivatives are computed as shown 1n Equation

14:

oC
0Lry

Eq. 14

1
= U Zpk =YV, for v={1,1, j, k}

Appendix 1 contains additional example embodiments
detailing computational i1mplementations of various QT-
specific operations, including QT conjugation, QT multipli-
cation, QT 1nvolution, QT mner product, QT left vector-
matrix multiplication, QT matrix-matrix multiplication, QT
forward feed, QT gradient propagation through the inner
product layer, QT gradient propagation through the convo-
lution layer, and gradient loss function with respect to an
mnput to a current layer in a forward pass. In various
embodiments, each subroutine example may be 1mple-
mented as a hardware block constructed to carry out the
corresponding computation using sequential and combina-
tional logic circuitry, or as a processor-based computing
platform that 1s transformed into a special-purpose machine
when configured with the machine-executable instructions
for carrying out the QT computations and related operations.

FIG. 12 1s a diagram illustrating an example embodiment
for implementing a 5-layer QTDNN for classifying an image
into 10 object classes. Layer 1 1s a QT convolutional layer.
An mput 1image encoded as quaternion tensor 1s mput to this
layer. First, a QT convolution with a set of K1 filters of
window size 5*35 1s applied and a bias 1s added followed by
a QT non-linear activation by QT-ReLLU. Output from QT-
RelLU 1s then down-sampled using QT max-pooling with
neighborhood size 3*3 and stride 2. In one implementation,
the mput to layer 1 1s image encoded as 3D quaternion tensor
of shape [H, W, 1]; therefore the output 1s a 3D quaternion
tensor of shape [H/2, W/2, K1], a factor 2 because of stride
2 1n max-pooling and K1 because of the number of kernels.
Each of the kernel themselves are quaternion 3D tensors of
shape [3, 3, 1]; the kernels form a 4D quaternion tensor of

shape [K1, 3, 5, 1].

10

15

20

25

30

35

40

45

50

35

60

65

24

Layer 2 1s also a convolutional layer similar to layer 1;
however, the mput to this layer 1s not an 1image directly, but
the output of layer 1. There are K2 number of kernels each
being a quatermion 3D tensor of shape [3, 5, K1], K1 coming
from the fact that there are K1 channels 1n the output of layer
1. After applying QT convolution, QT-ReLU and QT max-
pooling 1n this layer an output of shape [H/4, W/4, K2] 1s
produced.

Layer 3 1s a fully-connected layer. The output from layer
2 1s first reshaped 1nto a 1D tensor, e.g. from a 3D quaternion
tensor of shape [H/4, W/4, K2] to a 1D quaternion of size
H/4*W/4*K2. There are K3 kernels 1n this layer, each of
which 1s a 1D gquaternion tensor of size H/4*W/4*K?2. Each
of the K3 kernels 1s used to apply QT inner product
operation on the put (e.g., reshaped output of layer 2)
along with a bias addition followed by a non-linear activa-
tion QT-RelLU to obtain a single quaternion output, leading
to K3 si1ze output 1n total.

Layer 4 1s also a fully connected layer. There are K4
kernels 1n this layer, each of them being a 1D quaternion
tensor of size K3. The output of layer 3 goes through an
mner product with each of the K4 kernels followed by
QT-Rel.U to produce K4 size quaternion 1D tensor output.

Layer 5 1s a fully connected layer or a linear layer (e.g.,
inner product without Rel.U). Since this 1s the final layer 1n
this example, the number of kernels depends on the number
of classes mnto which the 1images are to be binned, which 1n
this case 1s 10. Each one of these 10 kernels are of 1D
quaternion tensors of size K4 and goes through a QT 1nner
product operation with output of layer 4 with an optional
QT-Rel.U follow up and produces a ID tensor output of size
10. This 10-size quaternion output 1s used for deciding
which class a given imput belongs to, based on certain
criteria such as closeness to a pre-defined set of values with
respect to quaternion mean square error.

Appendix 2 contains code for implementing the example
S-layer QT neural network shown 1n FIG. 12, along with a
backpropagation process through the network, 1n addition to
updating of the model parameters via stochastic gradient
decent.

FIG. 13 1s a diagram 1llustrating forward pass and back-
propagation operations 1n an example 2-layer deep quater-
nion neural network 1300. The network accepts mput 1302,
which may be an 1image or a feature map having a height of
4 pixels and width of 4 pixels. Input 1302 passes through a
QT convolution layer 1304 with two kernels of window size
2*%2. Each kernel has adjustable parameters. Here, a weight
vector and a bias vector, namely, pairs (W1, B1) and (W2,
B2), constitute the adjustable parameters. Parameters W1
and W2 are quaternion tensors of size 2*2 1n this example.
The QT convolution operation produces two convolutional
feature maps, C1 and C2. These convolutional feature maps
pass through QT Rel.U operation 1306 to obtain feature
maps D1 and D2, which i turn pass through QT max
pooling operation 1308, having stride 2 subsampling, to
produce feature maps E1 and E2 of size 2*2 each.

Convolutional feature maps E1 and E2 are provided as
input to PSOP sublayer 1310 for reshaping. As a result of the
reshaping, feature maps E1 and E2 are flattened to a single
feature map, F, having a size of 2*2%2=8. Reshaped feature
map F 1s passed as the input to QT 1nner product operational
block 1312. QT inner product operation 1312 has 3 kernels
applying weights and biases (W3, B3), (W4, B4), (W3, B)),
with weights W3, W4, W3 each being 8-dimensional quater-
nion valued vectors. QT 1nner product operation 1312 per-
forms a QT-Dot computation to produce 3-dimensional
quaternion feature map G. Feature map G passes through QT

US 11,593,643 B2

25

ReLLU activation operation 1314 to produce feature map H,
which 1s a three-dimensional high-level feature map. Feature
map H 1s used to compute the loss function L at operation
1316, given training data (e.g., ground truth data).

In training network 1300, QT gradients of loss function L
with respect to feature map H may be computed using
Equation 10. As indicated at 1320, QT partial derivatives of
L. are computed with respect to conjugates of each of the
three coordinates of feature map H. For each, there are four
partial derivatives: one for each of the involutions 1, 1, 1, and
k.

At 1322, QT gradients of loss function L with respect to

teature map H are backpropagated through QT-RelLU opera-
tion 1314. At 1324 QT gradients of loss function L with

—

respect to feature map G are backpropagated through Q1
inner product operation 1312. In addition, during the back-
propagation through the QT i1nner product operation 1312,
QT gradients are computed as indicated at 1326 with respect
to the variable parameters, weights W3, W4, W5, and biases
B1, B2, B3. These QT gradients with respect to the variable
parameters are not propagated; they are instead used for
tuning the performance of QT inner product sublayer 1312
during the training 1teration. In computing the QT gradients
with respect to the variable parameters at 1326, only one QT
partial derivative 1s computed rather than four (gradients
corresponding to the involutions of 1, 7, k are not computed).
Since there are 3 kernel weights, each with dimension 8, and
only one partial denivative 1s computed, partial dernivative
computation 1326 produces a 3*8*1 value as indicated 1n
FIG. 12.

At 1328, QT gradients of loss function L with respect to
feature map F are computed to produce a 8*4 value to be
propagated through PSOP sublayer 1310. At 1330, QT
gradients of loss function L with respect to the conjugates of
teature maps E1 and E2 are computed to produce 2*2%2%*4
values that are backpropagated through QT max pooling
operation 1308. At 1332, QT gradients of loss function L
with respect to the conjugates of feature maps D1 and D2 are
computed to produce 2*4*4*4 values that are backpropa-
gated through QT ReL U operation 1306.

At 1334, QT gradients of loss function L with respect to
the conjugates of feature maps C1 and C2 are computed to
produce 2*4%4*4 values that are backpropagated through
QT convolution operation 1304. In addition, as indicated at
1336, QT gradients of loss function L with respect to the
conjugates of weights W1 and W2, and of biases B1 and B2
are computed. The QT gradients of loss function L with
respect to the conjugates of weights W1 and W2 are
2%2%2%] quaternion values, whereas the QT gradients of
loss function L with respect to the conjugates of biases Bl
and B2 are 2*1*1 quaternion values since only one partial
derivative 1s taken for each of the bias values (e.g., with the
involutions 1, j, and k omitted from the computation.

FIG. 14 1s a high-level flow diagram 1llustrating process
1400 for producing and training a QT deep neural network
according to an example. At 1402, mput 1s provided to
process 1400. The mnput includes a representation of the
neural network architecture (e.g., layers, sublayers, fixed
and variable parameter values), etc. An example of a fixed
variable 1s a quantity of cores 1 an operational block.
Variable parameters include weights or biases. The input
turther includes a learning rate (e.g., frequency of 1nitiating
training operations), training patterns or training data, an
epoch limit, and accuracy critenia (e.g., acceptable error) to
be met by the training operations.

At 1404, the variable parameters are initialized and the
QTDNN 1s instantiated. Instantiation may involve compiling

10

15

20

25

30

35

40

45

50

55

60

65

26

the source code that defines the QTDNN. For each node in
the QTDNN representation, 1ts forward and backward
operator chains are compiled. Accordingly, 1n an embodi-
ment, the internal representation of the forward and back-
ward operators may point to a chain of one or more elements
that are either primary PSOP elements, compiled operational
functions, or a mix of the two.

For example, consider the following chain of operators:
{partition: (3x3 pixel sub-image), operation: average, opera-
tion: scalar}. When compiled, this would translate to a
running average computation of just the real component,
“A” across the nine elements 1n the partition (noting that
cach quaternion may be represented as A+1.B+1.C+k.D, the
A component being the real component).

In a related embodiment, to further reap implementation
clliciencies, operations that are commutative (for example
addition 1s commutative with real numbers), are re-ordered
when doing so may vield speed improvements. In the above
example taking the average and then extracting the real
component 1s the same as extracting the real component and
then taking the average, saving 9*3 addition operations.

Decision 1406 controls the amount of training 1iterations
for the QT deep neural network. An 1terations counter may
be mcremented and compared against a limit of maximum
iterations. In cases where the maximum limit 1s not reached,
the process proceeds to block 1408, which represents a
series of operations to be performed for each training
pattern. These include propagating the training pattern in the
forward direction (forward pass), computing the error, or
loss function, by comparison of the output to the ground
truth associated with the traiming pattern, performing back-
propagation, and updating the variable parameters, for
example. As a result, the layers of the QT deep neural
network are better tuned to some degree.

At 1410, the tuning of the QT deep neural network 1s
tested using a set of test data as the mput to the network.
Accordingly, the network’s output after having processed
the test data 1s compared to ground truth values associated
with the test data and the error 1s quantified. At decision
1412, the quantified error 1s compared against the accuracy
criteria. If the quantified error 1s greater than an error
threshold (which constitutes the accuracy criteria as an
example), the process loops back to 1406 to perform another
training 1teration at block 1408.

If decision 1412 determines that the quantified error meets
the accuracy criteria, or if the maximum iterations limit at
decision 1406 1s reached, the process proceeds to operation
1414 to produce, as the output of process 1400, the QT deep
neural network architecture, adjusted variable parameter
values, and the achieved accuracy measure.

Decision 1416 determines whether operation 1414 was
performed due to the accuracy criteria having been met, or
due to the iterations limit having been reached. Accordingly,
decision 1416 inquires whether the quantified error meets
the accuracy critenia (e.g., 1s below the error threshold). In
the atirmative case, process 1400 concludes at 1420. If the
accuracy criteria 1s not met, the process continues to 1418,
where more fundamental changes may be made to the QT
deep neural network. For instance, the neural network
architecture may be modified to have a different number or
arrangement ol layers, the sublayer kernels may be varied,
the sublayer operations may be varied, or any combination
of some or all of these changes may be instituted. In
addition, or alternatively, further training may be performed
with new or diflerent training data. The new QT deep neural

US 11,593,643 B2

27

network or training data may be supplied as new input at
1402 and process 1400 may thus be performed as a new
iteration.

In some of the examples detailed 1in this disclosure,
quaternions are represented using tensor data structures. In
the tensor representation the number of entries program-
matically defines the dimension of the tensor. The values in
cach entry correspond to the size of the corresponding
entry’s object in that dimension. To 1illustrate, [A_size] 1s
used to 1itialize a one-dimensional tensor A of size A_size;
IB_si1ze, A_si1ze] 1s a two-dimensional tensor of size A_size
for A, B_size for B; and [C_size, B_size, A_size] 1s a
three-dimensional tensor of size A_size for A, B_size for B,
C_size for C. The terminology may be compacted even
turther by referring to a one-dimensional tensor as having
shape [A], a two-dimensional tensor as having shape [B, A],
a three-dimensional tensor as having shape [C, B, A] etc.

For instance, FIG. 15A 1illustrates a 1-dimensional Ham-
ilton quaternion, QEH, with its four real-valued compo-
nents, as a 1-dimensional real-valued tensor of shape [.4].
Equivalently, this data structure represents a 1-dimensional
quaternion tensor of shape [1]. FIG. 15B 1s a diagram
illustrating a N-dimensional Hamilton quaternion vector,
QEH V', represented as an Nx1 quaternion array. Using
real-space encodings, 1t may be represented as a 2-dimen-
sional real-valued tensor of shape [N.4] as depicted. Equiva-
lently, this data structure represents a 1-dimensional quater-
nion tensor of shape [N]. FIG. 15C 1s a diagram 1illustrating
a quaternion-valued “matrix”, QEH ¥, represented as an
NxM array. Using real-space encodings, 1t 1s represented as
a 3-dimensional real-valued tensor of shape [M,N.4].
Equivalently, this data structure represents a 2-dimensional
quaternion tensor of shape [M,N]. More generally, for each
higher-dimensional quaternion tensor, an additional dimen-
sion of size 4 1s added to the real tensor encoding. For
example, any N-dimensional quaternion-valued tensor may
be represented as a (N+1)-dimensional real-tensor where the
last dimension has size 4.

A gradient with respect to an N-dimensional quaternion
tensor 1s represented as a (N+2)-dimensional real-valued
tensor 1n which the last two dimensions each has size 4, the
first four for the partial derivatives with respect to each of

the four involutions using {1,i,j,k}, and the second four as
the encoding of a quatermion. With reference to FIG. 15C,
QEH Y. VQEH V** may be visualized with dimension M=4,
n WhJCh case the quaternion would have dimensions of N*4,,
a 2-dimensional quaternion tensor would have the shape
IN.,4] and, equivalently, a real-valued 3-dimensional tensor
would have the shape [N,4,4].

For some QT operations, there 1s no need for computing,
all four partial derivatives but rather just one partial deriva-
tive. In these situations the gradient has a dimensionality of
(N+1).

According to some aspects, computationally representing
input 1mage data and feature maps as quaternions involves
taking each image pixel’s RGB values and encoding them as
a pure quaternion (1.e. with zero scalar value and R, G, and
B as the three imaginary values, respectively), to create a
four-dimensional-tensor of shape [H, W, 1, 4], where the
right-most entry corresponds to the quaternion encodmg
In a related aspect, when N i1mages are processed 1n a
batch, the representation of this image batch becomes a
five-dimensional tensor of shape [N, H, W, 1, 4]. A convo-
lutional kernel of window si1ze S*T1 on 1nput with C channels
1s represented as a four-dimensional tensor of shape [S, T, C,
4]. If there are K such convolutional kernels 1n a particular

10

15

20

25

30

35

40

45

50

55

60

65

28

convolution layer, the representation becomes a five-dimen-
sional-tensor of shape [K, S, T, C, 4].

In some QT computations, only derivatives with respect
to the conjugates of the weights are called for; hence the
gradient with respect to the kernel 1s simply [K, S, T, C, 4]
for each 1image. Processing the N 1mages would require a
6-D tensor of shape [N, K, S, T, C, 4]. If gradients are
averaged over the batch, the 6-D tensor of shape [N, K, S,
T, C, 4] transforms back to a 3D real tensor of shape [K, S,
T, C, 4]. However, 11 the mput to this convolution layer 1s of
shape [N, H, W, C, 4] the gradient with respect to the input
would be a 6-D tensor of shape [N, H, W, C, 4, 4].

In various embodiments, each of the QT tensor operations
1s computed by composing real-valued tensor manipulations
cihiciently. For example, to compute an ivolution, with
imaginary quaternion 1, on the quaternion tensor X of shape
[N, 4], a negative operation 1s applied on the tensor X|:,1],
leaving everything else unchanged. To apply conjugate, all
the last three components are negated. Accordingly, 1n some
embodiments, a soltware/hardware library 1s provided for
ciicient 4-D, 5-D, and 6-D tensor manipulation. These
libraries facilitate eflicient implementation of QTDNNs and
their training via backpropagation or other gradient meth-

ods.

Examples

Example 1 1s a machine-learning system, comprising:
processing hardware, including computation circuitry and
data storage circuitry, the processing hardware configured to
form a deep neural network (DNN) including: an mnput layer,
an output layer, and a plurality of hidden layers arranged
along a forward propagation path between the iput layer
and the output layer; wherein the mput layer 1s to accept
training data comprising quaternion values, and to output a
quaternion-valued signal along the forward propagation path
to at least one of the plurality of hidden layers; wherein at
least some of the hidden layers include, quaternion layers to
execute consistent quaternion (Q1) forward operations
based on one or more variable parameters, to produce a
corresponding at least one feature map output along the
torward propagation path; wherein the output layer produces
a DNN result that 1s based on the QT forward operations; the
DNN further including a loss function engine to produce a
loss function representing an error between the DNN result
and an expected result; wherein the quaternion layers are to
execute QT backpropagation-based training operations that
include: computation of layer-wise QT partial derivatives,
consistent with an orthogonal basis of quaternion space, of
the loss function with respect to a QT conjugate of the one
or more variable parameters and of respective inputs to the
quaternion layers, the QT partial dernivatives being taken
along a backwards propagation path that 1s opposite the
torward propagation path, successively though the plurality
of hidden layers; and updating of the variable parameters to
reduce the error attributable to each corresponding hidden
layer based on the QT partial derivatives.

In Example 2, the subject matter of Example 1 includes,
wherein the training data represents an 1mage.

In Example 3, the subject matter of Examples 1-2
includes, wherein the mput layer i1s to perform at least one
QT operation.

In Example 4, the subject matter of Example 3 includes,
wherein the at least one QT operation includes non-com-
mutative QT multiplication.

US 11,593,643 B2

29

In Example 5, the subject matter of Examples 3-4
includes, wherein the at least one Q1 operation includes QT
geometric product.

In Example 6, the subject matter of Examples 1-5
includes, wherein the QT forward operations include QT
activation and QT pooling operations.

In Example 7, the subject matter of Examples 1-6
includes, wherein the QT forward operations include a QT
activation operation selected from the group consisting of: a
QT rectified linear unit operation, a QT sigmoid operation,
or a QT hyperbolic tangent operation, wheremn the QT
activation operation 1s applied directly to an input signal that
1s passed to the QT activation operation.

In Example 8, the subject matter of Examples 1-7
includes, wherein the QT forward operations include a QT
rectified linear unit operation that accepts an 1nput compris-
ing a quaternion value having a real part and an imaginary
part, and produces as an output either: (a) the quatermion
value itself, when the real part and the imaginary part are
cach a positive real number; or (b) a zero quaternion value,
when any one of the real part or the imaginary part 1s not a
positive real number.

In Example 9, the subject matter of Examples 1-8
includes, wherein the Q1 forward operations include a QT
convolution operation.

In Example 10, the subject matter of Example 9 includes,
wherein the QT convolution operation maintains spatial
translational 1nvariance.

In Example 11, the subject matter of Examples 1-10
includes, wherein the QT forward operations include a QT
inner product operation.

In Example 12, the subject matter of Examples 1-11
includes, wherein computation of layer-wise Q1 partial
derivatives of the loss function includes performing a QT
chain rule operation.

In Example 13, the subject matter of Examples 1-12
includes, wherein the one or more variable parameters are
quaternion-valued.

In Example 14, the subject matter of Examples 1-13
includes, wherein the one or more variable parameters
include a weight parameter.

In Example 15, the subject matter of Examples 1-14
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 16, the subject matter of Examples 1-13
includes, wherein the one or more variable parameters
include a bias parameter.

In Example 17, the subject matter of Examples 1-16
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 18, the subject matter of Examples 1-17
includes, wherein computation of the layer-wise Q1 partial
derivatives produce QT gradients of the loss function with
respect to all of the variable parameters of the hidden layers.

In Example 19, the subject matter of Examples 1-18
includes, wherein the QT forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued bias
parameter; and wherein computation of layer-wise QT par-
tial derivatives includes computation of a partial derivative
of the loss function with respect to a QT conjugate of the
bias parameter.

In Example 20, the subject matter of Example 19
includes, wherein the computation of a partial derivative of
the loss function with respect to the Q1 conjugate of the bias
parameter 1s achieved based on computation of a partial

10

15

20

25

30

35

40

45

50

55

60

65

30

derivative of the loss function with respect to a QT conjugate
of an output of the QT convolution operation.

In Example 21, the subject matter of Examples 19-20
includes, wherein the training data includes an 1mage having
pixel indices x and y, and wherein the partial derivative of
the loss function with respect to the QT conjugate of the bias
parameter 1s computed based on a QT summation over the
pixel mdices x and y of the QT partial derivatives of the loss
function with respect to an output of the QT convolution
operation at the first layer.

In Example 22, the subject matter of Examples 1-21
includes, wherein the QT forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued
weight parameter; and wherein computation of layer-wise
QT partial derivatives includes computation of a partial
derivative of the loss function with respect to a QT conjugate
of the weight parameter.

In Example 23, the subject matter of Example 22
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the
weight parameter 1s achieved based on computation of a
partial dertvative of the loss function with respect to a QT
conjugate of an output of the QT convolution operation.

In Example 24, the subject matter of Examples 22-23
includes, wherein the training data includes an image having
pixel indices X and y, and wherein the partial derivative of
the loss function with respect to the QT conjugate of the
weight parameter 1s computed based on a QT summation
over the pixel indices x and y of the QT partial derivatives
of the loss function with respect to an output of the QT
convolution operation at the first layer.

In Example 25, the subject matter of Examples 1-24
includes, wherein the QT forward operations include a QT
convolution operation at a first layer, wherein the QT
convolution operation accepts as an mput a first quaternion-
valued feature map from a prior layer; and wherein compu-
tation of layer-wise QT partial dernivatives imncludes compu-
tation of a partial derivative of the loss function with respect
to a QT conjugate of the first quaternion-valued feature map.

In Example 26, the subject matter of Example 25
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of an output of the QT convolution
operation.

In Example 27, the subject matter of Examples 1-26
includes, wherein the Q1 forward operations include a QT
rectified linear unit operation at a first layer that produces a
first quaternion-valued activation output; and wherein com-
putation of layer-wise QT partial derivatives includes com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of the first quaternion-valued
activation output.

In Example 28, the subject matter of Examples 1-27
includes, wherein the QT forward operations include a QT
pooling operation at a first layer that produces quaternion-
valued pooling output based on quaternion-valued mput to
the first layer; and wherein computation of layer-wise QT
partial derivatives includes computation of a sum of partial
derivatives of the quaternion-valued pooling output to which
the quaternion-valued mnput contributes.

In Example 29, the subject matter of Examples 1-28
includes, wherein the Q1 forward operations include a QT
inner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued

US 11,593,643 B2

31

bias parameter; and wherein computation of layer-wise QT
partial derivatives includes computation of a partial deriva-
tive of the loss function with respect to a QT conjugate of the
bias parameter.

In Example 30, the subject matter of Example 29
includes, wherein the computation of a partial derivative of
the loss function with respect to the Q1 conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT inner product operation.

In Example 31, the subject matter of Examples 1-30
includes, wherein the QT forward operations include a QT
inner product operation at a first layer and wherein the one
or more variable parameters include a quatermion-valued
weight parameter; and wherein computation of layer-wise
QT partial derivatives includes computation of a partial
derivative of the loss function with respect to a QT conjugate
of the weight parameter.

In Example 32, the subject matter of Example 31
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the
welght parameter 1s achieved based on computation of a
partial dertvative of the loss function with respect to a QT
conjugate of an output of the QT mnner product operation.

In Example 33, the subject matter of Examples 1-32
includes, wherein the QT forward operations include a QT
inner product operation at a first layer, wherein the QT 1nner
product operation accepts as an mput a first quaternion-
valued feature map from a prior layer; and wherein compu-
tation of layer-wise QT partial denivatives includes compu-
tation of a partial derivative of the loss function with respect
to a QT conjugate of the first quatermion-valued feature map.

In Example 34, the subject matter of Examples 25-33
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of an output of the QT inner
product operation.

Example 35 1s at least one machine-readable storage
medium containing instructions that, when executed on a
computing platform, cause the computing platiorm to imple-
ment a deep neural network (DNN) including: an 1input layer,
an output layer, and a plurality of hidden layers arranged
along a forward propagation path between the input layer
and the output layer; wherein the mput layer 1s to accept
training data comprising quaternion values, and to output a
quaternion-valued signal along the forward propagation path
to at least one of the plurality of hidden layers; wherein at
least some of the hidden layers include, quatermion layers to
execute consistent quaternion (QT) forward operations
based on one or more variable parameters, to produce a
corresponding at least one feature map output along the
torward propagation path; wherein the output layer 1s to
produce a DNN result that 1s based on the QT forward
operations; the DNN further including a loss function engine
to produce a loss function representing an error between the
DNN result and an expected result; wherein the quaternion
layers are to execute QT backpropagation-based training
operations that include: computation of layer-wise Q1 par-
tial dernivatives, consistent with an orthogonal basis of
quaternion space, of the loss function with respect to a QT
conjugate of the one or more variable parameters and of
respective inputs to the quaternion layers, the QT partial
derivatives being taken along a backwards propagation path
that 1s opposite the forward propagation path, successively
though the plurality of hidden layers; and updating of the

5

10 .

15

20

25

30

35

40

45

50

55

60

65

32

variable parameters to reduce the error attributable to each
corresponding hidden layer based on the QT partial deriva-
tives.

In Example 36, the subject matter of Example 35
includes, wherein the training data represents an 1mage.

In Example 37, the subject matter of Examples 35-36
includes, wherein the mput layer i1s to perform at least one
QT operation.

In Example 38, the subject matter of Example 37
includes, wherein the at least one QT operation includes
non-commutative QT multiplication.

In Example 39, the subject matter of Examples 37-38
includes, wherein the at least one Q1 operation includes QT
geometric product.

In Example 40, the subject matter of Examples 35-39
includes, wherein the QT forward operations include QT
activation and QT pooling operations.

In Example 41, the subject matter of Examples 35-40
includes, wherein the QT forward operations include a QT
activation operation selected from the group consisting of: a
QT rectified linear unit operation, a QT sigmoid operation,
or a QT hyperbolic tangent operation, wherein the QT
activation operation 1s applied directly to an input signal that
1s passed to the QT activation operation.

In Example 42, the subject matter of Examples 35-41
includes, wherein the QT forward operations include a QT
rectified linear unit operation that accepts an input compris-
ing a quaternion value having a real part and an 1imaginary
part, and produces as an output either: (a) the quatermion
value itself, when the real part and the imaginary part are
cach a positive real number; or (b) a zero quaternion value,
when any one of the real part or the imaginary part 1s not a
positive real number.

In Example 43, the subject matter of Examples 35-42
includes, wherein the Q1 forward operations include a QT
convolution operation.

In Example 44, the subject matter of Example 43
includes, wherein the

QT convolution operation maintains spatial translational
invariance.

In Example 45, the subject matter of Examples 35-44
includes, wherein the QT forward operations include a QT
inner product operation.

In Example 46, the subject matter of Examples 35-45
includes, wherein computation of layer-wise QT partial
derivatives of the loss function includes performing a QT
chain rule operation.

In Example 47, the subject matter of Examples 35-46
includes, wherein the one or more variable parameters are
quaternion-valued.

In Example 48, the subject matter of Examples 35-47
includes, wherein the one or more variable parameters
include a weight parameter.

In Example 49, the subject matter of Examples 35-48
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 50, the subject matter of Examples 35-49
includes, wherein the one or more variable parameters
include a bias parameter.

In Example 51, the subject matter of Examples 35-30
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 52, the subject matter of Examples 35-31
includes, wherein computation of the layer-wise Q1 partial
derivatives produce QT gradients of the loss function with
respect to all of the variable parameters of the hidden layers.

US 11,593,643 B2

33

In Example 53, the subject matter of Examples 35-52
includes, wherein the QT forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued bias
parameter; and wherein computation of layer-wise QT par-
tial derivatives includes computation of a partial derivative
of the loss function with respect to a QT conjugate of the
bias parameter.

In Example 54, the subject matter of Example 53
includes, wherein the computation of a partial derivative of
the loss function with respect to the Q1 conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss fTunction with respect to a QT conjugate
of an output of the QT convolution operation.

In Example 55, the subject matter of Examples 53-54
includes, wherein the training data includes an image having
pixel indices x and y, and wherein the partial dertvative of
the loss function with respect to the Q1 conjugate of the bias
parameter 15 computed based on a QT summation over the
pixel indices x and y of the QT partial derivatives of the loss
function with respect to an output of the QT convolution
operation at the first layer.

In Example 56, the subject matter of Examples 35-55
includes, wherein the Q1 forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued
weight parameter; and wherein computation of layer-wise
QT partial derivatives includes computation of a partial
derivative of the loss fTunction with respect to a QT conjugate
of the weight parameter.

In Example 57, the subject matter of Example 56
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the
weight parameter 1s achieved based on computation of a
partial dertvative of the loss function with respect to a QT
conjugate of an output of the QT convolution operation.

In Example 58, the subject matter of Jxamples 56-57
includes, wherein the training data includes an 1image having
pixel indices x and y, and wherein the partial dertvative of
the loss function with respect to the QT conjugate of the
weight parameter 1s computed based on a QT summation
over the pixel indices X and y of the QT partial dertvatives
of the loss function with respect to an output of the QT
convolution operation at the first layer.

In Example 59, the subject matter of Examples 35-58
includes, wherein the QT forward operations include a QT
convolutlon operation at a {first layer, wherein the QT
convolution operation accepts as an input a first quaternion-
valued feature map from a prior layer; and wherein compu-
tation of layer-wise QT partial denivatives includes compu-
tation of a partial derivative of the loss function with respect
to a QT conjugate of the first quatermion-valued feature map.

In Example 60, the subject matter of Example 59
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial denivative of the loss function with
respect to a QT conjugate of an output of the QT convolution
operation.

In Example 61, the subject matter of Examples 35-60
includes, wherein the QT forward operations include a QT
rectified linear unit operation at a first layer that produces a
first quaternion-valued activation output; and wherein com-
putation of layer-wise QT partial dertvatives includes com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of the first quaternion-valued
activation output.

10

15

20

25

30

35

40

45

50

55

60

65

34

In Example 62, the subject matter of Examples 35-61
includes, wherein the QT forward operations include a QT
pooling operation at a first layer that produces quaternion-
valued pooling output based on quaternion-valued mput to
the first layer; and wherein computation of layer-wise QT
partial derivatives includes computation of a sum of partial
derivatives of the quaternion-valued pooling output to which
the quaternion-valued mput contributes.

In Example 63, the subject matter of Examples 35-62
includes, wherein the Q1 forward operations include a QT
inner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued
bias parameter; and wherein computation of layer-wise QT
partial derivatives includes computation of a partial deriva-
tive of the loss function with respect to a QT conjugate of the
bias parameter.

In Example 64, the subject matter of Example 63
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT inner product operation.

In Example 65, the subject matter of Examples 35-64
includes, wherein the Q1 forward operations include a QT
inner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued
weight parameter; and wherein computation of layer-wise
QT partial derivatives includes computation of a partial
derivative of the loss function with respect to a QT conjugate
of the weight parameter.

In Example 66, the subject matter of Example 65
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the
weight parameter 1s achieved based on computation of a
partial dertvative of the loss function with respect to a QT
conjugate of an output of the QT mnner product operation.

In Example 67, the subject matter of Examples 35-66
includes, wherein the QT forward operations include a QT
inner product operation at a first layer, wherein the Q1 1inner
product operation accepts as an mput a first quaternion-
valued feature map from a prior layer; and wherein compu-
tation of layer-wise QT partial dernivatives includes compu-
tation of a partial derivative of the loss function with respect
to a QT conjugate of the first quaternion-valued feature map.

In Example 68, the subject matter of Examples 59-67
includes, wherein the computation of a partial derivative of
the loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of an output of the QT inner
product operation.

Example 69 1s a method for operating a deep neural
network (DNN), the method comprising: providing an input
layer, an output layer, and a plurality of hidden layers
arranged along a forward propagation path between the
input layer and the output layer; wherein the mput layer 1s
to accept training data comprising quaternion values, and to
output a quaternion-valued signal along the forward propa-
gation path to at least one of the plurality of hidden layers;
wherein at least some of the hidden layers include, quater-
nion layers to execute consistent quaternion (QT) forward
operations based on one or more variable parameters, to
produce a corresponding at least one feature map output
along the forward propagation path; wherein the output layer
1s to produce a DNN result that 1s based on the QT forward
operations; providing a loss function engine to produce a
loss function representing an error between the DNN result

US 11,593,643 B2

35

and an expected result; executing a QT backpropagation-
based training operations that include: computing layer-wise
QT partial derivatives, consistent with an orthogonal basis of
quaternion space, of the loss function with respect to a QT
conjugate of the one or more variable parameters and of
respective inputs to the quaternion layers, the QT partial
derivatives being taken along a backwards propagation path
that 1s opposite the forward propagation path, successively
though the plurality of hidden layers; and updating the
variable parameters to reduce the error attributable to each
corresponding hidden layer based on the QT partial deriva-
tives.

In Example 70, the subject matter of Example 69
includes, wherein the training data represents an 1mage.

In Example 71, the subject matter of Examples 69-70
includes, wherein the mput layer 1s to perform at least one
QT operation.

In Example 72, the subject matter of Example 71
includes, wherein the at least one QT operation includes
non-commutative QT multiplication.

In Example 73, the subject matter of Examples 71-72
includes, wherein the at least one QT operation includes QT
geometric product.

In Example 74, the subject matter of Examples 69-73
includes, wherein the QT forward operations include QT
activation and QT pooling operations.

In Example 75, the subject matter of Examples 69-74
includes, wherein the QT forward operations include a QT
activation operation selected from the group consisting of: a
QT rectified linear unit operation, a QT sigmoid operation,
or a QT hyperbolic tangent operation, wheremn the QT
activation operation 1s applied directly to an input signal that
1s passed to the QT activation operation.

In Example 76, the subject matter of Examples 69-73
includes, wherein the Q1 forward operations include a QT
rectified linear unit operation that accepts an 1nput compris-
ing a quaternion value having a real part and an imaginary
part, and produces as an output either: (a) the quaternion
value itself, when the real part and the imaginary part are
cach a positive real number; or (b) a zero quaternion value,
when any one of the real part or the 1maginary part 1s not a
positive real number.

In Example 77, the subject matter of Examples 69-76
includes, wherein the QT forward operations include a QT
convolution operation.

In Example 78, the subject matter of Example 77
includes, wherein the QT convolution operation maintains
spatial translational invariance.

In Example 79, the subject matter of Examples 69-78
includes, wherein the Q1 forward operations include a QT
inner product operation.

In Example 80, the subject matter of Examples 69-79
includes, wherein computation of layer-wise Q1 partial
derivatives of the loss function includes performing a QT
chain rule operation.

In Example 81, the subject matter of Examples 69-80
includes, wherein the one or more variable parameters are
quaternion-valued.

In Example 82, the subject matter of Examples 69-81
includes, wherein the one or more variable parameters
include a weight parameter.

In Example 83, the subject matter of Examples 69-82
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 84, the subject matter of Examples 69-83
includes, wherein the one or more variable parameters
include a bias parameter.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

In Example 85, the subject matter of Examples 69-84
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 86, the subject matter of Examples 69-85
includes, wherein computation of the layer-wise QT partial
derivatives produce Q1 gradients of the loss function with
respect to all of the variable parameters of the hidden layers.

In Example 87, the subject matter of Examples 69-86
includes, wherein the Q1 forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued bias
parameter; and wherein computing the layer-wise QT partial
derivatives includes computing a partial derivative of the
loss function with respect to a QT conjugate of the bias
parameter.

In Example 88, the subject matter of Example 87
includes, wherein the computing of a partial derivative of the
loss function with respect to the QT conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT convolution operation.

In Example 89, the subject matter of Examples 87-88
includes, wherein the training data includes an 1image having
pixel indices x and y, and wherein the partial derivative of
the loss function with respect to the QT conjugate of the bias
parameter 1s computed based on a QT summation over the
pixel indices X and y of the QT partial derivatives of the loss
function with respect to an output of the QT convolution
operation at the first layer.

In Example 90, the subject matter of Examples 69-89
includes, wherein the QT forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued
welght parameter; and wheremn computing layer-wise QT
partial derivatives includes computing a partial derivative of
the loss function with respect to a QT conjugate of the
welght parameter.

In Example 91, the subject matter of Example 90
includes, wherein the computing a partial derivative of the
loss function with respect to the QT conjugate of the weight
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT convolution operation.

In Example 92, the subject matter of Examples 90-91
includes, wherein the training data includes an 1image having
pixel indices x and y, and wherein the partial derivative of
the loss function with respect to the QT conjugate of the
welght parameter 1s computed based on a QT summation
over the pixel indices x and y of the QT partial derivatives
of the loss function with respect to an output of the QT
convolution operation at the first layer.

In Example 93, the subject matter of Examples 69-92
includes, wherein the QT forward operations include a QT
convolution operation at a first layer, wherein the QT
convolution operation accepts as an mput a first quaternion-
valued feature map from a prior layer; and wherein com-
puting layer-wise QT partial denivatives includes computing
a partial derivative of the loss function with respect to a QT
conjugate of the first quaternion-valued feature map.

In Example 94, the subject matter of Example 93
includes, wherein computing the partial dernivative of the
loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of an output of the QT convolution
operation.

US 11,593,643 B2

37

In Example 95, the subject matter of Examples 69-94
includes, wherein the QT forward operations include a QT
rectified linear unit operation at a first layer that produces a
first quaternion-valued activation output; and wherein com-
puting layer-wise QT partial derivatives includes computing
a partial derivative of the loss function with respect to a QT
conjugate of the first quaternion-valued activation output.

In Example 96, the subject matter of Examples 69-93
includes, wherein the Q1T forward operations include a QT
pooling operation at a first layer that produces quaternion-
valued pooling output based on quaternion-valued mput to
the first layer; and wherein computing layer-wise Q1 partial
derivatives includes computing a sum of partial dertvatives
of the quaternion-valued pooling output to which the quater-
nion-valued 1nput contributes.

In Example 97, the subject matter of Examples 69-96
includes, wherein the QT forward operations include a QT
iner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued
bias parameter; and wherein computing layer-wise QT par-
tial derivatives includes computing a partial derivative of the
loss function with respect to a QT conjugate of the bias
parameter.

In Example 98, the subject matter of Example 97
includes, wherein computing the partial derivative of the
loss function with respect to the QT conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss fTunction with respect to a QT conjugate
of an output of the QT inner product operation.

In Example 99, the subject matter of Examples 69-98
includes, wherein the QT forward operations include a QT
iner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued
welght parameter; and whereimn computing layer-wise QT
partial derivatives includes computing a partial derivative of
the loss function with respect to a QT conjugate of the
welght parameter.

In Example 100, the subject matter of Example 99
includes, wherein computing the partial derivative of the
loss function with respect to the QT conjugate of the weight
parameter 1s achieved based on computation of a partial
derivative of the loss fTunction with respect to a QT conjugate
of an output of the QT inner product operation.

In Example 101, the subject matter of Examples 69-100
includes, wherein the QT forward operations include a QT
inner product operation at a first layer, wherein the QT 1nner
product operation accepts as an input a {irst quaternion-
valued feature map from a prior layer; and wherein com-
puting layer-wise QT partial derivatives includes computing,
a partial derivative of the loss function with respect to a QT
conjugate of the first quaternion-valued feature map.

In Example 102, the subject matter of Examples 93-101
includes, wherein computing the partial derivative of the
loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial denivative of the loss function with
respect to a QT conjugate of an output of the QT inner
product operation.

Example 103 1s a system for operating a deep neural
network (DNN), the system comprising: means for provid-
ing an input layer, an output layer, and a plurality of hidden
layers arranged along a forward propagation path between
the input layer and the output layer; wherein the mnput layer
1s to accept training data comprising quaternion values, and
to output a quaternion-valued signal along the forward
propagation path to at least one of the plurality of hidden
layers; wherein at least some of the hidden layers include,

10

15

20

25

30

35

40

45

50

55

60

65

38

quaternion layers to execute consistent quaternion (QT)
forward operations based on one or more variable param-
eters, to produce a corresponding at least one feature map
output along the forward propagation path; wherein the
output layer 1s to produce a DNN result that 1s based on the
QT forward operations; means for producing a loss function
representing an error between the DNN result and an
expected result; means for executing QT backpropagation-
based training operations that include: computing layer-wise
QT partial dervatives, consistent with an orthogonal basis of
quaternion space, of the loss function with respect to a QT
conjugate of the one or more variable parameters and of
respective mputs to the quaternion layers, the QT partial
derivatives being taken along a backwards propagation path
that 1s opposite the forward propagation path, successively
though the plurality of hidden layers; and updating the
variable parameters to reduce the error attributable to each
corresponding hidden layer based on the QT partial deriva-
tives.

In Example 104, the subject matter of Example 103
includes, wherein the training data represents an 1image.

In Example 105, the subject matter of Examples 103-104
includes, wherein the mput layer 1s to perform at least one
QT operation.

In Example 106, the subject matter of Example 103
includes, wherein the at least one QT operation includes
non-commutative QT multiplication.

In Example 107, the subject matter of Examples 105-106
includes, wherein the at least one Q1 operation includes QT
geometric product.

In Example 108, the subject matter of Examples 103-107
includes, wherein the QT forward operations include QT
activation and QT pooling operations.

In Example 109, the subject matter of Examples 103-108
includes, wherein the Q1 forward operations include a QT
activation operation selected from the group consisting of: a
QT rectified linear unit operation, a QT sigmoid operation,
or a QT hyperbolic tangent operation, wherein the QT
activation operation 1s applied directly to an input signal that
1s passed to the QT activation operation.

In Example 110, the subject matter of Examples 103-109
includes, wherein the QT forward operations include a QT
rectified linear unit operation that accepts an 1nput compris-
ing a quatermion value having a real part and an 1maginary
part, and produces as an output either: (a) the quatermion
value itself, when the real part and the imaginary part are
cach a positive real number; or (b) a zero quaternion value,
when any one of the real part or the imaginary part 1s not a
positive real number.

In Example 111, the subject matter of Examples 103-110
includes, wherein the Q1 forward operations include a QT
convolution operation.

In Example 112, the subject matter of Example 111
includes, wherein the QT convolution operation maintains
spatial translational invariance.

In Example 113, the subject matter of Examples 103-112
includes, wherein the QT forward operations include a QT
inner product operation.

In Example 114, the subject matter of Examples 103-113
includes, wherein computation of layer-wise QT partial
derivatives of the loss function includes performing a QT
chain rule operation.

In Example 113, the subject matter of Examples 103-114
includes, wherein the one or more variable parameters are
quaternion-valued.

US 11,593,643 B2

39

In Example 116, the subject matter of Examples 103-115
includes, wherein the one or more variable parameters
include a weight parameter.

In Example 117, the subject matter of Examples 103-116
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 118, the subject matter of Examples 103-117
includes, wherein the one or more variable parameters
include a bias parameter.

In Example 119, the subject matter of Examples 103-118
includes, wherein the weight parameter 1s a multi-dimen-
sional quaternion value.

In Example 120, the subject matter of Examples 103-119
includes, wherein computation of the layer-wise Q1 partial
derivatives produce QT gradients of the loss function with
respect to all of the variable parameters of the hidden layers.

In Example 121, the subject matter of Examples 103-120
includes, wherein the QT forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued bias
parameter; and wherein computing the layer-wise QT partial
derivatives includes computing a partial dertvative of the
loss function with respect to a QT conjugate of the bias

parameter.

In Example 122, the subject matter of Example 121
includes, wherein the computing of a partial derivative of the
loss function with respect to the QT conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT convolution operation.

In Example 123, the subject matter of Examples 121-122
includes, wherein the training data includes an 1image having
pixel indices x and y, and wherein the partial dertvative of
the loss function with respect to the Q1 conjugate of the bias
parameter 1s computed based on a QT summation over the
pixel indices x and y of the QT partial derivatives of the loss
function with respect to an output of the QT convolution
operation at the first layer.

In Example 124, the subject matter of Examples 103-123
includes, wherein the QT forward operations include a QT
convolution operation at a first layer and wherein the one or
more variable parameters include a quaternion-valued
weight parameter; and wherein computing layer-wise QT
partial derivatives includes computing a partial derivative of
the loss function with respect to a QT conjugate of the
welght parameter.

In Example 1235, the subject matter of Example 124
includes, wherein the computing a partial derivative of the
loss function with respect to the Q1 conjugate of the weight
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT convolution operation.

In Example 126, the subject matter of Examples 124-125
includes, wherein the training data includes an image having
pixel indices X and y, and wherein the partial derivative of
the loss function with respect to the QT conjugate of the
weight parameter 1s computed based on a QT summation
over the pixel indices x and y of the QT partial derivatives
of the loss function with respect to an output of the QT
convolution operation at the first layer.

In Example 127, the subject matter of Examples 103-126
includes, wherein the Q1 forward operations include a QT
convolution operation at a first layer, wherein the QT
convolution operation accepts as an input a first quaternion-
valued feature map from a prior layer; and wherein com-

puting layer-wise QT partial derivatives includes computing,

10

15

20

25

30

35

40

45

50

55

60

65

40

a partial derivative of the loss function with respect to a QT
conjugate of the first quaternion-valued feature map.

In Example 128, the subject matter of Example 127
includes, wherein computing the partial denivative of the
loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of an output of the QT convolution
operation.

In Example 129, the subject matter of Examples 103-128
includes, wherein the Q1 forward operations include a QT
rectified linear unit operation at a first layer that produces a
first quaternion-valued activation output; and wherein com-
puting layer-wise QT partial derivatives includes computing
a partial derivative of the loss function with respect to a QT
conjugate of the first quaternion-valued activation output.

In Example 130, the subject matter of Examples 103-129
includes, wherein the Q1 forward operations include a QT
pooling operation at a first layer that produces quaternion-
valued pooling output based on quaternion-valued mput to
the first layer; and wherein computing layer-wise Q1 partial
derivatives includes computing a sum of partial derivatives
of the quaternion-valued pooling output to which the quater-
nion-valued input contributes.

In Example 131, the subject matter of Examples 103-130
includes, wherein the QT forward operations include a QT
inner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued
bias parameter; and wherein computing layer-wise QT par-
tial derivatives imncludes computing a partial derivative of the
loss function with respect to a QT conjugate of the bias
parameter.

In Example 132, the subject matter of Example 131
includes, wherein computing the partial dernivative of the
loss function with respect to the QT conjugate of the bias
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT inner product operation.

In Example 133, the subject matter of Examples 103-132
includes, wherein the QT forward operations include a QT
inner product operation at a first layer and wherein the one
or more variable parameters include a quaternion-valued
weight parameter; and wherein computing layer-wise QT
partial dentvatives includes computing a partial derivative of
the loss function with respect to a QT conjugate of the
weight parameter.

In Example 134, the subject matter of Example 133
includes, wherein computing the partial dernivative of the
loss function with respect to the QT conjugate of the weight
parameter 1s achieved based on computation of a partial
derivative of the loss function with respect to a QT conjugate
of an output of the QT inner product operation.

In Example 135, the subject matter of Examples 103-134
includes, wherein the QT forward operations include a QT
inner product operation at a first layer, wherein the QT 1nner
product operation accepts as an mput a first quaternion-
valued feature map from a prior layer; and wherein com-
puting layer-wise QT partial denivatives includes computing
a partial derivative of the loss function with respect to a QT
conjugate of the first quaternion-valued feature map.

In Example 136, the subject matter of Examples 127-135
includes, wherein computing the partial dernivative of the
loss function with respect to the QT conjugate of the first
quaternion-valued feature map 1s achieved based on com-
putation of a partial derivative of the loss function with
respect to a QT conjugate of an output of the QT inner
product operation.

US 11,593,643 B2

41

Example 137 1s a machine-learning system, comprising:
processing hardware, including computation circuitry and
data storage circuitry, the processing hardware configured to
form a quaternmion deep neural network (QTDNN) including:
a plurality of modular hidden layers, each comprising a set
of QT computation sublayers, including a quaternion (QT)
general matrix multiplication sublayer, a QT non-linear
activations sublayer, and a QT sampling sublayer arranged

—

along a forward signal propagation path; wherein each Q1

—

computation sublayer of the set includes, a plurality of Q1
computation engines; and wherein each modular hidden
layer turther includes a steering sublayer preceding each of
the QT computation sublayers along the forward signal
propagation path, wherein the steering sublayer 1s to direct
a Tlorward-propagating quaternion-valued signal to a
selected at least one QT computation engine of a next QT
computation subsequent sublayer.

In Example 138, the subject matter of Example 137
includes, wherein the QT general matnix multiplication
sublayer includes a QT convolution engine and a QT 1inner
product engine.

In Example 139, the subject matter of Example 138
includes, wherein the QT convolution engine and the QT
inner product engine each comprise a plurality of kernels.

In Example 140, the subject matter of Example 139
includes, wherein the QT convolution engine 1s to perform
QT operations, using QT general matrix multiplication, that
maintain spatial translational invariance.

In Example 141, the subject matter of Examples 138-140
includes, wherein the QT convolution engine 1s to perform
a QT summation of a quaternion-valued input signal, at
successive shifts, QT-multiplied with a QT-valued filter, to
produce a QT convolution output.

In Example 142, the subject matter of Example 141
includes, wherein the QT convolution engine 1s to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT convolution output.

In Example 143, the subject matter of Examples 141-142
includes, wherein the QT convolution engine 1s to perform
a multi-dimensional QT convolution operation.

In Example 144, the subject matter of Examples 138-143
includes, wherein the QT inner product engine 1s to perform
a series of term-wise QT multiplication operations between
a quaternion-valued QT inner product mput and a set of
quaternion-valued weights, to produce a QT inner product
output.

In Example 145, the subject matter of Example 144
includes, wherein the QT 1nner product engine 1s to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT inner product.

In Example 146, the subject matter of Examples 137-145
includes, wherein the QT non-linear activations sublayer
includes a QT rectified linear activation unit (RelLU) engine,
and at least one of: a QT sigmoid activation engine, or a QT
hyperbolic tangent activation engine.

In Example 147, the subject matter of Example 146
includes, wherein the QT ReLU engine 1s to accept a
quaternion-valued imnput comprising a real component and an
imaginary component, and produce, as a QT ReLLU output,
the quaternion-valued mput when each of the real and
imaginary components 1s a positive real number, and to
otherwise produce, as the QT ReLLU output, a zero quater-
nion value.

In Example 148, the subject matter of Examples 146-147
includes, wherein the QT non-linear activations sublayer
includes a pass-through block that passes an input signal of

10

15

20

25

30

35

40

45

50

55

60

65

42

the QT non-linear activations sublayer to an output of the
QT non-linear activations sublayer.

In Example 149, the subject matter of Examples 146-148
includes, wherein the QT RelLU engine 1s to accept an input
comprising a quaternion value having a real part and an
imaginary part, and produce as an output eirther: (a) the
quaternion value 1tself, when the real part and the imaginary
part are each a positive real number; or (b) a zero quaternion
value, when any one of the real part or the imaginary part 1s
not a positive real number.

In Example 1350, the subject matter of Examples 137-149
includes, wherein the QT sampling sublayer includes a QT
max pooling engine, and a QT average pooling engine.

In Example 151, the subject matter of Example 1350
includes, wherein the QT sampling sublayer includes a
pass-through block that passes an iput signal of the QT
sampling sublayer to an output of the QT sampling sublayer.

In Example 1352, the subject matter of Examples 150-131
includes, wherein at least one pooling engine from among
the QT max pooling engine or the QT average pooling
engine 1s to compute a QT norm of a quaternion-valued
portion of an input to the QT sampling sublayer to produce
a first scalar value, and to compare the first scalar value
against other QT norm-produced scalar values to produce a
QT pooling operation output.

In Example 153, the subject matter of Examples 137-152
includes, wherein the quaternion-valued signal represents an
1mage.

In Example 154, the subject matter of Examples 137-133
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including non-com-
mutative QT multiplication.

In Example 135, the subject matter of Examples 137-134
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including QT geo-
metric product.

In Example 156, the subject matter of Examples 137-135
includes, wherein a first steering sublayer 1s to partition the
input signal mto a first portion directed to a first QT
computation engine of a corresponding subsequent QT
computation sublayer, and a second portion directed to a
second QT computation engine of the subsequent QT com-
putation sublayer.

In Example 157, the subject matter of Examples 137-156
includes, wherein the subsequent QT computation sublayer
includes a pass-through first steering sublayer 1s to select at
least one QT computation engine ol a corresponding sub-
sequent Q1 computation sublayer, from among a first and a
second QT computation engine, to perform a QT computa-
tion operation.

In Example 138, the subject matter of Example 157
includes, wherein the subsequent QT computation sublayer
includes a pass-through block that passes an input signal of
the QT computation sublayer to an output of the QT com-
putation sublayer; and wherein the first steering sublayer 1s
to select the pass-through block from among the first QT
computation engine, the second QT computation engine, and
the pass-through block, to either perform, or bypass, a QT
computation operation.

Example 159 1s a method for operating a quaternion deep
neural network (QTDNN), the method comprising: provid-
ing a plurality of modular hidden layers, each comprising a
set of QT computation sublayers, including a quaternion
(QT) general matrix multiplication sublayer, a Q1T non-
linear activations sublayer, and a Q1 sampling sublayer
arranged along a forward signal propagation path; provid-
ing, 1 each QT computation sublayer of the set, a plurality

US 11,593,643 B2

43

of QT computation engines; providing, in each modular
hidden layer, a steering sublayer preceding each of the QT
computation sublayers along the forward signal propagation
path; and directing, by the steering sublayer, a forward-
propagating quaternion-valued signal to a selected at least
one QT computation engine of a next QT computation
subsequent sublayer.

In Example 160, the subject matter of Example 159
includes, wherein the QT general matrix multiplication
sublayer includes a QT convolution engine and a QT 1nner
product engine.

In Example 161, the subject matter of Example 160
includes, wherein the QT convolution engine and the QT
inner product engine each comprise a plurality of kernels.

In Example 162, the subject matter of Example 161
includes, wherein the QT convolution engine 1s to perform
QT operations, using QT general matrix multiplication, that
maintain spatial translational invariance.

In Example 163, the subject matter of Examples 160-162
includes, wherein the QT convolution engine 1s to perform
a QT summation of a quaternion-valued input signal, at
successive shifts, QT-multiplied with a QT-valued filter, to
produce a QT convolution output.

In Example 164, the subject matter of Example 163
includes, wherein the QT convolution engine 1s to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT convolution output.

In Example 165, the subject matter of Examples 163-164
includes, wherein the QT convolution engine 1s to perform
a multi-dimensional QT convolution operation.

In Example 166, the subject matter of Examples 160-163
includes, wherein the QT inner product engine 1s to perform
a series of term-wise QT multiplication operations between
a quaternion-valued QT inner product mput and a set of
quaternion-valued weights, to produce a QT mner product
output.

In Example 167, the subject matter of Example 166
includes, wherein the QT mnner product engine 1s to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT 1nner product.

In Example 168, the subject matter of Examples 159-167
includes, wherein the QT non-linear activations sublayer
includes a QT rectified linear activation unit (RelLU) engine,
and at least one of: a QT sigmoid activation engine, or a QT
hyperbolic tangent activation engine.

In Example 169, the subject matter of Example 168
includes, wheremn the QT ReLU engine 1s to accept a
quaternion-valued mnput comprising a real component and an
imaginary component, and produce, as a QT ReLLU output,
the quaternion-valued mput when each of the real and
imaginary components 1s a positive real number, and to
otherwise produce, as the QT ReLLU output, a zero quater-
nion value.

In Example 170, the subject matter of Examples 168-169
includes, wherein the QT non-linear activations sublayer
includes a pass-through block that passes an input signal of
the QT non-linear activations sublayer to an output of the
QT non-linear activations sublayer.

In Example 171, the subject matter of Examples 168-170
includes, wherein the QT RelLU engine 1s to accept an 1mnput
comprising a quaternion value having a real part and an
imaginary part, and produce as an output either: (a) the
quaternion value 1tself, when the real part and the imaginary
part are each a positive real number; or (b) a zero quaternion
value, when any one of the real part or the imaginary part 1s
not a positive real number.

10

15

20

25

30

35

40

45

50

55

60

65

44

In Example 172, the subject matter of Examples 159-171
includes, wherein the QT sampling sublayer includes a QT
max pooling engine, and a QT average pooling engine.

In Example 173, the subject matter of Example 172
includes, wherein the QT sampling sublayer includes a
pass-through block that passes an input signal of the QT
sampling sublayer to an output of the QT sampling sublayer.

In Example 174, the subject matter of Examples 172-173
includes, wherein at least one pooling engine from among
the QT max pooling engine or the QT average pooling
engine 1s to compute a QT norm of a quaternion-valued
portion of an mput to the QT sampling sublayer to produce
a first scalar value, and to compare the first scalar value
against other QT norm-produced scalar values to produce a
QT pooling operation output.

In Example 175, the subject matter of Examples 159-174
includes, wherein the quaternion-valued signal represents an
1mage.

In Example 176, the subject matter of Examples 159-175
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including non-com-
mutative QT multiplication.

In Example 177, the subject matter of Examples 159-176
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including QT geo-
metric product.

In Example 178, the subject matter of Examples 159-177
includes, wherein a first steering sublayer 1s to partition the
iput signal to a first portion directed to a first QT
computation engine ol a corresponding subsequent QT
computation sublayer, and a second, portion directed to a
second QT computation engine of the subsequent QT com-
putation sublayer.

In Example 179, the subject matter of Examples 159-178
includes, wherein the subsequent QT computation sublayer
includes a pass-through first steering sublayer 1s to select at
least one QT computation engine of a corresponding sub-
sequent (J1T computation sublayer, from among a first and a
second QT computation engine, to perform a Q1 computa-
tion operation.

In Example 180, the subject matter of Example 179
includes, wherein the subsequent QT computation sublayer
includes a pass-through block that passes an input signal of
the QT computation sublayer to an output of the QT com-
putation sublayer; and wherein the first steering sublayer 1s
to select the pass-through block from among the first QT
computation engine, the second QT computation engine, and
the pass-through block, to either perform, or bypass, a QT
computation operation.

Example 181 i1s at least one machine-readable storage
medium comprising instructions that, when executed on a
computing platform, cause the computing platform to form
a quaternion deep neural network (QTDNN) including: a
plurality of modular hidden layers, each comprising a set of
QT computation sublayers, including a quaternion (QT)
general matrix multiplication sublayer, a Q1 non-linear
activations sublayer, and a QT sampling sublayer arranged
along a forward signal propagation path; wherein each QT
computation sublayer of the set includes, a plurality of QT
computation engines; and wherein each modular hidden
layer further includes a steering sublayer preceding each of
the QT computation sublayers along the forward signal
propagation path, wherein the steering sublayer 1s to direct
a Torward-propagating quaternion-valued signal to a
selected at least one QT computation engine of a next QT
computation subsequent sublayer.

US 11,593,643 B2

45

In Example 182, the subject matter of Example 181
includes, wherein the QT general matrix multiplication
sublayer includes a QT convolution engine and a QT 1nner
product engine.

In Example 183, the subject matter of Example 182
includes, wherein the QT convolution engine and the QT
inner product engine each comprise a plurality of kernels.

In Example 184, the subject matter of Example 183
includes, wherein the QT convolution engine 1s to perform
QT operations, using QT general matrix multiplication, that
maintain spatial translational invariance.

In Example 185, the subject matter of Examples 182-184
includes, wherein the QT convolution engine 1s to perform
a QT summation of a quaternion-valued input signal, at
successive shifts, QT-multiplied with a QT-valued filter, to
produce a QT convolution output.

In Example 186, the subject matter of Example 185
includes, wherein the QT convolution engine 1s to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT convolution output.

In Example 187, the subject matter of Examples 185-186
includes, wherein the QT convolution engine 1s to perform
a multi-dimensional QT convolution operation.

In Example 188, the subject matter of Examples 182-187
includes, wherein the QT inner product engine 1s to perform
a series of term-wise QT multiplication operations between
a quaternion-valued QT inner product mput and a set of
quaternion-valued weights, to produce a QT inner product
output.

In Example 189, the subject matter of Example 188
includes, wherein the QT 1nner product engine 1s to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT inner product.

In Example 190, the subject matter of Examples 181-189
includes, wherein the QT non-linear activations sublayer
includes a QT rectified linear activation unit (ReLLU) engine,
and at least one of: a QT sigmoid activation engine, or a QT
hyperbolic tangent activation engine.

In Example 191, the subject matter of Example 190
includes, wherein the QT ReLU engine 1s to accept a
quaternion-valued input comprising a real component and an
imaginary component, and produce, as a QT ReLU output,
the quaternion-valued mput when each of the real and
imaginary components 1s a positive real number, and to

otherwise produce, as the QT ReLLU output, a zero quater-
nion value.

In Example 192, the subject matter of Examples 190-191
includes, wherein the QT non-linear activations sublayer
includes a pass-through block that passes an 1nput signal of
the QT non-linear activations sublayer to an output of the
QT non-linear activations sublayer.

In Example 193, the subject matter of Examples 190-192
includes, wherein the QT ReLLU engine 1s to accept an input
comprising a quaternion value having a real part and an
imaginary part, and produce as an output either: (a) the
quaternion value itself, when the real part and the imaginary
part are each a positive real number; or (b) a zero quaternion
value, when any one of the real part or the imaginary part 1s
not a positive real number.

In Example 194, the subject matter of Examples 181-193
includes, wherein the QT sampling sublayer includes a QT
max pooling engine, and a QT average pooling engine.

In Example 1935, the subject matter of Example 194
includes, wherein the QT sampling sublayer includes a
pass-through block that passes an input signal of the QT
sampling sublayer to an output of the QT sampling sublayer.

10

15

20

25

30

35

40

45

50

55

60

65

46

In Example 196, the subject matter of Examples 194-195
includes, wherein at least one pooling engine from among
the QT max pooling engine or the QT average pooling
engine 1s to compute a QT norm of a quaternion-valued
portion of an mput to the QT sampling sublayer to produce
a first scalar value, and to compare the first scalar value
against other QT norm-produced scalar values to produce a
QT pooling operation output.

In Example 197, the subject matter of Examples 181-196
includes, wherein the quaternion-valued signal represents an
1mage.

In Example 198, the subject matter of Examples 181-197
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including non-com-
mutative QT multiplication.

In Example 199, the subject matter of Examples 181-198
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including QT geo-
metric product.

In Example 200, the subject matter of Examples 181-199
includes, wherein a {irst steering sublayer 1s to partition the
input signal to a first portion directed to a first QT
computation engine ol a corresponding subsequent QT
computation sublayer, and a second portion directed to a
second QT computation engine of the subsequent QT com-
putation sublayer.

In Example 201, the subject matter of Examples 181-200
includes, wherein the subsequent QT computation sublayer
includes a pass-through first steering sublayer 1s to select at
least one QT computation engine of a corresponding sub-
sequent (J1 computation sublayer, from among a first and a
second QT computation engine, to perform a QT computa-
tion operation.

In Example 202, the subject matter of Example 201
includes, wherein the subsequent QT computation sublayer
includes a pass-through block that passes an input signal of
the QT computation sublayer to an output of the QT com-
putation sublayer; and wherein the first steering sublayer 1s
to select the pass-through block from among the first QT
computation engine, the second QT computation engine, and
the pass-through block, to either perform, or bypass, a QT
computation operation.

Example 203 1s a system for implementing a quaternion
deep neural network (QTDNN), the system comprising:
means for providing a plurality of modular hidden layers,
cach comprising a set of QT computation sublayers, includ-
ing a quaternion (QT) general matrix multiplication
sublayer, a QT non-linear activations sublayer, and a QT
sampling sublayer arranged along a forward signal propa-
gation path; wherein each QT computation sublayer of the
set 1cludes, a plurality of QT computation means; and
wherein each modular hidden layer further includes steering
means preceding each of the QT computation sublayers
along the forward signal propagation path, wherein the
steering means 1s to direct a forward-propagating quater-
nion-valued signal to a selected at least one QT computation
means of a next QT computation subsequent sublayer.

In Example 204, the subject matter of Example 203
includes, wherein the QT general matrix multiplication
sublayer includes QT convolution means and QT 1nner
product means.

In Example 205, the subject matter of Example 204
includes, wherein the QT convolution means and the QT
inner product means each comprise a plurality of kernels.

In Example 206, the subject matter of Example 2035
includes, wherein the QT convolution means are to perform

US 11,593,643 B2

47

QT operations, using QT general matrix multiplication, that
maintain spatial translational invariance.

In Example 207, the subject matter of Examples 204-206
includes, wherein the QT convolution means are to perform
a QT summation of a quaternion-valued input signal, at
successive shifts, QT-multiplied with a QT-valued filter, to
produce a QT convolution output

In Example 208, the subject matter of Example 207
includes, wherein the QT convolution means are to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT convolution output.

In Example 209, the subject matter of Examples 207-208
includes, wherein the QT convolution means are to perform
a multi-dimensional QT convolution operation.

In Example 210, the subject matter of Examples 204-209
includes, wherein the QT inner product means are to per-
form a series of term-wise QT multiplication operations
between a quaternion-valued QT 1nner product mput and a
set of quaternion-valued weights, to produce a QT inner
product output.

In Example 211, the subject matter of Example 210
includes, wherein the QT inner product means are to further
perform a QT addition of a quaternion-valued bias param-
cter with the QT inner product.

In Example 212, the subject matter of Examples 203-211
includes, wherein the QT non-linear activations sublayer
includes a QT rectified linear activation unit (ReLLU) means,
and at least one of: a QT sigmoid activation means, or a QT
hyperbolic tangent activation means.

In Example 213, the subject matter of Example 212
includes, wherein the QT ReLLU means are to accept a
quaternion-valued mnput comprising a real component and an
imaginary component, and produce, as a QT ReLLU output,
the quaternion-valued mput when each of the real and
imaginary components 1s a positive real number, and to
otherwise produce, as the QT ReLU output, a zero quater-
nion value.

In Example 214, the subject matter of Examples 212-213
includes, wherein the QT non-linear activations sublayer

includes a pass-through block that passes an input signal of

the QT non-linear activations sublayer to an output of the
QT non-linear activations sublayer.

In Example 213, the subject matter of Examples 212-214
includes, wherein the QT ReLLU means are to accept an input
comprising a quaternion value having a real part and an
imaginary part, and produce as an output eirther: (a) the
quaternion value 1tself, when the real part and the imaginary
part are each a positive real number; or (b) a zero quaternion
value, when any one of the real part or the imaginary part 1s
not a positive real number.

In Example 216, the subject matter of Examples 203-2135
includes, wherein the QT sampling sublayer includes QT
max pooling means, and QT average pooling means.

In Example 217, the subject matter of Example 216
includes, wherein the QT sampling sublayer includes a
pass-through block that passes an input signal of the QT
sampling sublayer to an output of the QT sampling sublayer.

In Example 218, the subject matter of Examples 216-217
includes, wherein at least one pooling means from among
the QT max pooling means or the QT average pooling means

are to compute a QT norm of a quaternion-valued portion of

an 1nput to the QT sampling sublayer to produce a first scalar
value, and to compare the first scalar value against other QT
norm-produced scalar values to produce a QT pooling
operation output.

10

15

20

25

30

35

40

45

50

55

60

65

48

In Example 219, the subject matter of Examples 203-218
includes, wherein the quaternion-valued signal represents an
image.

In Example 220, the subject matter of Examples 203-219
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including non-com-
mutative QT multiplication.

In Example 221, the subject matter of Examples 203-220
includes, wherein each one of the set of QT computation
sublayers 1s to perform QT operations including QT geo-
metric product.

In Example 222, the subject matter of Examples 203-221
includes, wherein a first steering sublayer 1s to partition the
mput signal into a first portion directed to a first QT
computation means of a corresponding subsequent QT com-
putation sublayer, and a second portion directed to a second
QT computation means of the subsequent QT computation
sublayer.

In Example 223, the subject matter of Examples 203-222
includes, wherein the subsequent QT computation sublayer
includes a pass-through first steering sublayer 1s to select at
least one QT computation means of a corresponding subse-
quent QT computation sublayer, from among a first and a
second QT computation means, to perform a QT computa-
tion operation.

In Example 224, the subject matter of Example 223
includes, wherein the subsequent QT computation sublayer
includes a pass-through block that passes an input signal of
the QT computation sublayer to an output of the QT com-
putation sublayer; and wherein the first steering sublayer 1s
to select the pass-through block from among the first QT
computation means, the second QT computation means, and
the pass-through block, to either perform, or bypass, a QT
computation operation.

Example 225 1s a machine-learning system, comprising:
processing hardware, including computation circuitry and
data storage circuitry, the processing hardware configured to
form a quaternion (QT) computation engine; wherein mput
data to the QT computation engine includes, quaternion
values, each comprising a real component and three 1magi-
nary components, represented as a set of real-valued tensors,
wherein: a single quaternion value 1s represented as a
1 -dimensional real-valued tensor having four real-valued
components, wherein a first real-valued component repre-
sents the real component of the single quaternion value, and
wherein a second, a third, and a fourth real-valued compo-
nent each respectively represents one of the imaginary
components; a quaternion-valued vector having a size N 1s
represented as a 2-dimensional real-valued tensor compris-
ing N 1-dimensional real-valued tensors; and a quaternion-
valued matrix having NxM dimensions 1s represented as a
3-dimensional real-valued tensor comprising M 2-dimen-
sional real-valued tensors comprising N 1-dimensional real-
valued tensors.

In Example 226, the subject matter of Example 225
includes, wherein the QT computation engine 1s part of a
quaternion deep neural network (QTDNN) that includes: a
set of one or more hidden layers, each comprising a set of
QT computation sublayers, wherein one of the QT compu-
tation sublayers of the set includes the QT computation
engine.

In Example 227, the subject matter of Examples 225-226
includes, wherein the mput data represents a first 1image
having three channels representing red, green, and blue
intensity values, and wherein the first image 1s encoded as a
set of single quaternion values wherein the first-real-valued
component of the 1-dimensional tensor corresponding to the

US 11,593,643 B2

49

real quaternion component 1s set to zero, and wherein the
red, green, and blue channel values are represented by the
second, third, and fourth real-valued components of the
1 -dimensional tensor corresponding to the 1imaginary com-
ponents.

In Example 228, the subject matter of Example 227
includes, wherein the set of quaternion values 1s further
encoded as a four-dimensional tensor having a first dimen-
s1on representing pixels along a height of the first image, a
second dimension representing pixels along a width of the
image, a third dimension of 1, and a fourth dimension of the
single quaternion values.

In Example 229, the subject matter of Example 228
includes, wherein the input data comprises a batch of 1mages
including the first 1image, and wherein the QT computation
engine 1s to process the batch of 1images together using QT
computation operations.

In Example 230, the subject matter of Example 229
includes, wherein the batch of 1mages 1s represented as a
five-dimensional tensor having a first dimension represent-
ing the images of the batch, and the remaining dimensions
representing the four-dimensional tensor.

In Example 231, the subject matter of Example 230
includes, wherein the QT computation engine includes a QT
convolution kernel having a window size S*1 on an 1put
image having C channels 1s represented as a four-dimen-
sional tensor having a first dimension S, a second dimension
T, a third dimension C, and a fourth dimension of 4.

In Example 232, the subject matter of Examples 230-231
includes, wherein the QT computation engine includes a QT
convolution engine having K kernels, each having a window
s1ze S*T on an input image having C channels 1s represented
as a five-dimensional tensor having a first dimension K, a
second dimension S, a third dimension T, a fourth dimension
C, and a fifth dimension of 4.

In Example 233, the subject matter of Examples 225-232
includes, wherein the QT computation engine 1s configured
to perform a plurality of QT computation operations, includ-
ing non-commutative QT multiplication on quaternion val-
ues represented as real-valued tensors.

In Example 234, the subject matter of Examples 225-233
includes, wherein the QT computation engine 1s configured
to perform a plurality of QT computation operations, includ-
ing QT geometric product on quaternion values represented
as real-valued tensors.

In Example 233, the subject matter of Examples 225-234
includes, wherein the QT computation engine 1s configured
to perform a plurality of QT computation operations, includ-
ing QT involution on quaternion values represented as
real-valued tensors.

In Example 236, the subject matter of Examples 225-235
includes, wherein the QT computation engine 1s precontig-
ured with QT operational blocks of four dimensions, five
dimensions, and 6 dimensions.

Example 237 1s a method for operating a quaternion (QT)
computation engine, the method comprising: receiving input
data by the QT computation engine; and storing the input
data by the QT computation engine, the mput data including
quaternion values, each comprising a real component and
three 1maginary components, represented as a set of real-
valued tensors, wherein: a single quaternion value is repre-
sented as a 1-dimensional real-valued tensor having four
real-valued components, wherein a first real-valued compo-
nent represents the real component of the single quaternion
value, and wherein a second, a third, and a fourth real-valued
component each respectively represents one of the 1magi-
nary components; a quaternion-valued vector having a size

10

15

20

25

30

35

40

45

50

55

60

65

50

N 1s represented as a 2-dimensional real-valued tensor
comprising N 1-dimensional real-valued tensors; and a
quaternion-valued matrix having NxM dimensions 1s repre-
sented as a 3-dimensional real-valued tensor comprising M
2-dimensional real-valued tensors comprising N 1-dimen-
sional real-valued tensors.

In Example 238, the subject matter of Example 237
includes, wherein the QT computation engine 1s part of a
quaternion deep neural network (QTDNN) that includes: a
set of one or more hidden layers, each comprising a set of
QT computation sublayers, wherein one of the QT compu-
tation sublayers of the set includes the QT computation
engine.

In Example 239, the subject matter of Examples 237-238
includes, wherein the input data represents a first 1mage
having three channels representing red, green, and blue
intensity values, and wherein the first image 1s encoded as a
set of single quaternion values wherein the first-real-valued
component of the 1-dimensional tensor corresponding to the
real quaternion component 1s set to zero, and wherein the
red, green, and blue channel values are represented by the
second, third, and fourth real-valued components of the
1 -dimensional tensor corresponding to the imaginary com-
ponents.

In Example 240, the subject matter of Example 239
includes, wherein the set of quatermion values i1s further
encoded as a four-dimensional tensor having a first dimen-
s10n representing pixels along a height of the first 1mage, a
second dimension representing pixels along a width of the
image, a third dimension of 1, and a fourth dimension of the
single quaternion values.

In Example 241, the subject matter of Example 240
includes, wherein the input data comprises a batch of images
including the first image, and wherein the QT computation
engine 1s to process the batch of images together using QT
computation operations.

In Example 242, the subject matter of Example 241
includes, wherein the batch of 1mages 1s represented as a
five-dimensional tensor having a first dimension represent-
ing the images of the batch, and the remaining dimensions
representing the four-dimensional tensor.

In Example 243, the subject matter of Example 242
includes, wherein the QT computation engine includes a QT
convolution kernel having a window size S*T on an 1put
image having C channels i1s represented as a four-dimen-
sional tensor having a first dimension S, a second dimension
T, a third dimension C, and a fourth dimension of 4.

In Example 244, the subject matter of Examples 242-243
includes, wherein the QT computation engine includes a QT
convolution engine having K kernels, each having a window
s1ze S*T on an mput image having C channels 1s represented
as a five-dimensional tensor having a first dimension K, a
second dimension S, a third dimension T, a fourth dimension
C, and a fifth dimension of 4.

In Example 245, the subject matter of Examples 237-244
includes, performing, by the QT computation engine, a
plurality of QT computation operations, including non-
commutative QT multiplication on quaternion values repre-
sented as real-valued tensors.

In Example 246, the subject matter of Examples 237-245
includes, performing, by the QT computation engine, a
plurality of QT computation operations, mcluding QT geo-
metric product on quatermion values represented as real-
valued tensors.

In Example 247, the subject matter of Examples 237-246
includes, performing, by the QT computation engine, a

US 11,593,643 B2

51

plurality of QT computation operations, including QT 1nvo-
lution on quaternion values represented as real-valued ten-
SOIS.

In Example 248, the subject matter of Examples 237-247
includes, configuring the QT computation engine with QT
operational blocks of four dimensions, five dimensions, and
6 dimensions.

Example 249 1s a system for operating a quaternion (QT)
computation engine, the system comprising: means for
receiving input data by the Q1T computation engine; and
means for storing the mput data by the QT computation
engine, the mput data including quaternion values, each
comprising a real component and three 1imaginary compo-
nents, represented as a set of real-valued tensors, wherein: a
single quaternion value 1s represented as a 1-dimensional
real-valued tensor having four real-valued components,
wherein a first real-valued component represents the real
component of the single quaternion value, and wherein a
second, a third, and a fourth real-valued component each
respectively represents one of the imaginary components; a
quaternion-valued vector having a size N 1s represented as a
2-dimensional real-valued tensor comprising N 1-dimen-
sional real-valued tensors; and a quaternion-valued matrix
having NxM dimensions 1s represented as a 3-dimensional
real-valued tensor comprising M 2-dimensional real-valued
tensors comprising N 1-dimensional real-valued tensors.

In Example 250, the subject matter of Example 249
includes, wherein the QT computation engine 1s part of a
quaternion deep neural network (QTDNN) that includes: a
set of one or more hidden layers, each comprising a set of
QT computation sublayers, wherein one of the QT compu-
tation sublayers of the set includes the QT computation
engine.

In Example 251, the subject matter of Examples 249-250
includes, wherein the mput data represents a first image
having three channels representing red, green, and blue
intensity values, and wherein the first image 1s encoded as a
set of single quaternion values wherein the first-real-valued
component of the 1-dimensional tensor corresponding to the
real quaternion component 1s set to zero, and wherein the
red, green, and blue channel values are represented by the
second, third, and fourth real-valued components of the
1 -dimensional tensor corresponding to the 1imaginary com-
ponents.

In Example 252, the subject matter of Example 251
includes, wherein the set of quaternion values 1s further
encoded as a four-dimensional tensor having a first dimen-
s1on representing pixels along a height of the first image, a
second dimension representing pixels along a width of the
image, a third dimension of 1, and a fourth dimension of the
single quaternion values.

In Example 253, the subject matter of Example 252
includes, wherein the input data comprises a batch of images
including the first image, and wherein the QT computation
engine 1s to process the batch of 1images together using QT
computation operations.

In Example 254, the subject matter of Example 253
includes, wherein the batch of 1mages 1s represented as a
five-dimensional tensor having a first dimension represent-
ing the images of the batch, and the remaining dimensions
representing the four-dimensional tensor.

In Example 2535, the subject matter of Example 254
includes, wherein the QT computation engine includes a QT
convolution kernel having a window size S*1 on an 1put
image having C channels 1s represented as a four-dimen-
sional tensor having a first dimension S, a second dimension
T, a third dimension C, and a fourth dimension of 4.

10

15

20

25

30

35

40

45

50

55

60

65

52

In Example 256, the subject matter of Examples 254-2355
includes, wherein the QT computation engine includes a QT
convolution engine having K kernels, each having a window
s1ze S*T on an 1nput image having C channels 1s represented
as a five-dimensional tensor having a first dimension K, a
second dimension S, a third dimension T, a fourth dimension
C, and a fifth dimension of 4.

In Example 257, the subject matter of Examples 249-256
includes, means for performing, by the QT computation
engine, a plurality of QT computation operations, including
non-commutative QT multiplication on quaternion values
represented as real-valued tensors.

In Example 258, the subject matter of Examples 249-257
includes, means for performing, by the QT computation
engine, a plurality of QT computation operations, including
QT geometric product on quaternion values represented as
real-valued tensors.

In Example 2359, the subject matter of Examples 249-238
includes, means for performing, by the QT computation
engine, a plurality of QT computation operations, including
QT 1nvolution on quaternion values represented as real-
valued tensors.

In Example 260, the subject matter of Examples 249-2359
includes, means for configuring the QT computation engine
with QT operational blocks of four dimensions, five dimen-
sions, and 6 dimensions.

Example 261 1s at least one machine-readable medium
containing instructions that, when executed by a computing
platiorm, cause the computing platform to implement a
quaternion (QQT) computation engine to: receive mput data;
and store and process the iput data, the mput data including
quaternion values, each comprising a real component and
three 1maginary components, represented as a set of real-
valued tensors, wherein: a single quaternion value 1s repre-
sented as a 1-dimensional real-valued tensor having four
real-valued components, wherein a first real-valued compo-
nent represents the real component of the single quaternion
value, and wherein a second, a third, and a fourth real-valued
component each respectively represents one of the 1magi-
nary components; a quaternion-valued vector having a size
N 1s represented as a 2-dimensional real-valued tensor
comprising N 1-dimensional real-valued tensors; and a
quaternion-valued matrix having NxM dimensions 1s repre-
sented as a 3-dimensional real-valued tensor comprising M
2-dimensional real-valued tensors comprising N 1-dimen-
sional real-valued tensors.

In Example 262, the subject matter of Example 261
includes, wherein the QT computation engine 1s part of a
quaternion deep neural network (QTDNN) that includes: a
set of one or more hidden layers, each comprising a set of
QT computation sublayers, wherein one of the QT compu-
tation sublayers of the set includes the QT computation
engine.

In Example 263, the subject matter of Examples 261-262
includes, wherein the input data represents a first image
having three channels representing red, green, and blue
intensity values, and wherein the first image 1s encoded as a
set of single quaternion values wherein the first-real-valued
component of the 1-dimensional tensor corresponding to the
real quaternion component 1s set to zero, and wherein the
red, green, and blue channel values are represented by the
second, third, and fourth real-valued components of the
1 -dimensional tensor corresponding to the imaginary com-
ponents.

In Example 264, the subject matter of Example 263
includes, wherein the set of quaternion values 1s further
encoded as a four-dimensional tensor having a first dimen-

US 11,593,643 B2

53

s10n representing pixels along a height of the first 1mage, a
second dimension representing pixels along a width of the
image, a third dimension of 1, and a fourth dimension of the
single quaternion values.

In Example 2635, the subject matter of Example 264
includes, wherein the input data comprises a batch of images
including the first image, and wherein the QT computation
engine 1s to process the batch of images together using QT
computation operations.

In Example 266, the subject matter of Example 2635
includes, wherein the batch of 1mages 1s represented as a
five-dimensional tensor having a first dimension represent-
ing the images of the batch, and the remaining dimensions
representing the four-dimensional tensor.

In Example 267, the subject matter of Example 266
includes, wherein the QT computation engine includes a QT
convolution kernel having a window size S*1 on an 1mput
image having C channels 1s represented as a four-dimen-
sional tensor having a first dimension S, a second dimension
T, a third dimension C, and a fourth dimension of 4.

In Example 268, the subject matter of Examples 266-267
includes, wherein the QT computation engine includes a QT
convolution engine having K kernels, each having a window
s1ze S*T on an input image having C channels 1s represented
as a five-dimensional tensor having a first dimension K, a
second dimension S, a third dimension T, a fourth dimension
C, and a fifth dimension of 4.

In Example 269, the subject matter of Examples 261-268
includes, wherein the instructions are to further cause the
computing platform to perform a plurality of QT computa-
tion operations, mncluding non-commutative QT multiplica-
tion on quaternion values represented as real-valued tensors.

In Example 270, the subject matter of Examples 261-269
includes, wherein the instructions are to further cause the
computing platform to perform a plurality of QT computa-
tion operations, mcluding QT geometric product on quater-
nion values represented as real-valued tensors.

In Example 271, the subject matter of Examples 261-270
includes, wherein the instructions are to further cause the
computing platform to perform a plurality of QT computa-
tion operations, including QT mvolution on quaternion
values represented as real-valued tensors.

In Example 272, the subject matter of Examples 261-271
includes, wherein the instructions are to further cause the
computing platform to configure the QT computation engine
with QT operational blocks of four dimensions, five dimen-
sions, and 6 dimensions.

Example 273 1s at least one machine-readable medium
including instructions that, when executed by processing
circuitry, cause the processing circuitry to perform opera-
tions to implement of any of Examples 1-272.

Example 274 1s an apparatus comprising means to imple-
ment of any of Examples 1-272.

Example 275 1s a system to implement of any of
Examples 1-272.

Example 276 1s a method to implement of any of
Examples 1-272.

It should be noted that, while the examples and descrip-
tion of 1illustrative embodiments detailed above are in the
context of quaternion values, other types of complex or
hypercomplex values may be accommodated utilizing prin-
ciples of the embodiments described herein.

The above detailed description includes references to the
accompanying drawings, which form a part of the detailed
description. The drawings show, by way of illustration,
specific embodiments that may be practiced. These embodi-
ments are also referred to herein as “examples.” Such

10

15

20

25

30

35

40

45

50

55

60

65

54

examples may include elements in addition to those shown
or described. However, also contemplated are examples that
include the elements shown or described. Moreover, also
contemplated are examples using any combination or per-
mutation of those elements shown or described (or one or
more aspects thereol), either with respect to a particular
example (or one or more aspects thereol), or with respect to
other examples (or one or more aspects thereol) shown or
described herein.

Publications, patents, and patent documents referred to 1n
this document are incorporated by reference herein 1n their
entirety, as though individually incorporated by reference. In
the event of inconsistent usages between this document and
those documents so incorporated by reference, the usage in
the 1ncorporated reference(s) are supplementary to that of
this document; for irreconcilable inconsistencies, the usage
in this document controls.

In this document, the terms “a” or “an” are used, as 1s
common 1n patent documents, to include one or more than
one, independent of any other instances or usages of “at least

one” or “one or more.” In this document, the term “or” 1s
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein.” Also, 1n the following claims, the terms “includ-
ing” and “comprising” are open-ended, that is, a system,
device, article, or process that includes elements 1n addition
to those listed after such a term 1n a claim are still deemed
to fall within the scope of that claam. Moreover, 1n the
following claims, the terms *“first,” “second,” and *“third,”
etc. are used merely as labels, and are not intended to
suggest a numerical order for their objects.

The above description 1s mtended to be illustrative, and
not restrictive. For example, the above-described examples
(or one or more aspects thereol) may be used 1n combination
with others. Other embodiments may be used, such as by one
of ordinary skill 1n the art upon reviewing the above descrip-
tion. The Abstract 1s submitted with the understanding that
it will not be used to interpret or limit the scope or meaning
of the claims. Also, 1mn the above Detailed Description,
various Ieatures may be grouped together to streamline the
disclosure. However, the claims may not set forth every
feature disclosed herein as embodiments may feature a
subset of said features. Further, embodiments may include
tewer features than those disclosed 1n a particular example.
Thus, the following claims are hereby incorporated into the
Detailed Description, with a claim standing on 1ts own as a
separate embodiment. The scope of the embodiments dis-
closed herein i1s to be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

COMPUTER PROGRAM LISTING APPENDIX

ComputerProgramlListingAppendix U.S. Ser. No. 16/613,
365 1884301USIx.txt, created on Oct. 10, 2022, 28 KB,
which 1s incorporated herein by reference in its entirety.

What 1s claimed 1s:
1. A method for operating a quaternion deep neural
network (QTDNN), the method comprising:
providing a plurality of modular hidden layers, each
comprising a set of QT computation sublayers, includ-
ing a quaternion (QT) general matrix multiplication

US 11,593,643 B2

3

sublayer, a QT non-linear activations sublayer, and a
QT sampling sublayer arranged along a forward signal
propagation path;

providing, in each QT computation sublayer of the set, a

plurality of QT computation engines;
providing, 1n each modular hidden layer, a steering
sublayer preceding each of the QT computation sublay-
ers along the forward signal propagation path; and

directing, by the steering sublayer, a forward-propagating,
quaternion-valued signal to a selected at least one QT
computation engine of a next QT computation subse-
quent sublayer.

2. The method of claim 1, wherein the QT general matrix
multiplication sublayer includes a QT convolution engine
and a QT 1mner product engine.

3. The method of claim 2, wherein the QT convolution
engine and the QT inner product engine each comprise a
plurality of kernels.

4. The method of claim 3, wherein the QT convolution
engine 1s to perform QT operations, using QT general matrix
multiplication, that maintain spatial translational invariance.

5. The method of claim 2, wherein the QT convolution
engine 1s to perform a QT summation of a quaternion-valued
iput signal, at successive shifts, QT-multiplied with a
QT-valued filter, to produce a QT convolution output.

6. The method of claim 5, wherein the QT convolution
engine 1s to further perform a QT addition of a quaternion-
valued bias parameter with the QT convolution output.

7. The method of claim 35, wherein the QT convolution
engine 1s to perform a multi-dimensional QT convolution
operation.

8. The method of claim 2, wherein the QT inner product
engine 1s to perform a series of term-wise QT multiplication
operations between a quaternion-valued QT 1nner product
input and a set of quaternion-valued weights, to produce a
QT mnner product output.

9. At least one non-transitory machine-readable medium
including nstructions for operating a quaternion deep neural
network (QTDNN), the instructions, when executed by
processing circuitry, cause the processing circuitry to per-
form operations comprising:

providing a plurality of modular hidden layers, each

comprising a set of QT computation sublayers, includ-
ing a quaternion (QT) general matrix multiplication
sublayer, a QT non-linear activations sublayer, and a
QT sampling sublayer arranged along a forward signal
propagation path;

providing, 1n each QT computation sublayer of the set, a

plurality of QT computation engines;
providing, 1n each modular hidden layer, a steering
sublayer preceding each of the QT computation sublay-
ers along the forward signal propagation path; and

directing, by the steering sublayer, a forward-propagating,
quaternion-valued signal to a selected at least one QT
computation engine of a next QT computation subse-
quent sublayer.

10. The at least one non-transitory machine-readable
medium of claim 9, wherein the QT general matrix multi-
plication sublayer includes a QT convolution engine and a
QT mnner product engine.

11. The at least one non-transitory machine-readable
medium of claim 10, wherein the QT convolution engine
and the QT 1ner product engine each comprise a plurality
of kernels.

12. The at least one non-transitory machine-readable
medium of claim 11, wherein the QT convolution engine 1s

10

15

20

25

30

35

40

45

50

55

60

65

56

to perform QT operations, using QT general matrix multi-
plication, that maintain spatial translational 1nvariance.

13. The at least one non-transitory machine-readable
medium of claim 10, wherein the QT convolution engine 1s
to perform a QT summation of a quaternion-valued nput
signal, at successive shiits, QT-multiplied with a QT-valued
filter, to produce a QT convolution output.

14. The at least one non-transitory machine-readable
medium of claim 13, wherein the QT convolution engine 1s
to further perform a QT addition of a quaternion-valued bias
parameter with the QT convolution output.

15. The at least one non-transitory machine-readable
medium of claim 13, wherein the QT convolution engine 1s
to perform a multi-dimensional QT convolution operation.

16. The at least one non-transitory machine-readable
medium of claim 10, wherein the QT 1nner product engine
1s to perform a series of term-wise QT multiplication opera-
tions between a quaternion-valued QT inner product input
and a set of quaternion-valued weights, to produce a QT
inner product output.

17. A machine-learning system, comprising:

processing hardware, including computation circuitry and

data storage circuitry, the processing hardware config-

ured to form a quatermion deep neural network

(QTDNN) including:

a plurality of modular hidden layers, each comprising
a set of QT computation sublayers, including a
quaternion (QT) general matrix multiplication
sublayer, a QT non-linear activations sublayer, and a
QT sampling sublayer arranged along a forward
signal propagation path;

wherein each QT computation sublayer of the set
includes, a plurality of QT computation engines; and

wherein each modular hidden layer further includes a
steering sublayer preceding each of the QT compu-
tation sublayers along the forward signal propaga-
tion path, wherein the steering sublayer 1s to direct a
forward-propagating quaternion-valued signal to a
selected at least one QT computation engine of a next
QT computation subsequent sublayer.

18. The machine learning system of claim 17, wherein the
QT general matrix multiplication sublayer includes a QT
convolution engine and a QT mnner product engine.

19. The machine learning system of claim 18, wherein the
QT convolution engine and the QT nner product engine
cach comprise a plurality of kernels.

20. The machine learning system of claim 19, wherein the
QT convolution engine 1s to perform QT operations, using
QT general matrix multiplication, that maintain spatial
translational invariance.

21. The machine learning system of claim 18, wherein the
QT convolution engine 1s to perform a QT summation of a
quaternion-valued input signal, at successive shifts, QT-
multiplied with a QT-valued filter, to produce a QT convo-
lution output.

22. The machine learning system of claim 21, wherein the
QT convolution engine 1s to further perform a QT addition
ol a quaternion-valued bias parameter with the QT convo-
lution output.

23. The machine learning system of claim 21, wherein the
QT convolution engine 1s to perform a multi-dimensional
QT convolution operation.

24. The machine learning system of claim 18, wherein the
QT 1mmner product engine 1s to perform a series of term-wise
QT multiplication operations between a quaternion-valued

US 11,593,643 B2
S7

QT 1nner product input and a set of quaternion-valued
weights, to produce a QT inner product output.

¥ H H ¥ ¥

58

	Front Page
	Drawings
	Specification
	Claims

