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SYSTEMS AND METHODS FOR
RECONSTRUCTION OF DYNAMIC
RESONANCE IMAGING DATA

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Appli-
cation No. 62/536,858, titled “SYSTEMS AND METHODS
FOR RECONSTRUCTION OF DYNAMIC MAGNETIC
RESONANCE IMAGING DATA” and filed on Jul. 25,
2017, the entire contents of which 1s incorporated herein by
reference.

BACKGROUND

The present disclosure relates to reconstruction of 1mages
acquired with Magnetic resonance imaging (MRI).

Magnetic resonance imaging 1s commonplace in climical
settings for diagnosis and monitoring of a wide variety of
diseases. Unlike X-ray or computed tomography (CT) scans,
MRI does not require 1onizing radiation and can produce
images with a variety of contrasts to highlight injuries or
distinguish healthy from abnormal tissue. In addition to
providing single static images that depict anatomical struc-
tures, MRI can also be used to acquire multiple images in a
time series. Common applications for such dynamic imaging,
include cardiac 1maging (to image the heart as 1t beats) or
contrast-enhanced i1maging (to watch the inflow of an
injected contrast agent that can highlight abnormalities 1n
blood vessels or help depict tumors).

One lmmitation of MRI as compared to other kinds of
medical 1imaging technologies 1s that it takes some time to
produce 1mages. Depending on factors such as the imaging,
method, the field of view and the desired spatial resolution,
high-quality diagnostic 1mages may take between several
seconds and several minutes to acquire. To accurately mea-
sure dynamic physiological processes, higher speed 1s often
necessary, but speeding up MRI scans has traditionally come
at the cost of spatial resolution (meaning that smaller
features cannot be easily seen) or reduced quality (1mages
become noisy or grainy and 1t 1s harder to see subtle changes
in contrast).

Several recent advances 1n 1mage processing have
allowed for accurate reconstruction of highly undersampled
data—that 1s, only a fraction of the full dataset 1s acquired,
with the remainder synthesized in post-processing to yield a
complete image. This directly reduces imaging time and can
be used to improve the temporal resolution of dynamic MRI
scans without sacrificing as much quality as would other-
wise occur. Some acceleration methods such as parallel
imaging rely on specialized RF coil hardware, while others
such as compressed sensing (CS) rely only on certain
assumptions about the structure of the underlying data.

Multiple choices affect the quality of images recon-
structed with CS. The most important 1s the undersampling
factor (e.g. 1n a case where 25% of the total data 1s collected,
the acquisition time 1s sped up by a factor of 4), but the
undersampling pattern (which specific subset of the dataset
1s sampled), the parameters that control how new data are
synthesized, and the algorithm by which this synthesis 1s
performed can all impact the resulting 1image quality. Most
studies of CS 1n MRI focus on the degree of undersampling,
choosing a value that achieves a certain goal 1n terms of scan
time.

According to conventional practice, empirical testing 1s
then performed to determine which sampling strategy, algo-
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rithm and parameters yield acceptable image quality at the
selected undersampling factor (acceleration factor). This 1s

often judged by a small number of researchers based on a
limited pool of test data, and may not generalize well to
larger studies 1n diflerent areas of anatomy, studies using
different scan methods, and other variations.

According to typical CS implementations, image quality
1s generally only assessed after performing CS reconstruc-
tion. The 1mage quality 1s usually assessed with one of
several standardized metrics, most of which are used to
compare accelerated 1mages (1mages obtained through
undersampling) with their unaccelerated counterparts, in
order to assess the residual degradation after reconstruction.

Dynamic MRI poses additional challenges for CS recon-
struction but also provides opportunities for improved acqui-
sition strategies. When CS 1s used to accelerate each indi-
vidual 1mage in a time series, the choice of undersampling
factor determines the temporal resolution of the scan. How-
ever, the optimal temporal resolution 1s not always known
betorehand. For example, choosing slow temporal resolu-
tion to maintain 1image quality may lead to rapid dynamics
being overlooked, and high temporal resolution may
degrade 1image quality and make diagnosis difficult.

One alternative 1s to acquire data 1n such a way that there
1s no defined temporal resolution, and data can instead be
processed to yield multiple temporal resolutions. This can be
achieved, for example, using golden angle sampling, which
ensures that any arbitrary subset of data has near-uniform
coverage, while ensuring that subsequent k-space radial
spokes do not overlap with previously acquired spokes. For
example, as shown in FIG. 1, the subset including N=5
radial spokes and the subset containing N=11 radial spokes
both have relatively uniform azimuthal coverage of k-space.

Using such a method, it 1s possible to reconstruct data at
high spatial resolution and low temporal resolution, or
vice-versa, or any intermediate combination. However, the
method does not provide a prescription for determining a
suitable temporal resolution that balances the quality of the
individual 1mages with that of the time information con-
tamned 1n the series. An optimal temporal resolution that
balances spatial image quality with temporal information
will typically vary based on the desired application. For
example, an optimal temporal resolution may depend on
whether the 1images are being presented directly to a radi-
ologist for review, or whether data will be fturther processed
to extract features for automatic classification based on
machine learning.

Furthermore, 1n addition to selecting a temporal resolu-
tion for reconstruction, a suitable reconstruction algorithm
and associated parameters should also be selected. These
choices will also likely vary with the desired application,
and may even vary on an individual basis, such that choices
which perform well for a dataset from one patient may not
be optimal for a similar dataset from a diflerent patient.

SUMMARY

The present disclosure provides systems and methods for
automated reconstruction of a dynamic MRI dataset
acquired without a fixed temporal resolution. This recon-
struction method 1s based on one or more 1mage quality
metrics (IQMs) that are obtained by processing a subset of
the acquired dataset. In one example implementation, at
cach stage of an 1terative process, one or more IQMs of the
image subset 1s computed, and the parameters controlling
the reconstruction and/or the strategy for data combination
are adjusted to provide an improved or optimal image
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reconstruction. Once the IQM of the image subset satisties
acceptance criteria based on an estimate of the overall
temporal fidelity of the reconstruction, the full reconstruc-
tion can be performed, and the estimate of the overall
temporal fidelity can be reported based on the IQM at the
final iteration.

Accordingly, 1n one aspect, there 1s provided a method of
performing dynamic magnetic resonance imaging, the
method comprising:

a) controlling a magnetic resonance 1maging scanner to
generate a sequence ol RFE pulses and detect RF signals that
are responsively emitted by a subject positioned with a bore
of the magnetic resonance 1maging scanner, thereby obtain-
ing an input dataset, wherein the sequence of RF pulses 1s
selected to facilitate 1image reconstruction according to a
plurality of temporal resolutions;

b) partitioning the mput dataset to generate an 1mage
series of non-reconstructed image data, the image series
having a selected temporal resolution;

¢) selecting an 1mage subset from the 1image series;

d) performing 1mage reconstruction on the image subset,
thereby obtaining a reconstructed 1mage subset;

¢) processing the image subset to determine one or more
image quality metrics;

1) comparing the 1image quality metrics to pre-selected
criteria associated with an estimated fidelity of a full recon-
struction of the iput dataset;

o) 1n the event that the one or more 1mage quality metrics
do not satisty the pre-selected criteria, adjusting the tempo-
ral resolution and repeating operations b) to 1); and

h) 1n the event that the one or more 1mage quality metrics
satisty the pre-selected criteria, employing the current tem-
poral resolution to perform full reconstruction on the input
dataset.

In another aspect, there 1s provided a magnetic resonance
imaging system comprising:

a magnetic resonance 1maging scanner; and

control and processing hardware operatively coupled to
said magnetic resonance imaging scanner, wheremn said
control and processing hardware comprises memory
coupled with one or more processors to store instructions,
which when executed by the one or more processors, causes
the one or more processors to perform operations compris-
ng:

a) controlling said magnetic resonance imaging scanner to
generate a sequence ol RE pulses and detect RF signals
that are responsively emitted by a subject positioned
with a bore of said magnetic resonance 1maging scan-
ner, thereby obtaining an input dataset, wherein the
sequence ol RF pulses is selected to facilitate image
reconstruction according to a plurality of temporal
resolutions;

b) partitioning the mput dataset to generate an image
series ol non-reconstructed i1mage data, the image
series having a selected temporal resolution;

¢) selecting an 1mage subset from the 1mage series;

d) performing 1image reconstruction on the image subset,
thereby obtaining a reconstructed image subset;

¢) processing the image subset to determine one or more
image quality metrics;

1) comparing the 1image quality metrics to pre-selected
criteria associated with an estimated fidelity of a full
reconstruction of the mput dataset;

o) 1n the event that the one or more 1mage quality metrics
do not satisly the pre-selected criteria, adjusting the
temporal resolution and repeating operations b) to 1);
and
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h) i the event that the one or more 1mage quality metrics
satisty the pre-selected criteria, employing the current
temporal resolution to perform full reconstruction on
the input dataset.

In another aspect, there 1s provided a method of perform-
ing dynamic magnetic resonance imaging, the method com-
prising:

a) controlling a magnetic resonance 1maging scanner to
generate a sequence of RFE pulses and detect RF signals that
are responsively emitted by a subject positioned with a bore
of the magnetic resonance 1maging scanner, thereby obtain-
ing an input dataset, wherein the sequence of RF pulses 1s
selected to facilitate 1mage reconstruction according to a
plurality of temporal resolutions;

b) partitioning the input dataset to generate an 1mage
series ol non-reconstructed 1mage data, the i1mage series
having a selected temporal resolution;

¢) performing 1mage reconstruction on the image series,
thereby obtaining a set of reconstructed 1mage frames;

d) selecting an i1mage subset of reconstructed image
frames from the set of reconstructed 1mage frames;

¢) processing the image subset to determine one or more
image quality metrics;

1) comparing the image quality metrics to pre-selected
criteria associated with an estimated fidelity of a full recon-
struction of the mput dataset;

o) 1n the event that the one or more 1image quality metrics
do not satisty the pre-selected criteria, adjusting the tempo-
ral resolution and repeating operations b) to 1); and

h) in the event that the one or more 1image quality metrics
satisly the pre-selected criteria, employing the current tem-
poral resolution to perform full reconstruction on the input
dataset.

In another aspect, there 1s provided a magnetic resonance
imaging system comprising:

a magnetic resonance 1imaging scanner; and

control and processing hardware operatively coupled to
said magnetic resonance i1maging scanner, wherein said
control and processing hardware comprises memory
coupled with one or more processors to store instructions,
which when executed by the one or more processors, causes
the one or more processors to perform operations compris-
ng:

a) controlling said magnetic resonance 1maging scanner to
generate a sequence of RF pulses and detect RF signals
that are responsively emitted by a subject positioned
with a bore of said magnetic resonance 1maging scan-
ner, thereby obtaining an input dataset, wherein the
sequence of RF pulses is selected to facilitate 1image
reconstruction according to a plurality of temporal
resolutions;

b) partitioning the mnput dataset to generate an image
series of non-reconstructed image data, the 1mage
series having a selected temporal resolution;

¢) performing 1image reconstruction on the image series,
thereby obtaining a set of reconstructed 1mage frames;

d) selecting an image subset of reconstructed image
frames from the set of reconstructed image frames;

¢) processing the image subset to determine one or more
image quality metrics;

) comparing the image quality metrics to pre-selected
criteria associated with an estimated fidelity of a full
reconstruction of the input dataset;

o) 1n the event that the one or more 1mage quality metrics
do not satisly the pre-selected criteria, adjusting the
temporal resolution and repeating operations b) to 1);
and
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h) 1n the event that the one or more 1mage quality metrics
satisly the pre-selected criteria, employing the current
temporal resolution to perform full reconstruction on
the input dataset.

A further understanding of the functional and advanta-

geous aspects of the disclosure can be realized by reference
to the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will now be described, by way of example
only, with reference to the drawings, in which:

FI1G. 1 illustrates examples of selecting different temporal
resolutions of undersampled MRI data based on golden
angle sampling, demonstrating how the different temporal
resolutions retain uniform sampling density.

FIG. 2 graphically demonstrates an example relationship
between an 1mage quality metric of a subset of the acquired
MRI data (as measured by Multi-Scale Structural Similarity
index, MSSIM) and image series quality (as measured by
percent error 1n a {itted model parameter) for simulated MR
data.

FIG. 3 1s a flowchart illustrating an example method of
iterative and automated dynamic MRI reconstruction based
on measurement of 1mage quality metric(s) (IQM) per-
formed on a subset of data.

FIG. 4 1s a block diagram of an example system for
performing automated dynamic MRI reconstruction.

DETAILED DESCRIPTION

Various embodiments and aspects of the disclosure will be
described with reference to details discussed below. The
following description and drawings are illustrative of the
disclosure and are not to be construed as limiting the
disclosure. Numerous specific details are described to pro-
vide a thorough understanding of various embodiments of
the present disclosure. However, 1n certain instances, well-
known or conventional details are not described 1n order to

provide a concise discussion of embodiments of the present
disclosure.

As used herein, the terms “comprises™ and “comprising”
are to be construed as being inclusive and open ended, and
not exclusive. Specifically, when used in the specification
and claims, the terms “comprises” and “comprising” and
variations thereof mean the specified features, steps or
components are included. These terms are not to be inter-
preted to exclude the presence of other features, steps or
components.

As used herein, the term “exemplary” means “‘serving as
an example, 1stance, or illustration,” and should not be
construed as preferred or advantageous over other configu-
rations disclosed herein.

As used herein, the terms “about” and “approximately”
are meant to cover variations that may exist in the upper and
lower limits of the ranges of values, such as variations 1n
properties, parameters, and dimensions. Unless otherwise
specified, the terms “about” and “approximately” mean plus
or minus 25 percent or less.

It 1s to be understood that unless otherwise specified, any
specified range or group 1s as a shorthand way of referring
to each and every member of a range or group individually,
as well as each and every possible sub-range or sub-group
encompassed therein and similarly with respect to any
sub-ranges or sub-groups therein. Unless otherwise speci-
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6

fied, the present disclosure relates to and explicitly incor-
porates each and every specific member and combination of
sub-ranges or sub-groups.

As used herein, the term “on the order of”, when used 1n
conjunction with a quantity or parameter, refers to a range
spanming approximately one tenth to ten times the stated
quantity or parameter.

As used herein, the term “undersampled data™ refers to
any acquisition of MRI data 1n which the data collected are
isuilicient to produce an image free of aliasing artifacts
(according to the Nyquist criterion for the desired image’s
field of view and resolution) 1n at least one dimension.

The present disclosure provides systems and methods for
performing reconstruction of undersampled dynamic or
time-resolved MRI data, based on automated assessment of
image quality as measured by one or more metrics, in order
to provide a dataset of maximal fidelity according to speci-
fied criteria. As explained in detail below, example recon-
struction methods of the present disclosure are based on one
or more 1mage quality metrics (IQMs) that are obtained by
processing a subset of the acquired dataset. Image recon-
struction may be performed according to an iterative
method, where at each iteration, one or more IQMs of the
image subset 1s computed, and the parameters controlling
the reconstruction and/or the strategy for data combination
are adjusted provide an improved or optimal 1mage recon-
struction. Once the IQM of the 1image subset satisfies accep-
tance criteria based on an estimate of the overall temporal
fidelity of the reconstruction, the full reconstruction can be
performed, and the estimate of the overall temporal fidelity
can be reported based on the IQM at the final 1teration. The
methods of the present disclosure are motivated by a recent
discovery by the mnventors that predictable relationships
exist between the quality of individual images within a
dynamic MRI time series, as measured by appropriate
metrics, and parameters that relate to the quality of the
overall time series, such as the accuracy of model fits to the
data.

Referring now to FIG. 3, a flowchart 1s provided that
illustrates an example method of performing 1image recon-
struction of dynamic MRI data. According to a first step, a
patient or subject 1s scanned according to pulse sequence
that facilitates the acquisition of MRI data without enforcing
a pre-determined temporal resolution. For example, a pulse
sequence may be employed whereby the MRI data 1s
acquired as a series of fundamental units (e.g. k-space
segments). Examples of such pulse sequence generation and
MRI data acquisition methods include, but are not limited to,
radial spokes incremented by the golden angle (as illustrated
in FIG. 1), spiral iterleaves, or, for example, a group of
samples prescribed according to a strategy that minimizes
overlap between nearby groups (e.g. Poisson-disc or CIR-
cular Cartesian UnderSampling (CIRCUS)). The acquisition
of the MRI data provides an mput dataset (an acquired
dataset), as shown at 100.

As shown at step 110, the mput dataset 1s partitioned to
produce an 1mage series (a series of 1mage data that has not
yet been reconstructed) with an 1nitial temporal resolution
(T, .), where the partitioned 1mage series 1s shown at 110.

Based on the desired application, an initial temporal reso-
lution T, _ can be selected to partition the data into groups of

N units, the groups forming a series of undersampled 1mages
to be reconstructed. The 1nitial temporal resolution may be
determined or prescribed based on the application; for

example, 1 dynamic contrast-enhanced imaging of the
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prostate, the PI-RADS criteria developed by the American
College of Radiology suggest a temporal resolution of 7
seconds.

As explained above, the input dataset may be acquired as
a series of fundamental units that support image processing
according to a wide range of selectable temporal resolutions.
Each fundamental unit of data will take some time T to
acquire, and will sample R % of the total available data.
Combining the data imn groups of N umts will generally
produce an 1mage series with temporal resolution T, =T*N.
Higher temporal resolution (small values of T*N) allows
better depiction of rapidly-changing behavior throughout the
image series. At the same time, assuming minimal overlap
between groups, the total percentage of data sampled by
cach 1image in the series 1s R*N %, and higher sampling
(large values of R*N) will generally lead to higher-fidelity
images, though with more advanced sampling strategies
some mitigation of this trade-ofl 1s possible.

In many implementations of the present example embodi-
ment, the undersampling factor R*N will be significantly
less than 100%, and reconstruction with a technique based
on Compressed Sensing (CS) principles will be employed to
remove artifacts from undersampling and otherwise improve
image quality.

Some CS algorithms operate on individual images with-
out knowledge of any temporal evolution (e.g. this 1s an
option 1n the BART toolkat). In such cases, the IQM analysis
may be performed based the extraction and processing of
only a subset of the acquired 1mage data. A subset of the
partitioned 1mage series 1s selected for subsequent recon-
struction and 1mage quality analysis in step 115. The subset
of the partitioned i1mage series i1s 1n the form of under-
sampled raw MRI data, as shown at 120. The subset of the
partitioned 1mage series 1s then reconstructed, as shown at
125, according to a desired reconstruction algorithm,
thereby vielding a reconstructed 1mage subset suitable for
IQM analysis. In some example implementations, a common
subset 1s employed during each iteration. In other example
implementations, the subset may vary among iterations.

In some example implementations, a single representative
frame of 1image data, such as the first frame of 1image data 1n
the 1mage series, may be selected as the 1image subset. In
another example embodiment, two or more frames of 1mage
data may be selected from the partitioned 1mage series. For
example, a subset could include one frame of 1image data
from the beginning of the time series and another from near
the end. Such an implementation would result 1n the gen-
eration of one or more IQMs for each frame, which could
then either be averaged or kept separate.

However, other CS algorithms employ an assumption of
the temporal dynamics (e.g. REPCOM) or estimate the
temporal dynamics from the underlying data without requir-
ing a prior1 assumptions (e.g. Blind CS or BCS). In such
cases, prior to extracting a subset for image quality metric
(IQM) analysis, the full acquired dataset (1.e. the complete
time series) 1s reconstructed, as shown at 135. This generates
a set of reconstructed images (140) from which a suitable
subset can be selected (145) and sent for IQM analysis.

Once an 1mage subset 1s reconstructed (shown at 130), 1t
1s evaluated using one or more i1mage quality metrics
(IQMs).

IQMs can be classified as full-reference (in which a
degraded 1image 1s compared to a known reference image) or
no-reference (1n which an image 1s evaluated without such
a relerence). In the case of CS reconstruction, an ideal
reference 1image 1s often computed from fully sampled data,
but for accelerated individual MRI scans, such fully-
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sampled reference 1mages are generally not available. How-
ever, with dynamic MRI 1t 1s often possible to select a
sampling strategy such that each possible sample 1s collected
at least once during the scan, if not during each temporal
frame. The temporal frames can then be collapsed mto a
single 1image, as shown at 102, which, though 1t not longer
contains any information about temporal evolution, does
have suflicient sampling density to ensure a high-quality
reconstruction 104 that i1s suitable as a reference. Such a
tully sampled reference 1s labeled FR 1n FIG. 3 and shown
again at 150 as an input to the generation of the one or more
IQ\/IS at 155.

In an alternative example implementation, no-reference
IQMs for MRI are now being developed which may allow
the evaluation of CS reconstructions without the need for
comparison with a reference image.

In either case, the result of IQM analysis 155 (examples
of which are described further below) can be used to
estimate temporal fidelity of the fully reconstructed dataset
at 160 according to various example criteria. Examples of
suitable IQMs 1nclude root-mean-square error (RMSE),
Structural Stmilarity index (SSIM) and 1ts variants (such as
the Multiscale SSIM and Information- Weighted SSIM), and
Feature Similarity Index (FSIM).

In some example embodiments, the temporal fidelity of
the fully reconstructed dataset may be estimated using a
relationship between a selected IQM and performance data
obtained when undersampling a reference image. FIG. 2
shows an example implementation 1n which a simulated
MRI dataset was constructed with portions of the image
made to evolve sinusoidally, 1.¢. their intensity rises and falls
over time with a given amplitude A, frequency B and phase
C according to:

S(t)=A sin(bt+C)

The dataset was then undersampled to varying degrees
(ranging from R=1.5 to R=12, using a CIRCUS strategy for
golden-angle Cartesian sampling) and reconstructed using
BART. An IQM (SSIM 1n this example) was computed for
the first 1mage 1n the series as compared to the known
tully-sampled reference image. The intensity of the sinusoi-
dally evolving portions were fitted with the mathematical
model described above, such that the observed frequency
and amplitude of the evolution can be compared to the
known ornginal frequency and amplitude, with degradation
expressed 1n terms of percent error. In this case, i 1t 1s
desired to maintain accuracy to within +/—10%, 1t 1s neces-
sary to ensure that the SSIM 1s above 0.8. Similar relation-
ships for other IQMs and measures of temporal fidelity may
alternatively be employed.

Referring again to FIG. 3, as shown at 1635, 11 a given IQM
1s evaluated at 160 and found to satisly pre-selected a
performance criterion or criteria (1.e. if the IQM 1s found to
be 1n an acceptable range for a desired application), then the
algorithm can terminate as shown at 170.

Alternatively, 1n the event that a given IQM 1s evaluated
and found to satisly pre-selected a performance criterion or
criteria, the latest parameter set can be saved as a potential
endpoint and further optimization can be attempted, as
shown at the “yes™ output of decision 175. For example, 11
the 1mage quality 1s deemed to be acceptable at a given
temporal resolution, it may still be beneficial to improve the
temporal resolution (as shown at 180) without a significant
sacrifice on spatial resolution and therefore the range of
dynamics that can be observed, so long as the IQM 1s not
significantly decreased by doing so.
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In the event that a given IQM 1s evaluated at 160 and 1s
found to fail the pre-selected acceptance criterion or critena,
then the algorithm can proceed with one or more further
iterations with a decreased T,__, as shown at 182. Alterna-
tively, the process can be terminated in the event that a
pre-selected maximum number of iterations have occurred,
saving the most recent parameter set, as shown at 186 and
188.

In some example embodiments, parameters that govern
the reconstruction (such as the regularization weight or
weights, or other parameters specific to the particular algo-
rithm being used) can be adjusted addition to T, __, 1n order
to attempt to improve the IQM and therefore the quality of
the overall time series. In one example implementation, such
parameter adjustments can be made, for example, through
one or more additional iterations that are performed for each
T .. I the acceptance criterion or criteria are not met after
such iterations, then T, . may be increased (the temporal
resolution becoming coarser), sacrificing the ability to per-
ceive fast dynamics to produce a gain i1n image quality,
which may depend on the desired application of the data.

In another example 1mplementation, such parameter
adjustments can be made, for example, through one or more
additional 1terations that are performed after having satisfied
the acceptance criteria or criterion at 160, 1n order to further
optimize the reconstruction. If 1t 1s found that such adjust-
ments do not have a net benefit, the algorithm can revert to
the best available saved endpoint and exit.

Referring now to FIG. 4, an example system 1s 1llustrated
for performing dynamic reconstruction with an MRI system
according to the example methods described above. The
example system includes a magnetic resonance scanner 50
that employs a main magnet 52 to produce a main magnetic
ficld BO, which generates a polarization 1n a patient 60 or
the examined subject. The example system includes gradient
coils 54 for generating magnetic field gradients. A receive
coil 38 detects RF signals from patient 60. The receive coil
58 can also be used as a transmission coil for the generation
of radio frequency (RF) pulses. Alternatively, a body coil 56
may be employed to radiate and/or detect RF pulses. The RF
pulses are generated by an RF unit 65, and the magnetic field
gradients are generated by a gradient unit 70.

It will be understood that the MR system can have
additional units or components that are not shown for clarity,
such as, but not limited to, additional control or input
devices, and additional sensing devices, such as devices for
cardiac and/or respiratory gating. Furthermore, the various
units can be realized other than 1n the depicted separation of
the individual units. It 1s possible that the different compo-
nents are assembled into units or that different units are
combined with one another. Various units (depicted as
functional units) can be designed as hardware, software or a
combination of hardware and software.

In the example system shown in FIG. 4, a control and
processing hardware 200 controls the MRI scanner to gen-
erate RF pulses according to a suitable pulse sequence. The
control and processing hardware 200 1s interfaced with the
MRI scanner 50 for controlling the acquisition of the
received MRI signals. The control and processing hardware
200 acquires the recetved MRI signals from the RF unit 635
and processes the MRI signals according to the methods
described herein 1n order to perform image reconstruction
and generate MRI 1images.

The control and processing hardware 200 may be pro-
grammed with a set of instructions which when executed 1n
the processor causes the system to perform one or more
methods described 1n the present disclosure. For example, as
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shown 1 FIG. 4, control and processing hardware 200 may
be programmed with istructions in the form of a set of
executable 1mage processing modules, such as, but not
limited to, a pulse sequence generation module 2435 and an
image reconstruction module 250. The pulse sequence gen-
cration module 245 may be implemented using algorithms
known to those skilled 1n the art for pulse sequence genera-
tion, such as those described above.

During MRI scanning, RF data 1s received from the RF
coils 56 and/or 58. The pulse sequence generation module
245 establishes the sequence of RF pulses and magnetic field
gradients depending on the desired 1maging sequence, MR
signals responsively emitted by the patient and detected by
the coils 56 and/or 58 are acquired. The 1mage reconstruc-
tion module 245 processes the acquired MRI signals to
perform i1mage reconstruction and MRI image generation
according to the example method shown in FIG. 3, or
variations thereof.

The control and processing hardware 200 may include,
for example, one or more processors 210, memory 215, a
system bus 205, one or more mput/output devices 220, and
a plurality of optional additional devices such as commu-
nications interface 235, data acquisition interface 240, dis-
play 225, and external storage 230.

It 1s to be understood that the example system shown 1n
FIG. 4 1s 1llustrative of a non-limiting example embodiment,
and 1s not intended to be limited to the components shown.
For example, the system may include one or more additional
processors and memory devices. Furthermore, one or more
components of control and processing hardware 200 may be
provided as an external component that 1s interfaced to a
processing device.

Some aspects ol the present disclosure can be embodied,
at least in part, 1n software, which, when executed on a
computing system, configures the computing system as a
specialty-purpose computing system that 1s capable of per-
forming the signal processing and noise reduction methods
disclosed herein, or variations thereof. That 1s, the tech-
niques can be carried out 1n a computer system or other data
processing system 1n response to its processor, such as a
microprocessor, CPU or GPU, executing sequences of
instructions contained 1n a memory, such as ROM, volatile
RAM, non-volatile memory, cache, magnetic and optical
disks, cloud processors, or other remote storage devices.
Further, the instructions can be downloaded into a comput-
ing device over a data network, such as 1 a form of a
compiled and linked version. Alternatively, the logic to
perform the processes as discussed above could be 1imple-
mented 1n additional computer and/or machine readable
media, such as discrete hardware components as large-scale
integrated circuits (LSI’s), application-specific integrated
circuits (ASIC’s), or firmware such as electrically erasable
programmable read-only memory (EEPROM’s) and field-
programmable gate arrays (FPGAs).

A computer readable medium can be used to store sofit-
ware and data which when executed by a data processing
system causes the system to perform various methods. The
executable software and data can be stored 1n various places
including for example ROM, volatile RAM, non-volatile
memory and/or cache. Portions of this software and/or data
can be stored in any one of these storage devices. In general,
a machine-readable medium includes any mechamsm that
provides (1.e., stores and/or transmits) information in a form
accessible by a machine (e.g., a computer, network device,
personal digital assistant, manufacturing tool, any device
with a set of one or more processors, etc.).
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Examples of computer-readable media include but are not
limited to recordable and non-recordable type media such as
volatile and non-volatile memory devices, read only
memory (ROM), random access memory (RAM), tlash
memory devices, tloppy and other removable disks, mag-
netic disk storage media, optical storage media (e.g., com-
pact discs (CDs), digital versatile disks (DVDs), etc.),
network attached storage, cloud storage, among others. The
instructions can be embodied 1n digital and analog commu-
nication links for electrical, optical, acoustical or other
forms of propagated signals, such as carrier waves, inirared
signals, digital signals, and the like. As used herein, the
phrases “computer readable material” and “computer read-
able storage medium™ refer to all computer-readable media,
except for a transitory propagating signal per se.

The specific embodiments described above have been
shown by way of example, and 1t should be understood that
these embodiments may be susceptible to various modifi-
cations and alternative forms. It should be further under-
stood that the claims are not intended to be limited to the
particular forms disclosed, but rather to cover all modifica-
tions, equivalents, and alternatives falling within the spirit
and scope of this disclosure.

Therefore what 1s claimed 1s:

1. A method of performing image reconstruction of
dynamic magnetic resonance image data, the method com-
prising;:

a) partitioning the dynamic magnetic resonance image
data to generate an 1mage series ol non-reconstructed
image data, the 1mage series having a selected temporal
resolution;

b) selecting an 1mage subset from the image series;

¢) performing 1mage reconstruction on the image subset,
thereby obtaining a reconstructed 1image subset;

d) processing the reconstructed image subset to determine
one or more 1mage quality metrics;

¢) determining that the one or more 1mage quality metrics
fail to satisty pre-selected criteria; and

1) repeating steps (a) to (d) one or more times, each time
generating and employing an 1mage series having a
different selected temporal resolution, until the one or
more 1mage quality metrics satisty the pre-selected
criteria, thereby determining a suitable temporal reso-
lution for satisfying the one or more image quality
metrics; and

g) employing the suitable temporal resolution perform full
reconstruction on the dynamic magnetic resonance
image data.

2. The method according to claim 1 further comprising
communicating a measure associated with an estimated
temporal fidelity of a full reconstruction of the dynamic
magnetic resonance 1mage data.

3. The method according to claim 1 wherein the dynamic
magnetic resonance 1mage data 1s an undersampled 1mage
dataset, and such that reconstruction 1s performed according
to a compressed sensing method.

4. The method according to claim 1 wherein at least one
image quality metric 1s based on a Structural Similarity
index.

5. The method according to claim 1 wherein one or more
of the 1image quality metrics 1s generated based on a com-
parison with a reference 1mage.

6. The method according to claim 5 wherein the reference
image 1s generated by collapsing temporal frames of the
dynamic magnetic resonance image data into a single image.

7. The method according to claim 1 further comprising,
alter performing step (1) and prior to performing step (g):
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performing the following steps one or more times to
improve one or more of temporal fidelity and image
quality:

h) varying one or more reconstruction parameters;

1) performing 1mage reconstruction on the image subset
generated using the selected temporal resolution,
thereby obtaining the reconstructed image subset;
and

1) processing the reconstructed 1mage subset to deter-
mine the one or more 1mage quality metrics;

wherein step (g) 1s performed using reconstruction param-
eters associated with improved 1mage quality metrics.

8. The method according to claim 1 further comprising,
alter performing step (e) and prior to performing step (1):

performing the following steps one or more times to
improve one or more of temporal fidelity and image
quality:

h) varying one or more reconstruction parameters;

1) performing 1image reconstruction on the image sub-
set, thereby obtaining the reconstructed 1mage sub-
set; and

1) processing the reconstructed 1mage subset to deter-
mine the one or more 1mage quality metrics;

wherein steps (1) and (g) are performed using reconstruc-
tion parameters associated with improved 1mage qual-
1ty metrics.

9. An 1mage processing system for performing image
reconstruction on dynamic magnetic resonance image data,
the 1mage processing system comprising:

control and processing hardware comprising memory
coupled with one or more processors to store nstruc-
tions, which when executed by the one or more pro-
cessors, causes the one or more processors to perform
operations comprising:

a) partitioning the dynamic magnetic resonance image
data to generate an 1mage series ol non-reconstructed
image data, the 1mage series having a selected temporal
resolution;

b) performing 1image reconstruction on a selected image
subset from the i1mage series, thereby obtaining a
reconstructed 1mage subset;

¢) processing the reconstructed image subset to determine
one or more 1mage quality metrics;

d) determiming that the one or more 1image quality metrics
fail to satisly pre-selected criteria; and

¢) repeating steps (a) to (¢) one or more times, each time
generating and employing an 1mage series having a
different selected temporal resolution, until the one or
more i1mage quality metrics satisty the pre-selected
criteria, thereby determining a suitable temporal reso-
lution for satisiying the one or more image quality
metrics; and

1) employing the suitable temporal resolution perform full
reconstruction on the dynamic magnetic resonance
image data.

10. The system according to claim 9 wherein said control
and processing hardware 1s configured to communicate a
measure associated with an estimated temporal fidelity of
the full reconstruction of the dynamic magnetic resonance
image data.

11. The system according to claim 9 wherein said control
and processing hardware 1s configured such that the dynamic
magnetic resonance 1mage data 1s an undersampled 1mage
dataset, and such that reconstruction is performed according
to a compressed sensing method.
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12. The system according to claim 9 wherein said control
and processing hardware 1s configured such that at least one
image quality metric 1s based on a Structural Similarity
index.

13. The system according to claim 9 wherein said control
and processing hardware 1s configured such that one or more
of said image quality metrics 1s generated based on a
comparison with a reference image.

14. The system according to claim 13 wherein said control
and processing hardware 1s configured such that said refer-
ence 1mage 1s generated by collapsing temporal frames of
the dynamic magnetic resonance image data into a single
1mage.

15. The system according to claim 9 wherein said control
and processing hardware 1s configured to perform the fol-
lowing operations one or more times to 1mprove one or more
of temporal fidelity and 1image quality, after performing step
(¢) and prior to performing step (1):

g) varying one or more reconstruction parameters;

h) performing 1image reconstruction on the selected image
subset generated using the selected temporal resolution,
thereby obtaining the reconstructed image subset; and

1) processing the reconstructed image subset to determine
the one or more 1mage quality metrics;

wherein step (1) 1s performed using reconstruction param-
eters associated with improved 1mage quality metrics.

16. The system according to claim 9 wherein said control
and processing hardware 1s configured to perform the fol-
lowing operations one or more times to 1mprove one or more
of temporal fidelity and 1image quality, after performing step
(d) and prior to performing step (e):

performing the following steps one or more times to
improve one or more of temporal fidelity and image
quality:

g) varying one or more reconstruction parameters;

h) performing 1image reconstruction on the selected image
subset, thereby obtaining the reconstructed image sub-
set; and

1) processing the reconstructed image subset to determine
the one or more 1image quality metrics;

wherein steps (e) and (1) are performed using reconstruc-
tion parameters associated with improved 1image qual-
ity metrics.

17. A non-transitory computer-readable storage medium
having stored therein data representing instructions execut-
able by a processor for performing 1mage reconstruction of
dynamic magnetic resonance 1image data, the storage
medium comprising instructions for performing operations
including;

a) partitioning the dynamic magnetic resonance image
data to generate an 1mage series ol non-reconstructed
image data, the 1mage series having a selected temporal
resolution:

b) performing image reconstruction on a selected 1image
subset from the image series, thereby obtaining a
reconstructed 1mage subset;

¢) processing the reconstructed image subset to determine
one or more 1mage quality metrics;

d) determining that the one or more 1image quality metrics
fail to satisly pre-selected criteria; and

¢) repeating steps (a) to (¢) one or more times, each time
generating and employing an 1mage series having a
different selected temporal resolution, until the one or
more 1mage quality metrics satisty the pre-selected
criteria, thereby determining a suitable temporal reso-
lution for satisiying the one or more image quality
metrics; and
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1) employing the suitable temporal resolution perform full
reconstruction on the dynamic magnetic resonance
image data.

18. A method of 1image reconstruction of dynamic mag-

netic resonance 1mage data, the method comprising:

a) partitioning the dynamic magnetic resonance image
data to generate an 1mage series ol non-reconstructed
image data, the image series having a selected temporal
resolution;

b) performing 1mage reconstruction on the 1mage series,
thereby obtaining a set of reconstructed 1image frames;

¢) selecting a subset of reconstructed image frames from
the set of reconstructed 1image frames;

d) processing the subset of reconstructed 1image frames to
determine one or more 1mage quality metrics;

¢) determining that the one or more 1mage quality metrics
fail to satisty pre-selected criteria; and

1) repeating steps (a) to (d) one or more times, each time
generating and employing an 1mage series having a
different selected temporal resolution, until the one or
more 1mage quality metrics satisty the pre-selected
criteria.

19. An 1imaging processing system for performing image
reconstruction on dynamic magnetic resonance image data,
the 1maging processing system comprising;

control and processing hardware comprising memory
coupled with one or more processors to store instruc-
tions, which when executed by the one or more pro-
cessors, causes the one or more processors to perform
operations comprising:

a) partitioning the dynamic magnetic resonance image
data to generate an 1mage series ol non-reconstructed
image data, the image series having a selected temporal
resolution;

b) performing 1mage reconstruction on the image series,
thereby obtaining a set of reconstructed 1image frames;

¢) processing a selected subset of the reconstructed 1image
frames to determine one or more 1mage quality metrics;

d) determiming that the one or more 1image quality metrics
fail to satisly pre-selected criteria; and

¢) repeating steps (a) to (¢) one or more times, each time
generating and employing an 1mage series having a
different selected temporal resolution, until the one or
more 1mage quality metrics satisty the pre-selected
criteria.

20. A non-transitory computer-readable storage medium
having stored therein data representing instructions execut-
able by a processor for performing image reconstruction of
dynamic magnetic resonance 1mage data, the storage
medium comprising instructions for performing operations
including;

a) partitioning the dynamic magnetic resonance image
data to generate an 1mage series ol non-reconstructed
image data, the 1mage series having a selected temporal
resolution;

b) performing 1mage reconstruction on the image series,
thereby obtaining a set of reconstructed 1mage frames;

¢) processing a selected subset of the reconstructed 1image
frames to determine one or more 1mage quality metrics;

d) determining that the one or more 1mage quality metrics
fail to satisty pre-selected criteria; and

¢) repeating steps (a) to (¢) one or more times, each time
generating and employing an 1mage series having a
different selected temporal resolution, until the one or
more i1mage quality metrics satisty the pre-selected
criteria.
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