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NAVIGATION AND LOCALIZATION USING
SURFACE-PENETRATING RADAR AND
DEEP LEARNING

CROSS-REFERENCE TO RELATED D
APPLICATION

This application claims priority to and the benefit of, and

incorporates herein by reference in 1ts entirety, U.S. Provi-
sional Patent Application No. 62/900,098, filed on Sep. 13, 1°

2019.

FIELD OF THE INVENTION

The present invention relates, generally, to vehicle local- 15
1zation and navigation, and more generally to improvements
in accuracy and system monitoring using deep learning
techniques.

BACKGROUND 20

Surface-penetrating radar (SPR) systems have been used
for navigation and vehicle localization; see, e.g., U.S. Pat.
No. 8,949,024, the entire disclosure of which 1s incorporated
by reference herein. SPR can be used 1in environments, such 25
as cities, where multipath or shadowing degrades GPS
accuracy, or as an alternative to optical sensing approaches
that cannot tolerate darkness or changing scene 1llumination
or whose performance can be adversely aflected by varia-
tions 1n weather conditions. 30

In particular, SPR can be used to acquire scans containing,
surface and subsurface features as a vehicle traverses terrain,
and the acquired data scans may be compared to reference
scan data that was previously acquired within the same
environment 1n order to localize vehicle position within the 35
environment. If the reference scan data has been labeled
with geographic location information, a vehicle’s absolute
location can thereby be determined.

The scan data comparison may be a registration process
based on, for example, correlation; see, e.g., U.S. Pat. No. 40
8,786,485, the entire disclosure of which 1s incorporated by
reference herein. Although SPR localization based on ref-
erence scan data overcomes the above-noted limitations of
traditional technologies, SPR sensors are not foolproof and
the registration process inevitably exhibits some degree of 45
error. For example, errors may arise from ambiguous ground
conditions, SPR sensor aging or malfunction, the speed of
the vehicle, or variations in ambient conditions such as wind
speed or temperature.

Accordingly, there 1s a need for measures that improve 350
SPR-based localization system accuracy, minimize the
occurrence ol error states, and estimate the reliability of
real-time localization estimates.

SUMMARY 55

Embodiments of the present invention use deep learning,
to improve or gauge the performance of an SPR system for
localization or navigation. The term “deep learning” refers
to machine-learning algorithms that use multiple layers to 60
progressively extract higher-level features from raw 1mages.
Deep learming generally involves neural networks, which
process information in a manner similar to the human brain.
The network 1s composed of a large number of highly
interconnected processing elements (neurons) working 1 65
parallel to solve a specific problem. Neural networks learn
by example; they must be properly trained with carefully

2

collected and curated training examples to ensure high levels
of performance, reduce training time, and minimize system
bias.

Convolutional neural networks (CNNs) are often used to
classily images or 1dentity (and classity) objects pictured 1n
an 1mage scene. A seli-driving vehicle application, for
example, may employ a CNN 1n a computer-vision module
to 1dentily traflic signs, cyclists or pedestrians 1n the vehi-
cle’s path. The CNN extracts features from an mput image
using convolution, which preserves the spatial relationship
among pixels but facilitates learning the image features
using small squares of iput data. Neural networks learn by
example, so 1mages may be labeled as containing or not
containing a feature of interest. (Autoencoders can leamn
without labeling.) The examples are selected carefully, and
usually must be large in number, 1f the system 1s to perform
reliably and efliciently.

Accordingly, 1in a first aspect, the invention pertains to a
method of detecting and identifying subsurface structures. In
various embodiments, the method comprising the steps of
acquiring an SPR i1mage, and computationally 1dentifying a
subsurface structure in the acquired image by using the
acquired 1mage as mput to a predictor that has been com-
putationally trained to identify subsurface structures in SPR
1mages.

In some embodiments, the method also includes acquiring,
additional SPR 1mages during traversal of a route; recog-
nizing, in the SPR images by the predictor, subsuriace
teatures that the predictor has been trained to recognize; and
associating the recogmzed features 1n the i1mages with
terrestrial coordinates corresponding to times when the
images were obtained and, based thereon, producing an
clectronic map of subsurface structures corresponding to the
recognized features.

In various embodiments, the method further comprising
the steps of acquiring additional SPR i1mages during tra-
versal of a route by a vehicle; recognizing, in the SPR
images by the predictor, subsurface features that the predic-
tor has been trained to recognize; associating the recognized
subsurface features with terrestrial coordinates correspond-
ing thereto; and navigating the vehicle based at least 1n part
on the recognized subsurface features and their terrestrial
coordinates.

In another aspect, the invention relates to a system for
detecting and identifying subsurface structures. In various
embodiments, the system comprises an SPR system for
acquiring SPR 1mages, and a computer including a processor
and electronically stored instructions, executable by the
processor, for analyzing the acquired SPR images and
computationally identifying subsurface structures therein by
using the acquired image as input to a predictor that has been
computationally trained to identity subsurface structures in
SPR 1mages.

In either of the foregoing aspects, the predictor may be a
neural network, e.g., a convolutional neural network or a
recurrent neural network.

Still another aspect of the mvention pertains to vehicle
comprising, 1n various embodiments, an SPR system for
acquiring SPR 1mages during vehicle travel, and a computer
including a processor and electronically stored instructions,
executable by the processor, for analyzing the acquired SPR
images and computationally i1dentifying subsurface struc-
tures therein by using the acquired image as mput to a
predictor that has been computationally trained to identify
subsurface structures 1n SPR images.

In various embodiments, the computer 1s configured to
associate the recognized features 1n the 1images with terres-
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trial coordinates corresponding to times when the 1mages
were obtained and, based thereon, produce an electronic
map ol subsurface structures corresponding to the recog-
nized features. Alternatively or in addition, the computer
may be configured to associate the recognized features in the
images with terrestrial coordinates corresponding thereto,
and to navigate the vehicle based at least in part on the
recognized subsurface features and their terrestrial coordi-
nates.

As used herein, the term “substantially” means +10% by
a tissue volume, and 1n some embodiments, 5% by a tissue
volume. “Clinically significant” means having an undesired
(and sometimes the lack of a desired) eflect on tissue that 1s
considered significant by clinicians, e.g., triggering the onset
of damage thereto. Reference throughout this specification
to “one example,” “an example,” “one embodiment,” or “an
embodiment” means that a particular feature, structure, or
characteristic described 1n connection with the example 1s
included 1n at least one example of the present technology.
Thus, the occurrences of the phrases “in one example,” “in
an example,”

2P ek

one embodiment,” or “an embodiment™ 1n
various places throughout this specification are not neces-
sarily all referring to the same example. Furthermore, the
particular features, structures, routines, steps, or character-
1stics may be combined in any suitable manner 1in one or
more examples of the technology. The headings provided
herein are for convenience only and are not intended to limit
or interpret the scope or meaning of the claimed technology.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and the following detailed description will
be more readily understood when taken 1n conjunction with
the drawings, 1n which:

FIG. 1A schematically illustrates an exemplary traveling
vehicle including a terrain monitoring system in accordance
with embodiments of the imvention.

FIG. 1B schematically illustrates an alternative configu-
ration 1 which the antenna of the terrain monitoring system
1s closer to or in contact with the surface of the road.

FIG. 2 schematically depicts an exemplary terrain moni-
toring system 1n accordance with embodiments of the inven-
tion.

FIG. 3 schematically depicts an exemplary architecture in
which a CNN or other form of deep learning 1s integrated
with an SPR system.

DETAILED DESCRIPTION

Refer first to FIG. 1A, which depicts an exemplary
vehicle 102 traveling on a predefined route 104; the vehicle
102 1s provided with a terrain-monitoring system 106 for
vehicle navigation in accordance herewith. In various
embodiments, the terrain monitoring system 106 includes an
SPR navigation and control system 108 having a ground-
penetrating radar (GPR) antenna array 110 fixed to the front
(or any suitable portion) of the vehicle 102. The GPR
antenna array 110 1s generally oniented parallel to the ground
surface and extends perpendicular to the direction of travel.
In an alternative configuration, the GPR antenna array 110
1s closer to or in contact with the surface of the road (FIG.
1B). In one embodiment, the GPR antenna array 110
includes a linear configuration of spatially-invariant antenna
clements for transmitting GPR signals to the road; the GPR
signals may propagate through the road surface into the
subsurface region and be reflected 1n an upward direction.
The reflected GPR signals can be detected by the receiving
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antenna elements 1n the GPR antenna array 110. In various
embodiments, the detected GPR signals are then processed
and analyzed 1n order to generate one or more SPR images
(e.g., GPR 1mages) of the subsurface region along the track
of the vehicle 102. If the SPR antenna array 110 1s not 1n
contact with the surface, the strongest return signal received
may be the reflection caused by the road surface. Thus, the
SPR 1mages may include surface data, 1.e., data for the
interface of the subsurface region with air or the local
environment. Suitable GPR antenna configurations and sys-
tems for processing GPR signals are described, for example,

in U.S. Pat. No. 8,949,024, the entire disclosure of which 1s

hereby incorporated by reference.

For navigation, the SPR images are compared to SPR
reference 1mages that were previously acquired and stored
for subsurface regions that at least partially overlap the
subsurface regions for the defined route. The 1mage com-
parison may be a registration process based on, for example,
correlation as described 1n the 485 patent mentioned above.
The location of the vehicle 102 and/or the terrain conditions
of the route 104 can then be determined based on the
comparison. In some embodiments, the detected GPR sig-
nals are combined with other real-time information, such as
the weather conditions, electro-optical (EO) imagery,
vehicle health monitoring using one or more sensors
employed in the vehicle 102, and any suitable inputs, to
estimate the terrain conditions of the route 104.

FIG. 2 depicts an exemplary navigation and control
system (e.g., the SPR system 108) implemented 1n a vehicle
102 for navigating travel based on SPR images. The SPR
system 108 may include a user interface 202 through which
a user can enter data to define the route or select a predefined
route. SPR 1mages are retrieved from an SPR reference
image source 204 according to the route. For example, the
SPR reference image source 204 may be a local mass-
storage device such as a Flash drive or hard disk; alterna-
tively or i addition, the SPR reference image source 204
may be cloud-based (i.e., supported and maintained on a
web server) and accessed remotely based on a current
location determined by GPS. For example, a local data store
may contain SPR reference images corresponding to the
vicinity of the vehicle’s current location, with periodic
updates being retrieved to refresh the data as the vehicle
travels.

The SPR system 108 also includes a mobile SPR system
(“Mobile System”™) 206 having an SPR antenna array 110.
The transmit operation of the mobile SPR system 206 1is
controlled by a controller (e.g., a processor) 208 that also
receives the return SPR signals detected by the SPR antenna
array 110. The controller 208 generates SPR 1mages of the
subsurface region below the road surface and/or the road
surface underneath the SPR antenna array 110.

The SPR 1mage includes features representative of struc-
ture and objects within the subsurface region and/or on the
road surtace, such as rocks, roots, boulders, pipes, voids and
so1l layering, and other features indicative of variations in
the soil or material properties 1n the subsurface/surface
region. In various embodiments, a registration module 210
compares the SPR 1images provided by the controller 208 to
the SPR 1mages retrieved from the SPR reference image
source 204 to locate the vehicle 102 (e.g., by determining the
oflset of the vehicle with respect to the closest point on the
route). In various embodiments, the locational information
(e.g., oflset data, or positional error data) determined 1n the
registration process 1s provided to a conversion module 212
that creates a location map for navigating the vehicle 102.
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For example, the conversion module 212 may generate GPS
data corrected for the vehicle positional deviation from the
route.

Alternatively, the conversion module 212 may retrieve an
existing map from a map source 214 (e.g., other navigation
systems, such as GPS, or a mapping service), and then
localize the obtained locational information to the existing
map. In one embodiment, the location map of the predefined
route 1s stored in a database 216 1n system memory and/or
a storage device accessible to the controller 208. Addition-
ally or alternatively, the location data for the vehicle 104
may be used 1n combination with the data provided by an
existing map (e.g., a map provided by GOOGLE MAPS)
and/or one or more other sensors or navigation systems, such
as an 1nertial navigation system (INS), a GPS system, a
sound navigation and ranging (SONAR) system, a LIDAR
system, a camera, an nertial measurement unit (IMU) and
an auxiliary radar system, one or more vehicular dead-
reckoning sensors (based on, e.g., steering angle and wheel
odometry), and/or suspension sensors to guide the vehicle
102. For example, the controller 112 may localize the
obtained SPR information to an existing map generated
using GPS. Approaches for utilizing the SPR system for
vehicle navigation and localization are described in, for
example, the 024 patent mentioned above.

An exemplary architecture integrating deep learning with
an SPR navigation and control module 108 i1s illustrated 1n
FIG. 3. As noted above, the system may include various
sensors 310 deployed within the associated vehicle. These
include SPR sensors but may also include sensors for
identifying conditions relevant to the operation of one or
more deep learning modules 315, as described below. The
sensors 310 may also detect external conditions that can
allect system performance and accuracy, and trigger miti-
gation strategies. For example, as described in U.S. Ser. No.
16/929,4377, filed on Jul. 15, 2020 and hereby incorporated
by reference 1n its entirety, the sensors 310 may detect
dangerous terrain conditions (1n conjunction with SPR mea-
surement of below-surface features, which may also trigger
danger warnings). In response, the system 108 may update
the map database 216 accordingly and, 1n some 1mplemen-
tations, 1ssue a warning to local authorities. Sensors may
also capture conditions relevant to the reliability of the
location estimation. For example, additional sensors 317
may sense ambient conditions (e.g., wind speed and/or
temperature), and hardware-monitoring sensors may sense
vehicle performance parameters (e.g., speed) and/or vehicle
health parameters (e.g., tire pressure and suspension perfor-
mance) and/or SPR sensor parameters (e.g., sensor health or
other performance metrics). Sensor data may be filtered and
conditioned by appropriate hardware and/or software mod-
ules 323 as i1s conventional in the art.

A plurality of software subsystems, implemented as
instructions stored 1n a computer memory 326, are executed
by a conventional central processing umt (CPU) 330. The
CPU 330 may be dedicated to the deep learning functions
described below or may also operate the controller 208 (see
FIG. 2). An operating system (such as, e.g., MICROSOFT
WINDOWS, UNIX, LINUX, 10S, or ANDROID) provides
low-level system functions, such as {file management,
resource allocation, and routing of messages from and to
hardware devices and the software subsystems.

A filtering and conditioning module 335 appropriate to a
deep learning submodule, such as a CNN, 1s also imple-
mented as a soltware subsystem. For example, i1 one of the
submodules 315 1s a CNN, SPR images may be prepro-
cessed by resizing to the mput size of the CNN, denoising,
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edge smoothing, sharpening, etc. Depending on the chosen
deep learning submodule(s) 315, generated output may be
postprocessed by a postprocessing module 338 for localiza-
tion and to generate metrics such as health status estimates,
warnings, and map update nformation. Postprocessing
refers to operations to format and adapt the outputs from the
deep learning submodule(s) 3135 into formats and values
usable for localization estimation. Postprocessing may
include any statistical analysis required to merge the outputs
of individual deep learning modules into a single stream of
values usable by downstream processing (for example, aver-
aging the outputs of multiple deep learning modules),
changing data types so outputs can be used in file formats,
network protocols, and APIs required by downstream pro-
cessing. Additionally, the postprocessing may include tradi-
tional, non-deep learning algorithms required to convert the
deep-learning module outputs into location estimates, for
example, to convert a probability density function over SPR
images 1nto a probability density function over the geo-
graphic locations associated with those SPR 1mages.

More generally, localization may mvolve adjustment to a
predicted vehicle location on a map or to the map itself via
a map update module 340, which alters a map from the map
database 216 based on localization estimates produced by
the deep learning submodule(s) 315. Health status metrics
may include estimated time to repair, estimated time to
failure of both individual components and the system as a
whole, accuracy estimates, estimated damage levels of
physical sensor components, estimates of external interfer-
ence, and similar indicators of system performance, dura-
bility, and reliability. Metrics may take the form of confi-
dence wvalues of the entire system and/or 1individual
submodules, as well as estimated accuracy and error distri-
butions and estimated system latencies. The generated met-
rics may also facilitate automatic system-parameter tuning,
¢.g., gain adjustment. These operations may be handled by
a metrics module 345.

In one embodiment, the deep learning submodule(s) 315
include a CNN that analyzes incoming SPR images (e.g.,
sampled periodically from the GPR antenna array 110) and
computes a match probability to one or more registration
images. Alternatively, SPR 1mages may be analyzed con-
ventionally, as described 1n the 024 patent, to locate one or
more best-matching 1mages and associated match probabili-
ties. The match probabilities may be adjusted based on input
received from sensors that capture conditions relevant to the
reliability of the location estimation and processed by the
deep learning submodules 315. This data may be handled by
a different submodule 315 (e.g., another neural network) and
may include or consist of ambient conditions (e.g., wind
speed and/or temperature), vehicle parameters (e.g., speed),
and/or SPR sensor parameters (e.g., sensor health or other
performance metrics)—any data that bear on the reliability
of the generated SPR data scan and/or the match probability
to a reference 1mage, and therefore the localization accuracy,
expressed, for example, as an error estimate. The relation-
ship between the data and the SPR 1image may be quite
complex and the most relevant features diflicult to detect and
use as a basis for localization, which 1s why the deep
learning system 1s employed. The deep learning submodules
315 take as mput the sensor data and the raw SPR images
and output a predicted location or data usable by a location
estimation module 347, which may estimate a location using
image registration as described above and 1n the "024 patent.

The manner 1 which the deep learning submodule 1s
trained depends on its architecture, input data format, and
goals. In general, a wide array of input data 1s collected and
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geo-referenced with truth mformation (1.e., known loca-
tions) 350. The localization error of the system 1s evaluated
with a cost function and back-propagated to tune system
weights. A deep learming system may also be trained to
recognize subsurface features whose details or conforma-
tions may vary. As a conceptual example, a utility conduit
may vary not only in diameter but 1n 1ts orientation relative
to the SPR sensor. Representing all possible SPR 1mages
corresponding to the conduit analytically may be impractical
or 1mpossible, but by training a CNN (or, in cases where
identification requires sequential analysis of multiple SPR
images, a recurrent neural network or RNN), it 1s possible to
recognize the conduit in arbitrary orientations with high
accuracy. Accordingly, the neural network may be used to
recognize and catalog, along a route subsurface, features that
it has been trained to recognize—associating these with
latitude/longitude coordinates obtained as described above
or using GPS to produce a map of fixed, permanent or
semi-permanent subsurface structures prior to road or inira-
structure construction.

Alternatively, feature recognition can be used for naviga-
tional purposes. Knowing that a pipe of a certain size 1s
located at particular GPS coordinates, for example, may be
suflicient to fix the location of a moving vehicle based on
generic detection of a pipe in the vicinity of the known
location. Accuracy can be improved i multiple features a
known distance apart are detected. Subsurface features may
also represent hazards or can suggest the need for prophy-
lactic measures to avoid hazards. For example, subsurface
regions with high water content under a roadway can lead to
potholes. If detected and corrected before a cycle of freezing
and thawing, dangerous road conditions can be avoided and
the cost of mitigation reduced.

In some embodiments, the deep learning module(s) 315
are hosted locally on computational equipment within a
vehicle, and may be updated by a server from time to time
as further centralized training improves the neural network’s
performance. In other embodiments, the latest neural net-
work model may be stored remotely and accessed by the
vehicle via a wireless connection, e.g., over the internet.
Map updating and maintenance may also be performed “in
the cloud.”

The deep learning module(s) 315 may be implemented
without undue experimentation using commonly available
libraries. Cafle, CUDA, Py'Torch, Theano, Keras and Ten-
sorFlow are suitable neural network platforms (and may be
cloud-based or local to an implemented system 1n accor-
dance with design preferences). The imput to a neural
network may be a vector of input values (a “feature” vector),
¢.g., the readings of an SPR scan and system health infor-
mation.

The controller 208 may include one or more modules
implemented in hardware, software, or a combination of
both. For embodiments 1n which the functions are provided
as one or more soltware programs, the programs may be
written 1n any of a number of high level languages such as
PYTHON, FORTRAN, PASCAL, JAVA, C, C++, C#,
BASIC, various scripting languages, and/or HTML. Addi-
tionally, the software can be implemented 1n an assembly
language directed to the microprocessor resident on a target
computer; for example, the software may be implemented 1n
Intel 80x86 assembly language i1 1t 1s configured to run on
an IBM PC or PC clone. The software may be embodied on
an article of manufacture including, but not limited to, a
floppy disk, a jump drive, a hard disk, an optical disk, a
magnetic tape, a PROM, an EPROM, EEPROM, field-
programmable gate array, or CD-ROM.
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The CPU 330 that executes commands and 1nstructions
may be a general-purpose computer, but may utilize any of
a wide variety of other technologies including a special-
purpose computer, a microcomputer, miCcroprocessor, micro-
controller, peripheral integrated circuit element, a CSIC
(customer-specific integrated circuit), ASIC (application-
specific integrated circuit), a logic circuit, a digital signal
processor, a programmable logic device such as an FPGA
(ield-programmable gate array), PLD (programmable logic
device), PLA (programmable logic array), RFID processor,
smart chip, or any other device or arrangement of devices
that 1s capable of implementing the steps of the processes of
the 1nvention.

The terms and expressions employed herein are used as
terms and expressions of description and not of limitation,
and there 1s no intention, in the use of such terms and
expressions, of excluding any equivalents of the features
shown and described or portions thereof. In addition, having
described certain embodiments of the invention, it will be
apparent to those of ordinary skill in the art that other
embodiments incorporating the concepts disclosed herein
may be used without departing from the spirit and scope of
the invention. Accordingly, the described embodiments are
to be considered 1n all respects as only illustrative and not
restrictive.

What 1s claimed 1s:

1. A method of detecting and i1dentifying subsurtace
structures, the method comprising the steps of:

acquiring a plurality of surface-penetrating radar (SPR)

images during traversal of a route;

computationally identifying subsurface structures in the

acquired 1mages by using the acquired 1images as 1input
to a predictor that has been computationally trained to
identily subsurface structures in SPR 1mages; and
associating the identified features in the images with
terrestrial coordinates corresponding to geographic
locations of the i1dentified features and, based thereon,
producing a terrestrial map of subsurface structures
corresponding to the i1dentified features.

2. The method of claim 1, wherein the predictor 1s a neural
network.

3. The method of claim 1, wherein the neural network 1s
a convolutional neural network.

4. The method of claim 1, wherein the neural network 1s
a recurrent neural network.

5. The method of claim 1, further comprising the steps of:

acquiring additional SPR images during traversal of a

route by a vehicle;

recognizing, in the SPR images by the predictor, subsur-

face features that the predictor has been trained to
recognize; and

navigating the vehicle based at least 1n part on the

recognized subsurface features and their terrestrial
coordinates in the terrestrial map.
6. A system for detecting and identifying subsurface
structures, the system comprising:
a surface-penetrating radar (SPR) system for acquiring
SPR 1mages; and

a computer including a processor and electronically stored
istructions, executable by the processor, for (1) ana-
lyzing the acquired SPR i1mages and computationally
identifying subsurface structures therein by using the
acquired 1mage as input to a predictor that has been
computationally trained to identity subsurface struc-
tures 1n SPR 1mages and (i1) associating the 1dentified
features 1n the 1mages with terrestrial coordinates cor-
responding to geographic locations of the identified
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features and, based thereon, producing a terrestrial map
of subsurface structures corresponding to the recog-
nized features.

7. The system of claim 6, wherein the predictor 1s a neural
network.

8. The system of claim 6, wherein the neural network 1s
a convolutional neural network.

9. The system of claim 6, wherein the neural network 1s
a recurrent neural network.

10. A vehicle comprising:

a surface-penetrating radar (SPR) system for acquiring

SPR 1mages during vehicle travel;

a computer including a processor and electronically stored
instructions, executable by the processor, for analyzing
the acquired SPR 1mages and computationally 1denti-
fying subsurface structures therein by using the
acquired 1mage as input to a predictor that has been
computationally trained to identity subsurface struc-
tures 1 SPR images; and

computationally navigating the vehicle based at least in
part on the i1dentified subsurface structures and a ter-
restrial map relating subsurface structures to terrestrial
coordinates.

11. The vehicle of claam 10, wherein the computer is
configured to associate the recognized features 1n the images
with terrestrial coordinates corresponding to times when the
images were obtained.
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