12 United States Patent

Tsirkin

USO011573815B2

US 11,573,815 B2
Feb. 7, 2023

(10) Patent No.:
45) Date of Patent:

(54) DYNAMIC POWER MANAGEMENT STATES
FOR VIRTUAL MACHINE MIGRATION

(71) Applicant: RED HAT, INC., Raleigh, NC (US)
(72) Inventor: Michael Tsirkin, Lexington, MA (US)
(73) Assignee: Red Hat, Inc., Raleigh, NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 175 days.

(21) Appl. No.: 16/862,461

(22) Filed: Apr. 29, 2020

(65) Prior Publication Data
US 2021/0342173 Al Nov. 4, 2021

(51) Int. CL
GO6F 9/455 (2018.01)
GO6F 9/48 (2006.01)
GO6rl’ 9/30 (2018.01)
GO6F 1/3203 (2019.01)
GO6l’ 11/30 (2006.01)
GO6Il’ 9/54 (2006.01)

(52) U.S. CL
CPC GO6F 9/45558 (2013.01); GO6F 1/3203

(2013.01); GO6F 9/30076 (2013.01); GO6F
9/45545 (2013.01); GO6F 9/4812 (2013.01);
GO6I 9/542 (2013.01); GO6F 11/3062
(2013.01); GOOE 2009/4557 (2013.01); GO6F
2009/45591 (2013.01)

(58) Field of Classification Search
CPC ..o GO6F 9/45558; GO6F 1/3203; GO6F
9/30076; GO6F 9/45545; GO6F 9/4812;
GO6F 9/542; GO6F 11/3062; GO6F
2009/45577, GO6F 2009/45591

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,026,824 B2 5/2015 Davis et al.
9,483,297 B2 11/2016 Tsirkin
9,772,860 B2 9/2017 Oney et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 103685250 A 3/2014

OTHER PUBLICATTONS

Microsoft, “Set up Dynamic and Power Optimization in VMM?”,
https://docs.microsoft.com/en-us/system-center/vimm/vm-optimization?
view=sc-vimm-2019, Mar. 14, 2019, 7 pages.

(Continued)

Primary Examiner — Emerson C Puente
Assistant Examiner — Jonathan R Labud
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

Systems and methods for supporting dynamic power man-
agement states for virtual machine (VM) migration are
disclosed. In one implementation, a processing device may
generate, by a host computer system, a host power manage-

ment data structure specitying a plurality of power manage-
ment states of the host computer system. The processing
device may also detect that a VM has been migrated to the
host computer system. The processing device may then
prevent the VM from performing power management opera-
tions and may cause the virtual machine to read the host
power management data structure. Responsive to receiving
a notification that the VM has read the host power manage-
ment data structure, the processing device may enable the
VM to enter a first power management state of the plurality
of power management states.

19 Claims, S Drawing Sheets

400
Serd LP! change interrupt to VM with pawsr managerent states data structure DS PJGQ
PR yy s i fm LHRE N i epn o e deame ‘4{34
Raceive reguest from VM 1o enler powesr state S1 I~
YESR 10
Vivireag 3R17
4417 410

Allow VN to enter power state 51

Frevent Vi from entenng powsr
state 51

US 11,573,815 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,864,627 B2 1/2018 Wang et al.

10,121,026 B1* 11/2018 Ryland HOSK 7/1414

10,481,942 B2 11/2019 Kaul
10,853,284 B1* 12/2020 Warkentin GO6F 13/26
2007/0006227 Al* 1/2007 Kinney GO6F 9/45558
718/1
2007/0112999 Al1* 5/2007 Oneyccoooeeennn GO6F 21/53
711/6
2014/0082724 Al1* 3/2014 Pearson GOG6F 21/575
726/22
2014/0137107 Al1* 5/2014 Banerjee GOG6F 1/3206
718/1
2014/0298340 Al1* 10/2014 Imaizumi GOO6F 9/45558
718/1
2017/0147227 Al1* 5/2017 Stabrawa GO6F 3/065
2019/0235615 Al1* 8/2019 Shows GO6F 1/3206

OTHER PUBLICATIONS

Mohammad Ali Khoshkholghi et al., “Energy-Eflicient Algorithms
for Dynamic Virtual Machine Consolidation in Cloud Data Cen-

ters”, https://1eeexplore.iece.org/stamp/stamp.jsp?arnumber=
7937801, Mar. 30, 2017, pp. 10709-10722, Faculty of Computer
Science and Information Technology, University Putra Malaysia.

* cited by examiner

US 11,573,815 B2

Sheet 1 of 5

Feb. 7, 2023

U.S. Patent

051 MHOMLIN

01

081
ANALG

AOVHOLS

AGUONAN
NIV

821
INANOGNOD NOLLYHLSININGY Go) HOSIAHTACAH
SALVLS INTWIDYNYIA M3MOJ

0¢1 SO LSOH

NTET L
a0 193no | NOET ANHOVA

IVRLHIA L5400

001 W3 LSAS H3LINAWOD

ikl
SOEINE 3

YOCT anHov il
TWNLHIA 1S309)

US 11,573,815 B2

\
- 18IS JIBMOG B
M 1818 0] 7 1sanbal
- A SAIBO3Y
s
W '
7 |
J
L

er)
3
~ 31R1S
~ iemod sl
= JBIUS O} INA
W
= oyl Il

g1

U.S. Patent
|
\

WA 941 AG

DIQISS80R $83i0pe
AJOUIBU B PBOY

i

IONLSIUE {4

all PBSS8RnIG

NA 2L

e} UCHEILHOU

SAISDOM

el

Jalliz O

(

c1%4

¥SOY sUl
j0 ajge; wibw
1Mo SUL YIMm
IALA O] 10NUaILU

icd 1 PUSS

31218 1SAM0d B

A BAIDDIM
|

¢l

M 1sanba

{

1424

1L
1amMmod e ialus
O WA Lol
L 1Ssanbad
100l

1I31SAS 1S0U

aU1 03 uonribiLy

WA © 18190

N

A%

N

274

DOUELS UIBISAS 1SOH
_

121

1504 O S31B1S
WUBLU Jomodd
Ulia 21081 b
J8Mod s1Bislian

(

174

U.S. Patent Feb. 7, 2023 Sheet 3 of 5 US 11,573,815 B2

300

.

Generate, by a host computer system, a host power management data r\:ﬁ(}

structure specifying a piurality of power management states of the host
computer sysiem

Delect thatl a virlual machine (VM) has been migrated {0 the host computer r\g;{)

system
325
Prevent the VM from performing power management operations MY
..... 330
Cause the virtual machine (o read the host power management data structure
340

Responsive {0 receiving a notification that the VM has read the host power |N\J
management data structure, enable the VM 1o enter a first power management
staie of ihe pluralty of power management states

U.S. Patent Feb. 7, 2023 Sheet 4 of 5 US 11,573,815 B2

¢ 400
Send LP! change interrupt fo VM with power management states data structure DS r\ji-92
; ; 404
Receive request from VM {0 enter power state S1 ~J
YES , . N
Vi read D517
412 410

Allow VM to enter power state 51 Prevent VM from entering power
state S1

U.S. Patent Feb. 7, 2023 Sheet 5 of 5 US 11,573,815 B2

500
Processing Device 502 A s/
=
Instructions 527
;
| y R Video Display
POWER b) 510
MANAGEMENT | |
STATES | , .
ADMINISTRATION | | § S Aipha-—Numers? Input Device
COMPONENT 128 | 512
N Cursor Control Dev
p S ursor Lontrol evice
214
Main Memory 504
. Signal Generation Device
% € >
Instructions 522 % 216
|
] Bus 530
POWER i <«
MANAGEMENT e >
ADME?\;?}T;ETEQN Data Storage Device 518
COMPONENT 128 Machine-Readable Storage Medium
928
instructions 54/
- POWER
Static Memo < >
506 K < > MANAGEMENT
- STATES
ADMINISTRATION
COMPONENT 128
Network interface Device < 4
508
’fgf"ﬁ"“ SN “"‘*;;,m\h
4 Nefwork 3

{ 520 . v
~, \}#ﬁ
L\-\\mﬂ ﬁ\#‘;

US 11,573,815 B2

1

DYNAMIC POWER MANAGEMENT STATES
FOR VIRTUAL MACHINE MIGRATION

TECHNICAL FIELD

The disclosure 1s generally related to virtualization sys-

tems, and 1s more specifically related to dynamic power
management states for virtual machine migration.

BACKGROUND

Virtualization 1s a computing technique that improves
system utilization, decoupling applications from the under-
lying hardware, and enhancing workload mobility and pro-
tection. Virtualization may be realized through the imple-
mentation of virtual machines (VMs). A VM 1s a portion of
software that, when executed on appropriate hardware,
creates an environment allowing the virtualization of a
physical computer system (e.g., a server, a mainirame com-
puter, etc.). The physical computer system 1s typically
referred to as a “host machine,” and the operating system of
the host machine 1s typically referred to as the “host oper-
ating system.” A virtual machine may function as a seli-
contained platform, executing 1ts own “guest” operating
system and software applications. Typically, software on the
host machine known as a “hypervisor” (or a “virtual
machine monitor”) manages the execution of one or more
virtual machines, providing a variety of functions such as
virtualizing and allocating resources, context switching
among virtual machines, backing up the state of wvirtual
machines periodically 1n order to provide disaster recovery
and restoration of virtual machines, and so on.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure 1s i1llustrated by way of examples, and not
by way of limitation, and may be more fully understood with
references to the following detailed description when con-
sidered 1n connection with the figures, 1n which:

FIG. 1 depicts a high-level diagram of an example system
architecture operating 1n accordance with one or more
aspects of the disclosure.

FI1G. 2 depicts a sequence diagram 1llustrating the flow of
events for an example method of managing dynamic power
management states for virtual machine migration, 1n accor-
dance with one or more aspects of the present disclosure.

FIG. 3 1s a flow diagram of an example method of
dynamic power management states for virtual machine
migration, in accordance with one or more aspects of the
present disclosure

FIG. 4 1s a flow diagram of an example method for
supporting dynamic power management states for VM
migration based on the VM handling of the LPI change
interrupt, 1 accordance with one or more aspects of the
present disclosure.

FIG. 5 depicts a block diagram of a computer system
operating 1n accordance with one or more aspects of the
disclosure.

DETAILED DESCRIPTION

Implementations of the disclosure are directed to dynamic
power management states for virtual machine migration.

Certain processor architectures support virtualization by
providing special 1structions {for facilitating virtual
machine execution. In certain implementations, a processor
may support executing a hypervisor that acts as a host and

10

15

20

25

30

35

40

45

50

55

60

65

2

has full control of the processor and other platform hard-
ware. A hypervisor presents a virtual machine with an
abstraction of one or more virtual processors. A hypervisor
1s able to retain selective control of processor resources,
physical memory, mterrupt management, and nput/output
(I/0). Each virtual machine (VM) 1s a guest soltware envi-
ronment that supports a stack consisting of operating system
(OS) and application software. Each VM operates indepen-
dently of other virtual machines and uses the same 1nterface
to the processors, memory, storage, graphics, and I/O pro-
vided by a physical platform.

A virtual machine can utilize one or more hardware
configuration data structures (e.g., tables, lists) to store
configuration parameters of the underlying physical hard-
ware allocated by the host computer system, including
power management states. Power management states refers
to a set of 1dle or power saving states that can be utilized by
a processor to decrease the power consumption of the
processor before the processor powers down. In virtualized
environments, a hypervisor can generate certain hardware
configuration tables and provide the hardware configuration
tables to one or more virtual machines. Thus, the hypervisor
can present the abstraction of the hardware layer to the
virtual machines. In some 1mplementations, the hypervisor
can generate hardware configuration tables 1n accordance
with the Advanced Configuration and Power Interface
(ACPI) Specification. The ACPI Specification provides an
open standard for device configuration and power manage-
ment to the guest operation system.

A virtual machine can be migrated from a host computer
system (“the source host computer system”™) to another host
computer system (“the destination host computer system”)
over a network. As a result of the migration, the power
management states of the virtual machine may need to be
changed because the underlying power states of the desti-
nation host computer system can be different from the power
states of the source host computer system. Therefore, 1t may
be unsate to enable a migrated VM to enter a power
management state on the destination host because the
migrated VM may be configured based on the power states
of the source destination.

In some implementations, in order to avoid having a
migrated VM perform an unsaie power management opera-
tion (e.g., entering a power management state that 1s invalid
on the destination host), a virtualization environment that
cnables a guest operating system of the VM to perform
power management operations may disable VM migrations.
Alternatively, the hypervisor may enable VM migration, but
disable power management operations to be performed by
migrated virtual machines. While this solution can prevent
the VM from entering an unsafe power state, it significantly
limits the capabilities of the virtualized environment. In
other examples, the hypervisor may send an interrupt to the
VM notifying the VM of the power states of the destination
host. However, since the VM may consume significant time
until 1t detects and handles the interrupt, the VM may request
to enter an 1mvalid power state before handling the interrupt,
thus causing unpredictable results on the destination host
and the VM.

Aspects of the disclosure address the above and other
deficiencies by providing dynamic power management
states access for migrated virtual machines (VM). When a
hypervisor running on a host computer system detects that a
virtual machine has been migrated to the host, the hypervisor
may prevent the VM from entering a power management
state until the VM re-evaluates 1ts iternal power manage-
ment tables based on the power management configurations

US 11,573,815 B2

3

of the host. Because the internal power management tables
of the migrated VM are configured based on the power
management configurations of the source host, it may not be
safe to allow the VM to enter a power management state at
the destination host. In many cases, the power management
states may defer from one cluster or host to another, thus
allowing the VM to perform power management operations
alter migration may result in unpredictable results including
host or guest crashes. As an example, when the hypervisor
receives a request from the VM to enter a power state, the
hypervisor may prevent the VM from entering the power
state by performing a NOP (no operation) instruction and
returning execution back to the VM. The hypervisor may
turther perform operations to cause the VM to read the
power management states of the host system.

In order to enable the VM to update its internal CPU
tables based on the power management states of the host, the
hypervisor may notity the VM of the available power
management states and cause the VM to update the power
management states 1n 1ts ACPI tables accordingly. For
example, the hypervisor may generate a power management
data structure (e.g., an ACPI table) including a list of the host
power management states of the host. In an example, the
data structure may be generated by the host system at start
up and may be stored in host memory. The data structure
may include, for example, an ACPI processor object (e.g., a
CST (C States) object defined by ACPI), a Low Power Idle
(LPI) structure defined by ACPI, a Low Power Idle Table
(LPIT)) defined by ACPI, etc. In this case, the hypervisor
can send a LPI change interrupt to the VM including the
power management data structure. Upon recerving the inter-
rupt, a guest operating system of the VM may update the
power management configurations in internal CPU tables of
the VM based on the power management data structure from
the LPI change interrupt.

When the LPI change interrupt 1s handled by the VM, the
VM may notity the hypervisor that the power management
states data structure has been read. In some implementa-
tions, the VM may send the notification using a paravirtu-
alized interface. Paravirtualization refers to a virtualization
technique which involves modifying the guest operating
system 1n order to allow more eflicient performance of
certain functions in the virtualized environment, as com-
pared to the same operating system runmng directly on the
underlying hardware. Accordingly, a paravirtualized inter-
face refers to an interface that 1s not implemented in the
operating system running directly on the underlying hard-
ware, and 1s added to the guest operating system 1n order to
allow more eflicient performance of certain functions in the
virtualized environment. As an example, the guest operating,
system may update a memory location at a specific address
with a predetermined value indicating that the LPI change
interrupt has been processed. In another example, the guest
operating system may send the notification via a predeter-
mined I/0 port, notitying the hypervisor that the LPI change
interrupt has been processed and that the power management
states of the host has been updated in the VM internal CPU
tables.

In one implementation, 1n order to receive the notification
that the LPI change interrupt has been processed by the VM,
the hypervisor may read the specific address periodically to
determine 11 the predetermined value has been stored at the
address by the VM. In another example, the hypervisor may
monitor the predetermined 1/O port for the notification from
the VM that the LPI has been processed. In implementations,
the hypervisor may run a background thread to monitor the
location of the notification (e.g., memory address, I/O port,

10

15

20

25

30

35

40

45

50

55

60

65

4

etc.) and detect when the notification 1s received from the
VM. When the hypervisor receives the notification that the
LPI change interrupt has been handled by the VM, the
hypervisor may determine that it 1s safe for the VM to enter
power states of the host system and may enable the VM to
enter the power management states of the host. For example,
when the guest operating system sends a request to the
hypervisor to place a processor of the host computer system
in a specific host power state, the hypervisor may fulfill the
request and may place the processor in the power state
specified by the guest operating system.

Thus, implementations of the disclosure enables migrated
virtual machines, from a source host to a destination host, to
perform power management operations at the destination
host without requiring that the power management states of
the source host to be identical to the power management
states of the destination host. This solution enables a more
scalable and robust migration capability for virtual machines
because 1t eliminate the need to disable power management
functions for migrated VMs. Additionally, exposing the host
power management states to the migrated VM, using a LPI
change 1nterrupt, as soon as it 1s detected on the destination
host enables the VM to efliciently and promptly updates its
power management tables based on the power management
configuration of the destination host, thus reducing delays of
updating the VM tables based on the destination host power
states while eliminating unexpected results of entering a
power state that may be invalid on the host.

FIG. 1 depicts an illustrative architecture of elements of
a computer system 100, 1n accordance with an embodiment
of the present disclosure. It should be noted that other
architectures for computer system 100 are possible, and that
the implementation of a computer system utilizing embodi-
ments ol the disclosure are not necessarily limited to the
specific architecture depicted by FIG. 1. As shown in FIG.
1, the computer system 100 1s connected to a network 150
and comprises central processing unit (CPU) 160, main
memory 170, which can include volatile memory devices
(e.g., random access memory (RAM)), non-volatile memory
devices (e.g., flash memory), and/or other types of memory
devices, and storage device 180 (e.g., a magnetic hard disk,
a Universal Serial Bus (USB) solid state drive, a Redundant
Array of Independent Disks (RAID) system, a network
attached storage (NAS) array, etc.) that serves as a secondary
memory, interconnected as shown. Although, for simplicity,
a single CPU 1s depicted 1 FIG. 1, 1n some other embodi-
ments computer system 100 can comprise a plurality of
CPUs. Similarly, in some other embodiments computer
system 100 can comprise a plurality of storage devices 180,
rather than a single storage device 180. The computer
system 100 can be a server, a mainirame, a workstation, a
personal computer (PC), a mobile phone, a palm-sized
computing device, etc. The network 150 can be a private
network (e.g., a local area network (LAN), a wide area
network (WAN), intranet, etc.) or a public network (e.g., the
Internet).

Computer system 100 runs a host operating system (OS)
120, which can comprise soitware that manages the hard-
ware resources of the computer system and that provides
functions such as iter-process communication, scheduling,
virtual memory management, and so {forth. In some
examples, host operating system 120 also comprises a
hypervisor 125, which provides a virtual operating platform
for guest VMs 130A-130N and manages their execution.
Each VM 130A-N can be software implementation of a
machine that executes programs as though 1t were an actual
physical machine. Each VM 130A-N can have a correspond-

US 11,573,815 B2

S

ing guest operating system 131A-N that manages virtual
machine resources and provides functions such as inter-
process communication, scheduling, memory management,
and so forth. It should be noted that in some other examples,
hypervisor 125 can be external to host OS 120, rather than
embedded within host OS 120. As shown, hypervisor 125
can include power management states administration com-
ponent 128 that may facilitate dynamic power management
states for virtual machine migration.

In certain implementations, power management states
administration component 128 can detect that VM 130A has
been migrated to host system 100 from a source host system.
In order to prevent VM 130A from entering an unsafe power
state on host system 100, power management states admin-
1stration component 128 may prevent VM 130A from enter-
ing a power management state until VM 130A updates 1ts
internal power management tables based on the power
management configurations of host system 100. For
example, when hypervisor 125 receives a request from VM
130A to enter a power state, power management states
administration component 128 of hypervisor 125 may pre-
vent VM 130A from entering the power state by performing,
a no operation istruction until power management states
administration component 128 detects that VM 130A has
updated 1ts CPU tables with power management states of
host system 100. Power management states administration
component 128 may cause VM 130A to read the power
management states of host system 100 and updates its CPU
tables accordingly.

In one implementation, power management states admin-
istration component 128 may send a power management
data structure of host 100 to VM 130A to cause VM 130A
to update the power management states i its CPU tables
based on the data structure. In an i1llustrative example, power
management states administration component 128 may gen-
erate the power management data structure, including a list
of the host power management states of host 100 at start up
time of host 100. Power management states admainistration
component 128 may send the data structure to VM 130A
using a LPI change interrupt that includes the power man-
agement data structure. Upon receiving the interrupt, guest
operating system 131 A of VM 130A may update the power
management configurations in internal CPU tables of VM
130A based on the power management data structure of the
LPI change interrupt.

When the internal CPU tables are updated with power
states from the power management data structure, VM 130A
may send a notification to power management states admin-
istration component 128 indicating that the power manage-
ment states data structure has been read. In implementations,
VM 130A may send the notification using a paravirtualized
interface (e.g., by updating a specific address with a prede-
termined value, sending data to a specific 1/0 port, etc.). The
notification may indicate to power management states
administration component 128 that the LPI change interrupt
has been processed and that the power management states of
host system 100 has been updated in VM 130A internal CPU
tables.

In certain implementations, in order to receive the noti-
fication that the LPI change interrupt has been processed by
VM 130A, power management states administration com-
ponent 128 may execute a background thread to momitor a
specific location where the notification 1s expected to be
received (1.e., the specific address, the specific IO port, etc.).
As an example, power management states administration
component 128 can read the specific address periodically
(e.g., every 10 seconds) to determine 1f the predetermined

5

10

15

20

25

30

35

40

45

50

55

60

65

6

value has been stored at the address by VM 130A. When
power management states administration component 128
determines that the predetermined value 1s stored at the
address, power management states administration compo-
nent 128 may determine that VM 130A has processed the
LPI change interrupt and may determine that 1t 1s safe for the
VM to enter the power states of host system 100. Conse-
quently, power management states administration compo-
nent 128 may enable VM130A to enter at least one of the
power management states of host 100. For example, when
VM 130A sends a request to power management states
administration component 128 to enter a power state of the
host 100, power management states administration compo-
nent 128 mat perform the request and enable VM 130A to
enter the requested power state.

FIG. 2 depicts a sequence diagram 1llustrating the flow of
cevents for an example method 200 of managing dynamic
power management states for virtual machine migration, in
accordance with one or more aspects of the present disclo-
sure. Method 200 may be performed by processing logic that
includes hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (e.g., mstructions
run on a processor to perform hardware simulation), or a
combination thereof. Method 200 or each of 1its individual
functions, routines, subroutines, or operations may be per-
formed by one or more processors ol a computer system
(e.g., host computer system 100 of FIG. 1) implementing the
method. In an illustrative example, method 200 may be
performed by a single processing thread. Alternatively,
method 200 may be performed by two or more processing
threads, each thread implementing one or more individual
functions, routines, subroutines, or operations of the method.
In an illustrative example, the processing threads imple-
menting method 200 may be synchronized (e.g., using
semaphores, critical sections, or other thread synchroniza-
tion mechanisms).

In an illustrative example, at operation 210 the processing
logic at time TO may generate a power management table
containing the set of power management states of the host
system. In implementations, the power management states
may be the valid power management states of CPUs of the
host system. The power management table may be created
when the host system 1s starting up and may be kept in
memory until the host system shuts down. As an example,
the power management table may be used by the host system
to evaluate requests to place a CPU of the host system 1n a
specific power state.

At operation 211, the processing logic at time T1 may
detect that a virtual machine has been migrated to the host
from a source host. After migration, the internal power
management tables of the migrated VM may still be con-
figured based on the power management configurations of
the source host, thus the processing logic may determine that
it may not be sale to allow the VM to enter a power
management state at the host until the VM updates 1its
internal power management tables based on the power
management sates of the host system. Therefore, the pro-
cessing logic may temporarily prevent the VM from entering
a power management state on the host until the VM re-
evaluates 1ts internal power management tables based on the
power management configurations of the host.

At operation 212, the processing logic at time T2 may
receive a request R1 from the VM to enter a specific power
state. In this case, because the power management states at
the source host that hosted the VM belfore migration may
defer from the power management states at the host system,
the processing logic may prevent the VM from entering the

US 11,573,815 B2

7

requested power state. As an example, the processing logic
may reject the request R1 by performing a no operation
istruction and may returning execution back to the VM
without enabling the VM to enter the requested power state.

At operation 214, the processing logic at time T3 may
send an LPI change interrupt to the VM 1n order to enable
the VM to update 1ts internal CPU tables based on the power
management states of the host. For example, the LPI change
interrupt may include a data structure containing a list of the
power management states of the host, to enable the VM to
update the power management states 1n its CPU tables based
on the data structure of the LPI change interrupt. Upon
receiving the interrupt, a guest operating system of the VM
may process the LPI change interrupt by updating the power
management configurations in internal CPU tables of the
VM based on the power management states of the host from
the data structure. When the VM completes the processing
of the LPI change interrupt, the VM may notily the hyper-
visor that the power management states data structure has
been read and that the internal power management tables of
the VM have been updates with the post power management
states. In implementations, the VM may send the notification
by updating a specific memory address that 1s accessible by
the hypervisor with a predetermined value indicating that the
LLPI change interrupt has been processed.

At operation 216, the processing logic at time T4, the
processing logic may receive the notification that the LPI
change nterrupt has been processed by the VM. As an
example, the processing logic may read the specific memory
address periodically (e.g., using a background thread to
monitor changes to the memory address) to determine 11 the
predetermined value has been stored at the address by the
VM. When the processing logic receives the notification that
the LPI change interrupt has been handled by the VM, the
processing logic may determine that 1t 1s safe for the VM to
enter power states of the host system and may enable the VM
to enter one or more power management states of the host.

At operation 218, the processing logic at time 15, the
processing logic may receive a request R2 from the VM to
enter the specific power management state ol the host
system. Detecting that the VM has updated internal power
management tables based on the notification, the processing
logic may enable the VM to enter the requested power
management state. For example, the processing logic may
place a physical processor 1n the power state specified in
request R2 and may notify the VM that the request has been
tulfilled.

FIG. 3 1s a flow diagram of an example method of
dynamic power management states for virtual machine
migration, in accordance with one or more aspects of the
present disclosure. Method 300 may be performed by pro-
cessing logic that includes hardware (e.g., circuitry, dedi-
cated logic, programmable logic, microcode, etc.), software
(e.g., mstructions run on a processor to perform hardware
simulation), or a combination thereof. Method 300 or each
of its individual functions, routines, subroutines, or opera-
tions may be performed by one or more processors of a
computer system (e.g., the host computer system 100 of
FIG. 1) mmplementing the method. In an illustrative
example, method 300 may be performed by a single pro-
cessing thread. Alternatively, method 300 may be performed
by two or more processing threads, each thread implement-
ing one or more individual functions, routines, subroutines,
or operations of the method. In an 1llustrative example, the
processing threads implementing method 300 may be syn-
chronized (e.g., using semaphores, critical sections, or other
thread synchronization mechanisms). Alternatively, the pro-

10

15

20

25

30

35

40

45

50

55

60

65

8

cessing threads implementing method 300 may be executed
asynchronously with respect to each other. Therefore, while
FIG. 3 and the associated description lists the operations of
method 300 1n certain order, various implementations of the
method may perform at least some of the described opera-
tions 1n parallel or 1n arbitrary selected orders.

Method 300 may begin at block 310. At block 310, the
processing logic may receive, by a hypervisor managing a
virtual machine (VM), a hypercall initiated by the VM. The
hypercall may have at least two parameters; a first parameter
specilying a guest physical address (GPA) of a memory
bufler and a second parameter spec1fy1ng a host virtual
address (HVA) of the memory builer. The memory builer
may be accessed by the hypervisor when executing the
hypercall. In implementations, the processing logic may use
the HVA to access the memory buller after validating that
the HVA 1s a correct address for the memory bufler, as
described 1n more detail herein above.

At block 310, the processing logic may generate a host
power management data structure that includes a list of the
host power management states of host. In implementations,
the processing logic may generate the host power manage-
ment data structure at start up time of the host system, as
explained 1n more details herein above.

At block 320, the processing logic may detect that a
virtual machine (VM) has been migrated to the host system.
In implementations, the VM may have been migrated from
a source host and may have been configured based on the
power management states of the source host, as explained in
more details herein.

At block 3235, the processing logic may prevent the VM
from performing power management operations (e.g., plac-
ing a CPU 1n an idle state) until the VM updates its internal
power management tables based on the power management
states of the host, as explained 1n more details herein.

At block 330, the processing logic may cause the VM to
read the power management data structure of the host by
sending the power management data structure to the VM
using a LPI change interrupt that includes the power man-
agement data structure. The VM may then process the LPI
change mterrupt and may send a notification that the internal
power management tables has been updated with the power
management states of the host, as explained 1in more details
herein.

At operation 340, when the processing logic receives the
notification from the VM that the LPI change iterrupt has
been processed, the processing logic may enable the VM to
enter a power state of the host (e.g., by fulfilling a request
form the VM to enter one of the power management states
of the host), as explained 1n more details herein.

FIG. 4 1s a flow diagram of an example method for
supporting dynamic power management states for VM
migration based on the VM handling of the LPI change
interrupt, in accordance with one or more aspects of the
present disclosure. Method 400 may be performed by pro-
cessing logic that includes hardware (e.g., circuitry, dedi-
cated logic, programmable logic, microcode, etc.), software
(e.g., mstructions run on a processor to perform hardware
simulation), or a combination thereof. Method 400 or each
of 1ts individual functions, routines, subroutines, or opera-
tions may be performed by one or more processors ol a
computer system (e.g., host computer system 100 of FIG. 1)
implementing the method. In an illustrative example,
method 400 may be performed by a single processing thread.
Alternatively, method 400 may be performed by two or more
processing threads, each thread implementing one or more
individual functions, routines, subroutines, or operations of

US 11,573,815 B2

9

the method. In an illustrative example, the processing
threads implementing method 400 may be synchronized
(e.g., using semaphores, critical sections, or other thread
synchronization mechanisms). Alternatively, the processing
threads 1implementing method 400 may be executed asyn-
chronously with respect to each other. Therefore, while FIG.
4 and the associated description lists the operations of
method 400 1n certain order, various implementations of the
method may perform at least some of the described opera-

tions 1n parallel or 1n arbitrary selected orders.
Method 400 may begin at block 402. At block 402, the

processing logic may send to a VM a LPI change interrupt
that includes a power management data structure DS1. DSI]
may contain the power management states of the host
system of the VM. In implementations, the processing logic
mat send the LPI change interrupt 1n response to detecting,
that the VM has been migrated to the host and has not yet
updated 1ts internal power management tables based on the
power states of the host.

At operation 404, the processing logic may receive a
request Irom the VM to enter one of the power states of the
host (e.g., power state S1). In one implementation, the
processing logic may fulfil the request from the VM 1f the
VM has completed the processing of the LPI change inter-
rupt, as explained 1n more details herein.

At operation 406, the processing logic may determine
whether the VM has read and processed DS1 from the LPI
change mterrupt. In an implementation, the VM may notily
the processing logic on the host that the LPI change interrupt
has been processed when the VM updates 1ts internal power
management tables with the power states from DS1, as
explained 1 more details herein above. Therefore, the
processing logic may make a decision on whether to prevent
or allow the VM to enter power state S1 based on whether
or not the processing logic has recerved the notification.

At operation 410, when the processing logic determines
that the notification from the VM has not been received (e.g.,
by receiving the notification at a predetermined I/O port), the
processing logic may prevent the VM from entering power
state S1 (e.g., by executing a no operation instruction). On
the other hand, at operation 412, 1t the processing logic
determines that the notification from the VM has been
received, the processing logic may allow the VM to enter
power state S1 on the host, as explaimned in more details
herein above.

FIG. 5 depicts a block diagram of a computer system
operating 1n accordance with one or more aspects of the
disclosure. In various illustrative examples, computer sys-
tem 500 may correspond to a computing device 110 within
system architecture 100 of FIG. 1. In one implementation,
the computer system 500 may be the computer system 110
of FIG. 1. The computer system 500 may be included within
a data center that supports virtualization. Virtualization
within a data center results 1n a physical system being
virtualized using VMSs to consolidate the data center infra-
structure and increase operational efliciencies. A VM may be
a program-based emulation of computer hardware. For
example, the VM may operate based on computer architec-
ture and functions of computer hardware resources associ-
ated with hard disks or other such memory. The VM may
emulate a physical computing environment, but requests for
a hard disk or memory may be managed by a virtualization
layer of a host system to translate these requests to the
underlying physical computing hardware resources. This
type of virtualization results 1n multiple VMs sharing physi-
cal resources.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

In certain implementations, computer system 300 may be
connected (e.g., via a network, such as a Local Area Net-
work (LAN), an intranet, an extranet, or the Internet) to
other computer systems. Computer system 300 may operate
in the capacity of a server or a client computer 1 a
client-server environment, or as a peer computer 1n a peer-
to-peer or distributed network environment. Computer sys-
tem 500 may be provided by a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, switch or bridge, or any device capable of
executing a set of 1nstructions (sequential or otherwise) that
specily actions to be taken by that device. Further, the term
“computer” shall include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
described herein.

In a further aspect, the computer system 500 may include
a processing device 502, a volatile memory 3504 (e.g.,
random access memory (RAM)), a non-volatile memory 506
(e.g., read-only memory (ROM) or electrically-erasable
programmable ROM (EEPROM)), and a data storage device
518, which may commumnicate with each other via a bus 530.

Processing device 502 may be provided by one or more
processors such as a general purpose processor (such as, for
example, a complex mstruction set computing (CISC)
microprocessor, a reduced mstruction set computing (RISC)
microprocessor, a very long instruction word (VLIW)
miCroprocessor, a microprocessor implementing other types
of instruction sets, or a microprocessor implementing a
combination of types of instruction sets) or a specialized
processor (such as, for example, an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), or a network
Processor).

Computer system 500 may further include a network
interface device 308. Computer system 500 also may
include a video display unit 510 (e.g., an LCD), an alpha-
numeric iput device 512 (e.g., a keyboard), a cursor control
device 514 (e.g., a mouse), and a signal generation device
516.

Data storage device 518 may include a non-transitory
computer-readable storage medium 528 on which may store
instructions 522 embodying any one or more of the meth-
odologies or functions described herein (e.g., power man-
agement states administration component 128). Instructions
522 may also reside, completely or partially, within volatile
memory 304 and/or within processing device 502 during
execution thereof by computer system 300, hence, volatile
memory 304 and processing device 502 may also constitute
machine-readable storage media.

While computer-readable storage medium 528 1s shown
in the illustrative examples as a single medium, the term
“computer-readable storage medium”™ shall include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets ol executable instructions. The term
“computer-readable storage medium” shall also include any
tangible medium that 1s capable of storing or encoding a set
of 1nstructions for execution by a computer that cause the
computer to perform any one or more ol the methods
described heremn. The term “computer-readable storage
medium” shall include, but not be limited to, solid-state
memories, optical media, and magnetic media.

The methods, components, and features described herein
may be implemented by discrete hardware components or
may be integrated in the functionality of other hardware

US 11,573,815 B2

11

components such as ASICS, FPGAs, DSPs or similar
devices. In addition, the methods, components, and features
may be implemented by firmware modules or functional
circuitry within hardware devices. Further, the methods,
components, and features may be implemented 1n any com-
bination of hardware devices and computer program com-
ponents, or 1n computer programs.
Unless specifically stated otherwise, terms such as
“recerving,” “associating,” “deleting,” “imitiating,” “mark-
ing,” “generating,” “recovering,” “completing,” or the like,
refer to actions and processes performed or implemented by
computer systems that manipulates and transforms data
represented as physical (electronic) quantities within the
computer system registers and memories into other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices. Also, the terms
“first,” “second,” “third,” “fourth,” etc. as used herein are
meant as labels to distinguish among diflerent elements and
may not have an ordinal meaning according to their numerti-
cal designation.
Examples described herein also relate to an apparatus for
performing the methods described herein. This apparatus
may be specially constructed for performing the methods
described herein, or 1t may comprise a general purpose
computer system selectively programmed by a computer
program stored in the computer system. Such a computer
program may be stored i a computer-readable tangible
storage medium.
The methods and 1llustrative examples described herein
are not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used 1n
accordance with the teachings described herein, or 1t may
prove convenient to construct more specialized apparatus to
perform methods 300, and 400, and/or each of their indi-
vidual functions, routines, subroutines, or operations.
Examples of the structure for a variety of these systems are
set forth in the description above.
The above description 1s mtended to be illustrative, and
not restrictive. Although the disclosure has been described
with references to specific illustrative examples and imple-
mentations, it will be recognized that the present disclosure
1s not limited to the examples and 1mplementations
described. The scope of the disclosure should be determined
with reference to the following claims, along with the full
scope of equivalents to which the claims are entitled.
What 1s claimed 1s:
1. A method comprising:
generating, by a host computer system, a host power
management data structure specifying a plurality of
power management states of the host computer system;

detecting that a virtual machine (VM) has been migrated
to the host computer system;

preventing the VM from performing power management

operations;

causing the VM to read the host power management data

structure; and

responsive to recerving a notification that the VM has read

the host power management data structure, enabling the
VM to enter a first power management state of the
plurality of power management states,

wherein preventing the VM from performing power man-

agement operations further comprises:

receiving a request from the VM to enter the first power

management state;

performing a no-operation (NOP) instruction; and

returning an execution control to the VM.

- 4

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The method of claim 1, wherein causing the VM to read
the host power management data structure further com-
Prises:

causing the VM to update internal data structures with the

plurality of power management states of the host com-
puter system based on the host power management data
structure.

3. The method of claim 1, wherein the host power
management data structure comprises at least one of a CST
object or a Low Power Idle (LPI) table defined by Advanced
Configuration and Power Interface (ACPI).

4. The method of claim 3, wherein causing the VM to read
the host power management data structure further com-
Prises:

sending, to the VM, a LPI change interrupt comprising the

host power management data structure.

5. The method of claim 1, wherein the host computer
system generates the host power management data structure
during a start up process of the host computer system.

6. The method of claim 1, wherein recerving the notifi-
cation that the VM has read the host power management data
structure further comprises:

reading a value stored by the VM at a predetermined

address.

7. The method of claim 1, wherein the VM 1s to send the
notification that the VM has read the host power manage-
ment data structure using a paravirtualized interface.

8. A system comprising:

a memory;

a processing device operatively coupled to the memory,

the processing device to:

generate a host power management data structure
speciiying a plurality of power management states of
the host computer system:;

detect that a virtual machine (VM) has been migrated
to the host computer system;

prevent the VM from performing power management
operations;

send, to the VM, an interrupt referencing the host
power management data structure; and

responsive to receiving a notification that the VM has
read the host power management data structure,
enable the VM to enter a first power management
state of the plurality of power management states.

9. The system of claim 8, wherein the processing device
1s Turther to:

cause the VM to update internal data structures with the

plurality of power management states of the host com-
puter system based on the host power management data
structure.

10. The system of claim 8, wherein the host power
management data structure comprises at least one of a CST
object or a Low Power Idle (LPI) table defined by Advanced
Configuration and Power Interface (ACPI).

11. The system of claim 10, wherein the mterrupt com-
prises

a LPI change interrupt comprising the host power man-

agement data structure.

12. The system of claim 8, wherein the host computer
system generates the host power management data structure
during a start up process of the host computer system.

13. The system of claim 8, wherein to prevent the VM
from performing power management operations, the pro-
cessing device 1s further to:

recerve a request from the VM to enter the first power

management state;

perform a no-operation (NOP) 1nstruction; and

US 11,573,815 B2

13

return an execution control to the VM.
14. The system of claim 8, wherein to receive the noti-
fication that the VM has read the host power management
data structure, the processing device 1s further to:
read a value stored by the VM at a predetermined address.
15. A non-transitory computer-readable media storing
istructions that, when executed, cause a processing device
to:
generate a host power management data structure speci-
tying a plurality of power management states of the
host computer system,;
detect that a virtual machine (VM) has been migrated to
the host computer system:;
responsive to receiving, from the VM, a request to enter
a first power management state, execute a no-operation
(NOP) 1nstruction;
prevent the VM from performing power management
operations;
cause the VM to read the host power management data
structure; and
responsive to recerving a notification that the VM has read
the host power management data structure, enable the

VM to enter the first power management state of the
plurality of power management states.

10

15

20

14

16. The non-transitory computer-readable media of claim
15, wherein to cause the VM to read the host power
management data structure, the processing device 1s further
to:

cause the VM to update internal data structures with the

plurality of power management states of the host com-
puter system based on the host power management data
structure.

17. The non-transitory computer-readable media of claim
15, wherein to cause the VM to read the host power
management data structure, the processing device 1s further
to:

send, to the VM, a LPI change interrupt comprising the

host power management data structure.

18. The non-transitory computer-readable media of claim
15, wherein to prevent the VM from performing power
management operations, the processing device 1s further to:

return an execution control to the VM.

19. The non-transitory computer-readable media of claim
15, wherein to receive the notification that the VM has read
the host power management data structure, the processing
device 1s further to:

receive data at a predetermined input/output (I/0O) port,

the data 1s sent to the 1/O port by the VM.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

