12 United States Patent

Barrick et al.

USO011561798B2

US 11,561,798 B2
Jan. 24, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(51)

(52)

(58)

ON-THE-FLY ADJUSTMENT OF
ISSUE-WRITE BACK LATENCY TO AVOID
WRITE BACK COLLISIONS USING A
RESULT BUFFER

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)
Inventors: Brian D. Barrick, Ptlugerville, TX
(US); Maarten J. Boersma,
Holzgerlingen (DE); Niels Fricke,
Herrenberg (DE); Dung Q. Nguyen,
Austin, TX (US); Brian W. Thompto,
Austin, TX (US); Andreas Wagner,
Weil 1m Schonbuch (DE)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 18 days.

Notice:

Appl. No.: 16/943,525

Filed: Jul. 30, 2020

Prior Publication Data

US 2022/0035637 Al Feb. 3, 2022

Int. CI.
GO6F 9/38
GO6F 9/30

U.S. CL
CPC

(2018.01)
(2018.01)

........ GO6F 9/3857 (2013.01); GO6F 9/30101
(2013.01); GO6F 9/3814 (2013.01); GO6F
9/3867 (2013.01); GO6I 9/3873 (2013.01)

Field of Classification Search

CPC e GO6F 9/3857; GO6F 9/3873
See application file for complete search history.

4
5.

VLY,

(56) References Cited
U.S. PATENT DOCUMENTS
5,604,878 A * 2/1997 Colwell GOG6F 9/3836
710/6
5,778,245 A 7/1998 Papworth
7,478,225 B1* 1/2009 Brooks GOO6F 9/3836
712/214
8,560,813 B2 10/2013 Webber
9,336,003 B2 5/2016 Mylius
9,465,611 B2* 10/2016 Taunton GOG6F 7/4806
(Continued)

OTHER PUBLICATTIONS

Alipour et al., “Maximizing Limited Resources: a Limit-Based
Study and Taxonomy of Out-of-Order Commut,” Journal of Signal
Processing Systems, 2019, 91(3-4), 379-397.

Primary Examiner — Jacob Petranek
(74) Attorney, Agent, or Firm — Donald J. O’Brien

(57) ABSTRACT

A system and method for avoiding write back collisions. The
system receives a plurality of instructions at a pipeline
queue. Next an 1ssue queue determines a number of cycles
for each instruction of the plurality of instructions. The 1ssue
queue further determines 11 a collision will occur between at
least two of the instructions. Additionally, the system deter-
mines 1n response to a collision between at least two of the
instructions, a number of cycles to delay at least one of the
at least two 1nstructions. The instructions are then executed.
The system then places the results of the instruction for
instructions that had a calculated delay 1n a result butler for
the determined number of cycles of delay. After the deter-
mined number of cycles of delay, the system sends the

results to a results mux. Once received at the results mux the
results are written back to the register file.

20 Claims, 4 Drawing Sheets

Resisty Hutlpr

J.-:,' S e an .
o . -:: - r l“p"\.l". _'..H.F' i"r-

Py ‘-ﬁfﬁfﬂ?’i . fq!".-'l‘f_,q.-'ﬂ'_"ﬁ"i"_"-"j‘r o e
. R L LY R L e

e 1 -
R e T e e T TR T

AL LR L LA LA L DY

Regatar —t

ol I e el e ok w

US 11,561,798 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,665,372 B2 5/2017 Eisen
9,977,678 B2 5/2018 Eisen
2005/0091475 Al1* 4/2005 Sodani GO6F 9/384
712/217
2006/0095731 Al1* 5/2006 Bustan GOO6F 9/3824
712/217
2019/0370004 Al1* 12/2019 Airaud GO6F 9/3873
2019/0377577 A1 12/2019 Park
2021/0389979 Al1* 12/2021 Trancceeee. GOGF 9/3855

* cited by examiner

U.S. Patent

"

?‘f "-"G;
* f '
N E ey yyyer

A
| &
'n
-
g

Iy B
¥

i il o i i e S

g L R

Bk h ok ok bk ok ok ok bk ok ok ok kot bk ok kot h ok kW

L I N S

ol - ol o Tl
AL

L -+
L EEIERIEEELEESENELELELEEREELEELE EEEDREIERDRN)

TFP=- - = =TAarTr -

I e P Pt M e e R e e A R

o e o =

Jan. 24, 2023 Sheet 1 of 4 US 11,561,798 B2

X r
o §
Wi

i g

1T 77T 9% ¥FLYT Y YSTTTYNYNFITYNYNYYEMYYSYYFTLYYYNYFYNMNYWYTETWEN

mm;;x;m:mm—mmr%n:

Ll

Aapalldl

]
]
]
]
]
]

fu"'
7
e

.:{,'
Pr Ry
L
"
P

r
r
3

- F FFF

o
IO

R

FEFEFITErPr
rFFITIrr
rr

r

. =
& -
x
- =
1 'll-:ll:h
o=
et
4k
AL kN

e
-f
I'I'!-II'II'IFII

LY
1‘*‘ e
'p‘ - +‘ 4*1.*‘ L
_ 4 Y hom ok
" A
K

= L] =
: li‘ ill = L LR
* m ok nhm D N T LT T
l’#th LI LU) LU U
Lo LN N T T L NN R O
e U Y
"*:..l.l. it - E T
L] L L] e LI
W BN L] kL DL
A3k k L] > B M LU EE K I
4 B kN R = B LT L
AL L ILEL -] L N MR
+~* A bk LN | L L
‘ﬁt‘::: ‘!*1*1-*-*351‘__1-3*- A . b AT R A
Y L L LI LU LR S
‘I:. r b B B B LAk EE '.il - R L hLEEELAL
ok bk kA hEEE Rk ALRE kR LA
Lk kE&4di kB AEEYTEEAEAESR"
Bk hLXEEE B E kK LE EEEL
A% B B B EALEEE B F Ik B E R F I
4k k kB B FALEE R ELXE R 4

i:r
L

* I
*AAE T AR R

LRI N L LI T ML
WA AR R h e e '*";H
- "l.:|-:1|.""i|.‘I I‘l."‘h *;:t:--hh

L] r " R E T W W YWAETW YN EALE T YETYTLE N T T TFALuwAwkFkhd hwywsawyywownwoh
 h b ok F ko h ko h S L N I I I N NI R R R E R R R LR R R ERERERE RN L4 4 4 4+ Fd o hodoh o+ hkdh o h R+ R AL bEhdF P+ o+ AP e + + + + & + +
-

] lll"'ll] - :*‘--.l
L P P R T+ U Y R B N
|#‘th‘%'! 'ﬁ':hbrinrrt 1
E LRI - SCPL RO e
I'ji.nnl.l.l.i.lnl ‘.--;1.1..1--.-.1..
o B B B B4 & B RN B kLA & B B4
+ kB 4 3+ L L L hl L L [1 B L4
AN LU + L L
& r b & bR - k L I I L I I
. LR N RE BT R NN » ‘hlll MW N N F
u Rt Ehy Ty, ™ . n} H"-‘-*-M-‘-""
m’&:h“ 1‘1‘*.14‘!.'1* LN - R ?{‘nﬁq’ 1'}"*"*"'* Al W
L U bRt Mt e Py hlhhhhh l"\.l_:l."lul"m-" ‘hh.‘
m “u j I-l-llh. aata: { '
LU, + "l.ll.ri.:lll.r:. AR
L]] L I I] - H- k4 B BB B
L . A EETEEEEEA e
. "'-l- L L) L) ‘I-'-I-":".--E-I-'*ﬂl M
k “Ilﬁrhh . 1{1:11-11- t}“h‘ﬁ'ﬁ‘q‘h‘h"r‘ﬁ'#‘i
+ A A U S DL N -
. -u u Y iu_:_:_i. L L

%.
Fa
'I-I;’

4

2
F 4
L
’

[

A T T T e P e A A L

»
k T

ey |
e

-~

5
T e e e e e T e T e T e e e T e e " R L R R R,

P i

n
n
L I B B
u n
L]
"]
u
u

113

FY IR VYEFRE RV Py Fr sy ry
[
%
'i
4

-
> ",
'm ..!'f"
.-".:I"'1 -,

4
F
e o T e e T o o Tl o o ol it ol e gt o E o

N
“I-
.,
"'..
Y
3
!
x
A, " w o
¥ b z 3
; A) X
n o % .
Z N Fy B
. "'- % u S
o) by " & q Ao
‘4"' Q '-'?' ‘;t '1
y " » y X
1-‘ ™ '-l‘. i.? 1%
i Q 1 Fy . e
§ N N Pt
3 Iy oy Ry g T T o L, e e e
‘ [
i] .
':. .'I .‘l
- a]
» ~ W
F s i &
-21;‘ 1".- .'ll
¥ N
tt"" .
- h -
L3)
k]
) > P
N ¥ !
s "

U.S. Patent Jan. 24, 2023 Sheet 2 of 4 US 11,561,798 B2

mhﬂ:'ﬂnu‘h.'u."u.’h.‘-.\.‘-.‘h.‘h.‘h.’h.‘-.‘h."-.‘u.’h.‘h."h.‘Ju‘h.‘h.’u.‘-."h.‘-.‘u.‘h.‘u.’h."-.‘h.‘-.‘h'h.‘h."h.‘-.“‘u.’h.‘-.“u.‘-.‘h.‘h.‘h.’h.‘-.‘h."-.‘h.‘h.‘h."h.‘-.‘-.‘n.‘h.’h.“‘-.‘u‘u.‘u.’h.‘-.?u.‘-.‘h.‘h.‘h.’h.‘-.‘h."-.‘h-‘h.‘h."h.‘-.“‘h.'u.‘q."h.‘-.‘u.‘h.‘u."h.‘L’h.'lu."h.’h.‘tﬂ-‘-.-\.1-.';‘-H‘n‘-‘-‘u‘h.’u‘ﬂu‘ﬂb‘-‘ﬂﬂﬂu‘-'k‘-“‘nw
e
‘.-_ﬁ

5

‘X
S

F

s
3
%
%,

P e e e

Far b dammrand Fd+= + h +Fd I'--|-J-Il-l-l-"iI-I'h'-llI'Ii-lil-ll-rlllill-li-ll--I-r * * it

+ + 4+ P+ + kA d P E b ++il-+|-+|-++!++++++!++++++

T T 1.....-.. e PO M R R R e RO RE S
1= rF b radidwnrersiseran R Y ---r------.-r--l.---l.‘t

-+

*
= ¥
r +

+
F u
+

1 +

'Ill
- r
+
+
*
+
+
+
-
+
*
+

r
++ d + b+t F+Ft o+t dFrtw o F At
+* F + % ++ 1 FF+F++1 FFFF P -\-“

+
I
-|-
*y
+
¥
2t
-|-
..
-.-
*y
+
*
W
.
L
-|-
i
-
"+

+
*
+
L
+
¥

q:"-"

l'

H-'I-
i"+

T L T T T T T T T e T T T T T T T, T T T, T T, T T T T T T S R R T

-

-
[
-
+
-
1

Ll v+ d + 4 + +F + +H

IR
e N SR A R B
rwnT oar T e b e

k % ¥ =

T +
F
+
'I'
+
Ll
+
-
+
+
+
-
-
+
1+
L]
+
[]
F
-
+
n+F
L]

T
F o+
-
L
+
L]
+
T
+
+
=

F
[
1
+
L]
L]
[]
F
[

1- l
-l- l
a =
+ d
LI
+ 1
+ h
a

L N |
-
+

.
i
-
+
i
+ b+
s
L
et
-
i
=
* b
+
9
i

[] + -
l+-|++++i+-|++1+l+l'++++-|++++l+-I++++i++++1+
[L R R e A e e R D L I ML

ar}r--}-r--.-- - on - w F orm + -

) .
\' A+ d + b+ kAt A+ + Fd + b+ Fd Fd + bk +F b+ d+ b+ F F 4+ F 4+ Fd+wt ke
p+!++++l-+|-++++l|+!++++l-+|-++++|-+|-++il-+!++++l|-+|-++-|+|-++++-|+
H. i BCRCSE R B RSB BCDE R R RS e A e e m o LACRERC N M DR R RO
- T T e i S T i i - - - --l.---l.‘t
L) TR N N e O O L -y
LI R B L L T L I BRI -+ -.-'|‘¢ L R R -
'h‘. - 4 LW m ra ruE"arErEn r - - s m @ rwew s T ETE R TN .',"_:ll
H. * 1-'-++ll'l+l-l+l+l-+'ri'ﬁi+‘r r fh“'l- ++ d + kFF i+ ++ k F d + bt AT "
L ++r+-—++++q++++11‘--.- r + + + + F o+ F 4+ L e
- oam BT R P R R P RSEEEE R} - iy - LI SRR NI S N L L
'\r.-.-.-l.-.- v b4 b Lwd FhLE L+ d - d o + B ih LT + T hor A4+ b4
-+ + 4+ mt ++ d A+ A+ r + 4 ++++-|++++++-|++++-|+++++
A A p Ay LPEIE R L B R A A | I,'._l-ihﬂhi-ll-‘l-ilrll-i-li- LILRUNC R B R
- r o onw F e mom T owm om T T u ra s " aTarms s TartlennTardaw
""'.+|.++ I+ b+t d R+ A A+ ATk i r + + 4 [P CIE U I
H...+++' N N N N N N R e L N I T
- m M E mE E P R R R E E R R E A R CE R R E M e W R A EaEFE AR ra moa omaw -
H"-t“ e T T e T T T T T T T T T e T e T T T e e T T T e T e T T T e T T T T e T
r + H L DL I L I e D + 4+ ++ A+ bt FFAFE A A A+ d A
P e LA I R R R N A AR namow NN NN N
i. a-r---.r---r--r ro s martrusTa s T TErm s Ta rt ra T
+ e T T T e T T e T e T T e T e T T T T T T T T T T T T T e T T
- .|..|.-.+p+a,++||+p+|.++|+|.++++|+|. LR N EIETE L
PR N T e L AT R ML B B SR b T AR F R A R T R R R A Ep
T T T T L T T T T N T T T T T T T e T e T T T e
-r+-|+q++++-|+||++-|I-+l|+r++-|+!++-|-+-|+dh++il-+-|++++1+-|++++i+|++1+
- g e e A w P L o m E A E L E aa moaw P

a B L R E N U ua RaE

Ty
o

w.ttxtm.n."’u..ﬂxt. T e T e T e e o o B e B o T T M T T ™ T e

o

;:- t"‘:""’l:il

L v

Sr TN Ay g
t: " "-": h‘.& :‘ ’

¥)

. e e A e A e
"\r e T T T T T T T T T e T T T T T T T T e T e T T T T T T e T T T T T T T T T T
\‘ +l-+r++++!++++++|-++++|-+r++++!++++++!++++i+|-+d-++l-+r++++
N S R e M M R M N MO R N N N

AL mdwd kb kh L Lk wd b Lt er b dhdnd+ bdador nd

+ oI I R I R A T T kTR T -r-|++++i|--|++++i+-|++++-| LT

- P R N L) P ma + 0] O R e A N] h""l-

rTn I I M O | + P N N N O [

. LRI U I T SO I - Ak k d ek Bk d k hok kb ke kom ok k A .
-+ k& +r+a++-|+a+|-++-|1_h-.-] PN L AN R
- n N NN N MO e i) e, SN w SN R SR SN SERE
'ﬁ'-th-l.- AR 4 g 4 rom dh e A F R L Lk hor b lw ALk dow
-I‘"-l--l-.-l- 4T LI R I B S I I I I N L)
Wttt L L L LA, T P T I i,
"Lr-i-hi--i- N N N N N N N N N N N N N T
'\,+++ P L L A e L N N L L N R L N R A I L N A
e SN A O O N N N N N OO O OO N
+1.+¢-I1.11.+l1l-l.-l-r+i-|.-l-l.+'r+l-l.-l--l.'l-l-l-l1.+r+l+'|++r1.l‘|.+i-+l+l1.+r+
B e e I e B A S e
a L N N N O N N N A N N O N O N O N N N O O A N Y N
"ﬁl'-1-.*,------|.rJ---r-1--+J---|-.------|-.+J---|---|--r NN RN
- F ok bk bk Rk bk ok kd bk k kb d kb bk d kb k bk d kb kb E ok Rk k ok d ke bk
LT R I T B U L B N i B N B B N R R
D N N M N W O N M N N N N N N N O M N N O N
“_*i++-|.+i+l++r+l++++l-I-l++l-+-+i++l+I+-i-|+ll--i++l+l+l-l+l-+l-|i
FrrTTrTrTr T e T rr et At b AP A F EEA P E A - -

SR AN

5
;

S

-, o 'hn-ﬁ- A
R . “u l-"l - \.'] 1o '."'l't-r -
BRI BTt =11y
. b ':u."' "'l:'lp\ :}:: ™ h‘n }4 k% ‘1,3-.' g ' ':‘l‘ ' v n - - -k

*Hormyr

iﬁr‘h\r’\-‘iﬁﬂ-ﬂr‘nmhﬂr*hﬁr\-i e e "h"h"h"h*u"h‘h"h- e S e e e e

- #—'..-

A A 0 A S S A S -

+a-++a-+.I-ll+l-+a-+l++l-+1-|l-++l|+lJll-+1--l++l-+l|-!++a-+1l-l++a-+l-+-|‘_
rm s marwsT s wadm s TaATEFrFETRT Fm enm s TarE Tawr= s " arw ras=a =T
1 ﬁ 1- o+ + d +d+ b+ d A FF kAR dF rdw AR+ A Y d AR Ad R
lﬁ +* L N N N N N N B N I R N B N NN O O T B R I NI B N B R N B B L R I
a ' Y 1.h- ' “ e m a2 mTHE T3 S EWE S S LS ETPE L I EFETEEEE S LT SEEpEETEELE LS LT SR SRS ETEERE

.:. 'h 'ﬁ + 1 b 1+ L+ b L4 4L wr+ b1+ 41+ b b L+ d+ 5 v hdasd+drbhbd+rd b dasd+ocd b 1=dd -y
; ST T T T T e T e T : R S L B N -
"‘ L X' u atats pratate et et et et e e e [y "l Y
' ' F [% I‘L-"" s s TEArlm TR TR EE T P T it T L T il e i S Sl

-r:lhr - ".“ = -+ - + + &~ % F + b F + F + b+ +* +* + + + + d + 4 + + + + F+ A+ d ol
+ ['] + -}-I .‘- 1‘-" \‘l‘l-‘li-* +l++++l+l—+‘a++l-|':h+ L] + & + F + + + + 1 F F + 2+ 4+ + 1 + 4 + + &+ 4+ 0 4+ 4+
e Nt T e B e e
‘t H'r-l-l-l.-l- B 1 b L+ il s 1A 1+ - 4 [1+ + b + 4 1L + v Fd 1A 1+ wd b1+ 1L+ w + 5
1\.1-1-1-!1- +++l++++1+-|++ +* ‘+w++++1++1+1+1+r++i+! L B B)
I N e e et e R I M S
ﬁ - r m n F -r-r--r--l- =T a T F u T T ¢ F a T a T} b m ek

m \'b-l-l-l--l- b-l--l--l--l-i--l-l-l-l'-l--l-b-l-I--l--l-F--l-b-l--i-l--l-l-l-b-l--l--l--l-n'-l'l-l--l-i--l-l--l-l-l--l-F--l-b-l-l-l.t
- L] * 4+ 1 + F + F = 4 &g ko 4 o o PR N+ N A 0+ P F kN A o g
. I‘I‘.l 4 W BN R A FWU LF I FE FT I TAF IR Fseaewslarssrslie e rrFr e T = r &
- - -i-l.-l-r-l-l-ll-I--I-i+-i-|.+-I+i+l++-|.+l-I-l-I.+r+l++-l.+i+l++i-+l+l-l.+i+
a o+ T r+ d + 4 + + 2+ 1 +FF A AP A A A Y d P A
. e e ML S A
|] \'--r -Ir'rI-r'IrJ-r'rlJ-'-rJ- T rl T = o d = + F d F o rvruwrtdTT T
+ - +I-++i-+l-++++|I-+l++-|+b++++++I--I-I-++l+l-++++l-+i++|l-+l-++++i-+

L] -r+++|+'|++11-!++++l+!+‘-++l+l-++'-+!+‘-++ll' +‘++l+!++|+l+l--_
-u-r--l.--.--rar--r-rar--r-r--.--r-r--.r--.-r--.r--l.--.--rar--.-
+l++++l-l-l++r+l-l-i++-|-+l++++b+l++l+b+l++rri+ll+l+l++r+l+l
+ + 4 [I N N RN R NN R EEE RN -+ o+ + AP+ A A
. L TN L -\.'rq.-.,n.ﬂ.*.\n.ﬁ.\'inn.hﬁ.tmn.‘.

%

Cratrat o resylr Moy
.}hli" "L §i"'¢ J'lng_-£1_--."'l k, t.-.:::hht - "l 3 :‘a{:‘t -

U.S. Patent Jan. 24, 2023 Sheet 3 of 4 US 11,561,798 B2

':'-"'-"'-"'-"'-"'-"'-"'-"‘-"‘-"‘-"‘-"‘-"‘-"'-"'-"'-"'-"‘-"'-"‘-"'-"‘-"‘-"'-"'-"'-"‘-"'-"'-"'-"'-"'-"‘-"'-"‘-"'-"‘-"‘-"'-"'-"'-"‘-"'-"‘-"'-"‘-"‘-"'-"‘-"‘-"‘-"‘-"‘-"'-"'-‘-‘-"-"-"-"-‘-"-"-*-‘-"-‘-"-"-*-"-"-"-"-"-‘-"-"-"'-"-"-"-"-"‘-"‘-"-"-"-"-"-"‘-"‘-"‘-"-"-"-"h.
v o]
Y, X
N X
v o]
:* a
N, : I : L B o

. SOREAL G *-. P Y i o TN T 3
. .,E:;: * X YAy it -;’-"' o 3
N, Pagaly "- RO SN h ;Mo ::
N PAC AR A A 3
5 1
v]
N X
v, X
) X
D A A A A A e A R e A A A A A e A A A e e e e e A S e A e e 2

tittittitttti.‘i.‘i.‘i.‘i.t.i.i.t.ti.i.‘i.i.t.‘i.‘i.‘i.‘i.‘i.‘i.‘i.‘i.t.‘i.‘i.i.‘i.i.t.i.i.‘l‘i.i.i.'lil.t.‘i.‘i.‘i.‘i.i.i.i.i.i.‘i.‘i.‘i.‘i.‘i.t.‘i.i.i.‘i.i.i.‘i.i.t.‘i.i.i.tittittittittittitti

v, '\
v]
N 4
| - . A E e e]
: o o IR B8 N.ﬂ: , g S -f > oY TR

; L.-. ':-?x:-:': ITHNRE EHNOET 47 LHFOIES T
.] "
I1 . 'l\
N - y gy : » Lor B e B b b
v, Mﬁ .-'-.a».\ i-:p h‘%f— AN g 5 SR 'EY; 3
) XN L iéqigi' N \'5h1] \ _ 4
5 t;n M 1 \‘%‘¥F W ‘{{* ifh EﬁLQQESQuto 3
: 3
:1--3

> fothsinns 3340

&Y.
G o
113,
o
! Fa
%
£5%
™

i

L")

Y

Nttt ot ottt ot

AR AR AN AA A A AN A A AA AR A AN A A A A AN A A A A AN AN A A A AN AN A A A AN A A AR AN A AAA A AN AN A AR A AN AN A A DDA AA A A AN A A A A AN A AW

..:*..“..“..‘*..“..“..‘*..“..“..‘*..“..“..‘*..“..“q.‘*..“..“q.‘*..“..“q.“..“..“q.‘*..Hﬁﬁﬁmﬁﬁmﬁﬁﬁ‘f‘;ﬁ‘f‘;ﬁﬁﬁﬁ‘f‘gﬁ‘h Ig"q.“q.“q.“q.“q.“q.“q.“q.“-.“q.“q.“q.“q.“q.“-.“q.“q.“q.“q.“q.“q.“q.“q.“-.“q.Hﬁﬁﬁﬁﬁﬁ*aﬁﬁ“uﬁﬁﬁﬁﬁ“uﬁﬁ“uﬁﬁﬁ‘ﬁ

AN

S

Y

Pt ottt gl gttt st el et st s

g s g g g s g g g g s s g s i s g s i g g s g g g g g g s g s i s i s i s i s g g g s S g g s s g g gy s g s iy s i s iy s g s g g g g g g s e g i s i g g s g g iy s g s g g g g s g g g

ﬁd’
i?hb
'ﬂnﬂnﬂ
S,
pos 3
+
' n"d'¥
4
?f
o
o
T
“
4
-
ol
%
z
= %
ﬂu;él
ot et ot ot ot ot o ol o ot ot o ol e

Y

e i B B e B R e i e B e B e i T e B T T i s B B B R e B i i B B e R e e
.iﬁﬁ") A il i Ef~

‘_ \ d L \ H 1 .

:bgri A sﬂ-aﬂi qg; Ei:fluyh §‘4EL o ft t!%ﬁJi?-\ﬂﬁgr{- 3 :dhgifﬁ
N ihh i _LZ A R) A iyd % ieu

Mlumber of Syoleg 360

" . "'-."':"'-."'-."'-.":"'-."'-."'-."h""-.‘

ff

4
4
1
4
4
1
4
4
1
4
4
1
4
4
1
4
4
1
4
4
41

At ottt ot sttt st el st sttt

Nt e A e e A e e A A e A e e A A e e A e e A e A e A e A e A e A A A e A A e A A A S A e A A R A R A A R R A S S A S S A S S

'hE'h

4

Sy

Pardarm Weite Back 375

P T S o o

L N N NN
wr e el at t at t al t t t t F

[e S e e Y e O T i tp ta Sty

U.S. Patent Jan. 24, 2023 Sheet 4 of 4 US 11,561,798 B2

COMPUTER SYSTEM
400
MEMORY
““““““ 404
" ""PROCESSOR !
402 CACHE RAM

CPU
402-1

|

|

|

| _

| CPU
|

|

|

|

|

402-2 STORAGE
MEMORY BUS 403 SYSTEM
CPU | 426
402-3 |
| 428
CPU
402-N |

/O BUS INTERFACE 410

/O BUS 408

TERMINAL /O DEVICE STORAGE NETWORK
INTERFACE INTERFACE INTERFACE INTERFACE

412 414 416 419

FIG. 4

US 11,561,798 B2

1

ON-THE-FLY ADJUSTMENT OF
ISSUE-WRITE BACK LATENCY TO AVOID
WRITE BACK COLLISIONS USING A
RESULT BUFFER

BACKGROUND

The present disclosure relates to 1ssue to write back
management, and more particular aspects relate to adjusting,
1ssue to write back latency to avoid write back collisions.

In many systems to avoid write back collisions developers
have had to install stalling mechanisms to slow the tlow of
the results of the execution of the write back to the registry.
These stalling mechanisms have a negative impact on the
performance of the underlying systems as the stalling
mechanisms prevent use ol processing resources.

SUMMARY

According to embodiments of the present disclosure, a
system and a method for avoiding write back collisions 1s
disclosed. The system receives a plurality of instructions at
a pipeline queue. Next an 1ssue queue determines a number
of cycles for each instruction of the plurality of instructions.
The 1ssue queue further determines 11 a collision will occur
between at least two of the instructions. Additionally, the
system determines 1n response to a collision between at least
two of the instructions, a number of cycles to delay at least
one of the at least two instructions. The 1nstructions are then
executed. The system then places the results of the mstruc-
tion for instructions that had a calculated delay 1n a result
butler for the determined number of cycles of delay. After
the determined number of cycles of delay, the system sends
the results to a results mux. Once recerved at the results mux
the results are written back to the register file.

The above summary 1s not intended to describe each

illustrated embodiment or every implementation of the pres-
ent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present application are
incorporated into, and form part of, the specification. They
illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

FIG. 1 1s a diagrammatic illustration of a processing
system 1ncluding a result bufler to prevent write back
collisions according to illustrative embodiments.

FIG. 2 1s a diagrammatic 1llustration of the result bufler
according to 1illustrative embodiments.

FIG. 3 1s a flow diagram 1llustrating a process of using the
result bufler according to illustrative embodiments.

FIG. 4 1s a block diagram 1illustrating a computing system
according to one embodiment.

While the invention 1s amenable to various modifications
and alternative forms, specifics thereotf have been shown by
way of example 1n the drawings and will be described in
detail. It should be understood, however, that the intention 1s
not to limit the ivention to the particular embodiments
described. On the contrary, the intention 1s to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the mvention.

DETAILED DESCRIPTION

Aspects of the present disclosure relate to 1ssue to write
back management, and more particular aspects relate to

10

15

20

25

30

35

40

45

50

55

60

65

2

adjusting 1ssue to write back latency to avoid write back
collisions. While the present disclosure 1s not necessarily
limited to such applications, various aspects of the disclo-
sure may be appreciated through a discussion of various
examples using this context.

FIG. 1 1s a diagrammatic illustration of a computer system
where the execution of threads utilizes several execution
pipes to support various instructions for a given 1ssue port.
The computer system includes a pipeline queue 110, three
execution pipes 120, 130, 140, a result bufler 150, a result
mux 160, a result cycle 170, a write back port 180, and a
register file 190.

FIG. 1 1llustrates three execution pipes 120, 130, and 140.
However, there can be any number of pipes present in the
system. Each pipe 1s a path through which an istruction can
be processed. In FIG. 1 there are three different types of
mstructions illustrated, a Fixed point (FX) using 1 execute
cycle, a Multiply (MUL) pipe taking 3 execute cycles and a
Binary Floating Point (BFP) taking 5 execute cycles. How-
ever, any number ol diflerent types of instructions can be
present. Further, multiple of the same type of instruction
may be present. Also the number of execute cycles needed
to perform a particular type of instructions can vary. For
example, a cryptological instruction pipeline may take 10 or
more execute cycles.

In current systems when an instruction 1s ready to 1ssue,
the 1ssue queue 111 must check to see 11 the mstruction will
create a conflict 1in the Result (RES) cycle feeding to the
Write Back (WB) to the register file. In some cases, this
conilict can be detected early and allow a different instruc-
tion to be executed and i1f not, an 1ssued instruction must be
cancelled to avoid going far enough to cause a contlict in the
result mux 160 feeding the RES cycle. This type of collision
avoildance can waste 1ssue cycle bandwidth by cancelling
due to conflict and can also create lock-out cases where
several longer latency 1nstructions can block out older short
latency instructions from issuing.

The pipeline queue 110 1s a component of the system that
manages the instructions as they go into the pipes for
processing. The pipeline queue 110 includes an 1ssue queue
111 that 1s configured to 1ssue a specific instruction to the
pipes. The pipeline queue 110 also includes a reading
component 112 to read operands to the instructions from the
register file, and a bypass 113 that bypasses the reading
component when the operands to the instructions do not
need to be pulled from the register file. The pipeline queue
110 1s configured to track instructions that are already in the
pipeline and determine which of the pipes a particular
istruction should be placed into. When 1t comes time to
issue a particular instruction the issue queue 111 using the
information about instructions already present in the pipes,
detects a collision for the pipes that have shorter execution
cycles. The 1ssue queue 111 will determine the number of
cycles to delay the instruction’s results so that results waill {it
into an open cycle within the results mux feeding the results
cycle 170. To achieve this the 1ssue queue 111 has the ability
to change the latency of any of the pipelines on the fly to fit
the results 1nto any open slots 1n execution feeding the result
mux to the result cycle 170.

In the example illustrated in FIG. 1 the longest latency
istruction 1s five execute cycles associated with the execu-
tion of BFP instruction that 1s 1llustrated at pipeline 140. The
shortest latency 1nstruction 1s one execute cycle associated
with the execution of the FX instruction that is 1llustrated at
pipeline 120. The latency of the MUL instructions 1s in
between having a latency of three execute cycles illustrated
at pipeline 130. While FIG. 1 illustrates latencies of between

US 11,561,798 B2

3

one and five execute cycles, 1t should be understood that the
latency of a particular instruction could have any number of
latency execute cycles. Based on this number of latency
cycles, the 1ssue queue 111 will indicate the number of
cycles to delay the instruction. This information will be
communicated to the executing umt of the system that will
determine the number of cycles to place the istructions into
the result bufler 150.

The 1ssue queue 111 implements a tracking logic to
determine the number of cycles that a particular instruction
should be delayed 1n the result bufler 150. The 1ssue queue
111 uses a tracking pipeline from 1ssue to RES to indicate
where the previously i1ssued instruction are 1n the execution
pipeline 1n order to schedule the next instruction and avoid
writeback collision.

RES-7->RES-6->RES-5->RES-4->RES-3->RES-2-
>RES-1->RES

The natural flow for each of the 3 types 1n this example
of executions would be for the BFP 1ssue to enter the pipe
at RES-7 and pipe down to RES. The MUL 1ssues would
enter to at RES-5 and pipe down to RES. The FX 1ssue
would enter at RES-3 and pipe down to the RES. The 1ssue
queue 111 first checks to see 1f the natural pipe 1s available.
If available, then the 1ssue queue 111 determines that no
delay 1s needed. If the particular pipe stage 1s occupied, the
1ssue queue 111 checks up the stack to find a slot which 1s
not occupied. Once an open slot 1s found the 1ssue queue 111
determines a delay for that instruction based upon the
number of stages the queue had to go back to find an empty
slot. For example, if a MUL 1ssue 1s followed 2 cycles later
by a FX 1ssue. The FX i1ssue would find RES-4 taken by the
MUL and thus cannot flow naturally. The logic then checks
RES-5 and sees 1t 1s empty but will enter at RES-4 instead
and will mark the instruction as requiring 1 cycle delay.

The result bufler 150 1s a component of the system that
delays the results of the instructions before the results are
sent to result mux, result cycle 170, and the write back port
180 to write back to the register file 190. Based on the delay
number of cycles determined by the 1ssue queue 111 the
results enter 1nto the result buller 150 at a different point to
provide the determined delay. FIG. 2 1s a diagrammatic
illustrating the structure of the result buller 150 according to
embodiments. In this embodiment, the result buller 150 has
the capability of delaying up to four execute cycles. How-
ever, any number of delay cycles can be present 1n the result
buffer 150. When there are additional delay cycles the
structure and execution of the result bufler 150 operates 1n

a similar manner.
In FIG. 2 there are four delay cycle functions, 210, 220,

230, and 240. The pipelines 120, 130 are configured to feed
into the each of the delay cycles of the result buller 150
based upon the determined number of delay cycles for the
instructions. In the embodiment 1llustrated in FIG. 2 the FX
result may be determined to need up to a four cycle delay.
Therefore, when the execution of the FX instruction 1n the
pipeline 120, the results are then fed to the result bufler 150
at the appropriate delay point. In the case of four cycle delay,
the results are placed into the result butler 150 at delay point
240, which represents a four cycle delay. If the delay had
been determined to be three delay cycles, the results would
have been placed 1n the result buller 150 at delay point 230,
which represents a three cycle delay. In this example, the
MUL instruction was determined to need up to a two cycle
delay. If marked as two cycle required, following the
completion of MUL instruction 1n pipeline 130, the results
of the execution are fed into the result bufler 150 at delay
point 220 which represents a two cycle delay. If the delay

5

10

15

20

25

30

35

40

45

50

55

60

65

4

had been determined to be one cycle, then the results would
have been placed in the result bufler at delay point 210,
which represents a one cycle delay.

During operation the result buffer 150 would move each
result down one level upon the completion of each execute
cycle of the system. That 1s a result that 1s placed into the
result bufler a delay point 240 would move to delay point
230 upon the completion of the execute cycle. Likewise a
result at delay point 220 would move to delay point 210
upon completion of the execute cycle. When a result reaches
delay point 210 following the completion of the execute
cycle would output the results to the result mux 160 for
writing the results back to the register file 190 through the
write back port 180. During the operation of the result bufler
150, 1f the results were to move to the next lower delay point,
but an 1ntervening result was placed in that delay point the
results would not move to the next delay point. For example,
i a result was 1n delay point 230 and a new result was placed
into delay point 230, the results would not move from delay
point 230 to delay point 220, until such time as the results
are able to move forward 1n the delay points.

The result mux 1s a component of the system that takes the
results from the various pipes and feeds them to the write

back port 180 for writing the results to back to the register
file 190. As some of the instructions have been placed nto
the result bufler 150, the results mux also receives the results
from the 1nstructions from the result butler 150.

FIG. 3 1s a flow diagram 1illustrating the process of using
the result bufler 150 to delay instructions to avoid a write
back collision. The process begins when the 1ssue queue 111
receives nstructions to execute. This 1s 1llustrated at step
310. The 1ssue queue 111 then determines a number of cycles
needed for the instruction to complete the RES cycle. This
1s 1llustrated at step 320.

The 1ssue queue 111 then determines if a collision waill
occur between two nstructions during write back. This 1s
illustrated at step 330. The 1ssue queue 111 implements a
tracking logic to determine the number of cycles that a
particular instruction should be delayed 1n the result bufler
150. The 1ssue queue 111 uses a tracking pipeline from 1ssue
to RES to indicate where the 1ssued instruction 1s in the
execution pipeline in order to schedule the next instruction
and avoid writeback collision The i1ssue queue 111 (first
checks to see 11 the natural pipe 1s available for the mstruc-
tions. IT available, then the 1ssue queue 111 determines that
no collision will occur. If the natural pipe 1s not available the
issue queue 111 determines that a collision will occur.

When the 1ssue queue 111 determines that a collision waill
occur, 1t then determines the amount of delay required to
avoid the collision. This 1s 1llustrated at step 340. When a
collision 1s present, the 1ssue queue 111 examines the
tracking pipeline to find a slot which 1s not occupied. Once
an open slot 1s found the 1ssue queue 111 determines a delay
for that instruction based upon the number of stages the
queue had to go back to find an empty slot.

The 1nstruction 1s then allowed to 1ssue and execute. This
1s illustrated at step 350. Following the completion of the
instruction, the results are placed in the result bufler 150 for
the determined number of delay cycles indicated by the 1ssue
queue 111. This 1s illustrated at step 360. As each cycle of
the system occurs the instructions move through the delay
cycle functions in the result butfer 150 until reaching the end
of the result butler 150. Upon reaching the end of the result
bufler 150 the results of that instruction are then given to the
result cycle to perform the write back to the register file 190.
This 1s 1llustrated at step 370.

US 11,561,798 B2

S

Referring now to FIG. 4, shown 1s a high-level block
diagram of an example computer system 401 that may be
used i implementing one or more of the methods, tools, and
modules, and any related functions, described herein (e.g.,
using one Or more processor circuits or computer processors
of the computer), 1n accordance with embodiments of the
present disclosure. In some embodiments, the major com-
ponents ol the computer system 401 may comprise one or
more CPUs 402, a memory subsystem 404, a terminal
interface 412, a storage interface 416, an I/O (Input/Output)
device interface 414, and a network intertace 418, all of
which may be communicatively coupled, directly or indi-
rectly, for inter-component communication via a memory
bus 403, an I/O bus 408, and an I/O bus interface unit 410.

The computer system 401 may contain one or more
general-purpose programmable central processing units
(CPUs) 402-1, 402-2, 402-3, 402-N, herein collectively
referred to as the CPU 402. In some embodiments, the
computer system 401 may contain multiple processors typi-
cal of a relatively large system; however, 1n other embodi-
ments the computer system 401 may alternatively be a single
CPU system. Each CPU 402 may execute instructions stored
in the memory subsystem 404 and may include one or more
levels of on-board cache.

System memory 404 may include computer system read-
able media 1n the form of volatile memory, such as random
access memory (RAM) 422 or cache memory 424. Com-
puter system 401 may further include other removable/non-
removable, volatile/non-volatile computer system storage
media. By way of example only, storage system 426 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media, such as a “hard drive.”
Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g.,
a “tloppy disk™), or an optical disk drive for reading from or
writing to a removable, non-volatile optical disc such as a
CD-ROM, DVD-ROM or other optical media can be pro-
vided. In addition, memory 404 can include tlash memory,
e.g., a flash memory stick drive or a flash drive. Memory
devices can be connected to memory bus 403 by one or more
data media interfaces. The memory 404 may include at least
one program product having a set (e.g., at least one) of
program modules that are configured to carry out the func-
tions of various embodiments.

Although the memory bus 403 1s shown 1n FIG. 4 as a
single bus structure providing a direct communication path
among the CPUs 402, the memory subsystem 404, and the
I/O bus interface 410, the memory bus 403 may, 1n some
embodiments, include multiple different buses or commu-
nication paths, which may be arranged in any of various
forms, such as point-to-point links in hierarchical, star or
web configurations, multiple hierarchical buses, parallel and
redundant paths, or any other appropriate type ol configu-
ration. Furthermore, while the I/O bus interface 410 and the
[/O bus 408 are shown as single respective units, the
computer system 401 may, in some embodiments, contain
multiple I/O bus interface units 410, multiple I/O buses 408,
or both. Further, while multiple I/O 1interface units are
shown, which separate the I/O bus 408 from various com-
munications paths running to the various I/O devices, in
other embodiments some or all of the I/O devices may be
connected directly to one or more system I/0 buses.

In some embodiments, the computer system 401 may be
a multi-user mainframe computer system, a single-user
system, or a server computer or similar device that has little
or no direct user interface, but receives requests from other
computer systems (clients). Further, 1n some embodiments,

10

15

20

25

30

35

40

45

50

55

60

65

6

the computer system 401 may be implemented as a desktop
computer, portable computer, laptop or notebook computer,
tablet computer, pocket computer, telephone, smart phone,
network switches or routers, or any other appropriate type of
clectronic device.

It 1s noted that FIG. 4 1s intended to depict the represen-
tative major components ol an exemplary computer system
401. In some embodiments, however, individual compo-
nents may have greater or lesser complexity than as repre-
sented 1n FIG. 4, components other than or 1 addition to
those shown 1n FIG. 4 may be present, and the number, type,
and configuration of such components may vary.

One or more programs/utilities 428, each having at least
one set of program modules 430 may be stored in memory
404. The programs/utilities 428 may include a hypervisor
(also referred to as a virtual machine monitor), one or more
operating systems, one or more application programs, other
program modules, and program data. Fach of the operating
systems, one or more application programs, other program
modules, and program data or some combination thereof,
may include an implementation of a networking environ-
ment. Programs 428 and/or program modules 430 generally
perform the functions or methodologies of various embodi-
ments.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the

US 11,561,798 B2

7

network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or stmilar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible

10

15

20

25

30

35

40

45

50

55

60

65

8

implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality mvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.
The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
What 1s claimed 1s:
1. A method for avoiding write back collisions compris-
ng:
recerving a plurality of instructions at a pipeline queue,
wherein the pipeline queue 1ncludes an 1ssue queue, a
reading component to read operands of the plurality of
the 1nstructions, and a bypass configure to bypass the
operands around the reading component;
determiming, by the 1ssue queue, a number of cycles for
cach mstruction of the plurality of instructions;

determiming, by the 1ssue queue, 11 a collision will occur
between at least two of the instructions of the plurality
ol 1nstructions;

determining, 1 response to a determined collision
between the at least two of the instructions of the
plurality of instructions, a number of cycles to delay at
least one instruction of the at least two instructions of
the plurality of instructions;

executing the plurality of instructions;

for the at least one instruction for which a delay was

determined, placing results of the at least one instruc-
tion 1n a result bufler for the determined number of
cycles of delay;

determiming, during the determined number of cycle of

delay, an intervening result occupies a delay cycle
function in the result bufler the results would move
forward 1nto;

delaying the results of the at least one instruction in the

result bufler, for at least one cycle of delay;

alter the determined number of cycles of delay including

the delay from the intervening result, sending the
results to a results mux; and

performing a write back process for the at least one

instruction.

2. The method of claim 1 wherein the result buifler
includes a plurality of delay functions.

US 11,561,798 B2

9

3. The method of claim 2 wherein the results of the at least
one 1instruction 1s placed in the result builer at a delay
function of the plurality of delay functions where the results
of the at least one 1nstruction must pass through a number of
delay functions equal to the determined number of cycles of
delay.

4. The method of claim 3 wherein following execution of
a cycle, moving the results of the at least one instruction
torward one delay function within the result bufler.

5. The method of claim 3 further comprising;:

determining a second number of cycles to delay a second
instruction; and

placing second results of the second instruction in the
result buller for the determined second number of
cycles of delay.

6. The method of claim 5 wherein following execution of

a cycle, moving the results and the second results forward
one delay function within the result buifer.

7. The method of claim 6 wherein the second results are
placed into the result buller prior to moving the results of the
at least one struction forward within the result bufler.

8. The method of claim 7 wherein when a delay function
to which the results of the at least one instruction would
move forward into 1s occupied by the second results, not
moving the results of the at least one 1nstruction forward one
delay function.

9. The method of claim 1 further comprising:

determining 1f a natural pipe having a natural flow 1s
available for the plurality of instructions; and

in response to the natural pipe being available, imple-
menting no delay for the plurality of instructions.

10. A system for avoiding a write back collision 1n a

register {ile, comprising;:

a pipeline queue configured to manage a plurality of
istructions processed through at least two pipe,
wherein the pipeline queue includes an 1ssue queue, a
reading component to read operands of the plurality of
the instructions, and a bypass configure to bypass the
operands around the reading component;

a result bufler, separate from the at least two pipes,
configured to delay processing of results for at least one
of the plurality of instructions, wherein the results
buffer includes delay cycle functions configured to
delay the results 1n the result bufler as well as apply
additional delay to the results when intervening results
are placed in the result bufler; and

a write back port to write back results of the plurality of
istructions to the register file, wherein the write back
port 1s configured to receive results for the at least one
of the plurality of instructions and results from the at
least two pipes.

11. The system of claim 10 wherein the

the 1ssue queue 1s configured to:
determine a number of cycles for each instruction of the

plurality of instructions;
determine 11 a collision will occur between at least two
of the instructions of the plurality of instructions; and
determine 1n response to a determined collision
between at least two of the instructions of the plu-
rality of instructions, a number of cycles to delay at
least one of the at least two of the instructions.

12. The system of claim 10 wherein the result bufler
includes a plurality of delay points.

13. The system of claim 12 wherein a result 1n the result
bufler moves from a first delay point to a second delay point
tollowing execution of a cycle by the system.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

14. The system of claim 13 wherein the result buller does
not move results from the first delay point to the second
delay point when the second delay point already includes a
newly placed result from the first delay point.
15. The system of claim 12 wherein the results placed mnto
the result buller are placed at a delay point of the plurality
of delay points such that a number of delay points 1n front
of the results 1s equal to a calculated number of cycles of
delay determined to avoid a write back collision.
16. A computer readable storage medium configured for
avoilding write back collisions having computer executable
instructions that when executed cause a computing system to
perform a method of:
receiving a plurality of instructions at a pipeline queue,
wherein the pipeline queue includes an 1ssue queue, a
reading component to read operands of the plurality of
the 1nstructions, and a bypass configure to bypass the
operands around the reading component;
determining, by the issue queue, a number of cycles for
cach istruction of the plurality of mnstructions;

determining, by the 1ssue queue, 11 a collision will occur
between at least two of the instructions of the plurality
of 1nstructions:

determining, 1 response to a determined collision

between the at least two of the instructions of the
plurality of instructions, a number of cycles to delay at
least one 1nstruction of the at least two instructions of
the plurality of instructions;

executing the plurality of instructions;

for the at least one instruction for which a delay was

determined, placing results of the at least one 1nstruc-
tion 1n a result buller for the determined number of
cycles of delay;

determining, during the determined number of cycle of

delay, an intervening result occupies a delay cycle
function 1n the result butler the results would move
forward 1nto;

delaying the results of the at least one instruction in the

result bufler, for at least one cycle of delay;

after the determined number of cycles of delay including

the delay from the intervening result, sending the
results to a results mux; and

performing a write back process for the at least one

instruction.

17. The computer readable storage medium of claim 16
wherein the result bufler includes a plurality of delay func-
tions.

18. The computer readable storage medium of claim 17
wherein the results of the at least one instruction 1s placed in
the result bufler at a delay function of the plurality of delay
functions where a number of delay functions the results of
the at least one 1nstruction must pass through 1s equal to the
determined number of cycles of delay.

19. The computer readable storage medium of claim 18
wherein following execution of a cycle, moving the results
of the at least one instruction forward one delay function
within the result butler.

20. The computer readable storage medium of claim 17
further comprising:

determining a number of cycles to delay a second 1nstruc-

tion; and

placing second results of the second instruction in the

result bufler for the determined number of cycles of
delay.

	Front Page
	Drawings
	Specification
	Claims

