12 United States Patent

Yang et al.

USO011558478B2

US 11,558,478 B2
*Jan. 17, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)

(58)

SCALING SERVICE DISCOVERY IN A
MICRO-SERVICE ENVIRONMENT

Applicant: Cisco Technology, Inc., San Jose, CA
(US)

Inventors: Yi Yang, Morrisville, NC (US);
Wojciech Dec, Amsterdam (NL); Syed
Basheeruddin Ahmed, Santa Clara, CA

(US); Sanjay Agrawal, San Jose, CA

(US); Ruchir Gupta, San Jose, CA

(US)

Assignee: Cisco Technology, Inc., San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 17/817,568

Filed: Aug. 4, 2022

Prior Publication Data

US 2022/0377150 Al Nov. 24, 2022
Related U.S. Application Data

Continuation of application No. 16/505,618, filed on
Jul. 8, 2019, now Pat. No. 11,412,053, which 1s a

(Continued)
Int. CIL.
HO4L 67/51 (2022.01)
GO6F 9/455 (2018.01)
U.S. CL
CPC .......... HO4L 67/51 (2022.05); GO6F 9/45558

(2013.01); GO6F 2009/45595 (2013.01)

Field of Classification Search
CPC e, HO4L 67/51; GO6F 9/45558; GO6F
2009/45595

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8/2002 Curtis
11/2009 Manzano ............ GOO6F 21/6218

709/201

6,442,754 Bl
7,614,059 B2 *

(Continued)

FOREIGN PATENT DOCUMENTS

2/2016
11/2011

CN 105357233 A
EP 22545310 A2

OTHER PUBLICATIONS

International Search Report and Written Opinion from PCT Appli-
cation No. PCT/US2017/041011 dated Sep. 21, 2017,

(Continued)

Primary Examiner — Chris Parry
Assistant Examiner — Steven C Nguyen
(74) Attorney, Agent, or Firm — Polsinelli

(57) ABSTRACT

Systems and methods provide for scaling service discovery
In a micro-service environment. A controller can 1nject a
service discovery agent onto a host. At least one of the
controller or the agent can identily a first set of micro-
service containers that are dependencies of the first micro-
service container and a second set of micro-service contain-
ers that are dependencies of the second micro-service
container. At least one of the controller or the agent can
update routing data for the first set of micro-service con-
tainers and the second set of micro-service containers. At
least one of the controller or the agent can determine the
second micro-service container has terminated on the host
computing device. At least one of the controller or the agent
can update the agent to remove the routing data for the
second set of micro-service containers.

20 Claims, 9 Drawing Sheets




US 11,558,478 B2
Page 2

Related U.S. Application Data

continuation of application No. 15/217,311, filed on
Jul. 22, 2016, now Pat. No. 10,348,838.

(56)

8,200,615
10,289,457
2005/0097087

2006/0130060
2008/0295109
2010/0299437

2016/0103838

2016/0124474

References Cited

U.S. PATENT DOCUMENTS

B2
Bl *
Al*

Al
Al
Al*

Al*

Al

9/2012
5/2019
5/2005

6/2006
11/2008
11/2010

4/2016

5/2016

Shapiro

Slawomir ................. GO6F 9/54

Punaganti Venkata ......................

HO4L 67/51

Anderson et al.

Huang et al.

Moore ................ HO4L 67/1008
709/224

Sainani ............... HO4L 41/5045
707/725

Rangasamy et al.

2017/0118137 Al* 4/2017 Nanjundaswamy .... HO4L 67/01
2017/0272400 Al* 9/2017 Bansal .................. GO6F 9/5077
2018/0006935 Al* 1/2018 Mutnuru ............. HO4L 67/1001
2018/0019948 Al* 1/2018 Patwardhan .......... HO4L 47/125
2018/0152534 Al* 5/2018 Kristiansson ......... HO4L 67/563
2019/0123970 Al* 4/2019 Rastogl ............... HO04L 41/0893

OTHER PUBLICATTIONS

Richardson et al., “Microservices—From Design to Deployment,”

May 18, 2016, pp. 1-80.
English Translation of the First Office Action and Search Report,
dated Sep. 24, 2021 by the National Intellectual Property Admin-

istration, PRC, for corresponding Chinese Patent Application No.
201780045225.0, 16 pages.
Communication pursuant to Article 94(3) EPC from the European
Patent Office dated Jun. 29, 2021, for corresponding EP Application
No. 17740589.1, 11 pages.

* cited by examiner



U.S. Patent Jan. 17,2023 Sheet 1 of 9 US 11,558,478 B2

INTERFACES
168




U.S. Patent Jan. 17,2023 Sheet 2 of 9 US 11,558,478 B2

2450

| Communication |
interface :

FIG. 2B

285 250

290

ser _
interface Cauniﬁaﬁm
Lomponents o I sCE
Interface

265 270



U.S. Patent Jan. 17,2023 Sheet 3 of 9 US 11,558,478 B2

FlG. 3

SPINE
3024

SPINE
3025

NP IMNE
3y

31047 | 310E

WAN




U.S. Patent Jan. 17,2023 Sheet 4 of 9 US 11,558,478 B2

FiG. 4

AO6A AR
4108

'4_._ .
*

S48 AR

II
'F'

ADSA R,

™

e NETWORK

40K A04H 4048

410D/ \ 410G o 410H o410

mmmmm{mmﬁw*w*wm-wmﬁmmww&-wﬁwwﬁ

¥

VWA W A W I B e S A N A Y Y A N A e A S e o

= g gy

v VNID | | VNID

3

VNED
2

“ .
r e

.‘ - "‘
. |
.-' L] b &+ [ ] & -+ . .l, . . . .
4 % .{\;'ﬁ jﬁ- - ; * ' . * *. ) ' * h ’
L

™ -

4068 406D

™



U.S. Patent Jan. 17, 2023 Sheet 5 of 9 US 11,558,478 B2

‘qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqﬁ*
t rd
: .
t L U *

rd
t rd
t *
t rd
t rd
t *
t rd
t rd
t *
t rd
t rd
; Tt i ety *
t rd
t rd
e o b & & B R R L N R g R N R R R N R R R R g R R R R R A g R A N R R N R g L g R g R R g R N A A N R g LN R g E N R L N A g m o E g maom o

L] +
* +
L] t
¥ +
L] +
* t
L] +
* +
L] t
¥ +
L] +
+ ! +
L] +
* +
L] t
¥ +
L] +
] t

L] +
- * t
L] t
¥ +
» L ¥
* t
L] +
* +
L] t
¥ +
L] +
* t
L] +
* +

Host Computing Device 304

e ey e e e
A A A A A A A A A AA A4 A A4 4444 A4 4444 4A 444444444444 4444444 AAA A4 A A4 A A A4 A A A A A4 A A4 AAAAAAAAAAAAAAAAAAAAAAAAA-



. Patent an. 17, 2023 Sheet 6 of 9

T ke rrrrrrrrrrrrrrlrrrlrrrlr ek r e

- mm m momom oy
4 A4 A4 A4 A
.

]
.

. T -
T

Lontainers

510

.

.

fEm a a s s s s s s sssssssa=a=a=

T
T
T
T

A oA A A A A A A A A A A A A A A AAAA

[ T R T T A T T T A T N Y [ R T N N T T U R R A T R

F e r r r r r r ' r r ' r'rrlrrrlrlrrlrrrlrrrrlrrlrrrlrrrr ik F rr r r'br r r ' r'r' rbrrbrrrbrbrfrrbrrlrrrrlrrlrlrrlrlrrrlrrlrrrrkrkrrFkrFrFkrFkrFrFrFFFFEFEFEFEFEaS

Service Discovery Agent
206

Fr rr r br r r r r r rrkbrbrfbrbrfbrbrfbrrfrrfrrrrlrlrlrirlrrr F ke r rrrrbrr rr r rbr frk irrkrirFir ke rirFFriffFFbf ik ffrif ik ifr ik ik ik

R R T R R B B O R e
+ r Fr r ¥ r r rrrrrrrrerrere3

ke rbrrbrbrrbrbrbfrbrbrfrbrrfrbrrfrbrrfrbrrrrrrlrlrrrlrr

Lontainer

Host Computing Device 5304

A A A A A A AAAdAAAAdAAA4A A4 A 444 A4 A AA4AAAAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
o T R R R U

F'rrrbr r rbr r rbrbrfrbrbrfbrbrfrbrbrfrbrbrfbr b fbrbrffbrbrfbrbfflbrbrfbrbrfrir i

S 11,558,478 B2

Controller é;
202



U.S. Patent Jan. 17, 2023 Sheet 7 of 9 US 11,558,478 B2

R I N T I R R T T T R T T T T T T N T R R R e R R P R
b b T N
[ ] 1 T L]
b : T -
T T -
N L] ’ r - L]
b : Tk kb kb kbbbl rrkFr. T :.- Jbbbbbbbbbbbbbbbbbbbbbbbbbbb‘bbbb|
. t - T - ) +
L] : T -~ T N t
. : + E T ] +
L] k. T -~ T N +
' . t B T P t
L] T -~ T N L)
L] - L - T +
[ ] : ] :.- T _.- N i+
' . g B E T K P +
[ ] - -
. : . : y g ; - : .. :
SRR HLRINers | L A RNEINES
L] ' + . - - B T " ! | - - +
[ | - - - 1 .
L] T - -~ T - N - ' t
' : + E T K P +
L] T - T - N +
. : t - T - P t
L] T - T - . L)
L] ' + B T B : +
. : . ) ) B . " ! . . . .
. + . . ] E T E ) . ¥
. : r b r - E ] b o o o *
. . t - T . P t
-.--.--.. T E CIL RN B ) ¥
- .
: . g ; : '
' + . 'a ! +
! T . o . ¥
L S - kol
t -~ N t
T -~ N L)
LEE B N N N N R R T R N L T R R R N R R R R £ R T R N N R N R £ I TR R R R R T R R N

F e r r r r r r ' r r ' r'rrlrrrlrlrrlrrrlrrrrlrrlrrrlrrrr ik F'rrrrbr rbrbrfbrbrrbrbrrbrriririr Frrrrrbrrrr r rrrFFbrfbrbrflbrbrrrlrrlrlrirlrlrirra

b ]
T X
t .
T X
+ X
T X
+ X
T X
+ X
T R O N e e Y I I I e I I X
+ " . X
T : ] X
+ . .. . . "
' N . o . . . L . . \ .
¥ -
T . . X
L] ] .
+ . - . X
" ' - ' h
T " ] X
+ " . X
T " . X
+ L] . § &
. L] . § &
+ L] . b -
T " ] X
t . Frgingngnyrgryrgingng . -
T " . X
+ " ] X
T B T S bk bk bk bk bk k ke e b e bbb b b b b e bk bk bk bk b b b b e bk bk 'k F kP b b Ik Ik bk e Ik & X
+ . LI T T T L T T T T O T T T T L T T T T T T L L L LT T T T I T
T » 1 v
[] .
+ & .
1 r
T - .
] .
+ £l '
[] r
T el -
L] "
t - .
L] r
T - .
[] .
+ el -
1 r
T N . .
] .
+ " . .
[] r
T " h .
L] - L]
+ " " . . .
] r
T E. W w.m.m.m.m.E.E.m.u_m.m.m.m.m.u.u.m.u.m.m.m.u.m, u. ' ow.m.m.m.m.E.m.m.u_u.m.m.m.u.u.u.m.u_u.u.m.m. u, - » . an‘tiﬂier 2
+ - . . X .
L] 4 ] r
T - : . X .
L] 4 [ ] "
+ I . ] X .
L] 4 L] r
T - . . .
L] 4 "
+ - : . X .
L] 4 L] r
T I . ] X .
L] 4 L] L]
+ - . . X .
L] 4 L] r
T - : . X .
L] 4 L] L]
+ I . ] X .
- 1 * . X 1 "
T h . . .
i - H L3 1 ! . » N . 1 .
L] 4 [ ] r
T I . - P . . . . ] X .
L] 4 L] L]
+ - - il . - . - - . X .
T - . . b . . X .
L] L] L]
+ I . ] X .
L] 4 L] r
T - . . X .
L] 4 L] L]
+ Ll . . § " .
T h 1 z h & .I'lllllllllllllllllllllllllllllIlllllIlllllllllllllllllllllllllr
+ " - 1 N . X
T - 1 N . X
+ » i 1 N . »
' [] a
T Ll - ] &
+ - 1 N . X
T I b N ] X
+ - 1 N . X
T - 1 N . X
+ I b N ] X
T - 1 N . X
+ - 1 N . X
T I b N ] X
[] a
t *llIlIllIIlllllllllllllllllllllll- .llIllIlIIlllllllllllllllllllllll. .
T X
t .
T X
+ X
T X
+ X
T X
+ . . . . F . ..- - £l
T . . . . b »
t . . &
T L} L} L} L} L} - L} L} L} .I lv L} I.I l.I L} .
t - deieiuieieiaiaiaiy .
T X
+ X
T X
+ X
T X
+ &

FIG. 5C



U.S. Patent Jan. 17,2023 Sheet 8 of 9 US 11,558,478 B2

11111111111111111111111111111111

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

¥

N { Containers |

LI T W

Controlier
202

...............................................................




. Patent an. 17, 2023 Sheet 9 of 9 S 11,558,478 B2

- F F F F FFFEFEFEFEEFEEFEEFEEFEFEFEEFEFEFEFEEFEEEFEEFEEFEFEEEFEEEFEEEEEEFEEEFEEEEEEFEEEFEEEEEEFEEEEEEFEEEFEEEEEEFEEEFEEEFEEEFEEEEEEFEEEFEEEFEEEEEEFEEEFEEEFEEEEEEFEEEFEEEFEEEEREEFEEEFEEEFEEEFEEEFEEEEEEFEEEEEEFEEEEEEFEEEFEREEEEFEEEEEEFEEEFEEEEEEEEEFE
L]

- Instantiate, on a host computing device, & first container instance
?é providing a first micro-service of an application

L]
> FFFEFEEFEFEEFEEEEFEEFEEFEEFEEFEFEEFEEREEFEFEEFEEEFEEEFEEEFEEEEEEFEEREFEREEEEFEREFEEFEEEEFEEEEEEFEEFEFEEFEEREFEEFEFEEEFEEEFEEEEEEFEEFEFEREEFEREFEEREFEEEFEEFEFEEEEEEFEEEFEEEFEEEFEEREFEEREFEEEFEEREFEEFEFEEREFEEREFEEFEFEEEFEEEFEEEFEEEFEEEFEEEFEEEFEEEFEEEFEEEFEEEFEEREFE

% F % FFEEFEFEEEFEEFEFERFEEFEEEFEEEFEEEEEEEYEEEEERYEFEEEEEYEREEEEEEFEEEEEYEEEEERYEFEEEEEYEFEEEYEYEFEREEYEYEREEYEYEFEEEEYEYEFERE R YR * * FFFEEEFEEFERFEFEEEFEEREFEEEFEEREFEEEEREFEEEYEREFEEEYEREFEEYEYEFEEYEREFEEEEYEYEFEEEEYEYEFEEREYEYEFEEEYEYEFEREYYEYEFEEREYYEYEFEE YR
L]

- ldentify a set of micro-services that are dependencies of the first
55 micro-service

- Update the service discovery agent with routing data for container
instances providing the set of micro-services that are dependencies of

eé the first micro-service

L]
* + F 4+ FFFEFFEEFEFEEFEEFEEFEEFEEEFEFEEEFEEFEEFEEFEEEEEREFEEFEEEFEEREEEFEEEREEEFEEEFEEEEEFEEEEEFEEFEEEFEEFEEEEFEEFEEREFEEFEEREEFEEEEREEEEFEEEFEEREFEEFEEEEEFEEFEEEFEEEEEEFEEREFEEFEEEEEREEEFEEFEEFEEFEEFEEEFEEFEEEEEREEEFEEEFEEFEEFEEREEFEEREFEEFEEEEEREEEFEEEFEEEFEEREEFEEEEEEEEEE




US 11,558,478 B2

1

SCALING SERVICE DISCOVERY IN A
MICRO-SERVICE ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a Continuation of, and claims priority
to U.S. patent application Ser. No. 16/505,618, entitled
SCALING SERVICE DISCOVERY IN A MICRO-SER-
VICE ENVIRONMENT, filed on Jul. 8, 2019, which 1s a
Continuation of, and claims priority to U.S. patent applica-
tion Ser. No. 15/217,311, entitled SCALING SERVICE
DISCOVERY IN A MICRO-SERVICE ENVIRONMENT
filed on Jul. 22, 2016, now U.S. Pat. No. 10,348,838 granted
Jul. 9, 2019, the contents of which are incorporated herein
by reference 1n their entireties.

TECHNICAL FIELD

This disclosure relates in general to the field of computer
networks and, more particularly, pertains to scaling service
discovery 1n a micro-service environment.

BACKGROUND

Container based micro-services 1s an architecture that 1s
quickly being adopted in the Data Center/Cloud Industry.
Rather than build a single monstrous, monolithic applica-
tion, container based micro-services split the application
into a set of smaller interconnected micro-services. In micro-
service architecture, service discovery plays a very impor-
tant role, as container instances have dynamaically assigned
network locations and change dynamically due to auto-
scaling, failures and upgrades. Current systems utilize a
server-side discovery load balancer that acts as a proxy to
connect a container istance with other container instances
providing micro-services. To make service discovery work,
however, the proxy needs to track all container instances for
cach micro-service. In some 1nstances, a single application
can contain hundreds of service and hundreds of container
instances providing each of the micro-services. As a resullt,
in data center deploying multiple applications, each server-
side discovery load balancer or proxy may have to track
hundreds of thousands or even millions of container
instances. Accordingly, improvements are needed.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
features and other advantages of the disclosure can be
obtained, a more particular description of the principles
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only exemplary embodiments of the disclosure and
are not therefore to be considered to be limiting 1ts scope, the
principles herein are described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates an example network device according to
some aspects ol the subject technology;

FIGS. 2A and 2B illustrate an example system embodi-
ments according to some aspects of the subject technology;

FIG. 3 illustrates a schematic block diagram of an
example architecture for a network fabric;

FI1G. 4 1llustrates an example overlay network;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. SA-5D illustrate an example system configured to
scale service discovery 1in a micro-service environment; and

FIG. 6 1llustrates an example method of scaling service
discovery 1n a micro-service environment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

The detailed description set forth below 1s intended as a
description of various configurations of the subject technol-
ogy and 1s not intended to represent the only configurations
in which the subject technology can be practiced. The
appended drawings are incorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a more
thorough understanding of the subject technology. However,
it will be clear and apparent that the subject technology 1s
not limited to the specific details set forth herein and may be
practiced without these details. In some 1nstances, structures
and components are shown 1n block diagram form 1n order
to avoid obscuring the concepts of the subject technology.
Overview:

Disclosed are systems, methods, and computer-readable
storage media for scaling service discovery 1 a micro-
service environment. A controller can instantiate, on a host
computing device, a first container instance providing a first
micro-service ol an application. The host computing device
can include a service discovery agent. The controller can
identily a set of micro-services that are dependencies of the
first micro-service, and update the service discovery agent
with routing data for container instances providing the set of
micro-services that are dependencies of the first micro-
service. The service discovery agent can use the routing data
to route requests from the first container instance to con-
tainer 1nstances providing the set of micro-services that are
dependencies of the first micro-service.

DETAILED DESCRIPTION

Disclosed are systems and methods for scaling service
discovery 1in a micro-service environment. A brief introduc-
tory description of exemplary systems and networks, as
illustrated 1n FIGS. 1 through 4, 1s disclosed herein, fol-
lowed by a discussion of scaling service discovery in a
micro-service environment. The disclosure now turns to
FIG. 1.

A computer network 1s a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between endpoints, such as
personal computers and workstations. Many types of net-
works are available, with the types ranging from local area
networks (LANs) and wide area networks (WANSs) to over-
lay and software-defined networks, such as virtual exten-
sible local area networks (VXLANS).

LLANs typically connect nodes over dedicated private
communications links located 1n the same general physical
location, such as a building or campus. WANSs, on the other
hand, typically connect geographically dispersed nodes over
long-distance communications links, such as common car-
rier telephone lines, optical lightpaths, synchronous optical
networks (SONET), or synchronous digital hierarchy (SDH)
links. LANs and WANSs can include layer 2 (IL2) and/or layer
3 (L3) networks and devices.

The Internet 1s an example of a WAN that connects
disparate networks throughout the world, providing global
communication between nodes on various networks. The
nodes typically communicate over the network by exchang-
ing discrete frames or packets of data according to pre-




US 11,558,478 B2

3

defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP). In this context, a protocol
can refer to a set of rules defimng how the nodes interact
with each other. Computer networks may be further inter-
connected by an intermediate network node, such as a router,
to extend the eflective “size” of each network.

Overlay networks generally allow virtual networks to be
created and layered over a physical network infrastructure.
Overlay network protocols, such as Virtual Extensible LAN
(VXLAN), Network Virtualization using Generic Routing
Encapsulation (NVGRE), Network Virtualization Overlays
(NVO3), and Stateless Transport Tunneling (STT), provide
a traflic encapsulation scheme which allows network traflic
to be carried across L2 and L3 networks over a logical
tunnel. Such logical tunnels can be originated and termi-
nated through virtual tunnel end points (VTEPs).

Moreover, overlay networks can include virtual segments,
such as VXLAN segments in a VXLAN overlay network,
which can include virtual L2 and/or L3 overlay networks
over which virtual machines (VMs) and micro-service con-
tainers communicate. The virtual segments can be 1dentified
through a wvirtual network identifier (VNI), such as a
VXLAN network 1dentifier, which can specifically identify
an associated virtual segment or domain.

Network wvirtualization allows hardware and software
resources to be combined in a virtual network. For example,
network virtualization can allow multiple numbers of VMs
and micro-service containers to be attached to the physical
network via respective virtual LANs (VLANs). The VMs
and micro-service containers can be grouped according to
their respective VLAN, and can communicate with other
VMs and micro-service containers as well as other devices
on the 1nternal or external network.

Network segments, such as physical or virtual segments;
networks; devices; ports; physical or logical links; and/or
traflic 1n general can be grouped into a bridge or flood
domain. A bridge domain or flood domain can represent a
broadcast domain, such as an .2 broadcast domain. A bridge
domain or flood domain can include a single subnet, but can
also include multiple subnets. Moreover, a bridge domain
can be associated with a bridge domain interface on a
network device, such as a switch. A bridge domain 1nterface
can be a logical interface which supports tratlic between an
[.2 bridged network and an L3 routed network. In addition,
a bridge domain interface can support internet protocol (IP)
termination, VPN termination, address resolution handling,
MAC addressing, etc. Both bridge domains and bridge
domain interfaces can be identified by a same index or
identifier.

Furthermore, endpoint groups (EPGs) can be used 1n a
network for mapping applications to the network. In par-
ticular, EPGs can use a grouping of application endpoints
(e.g., micro-service containers) in a network to apply con-
nectivity and policy to the group. EPGs can act as a
container for buckets or collections of micro-service con-
tainers, applications, or application components, and tiers
for implementing forwarding and policy logic. EPGs also
allow separation of network policy, security, and forwarding
from addressing by instead using logical application bound-
aries.

Cloud computing can also be provided 1n one or more
networks to provide computing services using shared
resources. Cloud computing can generally include Internet-
based computing in which computing resources are dynami-
cally provisioned and allocated to client or user computers
or other devices on-demand, from a collection of resources
available via the network (e.g., “the cloud”). Cloud com-

10

15

20

25

30

35

40

45

50

55

60

65

4

puting resources, for example, can include any type of
resource, such as computing, storage, and network devices,
virtual machines (VMs), micro-service containers, etc. For
instance, resources may include service devices (firewalls,
deep packet ispectors, traflic monitors, load balancers,
etc.), compute/processing devices (servers, CPU’s, memory,
brute force processing capability), storage devices (e.g.,
network attached storages, storage area network devices),
etc. In addition, such resources may be used to support
virtual networks, virtual machines (VM), micro-service con-
tainers, databases, applications (Apps), etc.

Cloud computing resources may include a “‘private
cloud,” a “public cloud,” and/or a “hybrid cloud.” A “hybnd
cloud” can be a cloud infrastructure composed of two or
more clouds that inter-operate or federate through technol-
ogy. In essence, a hybrid cloud 1s an interaction between
private and public clouds where a private cloud joins a
public cloud and utilizes public cloud resources 1n a secure
and scalable manner. Cloud computing resources can also be
provisioned via virtual networks 1n an overlay network, such
as a VXLAN.

FIG. 1 illustrates an exemplary network device 110 suit-
able for implementing the present technology. Network
device 110 includes a master central processing unit (CPU)
162, interfaces 168, and a bus 115 (e.g., a PCI bus). When
acting under the control of appropriate software or firmware,
the CPU 162 1s responsible for executing packet manage-
ment, error detection, and/or routing functions, such policy
enforcement, for example. The CPU 162 preferably accom-
plishes all these functions under the control of software
including an operating system and any appropriate applica-
tions solftware. CPU 162 may include one or more proces-
sors 163 such as a processor from the Motorola family of
microprocessors or the MIPS family of microprocessors. In
an alternative embodiment, processor 163 1s specially
designed hardware for controlling the operations of network
device 110. In a specific embodiment, a memory 161 (such
as non-volatile RAM and/or ROM) also forms part of CPU
162. However, there are many different ways in which
memory could be coupled to the system.

The interfaces 168 are typically provided as interface
cards (sometimes referred to as “line cards™). Generally,
they control the sending and receiving of data packets over
the network and sometimes support other peripherals used
with the network device 110. Among the interfaces that may
be provided are Ethernet interfaces, frame relay interfaces,
cable interfaces, DSL interfaces, token ring interfaces, and
the like. In addition, various very high-speed interfaces may
be provided such as fast token ring interfaces, wireless
interfaces, Ethernet interfaces, Gigabit Ethernet interfaces,
ATM interfaces, HSSI interfaces, POS interfaces, FDDI
interfaces and the like. Generally, these interfaces may
include ports appropriate for communication with the appro-
priate media. In some cases, they may also include an
independent processor and, 1n some 1instances, volatile
RAM. The independent processors may control such com-
munications intensive tasks as packet switching, media
control, and management. By providing separate processors
for the communications intensive tasks, these interfaces
allow the master microprocessor 162 to ethiciently perform
routing computations, network diagnostics, security func-
tions, etc.

Although the system shown in FIG. 1 1s one specific
network device of the present technology, it 1s by no means
the only network device architecture on which the present
technology can be implemented. For example, an architec-
ture having a single processor that handles communications




US 11,558,478 B2

S

as well as routing computations, etc. 1s oiten used. Further,
other types of interfaces and media could also be used with
the network device.

Regardless of the network device’s configuration, 1t may
employ one or more memories or memory modules (includ-
ing memory 161) configured to store program instructions
tor the general-purpose network operations and mechanisms
for roaming, route optimization and routing functions
described herein. The program instructions may control the
operation of an operating system and/or one or more appli-
cations, for example. The memory or memories may also be
configured to store tables such as mobility binding, regis-
tration, and association tables, etc.

FIG. 2A, and FIG. 2B illustrate exemplary possible sys-
tem embodiments. The more appropriate embodiment will
be apparent to those of ordinary skill in the art when
practicing the present technology. Persons of ordinary skall
in the art will also readily appreciate that other system
embodiments are possible.

FIG. 2A illustrates a conventional system bus computing
system architecture 200 wherein the components of the
system are 1n electrical communication with each other
using a bus 205. Exemplary system 200 includes a process-
ing unit (CPU or processor) 210 and a system bus 205 that
couples various system components including the system
memory 215, such as read only memory (ROM) 220 and
random access memory (RAM) 225, to the processor 210.
The system 200 can include a cache of high-speed memory
connected directly with, 1n close proximity to, or integrated
as part of the processor 210. The system 200 can copy data
from the memory 215 and/or the storage device 230 to the
cache 212 for quick access by the processor 210. In this way,
the cache can provide a performance boost that avoids
processor 210 delays while waiting for data. These and other
modules can control or be configured to control the proces-
sor 210 to perform various actions. Other system memory
215 may be available for use as well. The memory 213 can
include multiple different types of memory with different
performance characteristics. The processor 210 can include
any general purpose processor and a hardware module or
software module, such as module 1 232, module 2 234, and
module 3 236 stored in storage device 230, configured to
control the processor 210 as well as a special-purpose
processor where soltware 1nstructions are incorporated 1nto
the actual processor design. The processor 210 may essen-
tially be a completely self-contained computing system,
contaiming multiple cores or processors, a bus, memory
controller, cache, etc. A multi-core processor may be sym-
metric or asymmetric.

To enable user interaction with the computing device 200,
an put device 245 can represent any number of 1nput
mechanisms, such as a microphone for speech, a touch-
sensitive screen for gesture or graphical mput, keyboard,
mouse, motion 1nput, speech and so forth. An output device
235 can also be one or more of a number of output
mechanisms known to those of skill in the art. In some
instances, multimodal systems can enable a user to provide
multiple types of input to communicate with the computing
device 200. The communications interface 240 can gener-
ally govern and manage the user mput and system output.
There 1s no restriction on operating on any particular hard-
ware arrangement and therefore the basic features here may
casily be substituted for improved hardware or firmware
arrangements as they are developed.

Storage device 230 1s a non-volatile memory and can be
a hard disk or other types of computer readable media which
can store data that are accessible by a computer, such as

10

15

20

25

30

35

40

45

50

55

60

65

6

magnetic cassettes, tlash memory cards, solid state memory
devices, digital versatile disks, cartridges, random access

memories (RAMs) 225, read only memory (ROM) 220, and

hybrids thereof.
The storage device 230 can include software modules

232, 234, 236 for controlling the processor 210. Other

hardware or soitware modules are contemplated. The stor-
age device 230 can be connected to the system bus 205. In
one aspect, a hardware module that performs a particular
function can include the software component stored 1n a
computer-readable medium in connection with the necessary
hardware components, such as the processor 210, bus 205,
output device 2335, and so forth, to carry out the function.
FIG. 2B illustrates a computer system 2350 having a
chipset architecture that can be used in executing the

described method and generating and displaying a graphical
user interface (GUI). Computer system 2350 1s an example of
computer hardware, software, and firmware that can be used
to 1mplement the disclosed technology. System 2350 can
include a processor 235, representative of any number of
physically and/or logically distinct resources capable of
executing software, firmware, and hardware configured to
perform 1dentified computations. Processor 255 can com-
municate with a chipset 260 that can control mput to and
output from processor 255. In this example, chipset 260
outputs imnformation to output 265, such as a display, and can
read and write mnformation to storage device 270, which can
include magnetic media, and solid state media, for example.
Chipset 260 can also read data from and write data to RAM
275. A bridge 280 for interfacing with a variety ol user
interface components 2835 can be provided for interfacing
with chipset 260. Such user interface components 285 can
include a keyboard, a microphone, touch detection and
processing circuitry, a pointing device, such as a mouse, and
so on. In general, inputs to system 250 can come from any
of a variety of sources, machine generated and/or human
generated.

Chipset 260 can also mterface with one or more commu-
nication interfaces 290 that can have different physical
interfaces. Such communication interfaces can include inter-
faces for wired and wireless local area networks, for broad-
band wireless networks, as well as personal area networks.
Some applications of the methods for generating, displaying,
and using the GUI disclosed herein can include receiving
ordered datasets over the physical interface or be generated
by the machine itself by processor 255 analyzing data stored
in storage 270 or RAM 275. Further, the machine can
receive mputs from a user via user interface components 283
and execute appropriate functions, such as browsing func-
tions by interpreting these inputs using processor 235.

It can be appreciated that exemplary systems 200 and 250
can have more than one processor 210 or be part of a group
or cluster of computing devices networked together to
provide greater processing capability.

FIG. 3 illustrates a schematic block diagram of an
example architecture 300 for a network fabric 312. The
network fabric 312 can include spine switches 302 ,
302,, . . ., 302, (collectively “302”) connected to leal
switches 304 ,, 304, 304 - . . . 304, (collectively “304”) 1n
the network fabric 312.

Spine switches 302 can be L3 switches 1n the fabric 312.
However, 1n some cases, the spine switches 302 can also, or
otherwise, perform L2 functionalities. Further, the spine
switches 302 can support various capabilities, such as 40 or
10 Gbps Ethernet speeds. To this end, the spine switches 302
can 1include one or more 40 Gigabit Ethernet ports. Each port




US 11,558,478 B2

7

can also be split to support other speeds. For example, a 40
Gigabit Ethernet port can be split into four 10 Gigabait
Ethernet ports.

In some embodiments, one or more of the spine switches
302 can be configured to host a proxy function that performs
a lookup of the endpoint address 1dentifier to locator map-
ping 1n a mapping database on behalf of leal switches 304
that do not have such mapping. The proxy function can do
this by parsing through the packet to the encapsulated tenant
packet to get to the destination locator address of the tenant.
The spine switches 302 can then perform a lookup of their
local mapping database to determine the correct locator
address of the packet and forward the packet to the locator
address without changing certain fields in the header of the
packet.

When a packet 1s received at a spine switch 302, the spine
switch 302, can first check i1 the destination locator address
1s a proxy address. If so, the spine switch 302, can perform
the proxy function as previously mentioned. If not, the spine
switch 302, can look up the locator 1n its forwarding table
and forward the packet accordingly.

Spine switches 302 connect to leal switches 304 1n the
tabric 312. Leat switches 304 can include access ports (or
non-fabric ports) and fabric ports. Fabric ports can provide
uplinks to the spine switches 302, while access ports can
provide connectivity for devices, hosts, endpoints, VIMs,
micro-service containers, or external networks to the fabric
312.

Leat switches 304 can reside at the edge of the fabric 312,
and can thus represent the physical network edge. In some
cases, the leal switches 304 can be top-of-rack (““ToR”™)
switches configured according to a ToR architecture. In
other cases, the leal switches 304 can be aggregation
switches 1n any particular topology, such as end-of-row
(EoR) or middle-of-row (MoR) topologies. The leaf
switches 304 can also represent aggregation switches, for
example.

The leat switches 304 can be responsible for routing
and/or bridging the data packets and applying network
policies. In some cases, a leal switch can perform one or
more additional functions, such as implementing a mapping,
cache, sending packets to the proxy function when there 1s
a miss 1n the cache, encapsulating packets, enforcing ingress
or egress policies, etc.

Moreover, the leat switches 304 can contain virtual
switching functionalities, such as a virtual tunnel endpoint
(VIEP) function as explained below in the discussion of
VTEP 408 1n FIG. 4. To this end, leat switches 304 can
connect the fabric 312 to an overlay network, such as
overlay network 400 1llustrated 1n FIG. 4.

Network connectivity in the fabric 312 can tlow through
the leal switches 304. Here, the leat switches 304 can
provide servers, resources, endpoints, external networks,
micro-service containers or VMs access to the fabric 312,
and can connect the leat switches 304 to each other. In some
cases, the leat switches 304 can connect EPGs to the fabric
312 and/or any external networks. Each EPG can connect to
the fabric 312 via one of the leaf switches 304, for example.

Endpoints 310A-E (collectively “310°") can connect to the
tabric 312 via leaf switches 304. For example, endpoints
310A and 310B can connect directly to leal switch 304 A,
which can connect endpoints 310A and 310B to the fabric
312 and/or any other one of the leat switches 304. Similarly,
endpoint 310E can connect directly to leal switch 304C,
which can connect endpoint 310E to the fabric 312 and/or
any other of the leal switches 304. On the other hand,
endpoints 310C and 310D can connect to leat switch 304B

10

15

20

25

30

35

40

45

50

55

60

65

8

via L2 network 306. Similarly, the wide area network
(WAN) can connect to the leat switches 304C or 304D via

[.3 network 308.

Endpoints 310 can include any communication device,
such as a computer, a server, a switch, a router, etc. In some
cases, the endpoints 310 can include a server, hypervisor, or
switch configured with a VTEP functionality which connects
an overlay network, such as overlay network 400 below,
with the fabric 312. For example, 1n some cases, the end-

points 310 can represent one or more of the VIEPs 408 A-D
illustrated 1in FIG. 4. Here, the VIEPs 408A-D can connect
to the fabric 312 via the leal switches 304. The overlay
network can host physical devices, such as servers, appli-
cations, EPGs, virtual segments, virtual workloads, etc. In
addition, the endpoints 310 can host virtual workload(s),
clusters, and applications or services, which can connect
with the fabric 312 or any other device or network, including
an external network. For example, one or more endpoints
310 can host, or connect to, a cluster of load balancers or an
EPG of various applications.

Although the fabric 312 1s 1llustrated and described herein
as an example leaf-spine architecture, one of ordinary skill
in the art will readily recognize that the subject technology
can be implemented based on any network fabric, including
any data center or cloud network fabric. Indeed, other
architectures, designs, infrastructures, and variations are
contemplated herein.

FIG. 4 illustrates an exemplary overlay network 400.
Overlay network 400 uses an overlay protocol, such as
VXLAN, NVGRE, NVO3, or STT, to encapsulate traflic in
[.2 and/or L3 packets which can cross overlay L3 boundaries
in the network. As illustrated in F1G. 4, overlay network 400
can include hosts 406A-D interconnected via network 402.

Network 402 can 1nclude a packet network, such as an IP
network, for example. Moreover, network 402 can connect
the overlay network 400 with the fabric 312 1n FIG. 3. For
example, VIEPs 408A-D can connect with the leaf switches
304 in the fabric 312 via network 402.

Hosts 406A-D include virtual tunnel end points (VTEP)
408 A-D, which can be virtual nodes or switches configured
to encapsulate and de-encapsulate data traflic according to a
specific overlay protocol of the network 400, for the various
virtual network identifiers (VINIDs) 410A-1. Moreover, hosts
406 A-D can include servers containing a VIEP functional-
ity, hypervisors, and physical switches, such as .3 switches,
configured with a VTEP functionality. For example, hosts
406 A and 4068 can be physical switches configured to run
VTEPs 408A-B. Here, hosts 406A and 406B can be con-
nected to servers 404 A-D, which, in some cases, can include
virtual workloads through micro-service container or VMs
loaded on the servers, for example.

In some embodiments, network 400 can be a VXLAN
network, and VITEPs 408A-D can be VXLAN tunnel end
points (VIEP). However, as one of ordinary skill 1in the art
will readily recognize, network 400 can represent any type
of overlay or software-defined network, such as NVGRE,
STT, or even overlay technologies yet to be invented.

The VNIDs can represent the segregated virtual networks
in overlay network 400. Each of the overlay tunnels (VTEPs
408A-D) can include one or more VNIDs. For example,
VTEP 408A can include VNIDs 1 and 2, VTEP 408B can
include VNIDs 1 and 2, VITEP 408C can include VNIDs 1
and 2, and VTEP 408D can include VNIDs 1-3. As one of
ordinary skill 1n the art will readily recognize, any particular

VTEP can, in other embodiments, have numerous VNIDs,
including more than the 3 VNIDs 1illustrated 1n FIG. 4.




US 11,558,478 B2

9

The trailic in overlay network 400 can be segregated
logically according to specific VNIDs. This way, traflic
intended for VNID 1 can be accessed by devices residing 1n
VNID 1, while other devices residing 1n other VNIDs (e.g.,
VNIDs 2 and 3) can be prevented from accessing such

traflic. In other words, devices or endpoints connected to

specific VNIDs can communicate with other devices or
endpomts connected to the same specific VNIDs, while
traflic from separate VNIDs can be 1solated to prevent

devices or endpoints 1n other specific VNIDs from accessing
traflic 1n different VINIDs.

Servers 404A-D and VMs 404E-]1 can connect to their

respective VNID or virtual segment, and commumnicate with
other servers or VMs residing 1n the same VNID or virtual
segment. For example, server 404 A can communicate with
server 404C and VMs 404E and 404G because they all
reside in the same VNID, viz., VNID 1. Similarly, server
404B can communicate with VMs 404F and 404H because
they all reside 1n VNID 2. VMs 404E-I can host virtual
workloads, which can include application workloads,

resources, and services, for example. However, in some
cases, servers 404A-D can similarly host virtual workloads

through VMs hosted on the servers 404 A-D. Moreover, each
of the servers 404A-D and VMs 404E-I can represent a
single server or VM, but can also represent multiple servers
or VMs, such as a cluster of servers or VMs.

VTEPs 408A-D can encapsulate packets directed at the
vartous VNIDs 1-3 in the overlay network 400 according to
the spemﬁc overlay protocol implemented, such as VXLAN,
so traflic can be properly transmitted to the correct VNID
and recipient(s). Moreover, when a switch, router, or other
network device receives a packet to be transmitted to a
recipient 1in the overlay network 400, it can analyze a routing,
table, such as a lookup table, to determine where such packet
needs to be transmitted so the tratlic reaches the appropnate
recipient. For example, if VIEP 408A receives a packet
from endpoint 404B that 1s intended for endpoint 404H,
VTEP 408A can analyze a routing table that maps the
intended endpoint, endpoint 404H, to a specific switch that
1s configured to handle communications intended for end-
point 404H. VTEP 408 A might not initially know, when 1t
receives the packet from endpoint 404B, that such packet
should be transmitted to VIEP 408D in order to reach
endpoint 404H. Accordingly, by analyzing the routing table,
VTEP 408A can lookup endpoint 404H, which 1s the
intended recipient, and determine that the packet should be
transmitted to VIEP 408D, as specified 1n the routing table
based on endpoint-to-switch mappings or bindings, so the
packet can be transmitted to, and received by, endpoint 404H
as expected.

However, continuing with the previous example, 1n many
instances, VIEP 408 A may analyze the routing table and fail
to find any bindings or mappings associated with the
intended recipient, e.g., endpoint 404H. Here, the routing
table may not yet have learned routing information regard-
ing endpoint 404H. In this scenario, the VIEP 408A may
likely broadcast or multicast the packet to ensure the proper
switch associated with endpoint 404H can receive the packet
and further route it to endpoint 404H.

In some cases, the routing table can be dynamically and
continuously modified by removing unnecessary or stale
entries and adding new or necessary entries, in order to
maintain the routing table up-to-date, accurate, and eflicient,
while reducing or limiting the size of the table.

As one of ordinary skill 1in the art will readily recognize,

the examples and technologies provided above are simply

10

15

20

25

30

35

40

45

50

55

60

65

10

for clarity and explanation purposes, and can include many
additional concepts and variations.

Depending on the desired implementation in the network
400, a variety of networking and messaging protocols may
be used, including but not limited to TCP/IP, open systems
interconnection (OSI), file transter protocol (F'1P), universal
plug and play (UpnP), network file system (NFS), common
internet file system (CIES), AppleTalk etc. As would be
appreciated by those skilled in the art, the network 400
illustrated 1n FIG. 4 15 used for purposes of explanation, a
network system may be implemented with many vanations,
as appropriate, in the configuration of network platiorm 1n
accordance with various embodiments of the present disclo-
sure.

Having disclosed a brief introductory description of
exemplary systems and networks, the discussion now turns
to scaling service discovery in a micro-service environment.
Rather than build a single monstrous, monolithic applica-
tion, container based micro-services split the application
into a set of smaller interconnected micro-services. Multiple
container instances can be mnstantiated to provide the various
micro-services, allowing the application to be easily scaled
as needed. Fach instantiated container instance can be
assigned i1ts own IP address and port number and distributed
throughout a data center on various nodes in the network.
The IP addresses and port numbers can be used to provide
network based communications between the container
instances to provide the application.

A server-side service discovery agent can be used to
manage communications between the container instances. A
host node can include a service discovery agent that acts as
a load balancer/proxy to connect a container instance on the
host node with other container instances providing other
micro-services of the application. The service discovery
agent on a host can receive and direct packets to and from
the container instances. The service discovery agent can
maintain routing data (e.g., IP addresses and port values) for
other container instances in the network, which can be used
to route received requests to an appropriate container
instance.

To reduce the number of container 1nstances that need to
be tracked by a service discovery agent, a controller 1n the
network can be configured to update the service discovery
agent to either provide new routing data or remove routing
data based on the container instances on the host node. For
example, the controller can update the service discovery
agent to only include routing data for container instances
providing micro-services that are dependencies of micro-
services provided by container instances instantiated on the
host node. Accordingly, a service discovery agent will not
include unnecessary routing data, thereby reducing memory
usage and increasing throughput.

FIGS. SA-5D illustrate an example system configured to
scale service discovery in a micro-service environment. As
shown, 1n FIG. SA, system 500 includes controller 502 and
host computing device 504. Controller 300 and host com-
puting device 504 can be any type of computing device,
node, VM, etc., in a network. Although controller 502 and
host computing device 504 are shown as separate entities, in
some embodiments controller 502 and host computing
device 504 can reside on the same computing device. For
example, controller 502 can reside on host computing device
504.

Host computing device 504 can be configured to host one
or more container mstances, each providing a micro-service.
Each container instance can be assigned a umique IP address



US 11,558,478 B2

11

and port number to allow for network based communication
between the container instances distributed throughout the
network.

Host computing device 504 can include service discovery
agent 506 configured to manage communications between
container mstances mcluded on host computing device 504
and other container instances distributed throughout the
network. For example, service discovery agent 506 can be a
load balancer and/or proxy configured to mspect and direct
packets to and from the container instances. For example,
local container instances on host computing device 504 can
transmit requests that are inspected by service discovery
agent 506 and service discovery agent 506 can then route the
requests to an appropriate container instance in the network.
To accomplish this, service discovery agent 506 can main-
tain routing data (e.g., IP address and port values) for other
container instances in the network, which can be used to
route requests to an appropriate container instance.

Controller 502 can be configured to update service dis-
covery agent 506 to reduce the amount of routing data
maintained by service discovery agent 506. Some micro-
services ol an application may be related to other micro-
services of the application that are dependencies. For
istance, some micro-services may require the functionality
of one or more micro-services and may need to make
Application Programming Interface (API) calls to those
micro-services as part of their functioning. As an example,
a micro-service providing a payment functionality of an
application may require the use of another micro-service
providing a notification functionality to notify a user that a
payment has been completed. Accordingly, the notification
micro-service 15 a dependency of the payment micro-ser-
vice.

While a micro-service may be related to a set of one or
more other micro-services that are dependencies of the
micro-service, this 1s not the case for all micro-services of an
application. Some micro-services may not have any depen-
dencies. Further, a micro-service may only be related to a
subset of the total micro-services of an application, meaning
that not all micro-services are dependencies of each other.
Accordingly, service discovery agent 506 only needs to
maintain routing data for container instances that provide
micro-services that are dependencies of micro-services pro-
vided by container instances on host computing device 504.

Controller 502 can be configured to update service dis-
covery agent 506 to include only the routing data necessary
based on the container instances on host computing device
504. For example, 1n response to a container mstance being
instantiated on host computing device 504, controller 502
can determine a set of micro-services that are dependencies
of the micro-service provided by the newly instantiated
container instance, and then update service discovery agent
506 with routing data for container instances providing the
set of micro-services. Likewise, 1n response to a container
instance being removed from host computing device 504,
controller 502 can update service discovery agent 306 to
remove routing data for container instances that are depen-
dencies of the micro-service provided by the removed
container instance. For example, controller 502 can check
the remaining container istances and determine their cor-
responding dependencies. Controller 502 can then update
the routing data accordingly.

In some embodiments, controller 502 can maintain a
micro-service dependencies table that identifies the depen-
dencies for a particular application. In response to deter-
mimng that a container instance has been added or removed
from host computing device 504, controller 502 can search

10

15

20

25

30

35

40

45

50

55

60

65

12

the micro-service dependency table to identily the set of
micro-services that are dependencies of the micro-service
provided by the added or removed container instance. Alter-
natively, 1n some embodiments, container instances provid-
ing a specific micro-service can all be added to an end point
group and associated with a group based policy defining the
micro-services that are dependencies. In response to deter-
mining that a container instance has been added or removed
from host computing device 504, controller 502 can gather
the set ol micro-services that are dependencies of the micro-
service based on the group based policy associated with the
container instance that was added or removed.

FIG. 5B shows system 500 after a container instance has
been 1nstantiated on host computing device 504. As shown,
container instance 308 has been instantiated on host com-
puting device 504. Container instance 508 can be providing
micro-service 1. As further shown, controller 502 has
updated service discovery agent 506 to include routing data
for container nstances 510, which provide a set of micro-
services that are dependencies of micro-service 1, provided
by container instance 508. To utilize a micro-service pro-
vided by one of container instances 310, container instance
508 can communicate with service discovery agent 506,
which acts as load balancer and/or proxy and routes the
request to one ol container instances 310.

FIG. 5C shows system 500 after a second container
instance has been instantiated on host computing device
504. As shown, container instance 512 has been instantiated
on container instance 504. Container instance 512 can
provide micro-service 2. Further, controller 502 has updated
service discovery agent 506 to include routing data for
container stances 514 that provide micro-services that are
dependencies of micro-service 2. In some 1nstances, micro-
service 1 and micro-service 2 may both share certain depen-
dencies. Accordingly, upon container instance 512 being
instantiated on host computing device 504, controller 502
can 1dentify a subset of micro-services that are dependencies
of micro-service 2 that are not included in the set of
micro-services that are dependencies of micro-service 1,
provided by container instance 508. Because service dis-
covery agent 506 already has routing data for container
instances providing any micro services that are dependen-
cies of both micro-service 1 and micro-service 2, controller
502 can update service discovery agent 306 with routing
data for the subset of micro-services that are dependencies
of micro-service 2 that are not mcluded in the set of
micro-services that are dependencies of micro-service 1.

FIG. 5D shows system 300 after a container instance has
been removed from host computing device 504. As shown,
container instance 510 has been removed form host com-
puting device 504. Further, controller 502 has removed
container instances 314, which provide services that are
dependencies of micro-service 2 but are not dependencies of
micro-service 1. Routing data for container instances that
provide micro-services for both micro-service 1 and micro-
service 2 can be maintained by service discovery agent 506
to continue servicing container instance 508.

FIG. 6 illustrates an example method 600 of scaling
service discovery 1n a micro-service environment. It should
be understood that there can be additional, fewer, or alter-
native steps performed 1n similar or alternative orders, or in
parallel, within the scope of the various embodiments unless
otherwise stated.

At step 602, a controller can instantiate, on a host com-
puting device, a first container instance providing a first
micro-service ol an application. The host computing device
can 1nclude a service discovery agent configured to manage



US 11,558,478 B2

13

communications between the first container instance and
container instances on other host computing devices.

At step 604, the controller can i1dentily a set ol micro-
services that are dependencies of the first micro-service. For
example, the host controller can search a micro-service
dependencies table of the application for the set of micro-
services that are dependencies of the first micro-service. The
micro-service dependencies table can list micro-services of
the application and their corresponding dependencies.

As another example, the controller can gather the set of
micro-services that are dependencies of the first micro-
service from a group based policy associated with an end
point group to which the first container instance 1s assigned.
The end pomt group can include only container instances
providing the first micro-service and the group based policy
can 1dentily dependencies of the first micro-service.

At step 606, the controller can update the service discov-
ery agent with routing data for container instances providing
the set of micro-services that are dependencies of the first
micro-service. The service discovery agent can use the
routing data to route requests irom the first container
instance to container istances providing the set of micro-
services that are dependencies of the first micro-service.

As one of ordinary skill 1in the art will readily recognize,
the examples and technologies provided above are simply
for clarity and explanation purposes, and can include many
additional concepts and variations.

For clarity of explanation, in some instances the present
technology may be presented as including individual func-
tional blocks including functional blocks comprising
devices, device components, steps or routines in a method
embodied 1n software, or combinations of hardware and
software.

In some embodiments the computer-readable storage
devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.

Methods according to the above-described examples can
be implemented using computer-executable instructions that
are stored or otherwise available from computer readable
media. Such nstructions can comprise, for example, 1nstruc-
tions and data which cause or otherwise configure a general
purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or
group of functions. Portions of computer resources used can
be accessible over a network. The computer executable
instructions may be, for example, binaries, intermediate
format 1nstructions such as assembly language, firmware, or
source code. Examples of computer-readable media that
may be used to store instructions, mformation used, and/or
information created during methods according to described
examples include magnetic or optical disks, flash memory,
USB devices provided with non-volatile memory, net-
worked storage devices, and so on.

Devices implementing methods according to these dis-
closures can comprise hardware, firmware and/or software,
and can take any of a variety of form factors. Typical
examples ol such form factors include laptops, smart
phones, small form factor personal computers, personal
digital assistants, rackmount devices, standalone devices,
and so on. Functionality described herein also can be
embodied 1n peripherals or add-in cards. Such functionality
can also be implemented on a circuit board among different
chups or different processes executing 1n a single device, by
way ol further example.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

The nstructions, media for conveying such instructions,
computing resources for executing them, and other struc-
tures for supporting such computing resources are means for
providing the functions described in these disclosures.

Although a variety of examples and other information was
used to explain aspects within the scope of the appended
claims, no limitation of the claims should be implied based
on particular features or arrangements 1n such examples, as
one of ordinary skill would be able to use these examples to
derive a wide variety of implementations. Further and
although some subject matter may have been described 1n
language specific to examples of structural features and/or
method steps, 1t 1s to be understood that the subject matter
defined 1n the appended claims 1s not necessarily limited to
these described features or acts. For example, such func-
tionality can be distributed differently or performed in
components other than those i1dentified herein. Rather, the
described features and steps are disclosed as examples of
components of systems and methods within the scope of the
appended claims. Moreover, claim language reciting “at
least one of” a set indicates that one member of the set or
multiple members of the set satisty the claim.

For clarity of explanation, 1n some instances the present
technology may be presented as including 1individual func-
tional blocks including functional blocks comprising
devices, device components, steps or routines 1n a method
embodied in software, or combinations of hardware and
software.

Note that 1n certain example implementations, the opti-
mization and/or placement functions outlined herein may be
implemented by logic encoded 1n one or more tangible,
non-transitory media (e.g., embedded logic provided 1n an
application specific integrated circuit [ASIC], digital signal
processor [DSP] instructions, software [potentially inclusive
of object code and source code] to be executed by a
processor, or other similar machine, etc.). The computer-
readable storage devices, mediums, and memories can
include a cable or wireless signal containing a bit stream and
the like. However, when mentioned, non-transitory com-
puter-readable storage media expressly exclude media such
as energy, carrier signals, electromagnetic waves, and sig-
nals per se.

Methods according to the above-described examples can
be implemented using computer-executable instructions that
are stored or otherwise available from computer readable
media. Such instructions can comprise, for example, mnstruc-
tions and data which cause or otherwise configure a general
purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or
group of functions. Portions of computer resources used can
be accessible over a network. The computer executable
istructions may be, for example, binaries, intermediate
format mstructions such as assembly language, firmware, or
source code. Examples of computer-readable media that
may be used to store instructions, information used, and/or
information created during methods according to described
examples include magnetic or optical disks, tlash memory,
USB devices provided with non-volatile memory, net-
worked storage devices, and so on.

Devices implementing methods according to these dis-
closures can comprise hardware, firmware and/or software,
and can take any of a variety of form factors. Typical
examples ol such form {factors include laptops, smart
phones, small form factor personal computers, personal
digital assistants, and so on. Functionality described herein
also can be embodied 1n peripherals or add-in cards. Such
functionality can also be implemented on a circuit board




US 11,558,478 B2

15

among different chips or different processes executing 1n a
single device, by way of further example.

The 1nstructions, media for conveying such instructions,
computing resources for executing them, and other struc-
tures for supporting such computing resources are means for
providing the functions described in these disclosures.

Although a variety of examples and other information was
used to explain aspects within the scope of the appended
claims, no limitation of the claims should be implied based
on particular features or arrangements 1n such examples, as
one of ordinary skill would be able to use these examples to
derive a wide variety of implementations. Further and
although some subject matter may have been described 1n
language specific to examples of structural features and/or
method steps, 1t 1s to be understood that the subject matter
defined 1n the appended claims 1s not necessarily limited to
these described features or acts. For example, such func-
tionality can be distributed differently or performed in
components other than those i1dentified herein. Rather, the
described features and steps are disclosed as examples of
components of systems and methods within the scope of the
appended claims.

The 1nvention claimed 1s:

1. A computer-implemented method comprising:

establishing, by a controller, a service discovery agent;

identifying one or more first micro-services provided by
a first container, one or more second micro-services
provided by a second container, one or more third
micro-services provided by one or more third contain-
ers depending from the first container, and one or more
fourth micro-services provided by one or more fourth
containers depending from the second container;

updating the service discovery agent with first routing
data to the one or more third containers and second
routing data to the one or more fourth containers,
wherein the first routing data includes routes from the
first container to the one or more third containers and
the second routing data includes routes from the second
container to the one or more fourth containers;

determining the second container has terminated; and

updating the service discovery agent to remove at least the
routes from the second container 1n the second routing
data.

2. The computer-implemented method of claim 1,
wherein at least one of the containers i1s instantiated on a
physical server.

3. The computer-implemented method of claim 1,
wherein at least of the containers 1s instantiated on a virtual
machine.

4. The computer-implemented method of claim 1, further
comprising;

load-balancing requests to the one or more third contain-

Crs.

5. The computer-implemented method of claim 1, further
comprising:

checking for dependencies from the first container.

6. The computer-implemented method of claim 3, further
comprising;

determining a new dependency from the first container to

one or more fifth containers; and

updating the service discovery agent with third routing

data to the one or more fifth containers.

7. The computer-implemented method of claim 6, further
comprising;

determining there 1s at least one common container

among the fourth containers and the fifth containers,

5

10

15

20

25

30

35

40

45

50

55

60

65

16

wherein the third routing data excludes routing data to the

at least one common container.

8. The computer-implemented method of claim 6, further
comprising:

determiming at least one container of the one or more third

containers has terminated; and

updating the service discovery agent to remove routing

data to the at least one container.

9. The computer-implemented method of claim 1, further
comprising;

determining at least one common container among the

third containers and the fourth containers,

wherein the second routing data exclude routing data to

the at least one common container.

10. The computer-implemented method of claim 1, fur-
ther comprising:

determining the second container depends from at least

one container; and

updating a second service discovery agent to remove third

routing data to the second container.

11. A system, comprising:

one or more processors; and

memory including instructions that, when executed by the

one or more processors, cause the system to:

establish a service discovery agent;

identily one or more first micro-services provided by a
first container, one or more second micro-services
provided by a second container, one or more third
micro-services provided by one or more third con-
tainers depending from the first container, and one or
more fourth micro-services provided by one or more
fourth containers depending from the second con-
tainer;

update the service discovery agent with first routing
data to the one or more third containers and second
routing data to the one or more fourth containers,
wherein the first routing data includes routes from
the first container to the one or more third containers
and the second routing data includes routes from the
second container to the one or more fourth contain-
ers;

determine the second container has terminated; and

update the service discovery agent to remove at least
the routes from the second container in the second
routing data.

12. The system of claim 11, wherein at least one of the
containers 1s instantiated on a physical server.

13. The system of claim 11, wherein at least one of the
containers 1s instantiated on a virtual machine.

14. The system of claim 11, further comprising further
instructions that, when executed by the one or more proces-
sors, further cause the system to:

load-balance requests to the one or more third containers.

15. The system of claim 11, further comprising further
instructions that, when executed by the one or more proces-
sors, further cause the system to:

check for dependencies from the {first container 1n

response to an event.

16. The system of claim 135, further comprising further
instructions that, when executed by the one or more proces-
sors, further cause the system to:

determine a new dependency from the first container to

one or more fifth containers; and

update the service discovery agent with third routing data

to the one or more {ifth containers.




US 11,558,478 B2

17

17. The system of claim 16, further comprising further
instructions that, when executed by the one or more proces-
sors, Turther cause the system to:

determine there 1s at least one common container among,

the fourth containers and the fifth containers,

wherein the third routing data excludes routing data to the

at least one common container.

18. The system of claim 16, further comprising further
instructions that, when executed by the one or more proces-
sors, Turther cause the system to:

determine at least one container of the one or more third

containers has terminated; and

update the service discovery agent to remove routing data

to the at least one container.

19. The system of claam 11, further comprising further
instructions that, when executed by the one or more proces-
sors, Turther cause the system to:

determine at least one common container among the third

containers and the fourth containers,

wherein the second routing data excludes routing data to

the at least one common container.

20. The system of claim 11, further comprising further
instructions that, when executed by the one or more proces-
sors, further cause the system to:

determine the second container depends from at least one

container; and

update a second service discovery agent to remove third

routing data to the second container.

¥ H H ¥ ¥

10

15

20

25

18



	Front Page
	Drawings
	Specification
	Claims

