US011550567B2

a2y United States Patent 10) Patent No.: US 11,550,567 B2
Copty et al. 45) Date of Patent: Jan. 10, 2023

(54) USER AND ENTITY BEHAVIOR ANALYTICS (56) References Cited
OF INFRASTRUCTURE AS CODE IN PRE

DEPLOYMENT OF CLOUD U.S. PATENT DOCUMENTS

INFRASTRUCTURE 10,255,370 B2 4/2019 Carpenter
2020/0358617 Al1* 11/2020 Baierlein HO041. 9/3228
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US) OTHER PURI ICATIONS
(72) Inventors: Fady Copty, Nazareth (IL); Omri Kim et al., Monitoring and Detecting Abnormal Behavior in Mobile
Soceanu, Haifa (IL)j .ev (}rnggegnbegrgj Cloud Infrastructure, 2012, IEEE, p. 1303-1310.*
Haifa (IL); Dov Murik, Haifa (IL) Continuous monitoring with Azure Monitor, Oct. 12, 2018, Azure

Monitor—Microsoft Docs, https://docs.microsoft.com/en-us/azure/
azure-monitor/continuous-monitoring.

Akond Rahman, Jonathan Stallings, and Laurie Williams, Defect
prediction metrics for infrastructure as code scripts in DevOps, May
2018, 2018 ACM/IEEE 40th International Conference on Software

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject‘ to any disclaimer_,‘ the term of this Engineering: Companion Proceedings.
patent 1s extended or adjusted under 35 Infrastructure as code, Oct. 2018, Google Cloud, https://cloud.
U.S.C. 154(b) by 88 days. google.com/solutions/infrastructure-as-code.
y y
(Continued)

(21) Appl. No.: 17/221,801

Primary Examiner — John Q Chavis

(22) Filed: Apr. 4, 2021 (74) Attorney, Agent, or Firm — Gregory J Kirsch

(65) Prior Publication Data (57) ABSTRACT

US 2022/0318002 Al Oct. 6, 2022 The present invention relates to novel techniques for moni-

toring changes to source code of Infrastructure as Code
(51) Int. Cl. systems to detect attempted anomalous changes and block

GOol 8/71 (2018'O;~) such changes from the code. For example, a method may
GOol" 8/33 (2018-0;) comprise learning a security architecture and history of an
GO6L" 6/77 (2018'0;) infrastructure as code system to be deployed 1n at least one
HO4L 67/50 (2022.01)

cloud account, monitoring changes to source code of the
(52) US. CL inirastructure as code system that are made before deploy-

CPC ..o, Gool’ 8/71 (2013.01); GO6GF 8/33 ment of the infrastructure as code system to detect an
(2013.01); GOGF &/77 (2013.01); HO4L 67/535 anomaly, determining whether the detected anomaly aflects
(2022.05) regulated resources of the infrastructure as code system, and
(58) FKield of Classification Search blocking changes to the source code of the infrastructure as
CPC ... GOOL 8/71; GOOF 8/33; GO6K &/77; HOAL. code system that produce the detected anomaly that affects
67/535 regulated resources of the infrastructure as code system.
USPC e e, 717/121
See application file for complete search history. 20 Claims, 3 Drawing Sheets

202
LEARN THE 1aC SECURITY ARCHITECTURE
AND HISTORY

I

204
BUILD MODEL OF laC SECURITY
ARCHITECTURE

I

206
LEARN HISTORICAL FEATURES

.

208
LEARN STANDARD STATE

I

210
MONITOR FOR CHANGES IN KEY FEATURES

I

212
DETECT ANOMALOUS CHANGES

I

214
PROPAGATE CHANGES AND
ANOMALIES

\ 200

US 11,550,567 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Sean Porter, Infrastructure as code: testing and monitoring, May 23,
2019, Sensu, https://sensu.10/blog/infrastructure-as-code-testing-and-

monitoring.

Roy Feintuch, New Security Challenges with Infrastructure-as-
Code and Immutable Infrastructure, Apr. 4, 2018, The NewStack,
https://thenewstack.io/new-security-challenges-with-infrastructure-
as-code-and-immutable-infrastructure/.

Chaitanya Jawale, Securing Infrastructure as Code, Oct. 14, 2020,
Opcito, https://www.opcito.com/blogs/securing-infrastructure-as-

code/.
W. Chen, G. Wu and J. Wel, “An Approach to Identifying Error

Patterns for Infrastructure as Code,” 2018 IEEE International Sym-
posium on Software Reliability Engineering Workshops (ISSREW),
Memphis, TN, 2018, pp. 124-129, doi1: 10.1109/ISSREW.2018.00-
19.

L1 et al., Gandalf: An Intelligent, End-To-End Analytics Service for
Sate Deployment in Large-Scale Cloud Infrastructure, Feb. 25-27,
2020, Proceedings of the 17th USENIX Symposium on Networked
Systems Design and Implementation, https:/www.usenix.org/

conference/nsdi20/presentation/l1.
Get behavioral analytics and anomaly detection, Mar. 2021, Microsoft,

https://docs.microsoft.com/en-us/cloud-app-security/anomaly-detection-
policy.

* cited by examiner

ao 1D 300D
801 901 701

US 11,550,567 B2

INNOD2V ANO1o
Pl
6l1
abueyo
aulladid ¥00|9 9p0H

811

_ a|e
i AdOLSIH v&%mm_ao._ . ASOLSTH
° ALIAILDVY d34SN 13d0ON 4d0D
5 2Ll ALIEND3S 0Ll
7 Oej

JLL vcl

e ATVINONY
=
=3
: WA st
= ALIAILOV e

AINILNNY

77| Ocl

oLl
00}

¢Ol Hel YIYs vdn

U.S. Patent

["O1]

U.S. Patent Jan. 10, 2023 Sheet 2 of 3 US 11,550,567 B2

Fig. 2

202
LEARN THE l1aC SECURITY ARCHITECTURE

AND HISTORY

204
BUILD MODEL OF laC SECURITY
ARCHITECTURE

206
LEARN HISTORICAL FEATURES

208

LEARN STANDARD STATE

210
MONITOR FOR CHANGES IN KEY FEATURES

212
DETECT ANOMALOUS CHANGES

214
PROPAGATE CHANGES AND
ANOMALIES

\ 200

U.S. Patent Jan. 10, 2023 Sheet 3 of 3 US 11,550,567 B2

Fig. 3

300
COMPUTER SYSTEM

310
304 302A 302N 306
INPUT/ || cPU |@ @ ®| cPU | |NETWORK || NETWORK

OUTPUT ADAPTER

308
MEMORY

312
LEARNING ROUTINES

314
MONITORING ROUTINES

316
laC SECURITY MODEL

318
CODE HISTORY REPOSITORY

320
USER ACTIVITY HISTORY REPOSITORY

322
HISTORICAL STANDARDS

324
RUNTIME ACTIVITY HISTORY

326
OPERATING SYSTEM

US 11,550,567 B2

1

USER AND ENTITY BEHAVIOR ANALYTICS
OF INFRASTRUCTURE AS CODE IN PRE

DEPLOYMENT OF CLOUD
INFRASTRUCTURE

BACKGROUND

The present invention relates to novel techniques for
monitoring changes to source code of Infrastructure as Code
systems to detect attempted anomalous changes and block
such changes from the code or alert to attempts to make such
changes to the code.

User and Entity Behavior Analytics (UBA) 1s a domain
that answers many regulation controls requirements, that are
focused at change management of highly sensitive
resources. Infrastructure as Code (IaC) 1s the technique of
managing and provisioning computer data centers through
machine-readable definition files, rather than physical hard-
ware configuration or interactive configuration tools. Thus,
[aC defines the cloud infrastructure, imncluding highly sen-
sitive resources and privileged users. These resources and
user are subject to regulation controls, and thus should be
monitored.

Conventionally, changes i1n IaC code are manually
inspected for compliance with regulation controls before the
changed code 1s deployed. Manually checking for changes 1s
a highly complex task that consumes a lot of manual effort
and 1s error-prone. Further, existing tools provide only
partial solutions to security risks related to the changes to
laC.

Thus, a need arises for techniques to monitor resources
and users during the pre-deployment phase by checking
changes to the iirastructure as code (IaC) 1n an automated
way.

SUMMARY

Embodiments may include novel techniques for monitor-
ing resources and users during the pre-deployment phase by
checking changes to the infrastructure as code (IaC) in an
automated way. Typically, IaC systems may include a code
implementation/code deployment (CICD) pipeline, as well
as the surrounding system environment of the CI/CD pipe-
line that aflects the IaC semantics.

Embodiments may monitor for changes in key features of
the IaC, and propagate them into models of the inirastruc-
ture, and anomaly detection mechanism in order to detect
suspicious changes. Embodiments may build models of the
infrastructure based on IaC, and propagate changes into the
models to detect how a change can aflect the infrastructure.
Embodiments may learn the standard state of a feature from
the history of commits to a code repository, as well as the
user activity 1n post-deployment. Embodiments may moni-
tor the changes 1n the code repository, and create alerts of
regulated changes that are then used as an alert or warning,
or a blocking error for the code implementation/code
deployment (CICD) pipeline. Embodiments may monitor
the CI pipeline, the CD pipeline, or the combined CI/CD
pipeline.

For example, in an embodiment, a method may be imple-
mented 1 a computer system comprising a processor,
memory accessible by the processor, and computer program
instructions stored in the memory and executable by the
processor, the method may comprise learning a security
architecture and history of an infrastructure as code system
to be deployed 1n at least one cloud account, monitoring,
changes to source code of the infrastructure as code system

10

15

20

25

30

35

40

45

50

55

60

65

2

that are made before deployment of the mfrastructure as
code system to detect an anomaly, determinming whether the
detected anomaly aflects regulated resources of the infra-
structure as code system, and blocking changes to the source
code of the infrastructure as code system that produce the
detected anomaly that aflects regulated resources of the
infrastructure as code system.

In embodiments, learning the security architecture and
history of the infrastructure as code system may comprise
generating a model of the security archutecture of the infra-
structure as code system based on access policies, resource
groups, security groups, and network policies, of the inira-
structure as code system and learning historical features of
the of the infrastructure as code system based on changes
made to the source code of the infrastructure as code system
over the life of the infrastructure as code system, user
activities occurring during operation of the at least one cloud
account, and run-time activity on the at least one cloud
account. The user activities may comprise at least one of
user standard activity time, user standard geolocation, and
user standard activity volume. Learning historical features
may comprise learning a standard state of the infrastructure
as code system based on at least one of user-lists, resources
use, [P-lists, and resource configuration. The method may
further comprise propagating the detected anomaly into the
model of the security architecture of the infrastructure as
code system.

In an embodiment, a system may comprise a processor,
memory accessible by the processor, and computer program
instructions stored in the memory and executable by the
processor to perform learning a security architecture and
history of an infrastructure as code system to be deployed in
at least one cloud account, monitoring changes to source
code of the infrastructure as code system that are made
before deployment of the infrastructure as code system to
detect an anomaly, determiming whether the detected
anomaly affects regulated resources of the infrastructure as
code system, and blocking changes to the source code of the
infrastructure as code system that produce the detected
anomaly that affects regulated resources of the infrastructure
as code system.

In an embodiment, a computer program product may
comprise a non-transitory computer readable storage having
program 1nstructions embodied therewith, the program
instructions executable by a computer, to cause the computer
to perform a method comprising learning a security archi-
tecture and history of an infrastructure as code system to be
deployed 1n at least one cloud account, monitoring changes
to source code of the infrastructure as code system that are
made betfore deployment of the infrastructure as code system
to detect an anomaly, determining whether the detected
anomaly affects regulated resources of the infrastructure as
code system, and blocking changes to the source code of the
infrastructure as code system that produce the detected

anomaly that affects regulated resources of the infrastructure
as code system.

BRIEF DESCRIPTION OF THE DRAWINGS

The details of the present invention, both as to its structure
and operation, can best be understood by referring to the
accompanying drawings, 1n which like reference numbers
and designations refer to like elements.

FIG. 1 1s an exemplary block diagram of an Infra structure
as Code (IaC) momtoring and analytics architecture accord-
ing to embodiments of the present techniques.

US 11,550,567 B2

3

FIG. 2 1s an exemplary tlow diagram of a process of IaC
monitoring and analytics, according to embodiments of the
present techniques.

FIG. 3 1s an exemplary block diagram of a computer
system, 1n which processes involved in the embodiments
described herein may be implemented.

DETAILED DESCRIPTION

Embodiments may include novel techniques for monitor-
ing resources and users during the pre-deployment phase by
checking changes to the infrastructure as code system (IaC)
in an automated way. Typically, IaC systems may include a
code implementation/code deployment (CICD) pipeline, as
well as the surrounding system environment of the CI/CD
pipeline that affects the IaC semantics.

Embodiments may monitor for changes in key features of
the IaC, and propagate them into models of the inirastruc-
ture, and anomaly detection mechanism in order to detect
suspicious changes. Embodiments may build models of the
infrastructure based on IaC, and propagate changes into the
models to detect how a change can aflect the infrastructure.
Embodiments may learn the standard state of a feature from
the history of commits to a code repository, as well as the
user activity 1n post-deployment. Embodiments may moni-
tor the changes 1n the code repository, and create alerts of
regulated changes that are then used as an alert or warning,
or a blocking error for the code implementation/code
deployment (CICD) pipeline. Embodiments may monitor
the CI pipeline, the CD pipeline, or the combined CI/CD
pipeline.

An exemplary Infra structure as Code (IaC) monitoring
and analytics architecture 100, 1n accordance with embodi-
ments of the present techniques, 1s shown 1n FIG. 1. Archi-
tecture 100 may include User and Entity Behavior Analytics
(UBA) block 102, code pipeline 104, 106, 108, code history
repository 110, user activity history repository 112, and
cloud account 114. Code pipeline 104, 106, 108 may include
code 104, such as IaC source code. Code 104 may be 1mput
to code implementation (CI) block 106, in which the input
source code 104 may be modified. These source code
changes 116 may be captured over the life of the inirastruc-
ture as code system 1n code history repository 110 and may
be sent to UBA block 102 for learning and/or monitoring. I
UBA block 102 detects an anomaly 117 1n code changes 116,
UBA block 102 may propagate an alert 118 to be notified to
a user or admimstrator of the system and/or to block 119 CI
block 106 of the pipeline from sending the modified code to
code deployment (CD) block 108. When code 1s sent to CD
block 108, the code may be deployed 1n cloud account 114.
User activity history repository 112 may gather information
about user activities during operation of cloud account 114
and information contained therein may be sent to UBA block
102. UBA block 102 may include IaC historical standards
block 120, runtime activity history block 122, and IaC
security model 124.

An exemplary flow diagram of a process of IaC monitor-
ing and analytics 1s shown 1n FIG. 2. It 1s best viewed 1n
conjunction with FIG. 1. Process 200 may begin with 202,
in which the IaC security architecture and history may be
learned as 1n 204-208. At 204, a model 124 of the IaC
security architecture may be built and may include features
such as access policies, resource groups, security groups,
network policies, etc. At 206, historical features may be
learned from, for example, code history repository 110, user
activity history repository 112, and run-time activity on the
actual cloud account 114, and may be stored at runtime

10

15

20

25

30

35

40

45

50

55

60

65

4

activity history block 122. Such historical features may
include, for example, user standard activity time, user stan-
dard geolocation, user standard activity volume, etc. At 208,
the standard state of the system may be learned from the IaC
history for example, code history repository 110, user activ-
ity history repository 112, and may be stored at IaC histori-
cal standards block 120. The standard state may include
teatures such as user-lists, resources use, IP-lists (whitelists,
blacklists, etc.), resource configurations, etc.

At 210, the process may monitor for changes 116 1n key
teatures of the IaC. Such features may include, for example,
user lists, IP-whitelists, authorization policies, etc. At 212,
anomalous changes 117 1n the IaC may be detected accord-
ing to learned models such as IaC historical standards block
120 and runtime activity history block 122. At 214, the
changes and anomalies 117 may be propagated 118 1n the
[aC security model 124 to detect 11 these changes aflect
regulated resources. For example, if usually only 2 IP
addresses appear 1n an 1P whaitelist, and the system detects
that 50 IP addresses were added, an anomaly would be
detected. IT an anomaly 1s detected, alert 118 may be notified

to a user or administrator of the system and/or propagated to
block 119 CI block 106 of the pipeline from sending the

modified code to code deployment (CD) block 108.

An exemplary block diagram of a computer system 300,
in which processes mvolved 1n the embodiments described
herein may be implemented, 1s shown 1n FIG. 3. Computer
system 300 may be implemented using one or more pro-
grammed general-purpose computer systems, such as
embedded processors, systems on a chip, personal comput-
ers, workstations, server systems, and minicomputers or
mainframe computers, or 1n distributed, networked comput-
ing environments. Computer system 300 may include one or
more processors (CPUs) 302A-302N, mput/output circuitry
304, network adapter 306, and memory 308. CPUs 302A-
302N execute program instructions in order to carry out the
functions of the present communications systems and meth-
ods. Typically, CPUs 302A-302N are one or more micro-
processors, such as an INTEL CORE® processor. FIG. 3
illustrates an embodiment in which computer system 300 1s
implemented as a single multi-processor computer system,
in which multiple processors 302A-302N share system
resources, such as memory 308, input/output circuitry 304,
and network adapter 306. However, the present communi-
cations systems and methods also include embodiments 1n
which computer system 300 1s implemented as a plurality of
networked computer systems, which may be single-proces-
sor computer systems, multi-processor computer systems, or
a mix thereof.

Input/output circuitry 304 provides the capability to input
data to, or output data from, computer system 300. For
example, mput/output circuitry may include mput devices,
such as keyboards, mice, touchpads, trackballs, scanners,
analog to digital converters, etc., output devices, such as
video adapters, monitors, printers, etc., and input/output
devices, such as, modems, etc. Network adapter 306 inter-
faces device 300 with a network 310. Network 310 may be
any public or proprietary LAN or WAN, 1ncluding, but not
limited to the Internet.

Memory 308 stores program instructions that are executed
by, and data that are used and processed by, CPU 302 to
perform the functions of computer system 300. Memory 308
may include, for example, electronic memory devices, such
as random-access memory (RAM), read-only memory
(ROM), programmable read-only memory (PROM), electri-
cally erasable programmable read-only memory (EE-
PROM), flash memory, etc., and electro-mechanical

US 11,550,567 B2

S

memory, such as magnetic disk drives, tape drives, optical
disk drives, etc., which may use an itegrated drive elec-
tronics (IDE) interface, or a varnation or enhancement
thereof, such as enhanced IDE (EIDE) or ultra-direct
memory access (UDMA), or a small computer system

interface (SCSI) based interface, or a variation or enhance-
ment thereof, such as fast-SCSI, wide-SCSI, fast and wide-
SCSI, etc., or Serial Advanced Technology Attachment
(SATA), or a variation or enhancement thereof, or a fiber
channel-arbitrated loop (FC-AL) interface.

The contents of memory 308 may vary depending upon
the function that computer system 300 1s programmed to
perform. In the example shown in FIG. 3, exemplary
memory contents are shown representing routines and data
for embodiments of the processes described above. How-
ever, one of skill in the art would recognize that these
routines, along with the memory contents related to those
routines, may not be included on one system or device, but
rather may be distributed among a plurality of systems or
devices, based on well-known engineering considerations.
The present systems and methods may include any and all
such arrangements.

In the example shown 1n FIG. 3, memory 308 may include
learning routines 312, monitoring routines 314, IaC security
model 316, code history repository 318, user activity history
repository 320, historical standards block 322, runtime
activity history block 324, and operating system 326. leamn-
ing routines 312 may include soiftware routines to learn the
IaC security architecture and history, as described above.
Monitoring routines 314 may include software routines to
monitor for changes 1n key features of the IaC, as described
above. IaC security model 316 may include software rou-
tines and data to model the IaC security architecture, as
described above. Code history repository 318 may include
soltware routines and data to capture changes to the IaC
code, as described above. User activity history repository
320 may include software routines and data to gather
information about user activities during operation of cloud
account, as described above. Historical standards block 322
may include software routines and data to learn a standard
state of the IaC system, as described above. Runtime activity
history block 324 may include software routines and data to
learn historical features of the IaC system, as described
above. Operating system 324 may provide overall system
functionality.

As shown 1n FIG. 3, the present communications systems
and methods may include implementation on a system or
systems that provide multi-processor, multi-tasking, multi-
process, and/or multi-thread computing, as well as 1mple-
mentation on systems that provide only single processor,
single thread computing. Multi-processor computing
involves performing computing using more than one pro-
cessor. Multi-tasking computing involves performing com-
puting using more than one operating system task. A task 1s
an operating system concept that refers to the combination
ol a program being executed and bookkeeping information
used by the operating system. Whenever a program 1s
executed, the operating system creates a new task for it. The
task 1s like an envelope for the program in that 1t identifies
the program with a task number and attaches other book-
keeping information to it. Many operating systems, 1nclud-
ing Linux, UNIX®, OS/2®, and Windows®, are capable of
running many tasks at the same time and are called multi-
tasking operating systems. Multi-tasking 1s the ability of an
operating system to execute more than one executable at the
same time. Each executable 1s runming 1n its own address
space, meaning that the executables have no way to share

10

15

20

25

30

35

40

45

50

55

60

65

6

any of theirr memory. This has advantages, because it 1s
impossible for any program to damage the execution of any
of the other programs running on the system. However, the
programs have no way to exchange any information except
through the operating system (or by reading files stored on
the file system). Multi-process computing 1s similar to
multi-tasking computing, as the terms task and process are
often used interchangeably, although some operating sys-
tems make a distinction between the two.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device.

The computer readable storage medium may be, for
example, but 1s not limited to, an electronic storage device,
a magnetic storage device, an optical storage device, an
clectromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures 1n a groove having nstructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, 1s not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
clectromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers, and/or edge servers. A network adapter card or
network interface i each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute

US 11,550,567 B2

7

entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone soitware package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality imnvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be

10

15

20

25

30

35

40

45

50

55

60

65

8

implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

Although specific embodiments of the present mnvention
have been described, 1t will be understood by those of skall
in the art that there are other embodiments that are equiva-
lent to the described embodiments. Accordingly, 1t 1s to be
understood that the invention 1s not to be limited by the
specific illustrated embodiments, but only by the scope of
the appended claims.

What 1s claimed 1s:

1. A method, implemented 1n a computer system com-
prising a processor, memory accessible by the processor, and
computer program instructions stored in the memory and
executable by the processor, the method comprising:

learning a security architecture and history of an infra-

structure as code system to be deployed 1n at least one
cloud account;

monitoring changes to source code of the infrastructure as

code system that are made before deployment of the

changed source code to detect an anomaly; and
determining whether the detected anomaly aflects regu-

lated resources of the infrastructure as code system.

2. The method of claim 1, wherein learning the security
architecture and history of the infrastructure as code system
COmMprises:

generating a model of the security architecture of the

infrastructure as code system based on access policies,
resource groups, security groups, and network policies,
of the inifrastructure as code system; and

learning historical features of the of the infrastructure as

code system based on changes made to the source code
of the inifrastructure as code system over the life of the
inirastructure as code system, user activities occurring
during operation of the at least one cloud account, and
run-time activity on the at least one cloud account.

3. The method of claim 2, wherein the user activities
comprise at least one of user standard activity time, user
standard geolocation, and user standard activity volume.

4. The method of claim 3, wherein learning historical
features comprises learning a standard state of the inira-
structure as code system based on at least one of user-lists,
resources use, IP-lists, and resource configuration.

5. The method of claim 4, further comprising, when it 1s
determined that the detected anomaly aflects regulated
resources of the inirastructure as code system, blocking
changes to the source code of the inirastructure as code
system that produce the detected anomaly that aflects regu-
lated resources of the infrastructure as code system.

6. The method of claim 4, further comprising, when 1t 1s
determined that the detected anomaly aflects regulated
resources of the infrastructure as code system, generating an
alert related to the changes to the source code of the
infrastructure as code system that produce the detected
anomaly that affects regulated resources of the infrastructure
as code system.

7. The method of claim 2, further comprising;:

propagating the detected anomaly into the model of the

security architecture of the infrastructure as code sys-
tem.

8. A system comprising a processor, memory accessible
by the processor, and computer program 1instructions stored
in the memory and executable by the processor to perform:

learning a security architecture and history of an inira-

structure as code system to be deployed 1n at least one
cloud account;

US 11,550,567 B2

9

monitoring changes to source code of the intfrastructure as
code system that are made before deployment of the
changed source code to detect an anomaly; and

determining whether the detected anomaly aflects regu-
lated resources of the infrastructure as code system.

9. The system of claim 8, wherein learning the security
architecture and history of the infrastructure as code system
COmMprises:

generating a model of the security architecture of the

inirastructure as code system based on access policies,
resource groups, security groups, and network policies,
of the infrastructure as code system; and

learming historical features of the of the infrastructure as

code system based on changes made to the source code
of the infrastructure as code system over the life of the
inirastructure as code system, user activities occurring
during operation of the at least one cloud account, and
run-time activity on the at least one cloud account.

10. The system of claim 9, wherein the user activities
comprise at least one of user standard activity time, user
standard geolocation, and user standard activity volume.

11. The system of claim 10, wherein learning historical
features comprises learning a standard state of the inira-
structure as code system based on at least one of user-lists,
resources use, IP-lists, and resource configuration.

12. The system of claim 11, further comprising, when 1t 1s
determined that the detected anomaly aflects regulated
resources of the infrastructure as code system, blocking
changes to the source code of the infrastructure as code
system that produce the detected anomaly that aflects regu-
lated resources of the infrastructure as code system.

13. The system of claim 11, further comprising, when it 1s
determined that the detected anomaly aflects regulated
resources of the infrastructure as code system, generating an
alert related to the changes to the source code of the
inirastructure as code system that produce the detected
anomaly that aflects regulated resources of the infrastructure
as code system.

14. The system of claim 9, further comprising:

propagating the detected anomaly 1nto the model of the

security architecture of the inirastructure as code sys-
tem.

15. A computer program product comprising a non-
transitory computer readable storage having program
instructions embodied therewith, the program instructions
executable by a computer, to cause the computer to perform
a method comprising;

10

15

20

25

30

35

40

45

10

learning a security architecture and history of an inira-
structure as code system to be deployed 1n at least one
cloud account;

monitoring changes to source code of the infrastructure as
code system that are made before deployment of the
inirastructure as code system to detect an anomaly;

determining whether the detected anomaly aflects regu-
lated resources of the infrastructure as code system; and

blocking changes to the source code of the infrastructure
as code system that produce the detected anomaly that

aflects regulated resources of the infrastructure as code
system.

16. The computer program product of claim 15, wherein
learning the security architecture and history of the infra-
structure as code system comprises:

generating a model of the security architecture of the

inirastructure as code system based on access policies,
resource groups, security groups, and network policies,
of the mirastructure as code system; and

learning historical features of the of the mirastructure as

code system based on changes made to the source code
of the infrastructure as code system over the life of the
inirastructure as code system, user activities occurring,
during operation of the at least one cloud account, and
run-time activity on the at least one cloud account.

17. The computer program product of claim 16, wherein
the user activities comprise at least one of user standard
activity time, user standard geolocation, and user standard
activity volume.

18. The computer program product of claim 17, wherein
learning historical features comprises learning a standard
state of the infrastructure as code system based on at least
one of user-lists, resources use, IP-lists, and resource con-
figuration.

19. The computer program product of claim 18, further
comprising, when 1t 1s determined that the detected anomaly
aflects regulated resources of the infrastructure as code
system, blocking changes to the source code of the inira-
structure as code system that produce the detected anomaly
that affects regulated resources of the infrastructure as code
system.

20. The computer program product of claim 18, further
comprising, when it 1s determined that the detected anomaly
allects regulated resources of the inirastructure as code
system, generating an alert related to the changes to the
source code of the infrastructure as code system that produce
the detected anomaly that affects regulated resources of the
infrastructure as code system.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

