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(ML) model that 1s configured for the distinct subset.
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AUTOMATIC FEATURE SUBSET
SELECTION USING FEATURE RANKING
AND SCALABLE AUTOMATIC SEARCH

RELATED APPLICATIONS; BENEFIT CLAIM

This application claims the benefit of Provisional Appln.
62/745,587, filed Oct. 15, 2018 the entire contents of which

1s hereby incorporated by reference as it fully set forth
herein, under 35 U.S.C. § 119(e).

FIELD OF THE INVENTION

The present invention relates to dimensionality reduction
for machine learning (ML) models. Herein are techniques
that individually rank features and combine features based
on their rank to achieve an optimal combination of features
that may accelerate tramning and/or inferencing, prevent
overfitting, and/or provide insights into somewhat mysteri-
ous datasets.

BACKGROUND

Use of machine learning (ML), such as deep learning
(DL), 1s rapidly spreading through industries and business
units and 1s becoming a ubiquitous tool within some corpo-
rations. ML model training may be resource intensive of
time and/or space of a computer. An ML model may be
configured to process all features that occur in a dataset.
However, processing of each feature may cost substantial
computer resources. Elliciency may be increased when the
ML model does not process some features. However, not all
features are logically and/or logistically equal. Indeed, a
performance increase may need intelligent selection of
which features to process and which features to 1gnore.

Feature selection may have a strong impact on model
performance (e.g., accuracy, 11 score, etc.). Selecting a
model’s optimal feature subset 1s exponentially hard and can
be extremely time consuming especially for intricate data-
sets. Because there are 2'n possible subset combinations
(n=number of features), considering all possible subsets 1s
infeasible. For example, a dataset may have a hundred
thousand features.

The following are various previous approaches, all of
which have a limited ability to manage the numerosity/
combinatorics of possible feature subsets for a given dataset.
Filter approaches, based on statistical analysis of feature
values and perhaps 1gnoring the ML model itself, may be
prone to deleting important features such as when a filter
method or a threshold 1s mappropriate for the given dataset
or ML model mvolved. With embedded approaches, which
leave feature selection to the learning ability of the ML
model, processing many features still results 1n a large
model training time or a tendency to overfit, thereby detract-
ing from the two main motivations for feature selection. A
serious challenge for wrapper approaches, which treat an
ML model as a black box whose sensitivity to features must
be empirically explored, 1s defining feature subsets to evalu-
ate. The main problem with most of the above approaches 1s
their sequential nature. Horizontally scaled parallelism 1s
impractical due to evaluating feature subsets, including
model training and testing, in a sequential order. Addition-
ally, an 1deal number of features (1.e. target subset size) 1s

typically unknown beforehand.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:
FIG. 1 1s a block diagram that depicts an example

computer that individually ranks features and combines
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them based on their rank to achieve an optimal combination
of features that may accelerate training and/or inferencing

and/or prevent overfitting of a machine learning (ML)
model;

FIG. 2 1s a flow diagram that depicts an example computer
process for individually ranking features and combining
them based on their rank to achieve an optimal combination
of features that may accelerate training and/or inferencing
and/or prevent overfitting of a machine learning (ML)
model;

FIG. 3 1s a block diagram that depicts an example
computer that exploits multiple feature scoring functions to
increase accuracy and multiple computational processors
(e.g. CPU cores) for acceleration;

FIG. 4 1s a block diagram that illustrates a computer
system upon which an embodiment of the invention may be
implemented;

FIG. 5 15 a block diagram that illustrates a basic software
system that may be employed for controlling the operation
of a computing system.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, numerous specific details are set forth 1 order to
provide a thorough understanding of the present invention.
It will be apparent, however, that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown 1n
block diagram form 1n order to avoid unnecessarily obscur-
ing the present ivention.

General Overview

Approaches herein combine feature ranking criteria with
two key improvements: a) using feature ranking to define the
order of features, and b) applying a non-sequential search to
reduce the number of evaluations, including optimizing for
parallel execution. Techmiques herein can be directly applied
to any (e.g. Oracle) machine learning product that supports
feature selection. Scalable automatic search significantly
improves overall runtime. Especially in cloud applications,
less runtime means less resource usage and cost. Approaches
may apply the following novel techniques to automatically
select features.

With feature ranking, features are ranked using criteria
such as variance, mutual information, or taking feature
importance iformation from a trained model. Then instead
of applying a threshold on values, feature subsets are created
based on rank order. For example, three features (1, 2, 3)
might be ranked with a filter method to 2, 3, 1 in descending
order of importance. Feature subsets (2), (2,3), (2,3,1) may
be created based on that computed ranking. This reduces the
number of considered subsets from 2 'n (i.e. exponential) to
n (1.e. linear).

With ensemble ranking, sometimes a single ranking algo-
rithm cannot fully assess feature importance for all possible
datasets. Thus, multiple ranking algorithms are used to
complement each other. Each ranking algorithm produces a
feature ranking that defines feature subsets for evaluation
according to a ranking order. Additionally, there may be
ensemble ranking(s) that combining multiple feature rank-
ings ito a new ranking. For example, an ensemble ranking
can be based on an average of feature scores of all other
rankings.

In an embodiment, a computer calculates, for each feature
of a training dataset, a relevance score based on: a relevance
scoring function, and statistics of values, of the feature, that
occur 1n the training dataset. A rank based on relevance
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scores of the features i1s calculated for each feature. A

sequence of distinct subsets of the features, based on the

ranks of the features, 1s generated. For each distinct subset

ol the sequence of distinct feature subsets, a fitness score 1s

generated based on training a machine learning (ML) model

that 1s configured for the distinct subset.

With scalable search, instead of evaluating all n feature
subsets or applying a sequential search, an exponential
subset-selection function 1s applied. This function will select
many small subsets of features and few large subsets, all
based on feature ranking order. The following are multiple
reasons for this approach.

Small subsets can be evaluated faster than large subsets,
because the size of the dataset and the amount of pro-
cessing needed are reduced.

The relative size difference 1s more significant between
small subsets than larger ones. For example, having a
dataset with 1000 features, it would be desirable to test a
S-feature subset, even knowing that a 10-feature subset 1s
good, because it would reduce the size by half. If a
900-feature subset was found as good, the potential reduc-
tion with an 895-feature subset 1s not significant enough
to justity 1ts evaluation.

With avoiding random steps, subset evaluation 1s based on
ranking of normalized feature scores that are scaled between
0 and 1. Features are sorted by their scores. This results 1n
a best feature having a score of 1, which 1s the top of the
ranking, while the worst feature has a score 0 and ranks last.
Occasionally, multiple features may have a same score such
that ranking order between those features 1s naturally arbi-
trary. An embodiment counteracts this effect by not adding,
a subset for evaluation 1f the last element of the previous
subset has the same scoring value as the last element of the
current subset. In this case, the diflerence between the last
and current subset 1s only based on the random order of
teatures and not according to a value-based ranking. Thus,
the current subset need not be evaluated further. This heu-
ristic 1s also applied for O-value scores at the lower end of
the ranked features. Despite this approach, the full dataset
(subset with all features) may be additionally selected for
evaluation 1n case of the following;:

The ranking does not reflect the real feature importance, or

All features are important for the prediction.

With scalable search/evaluation, feature subsets are cho-
sen by inspecting a given feature ranking and without any
step-wise evaluation beforehand. Thus, composing a subset
1s fast (1.e. not computationally intensive). Time-consuming
evaluation can then be done in parallel by training and
testing a target model with the selected subsets. Because
these subsets are independent, parallelism can scale up to the
number of evaluated subsets. Even without high parallelism,
this approach facilitates load balancing with the intrinsic
knowledge that smaller subsets can be evaluated faster than
larger subsets due to the reduction of the dataset size.

With work stealing, given a cluster of compute nodes (e.g.
cores 1n a CPU or hosts 1n a computer cluster), evaluation
subsets should be scheduled on separate nodes so that the
amount of features across all subsets of each node are
similar. This will reduce overall runtime, because runtime 1s
usually proportional to the number of features. Furthermore,
an embodiment may force larger subsets to be scheduled on
different nodes such that the subsets on each node are
evaluated in descending order of subset size. This leaves
smaller subsets to be evaluated 1n later stages. If the evalu-
ation on one node takes longer for whatever reason, then this
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descending order {facilitates eflicient work stealing of
smaller subsets by nodes that already finished their work-
load.

1.0 Example Computer

FIG. 1 1s a block diagram that depicts an example
computer 100, 1n an embodiment. Computer 100 1individu-
ally ranks features and combines them based on their rank to
achieve an optimal combination of features that may accel-
erate traiming and/or inferencing and/or prevent overfitting
of a machine learning (ML) model. Computer 100 may be
one or more of a rack server such as a blade, a personal
computer, a mainirame, a virtual computer, or other com-
puting device.

Computer 100 may store, within its memory, ML model
110. Depending on the embodiment, ML model 110 1s
designed for clustering, classification, regression, anomaly
detection, prediction, or dimensionality reduction (i.e. sim-
plification). Examples of machine learning algorithms
include decision trees, support vector machines (SVM),
Bayesian networks, stochastic algorithms such as genetic
algorithms (GA), and connectionist topologies such as arti-
ficial neural networks (ANN). Implementations of machine
learning may rely on matrices, symbolic models, and hier-
archical and/or associative data structures. Parameterized
(1.e. configurable) implementations of best of breed machine
learning algorithms may be found in open source libraries
such as scikit-learn (sklearn), Google’s TensorFlow for
Python and C++ or Georgia Institute of Technology’s
MLPack for C++. Shogun 1s an open source C++ ML library
with adapters for several programing languages including
C#, Ruby, Lua, Java, MatLab, R, and Python.

The lifecycle of ML model 110 has two phases. The first
phase 1s preparatory and entails training, such as 1 a
laboratory. The second phase entails inferencing 1 a pro-
duction environment, such as with live and/or streaming
data.

During inferencing, ML model 110 1s applied to a (e.g.
unfamiliar) sample, which may be injected as mput into ML
model 110. That causes ML model 110 to process the sample
according to the internal mechanics of ML model 110, which
are specially configured according to reinforcement learning
by ML model 110 during previous training. For example 1
ML model 110 1s a classifier, then ML model 110 may select
one of multiple mutually exclusive labels (i1.e. classifica-
tions) for the sample, such as hot and cold.

Whether during traiming or inferencing, ML model 110
processes samples that may have different values for same
features such as A-C. For example, feature A may be color,
and feature B may be temperature. Each sample may have
a same or different color and a same or different temperature.

Depending on how rich (1.e. multidimensional) are sample
data, there may be many more (e.g. hundreds or thousands)
teatures than shown A-C. ML model 110 may have one of
many ML model types, and those model types typically have
ample logical flexibility to accept and process the very many
features of sample data. However, consumption of resources
such as time and/or space may be positively correlated with
the numerosity of available features.

There may be practical limits as to how many features can
ML model 110 process within a given resource budget. Thus
in practice, some Ieatures should be ignored. However,
deciding how many and which features to ignore may
impact how accurate can ML model 110 become.

ML model accuracy 1s an objective metric that may
account for a frequency and/or severity ol misclassifications.
For example, a binary classifier may observe respective
frequencies of false positives and false negatives, which may
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have different semantic severities. For example, mistaking a
red trathc light as green may be worse than mistaking a
green light as red.

Some features may be noisy or otherwise more or less
irrelevant to an inference or inference accuracy. Other
features may be more or less correlated to the performance
of ML model 110. Computer 100 may detect how relevant
are which features such as A-C as follows.

Traiming ML model 110 may entaill processing many
samples, which reinforcement learning typically needs.
Together, these samples may form a training corpus, such as
120. As shown, traiming corpus 120 has at least samples 0-1.

Samples 0-1 have many features, including A-C as shown
in training corpus 120. Computer 100 has one or more
scoring functions 130 that each calculate, for each of fea-
tures A-C, a relevance scores that estimates how much
impact might a feature have upon the accuracy of ML model

110.

In an embodiment, a relevance score of a feature 1s merely
an estimate and not based on actual performance of ML
model 110. Thus, scoring function 130 may score features
A-C without actually operating ML model 110. In such
embodiments, scoring function 130 may operate regardless

of whether ML model 110 1s trained or not, and may operate
in the absence of ML model 110.

Thus depending on the embodiment, the relevance scores
of features A-C may be calculated by scoring function 130
with no input other than training corpus 120. For example,
scoring function 130 may calculate a relevance score for
feature A based solely on the values in column A of training
corpus 120. Scoring function 130 may calculate a relevance
score that 1s based on a statistic of the values of a feature,
such as variance, such as value statistics 140 for feature C.

Training herein 1s supervised. Thus, each traiming sample
also has a classification label, as shown 1n traiming corpus
120, or other prediction target that ML model 110 may be
trained to infer. A feature may be more or less correlated to
(1.e. predictive of) the label. For example, most blue samples
may be labeled as positive.

Thus, blue may be somewhat predictive of positive and,

more generally, color may be somewhat predictive of the
classification label. Scoring function 130 may calculate a
relevance score that 1s based on correlation of a feature to the
label. In an embodiment, correlation may be calculated
according to statistics such as mutual information or F score
as discussed later herein. Features that somewhat correlate
with classification may have a higher relevance score.

Although ML model 110 may be untrained, scoring
function 130 may be based on a configuration of a different
ML model (not shown) that 1s already trained. For example,
some kinds of ML models naturally rank features according
to relevance/importance. For example with a trained random
forest ML model, each feature has a learned feature impor-
tance.

Likewise with a trained logistic regression ML model,
cach feature has a learned feature coellicient. In an embodi-
ment, scoring function 130 may be sensitive to the learned
importance or coetlicient of a feature. For example, scoring
function 130 may use one learned coeflicient when scoring
feature A and use a different learned coeflicient when scoring
teature B, although both coeflicients come from a same
trained regressor (not shown).

Learned feature importance according to an unshown
trained model may increase efliciency, such as when the
unshown model can be trained much faster than ML model
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110 could be trained. For example, the unshown model may
have used a much smaller training corpus than 120 or a small
subset of 120.

As explained above, there are various (e.g. many) ways to
calculate a relevance score of a feature. In an embodiment,
scoring function 130 integrates multiple statistics or mnputs
for a same feature. In an embodiment, each statistic may
have 1ts own scoring function, and the scores from multiple
functions are integrated to derive an aggregate (e.g. mean)
relevance score of a feature.

Once all features A-C have relevance scores, the features
can be comparatively ranked according to relevance score.
For example, features A-C may be ranked by descending
relevance score as shown such that feature C 1s most
important (i1.e. rank 1), and feature B 1s less important (i.e.
rank 3). As discussed later herein, features A-C may be
redundantly scored by different scoring functions, such as
130, to produce different rankings.

When only one scoring function 1s available, relevance
scores need not be normalized. However, when multiple
score functions are used, the scores that they calculate may
need (e.g. unit) normalization.

In this example, there 1s only one ranking, such that
teatures may be ordered by decreasing relevance as C, A, B.
Ranking improves the efliciency and eflectiveness of feature
selection. Without ranking, feature selection may entail
exploration that 1s naturally combinatoric, which can expand
exponentially according to a count of available features.
Thus, optimal feature selection may be computationally
intractable without heuristics such as rank.

Rank indicates feature relevance. Less relevant features
may be 1gnored more or less without impacting accuracy of
ML model 110. Thus, each row (i.e. feature subset) of
subsets 150 may lack many or most of available features
A-C.

Generation of feature subsets within subsets 150 may
occur as follows. Each of rows 1-3 of feature subsets 150 1s
a generated feature subset. The more relevant i1s a feature,
the more subsets/rows that feature occurs 1n.

First subset 1 has only the most relevant feature C. Each
additional row adds an additional feature in order of
descending relevance (1.e. ascending rank). Thus, most
relevant feature C appears in all rows. Likewise, least
relevant feature B appears in only one row.

Thus, each row can be incrementally generated based on
the previous row. A consequence of generating feature
subsets 1n that way 1s that feature subsets 150 has as many
rows as there are features. Thus, feature selection scales
unit-linearly with feature count. That 1s a huge improvement
over exhaustive combinatoric generation of subsets, which
has exponential complexity.

Adding an additional feature to each row of feature
subsets 150 causes each subsequent row to implicate more
sample data (1.e. more feature columns A-C of corpus 120).
More sample data tends to mean better training and more
learned accuracy. Thus, there may be a temptation to select
last row 3 (1.e. subset with most features) as a best feature
subset.

However, there may be a pomnt of diminishing returns,
such that adding more features eventually ceases to increase
accuracy or may even reduce accuracy. Thus, there is
actually a need to empirically test the proposed feature
subsets of subsets 150 to detect which subset 1s truly best
within subsets 150. Thus as shown, each row of subsets 150
has a measured fitness score that indicates training accuracy
actually achieved for ML model 110 when only the features
of that row’s subset are used for training.
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Thus even though row 3 has more features, row 2 has an
optimal feature set because 1t actually achieves a highest
accuracy (1.e. fitness score). Thus, selecting a best (1.e. most
accurate) feature subset depends on empirically measured
training accuracy. That means that each feature subset in
subsets 150 should be used to actually configure and train
ML model 110 to empirically measure training accuracy.

Thus, selecting a best feature subset entails multiple
trainings of ML model 110, with each training using a
different row of subsets 150. Each individual traiming may
be computationally resource 1ntensive of time and/or space.
Thus, subsets trainings that scale linearly with available
feature count, as explained above, may be a basis of feasi-
bility/tractability.

Better than linear scaling 1s possible 1f many rows of
subsets 150 are (e.g. selectively) skipped (1.e. not generated
and not used for training). For example, computer 100 may
selectively sample (i.e. generate and train with) fewer rows
than are shown 1n subsets 150. So long as the last row (1.e.
one with all features) 1s sampled, then no feature 1s entirely
absent from subsets 150, no matter how many other rows are
skipped.

In an embodiment, individual rows of subsets 150 are
sampled for training according to an exponential sequence,
such that increasingly larger groups of contiguous rows of
subsets 150 are skipped. Thus, most small subsets are
sampled, and most big subsets are not sampled. Because
training time depends on feature count, (e.g. no matter how
many) small subsets are quickly trained.

Large subsets are less important for two reasons. First,
subsets are incrementally built by concatenating features of
decreasing relevance, such that a large subset may have
many or mostly features of minor relevance. Second, 1ncre-
mental feature concatenation means increasing feature over-
lap between contiguous subsets, such that two contiguous
large subsets are almost entirely identical, whereas the two
smallest subsets differ by half of their features.

An exponential sequence of subset sizes (i1.e. feature
counts) may begin at one and increase by a constant tloating
point factor greater than one with each subsequent subset to
generate. Instead of adding one additional feature with each
next subset, an embodiment may add an exponentially
increasing amount of additional features, thereby skipping
increasingly larger amounts of subsets between each previ-
ous and next subset generated. For example i1 the constant
factor 1s 1.2 and the first size 1s one, then a next size 1s 1.2x1,
which rounds up to two.

For another size, two 1s multiplied by 1.2, and so forth.
For a training dataset with 10,000 features and a factor of
1.2, this results 1n 45 subsets of the following sizes: 1, 2, 3,
4,5,6, 8,10, 12, 15, 18, 22, 27, 33, 40, 48, 58, 70, 84, 101,
122, 147, 177, 213, 256, 308, 370, 444, 333, 640, 768, 922,

1107, 1329, 15935, 1914, 2297, 2757, 3309, 3971, 4766,
5720, 6864, 8237, and 9885. Thus, a count of sampled
subsets scales logarithmically with available feature count.

In an embodiment, feature relevance scores are unit
normalized, such that a highest score 1s scaled to one. Totally
irrelevant features score as zero. In an embodiment, features
having a relevance score of zero are excluded from subsets
150. In an embodiment, even excluded features are included
in the last (i1.e. largest) subset, which includes all features.

Multiple features may have a same relevance score and
thus are ranked contiguously. In and embodiment, when
some features tie on relevance score, those tied features are
all added to a next generated subset. For example if four
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features are tied, then a next subset 1s generated instead of
incrementally generating four subsets in sequence to add
those features.

No matter how many rows are generated and fitness
scored for accuracy, an embodiment may finally select a
most accurate feature subset. Having selected a best row of
subsets 150, computer 100 or another computer may 1imme-
diately or eventually configure ML model 110 to expect that
feature subset. For example, ML model 110 may be config-
ured to expect features A and C, but not B. In an embodi-
ment, unselected features such as B may be removed from
training corpus 120. In any case, ML model 110 may then be
tully trained with training corpus 120.

2.0 Example Feature Selection Process

FIG. 2 1s a flow diagram that depicts computer 100
individually ranking features and combining them based on
their rank to achieve an optimal combination of features that
may accelerate training and/or inferencing and/or prevent

overfitting of a machine learming (ML) model, 1n an embodi-
ment. FIG. 2 1s discussed with reference to FIG. 1.

Steps 202 and 204 are preparatory and repeated for each
feature, such as A-C, of a training dataset, such as 120. Step
202 calculates a relevance score of each feature, such as
shown 1n feature C as calculated by scoring function 130 and
based on value statistics 140 as discussed above. In an
embodiment, scores of multiple features A-C are concur-
rently calculated. In an embodiment, step 202 does not refer
to ML model 110 or the configuration of ML model 110. In
an embodiment, feature scores can be reused with ML
models other than 110.

Step 204 ranks (e.g. sorts) features A-C by relevance
score. Thus, step 204 distinguishes more or less important
features from more or less unimportant features.

Steps 206 and 208 may concurrently occur. For example,
step 206 may repeatedly mvoke step 208 as follows. Step
206 generates a sequence of distinct subsets of features. The
first subset of the sequence consists of the top ranked (i.e.
most important) feature, such as C. Each subsequent subset
may be an incremental expansion of the previously gener-
ated feature subset based on adding a most important feature
that has not already been added, such as A.

When step 206 generates a next feature subset in the
sequence, step 208 may asynchronously and/or more or less
immediately be repeated for that feature subset. Step 208
configures ML model 110 according to a feature subset that
was generated by step 206. Step 208 also trains ML model
110 with training corpus 120 and measures fitness (e.g.
accuracy) achieved by that training.

Training during step 208 1s the slowest part of FIG. 2 due
to computational intensity. An embodiment may distribute
cach occurrence of step 208 to a computer of a cluster for
acceleration by coarse-grained horizontal scaling. Pending
occurrences of step 208 may be deferred (e.g. queued as
backlog) and eventually individually dispatched, such as
into the cluster or a thread pool. An implementation of ML
model 110 may exploit multiple cores, threads, or computers
for a single training (e.g. occurrence of step 208). An
implementation of ML model 110 may exploit data paral-
lelism such as with single nstruction multiple data (SIMD)
instructions or other vector hardware.

Each occurrence of step 208 generates a fitness score for
a distinct feature subset. Thus after step 208 has occurred for
all generated feature subsets, each subset has a fitness score,
and a highest-fitness feature subset(s) may be identified. For
example, the process of FIG. 2 may select the best of the
generated feature subsets.
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3.0 Multiple Ranks and Processors

FIG. 3 1s a block diagram that depicts an example
computer 300, in an embodiment. Computer 300 exploits
multiple feature scoring functions to increase accuracy and
multiple computational processors (e.g. CPU cores) for
acceleration. Computer 300 may be an implementation of
computer 100.

As discussed above, computer 300 may have multiple
feature scoring functions (not shown), each of which
achieves a different ranking, such as A-B, of features 1-10,
shown as feature subsets 311. For example 1n ranking A,
teature 2 1s most important, and feature 7 1s least important.
Whereas 1n ranking B, feature 8 1s most important, and
feature 6 1s least important.

The feature subsets of subsets 311 are orniginally segre-
gated 1nto rankings A-B according to which scoring function
was mvolved. At least those feature subsets may be further
agoregated as combined subsets 312. Subsets may be
merged 1n their entirety. In an embodiment, each subset of
rankings A-B 1s included or not in subsets 311 according to
criteria that may include relevance score and/or rank.

Computer 300 multi-processes in an i1mplementation
dependent way. For example, computer 300 may be an
individual computer with a single CPU that contains mul-
tiple processing cores A-D for symmetric multiprocessing,
(SMP). Computer 300 may have multiple CPUs and/or
general purpose coprocessors.

Computer 300 may be (e.g. cluster of) multiple 1ntercon-
nected computers, such that each of cores A-D 1s a separate
computer. Computer 300 may be a combination of different
such topologies. Computer 300 may be a computer cloud
with elastic horizontal scaling.

After subsets selection to obtain feature subsets 312, each
subset 1s used to configure and train an ML model (not
shown) to measure the training accuracy of each subset. For
example, a best feature subset may be determined. As a
multiprocessor, computer 300 may use task (i.e. coarse
grained) parallelism to asynchronously train the ML model,
with each of cores A-D training with a distinct feature
subset.

In an embodiment, all of subsets 312 reside 1n a central
repository from which cores A-D may independently and
asynchronously take (1.e. pull) a next subset to train with.
When a core finishes training with one subset, that core may
take another pending subset from the central repository to
train with, until the central repository 1s empty, and all of
subsets 312 have been {itness scored for accuracy. Depend-
ing on the embodiment, the central repository may have an
unordered heap of subsets or an ordered queue.

In an embodiment, the queue 1s ordered by descending
count of features 1in each subset. For example, combined
subsets 312 may be a queue, with cores A-D pulling next
subsets from the queue’s head (1.e. bottom as shown), not the
queue’s tail (1.e. top as shown). In an embodiment, ties are
resolved by descending relevance score of each subset’s
least relevant feature.

In an embodiment, equal counts of subsets of all of
subsets 312 are mitially dispatched to cores A-D. In an
embodiment, subsets are mitially dispatched as round robin
to cores A-D, ordered by descending feature count (1.e. big
subsets before little subsets). Thus, all of cores A-D have a
same amount of subsets, and each core has some big subsets
and some small sub sets.

In the shown embodiment, cores A-D may have differing
amounts of subsets, but a same total amount of features. For
example as shown, each core has a total of eleven features.
In a work stealing embodiment, an 1dle core that finished
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carly may steal a pending subset from a busy core. In an
embodiment, a core being stolen from may reject an
attempted theft 11 that core has no extra subset to share. In
an embodiment, the stolen subset 1s a biggest (1.e. most
features) extra subset whose processing has not yet begun on
the core being stolen from. In an embodiment, each of cores
A-D arrnives at a same global synchronization barrier when
the core has no more subsets to process (e.g. and no more
subsets to steal).

4.0 Example Implementation

In an embodiment, rankings may be based on some or all
of the following named mathematical artifacts that are
provided by the python sklearn library:

Mutual information (mutual_info_classif, mutual info_re-
gression )

Analysis of vanation (ANOVA) F score (1_classit, I_regres-
$101)

feature_1mportances of a trained RandomForestClassifier or

RandomForestRegressor
feature_1mportances of a trained AdaBoostClassifier or Ada-

BoostRegressor

For example, a ML model may be used for classification
that yields probabilities that an input fits several mutually
exclusive discrete classes (e.g. circle, rectangle), or for
regression that yields a continuous output (e.g. a house value
based on comparable houses). Correlation between a feature
and the prediction target (1.e. label) can be measured as an
ANOVA F score based on the ratios of their variances

In addition to the target ML model, which may be opaque
(1.e. black box), the transparent internals of another ML
model may provide feature importances. For example, the
following ML models have feature transparency. A random
forest model 1s an ensemble of different decision trees.
Adaptive boosting (AdaBoost) 1s another ensemble model in
which constituent models (e.g. decision trees) are each
differently specialized for respective extreme examples that
would be peculiar and diflicult for a single generalized
model to accurately inference.

Hardware Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose
computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more
application-specific integrated circuits (ASICs) or field pro-
grammable gate arrays (FPGAs) that are persistently pro-
grammed to perform the techniques, or may include one or
more general purpose hardware processors programmed to
perform the techniques pursuant to program instructions in
firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine cus-
tom hard-wired logic, ASICs, or FPGAs with custom pro-
gramming to accomplish the techniques. The special-pur-
pose computing devices may be desktop computer systems,
portable computer systems, handheld devices, networking
devices or any other device that incorporates hard-wired
and/or program logic to implement the techniques.

For example, FIG. 4 1s a block diagram that 1llustrates a
computer system 400 upon which an embodiment of the
invention may be implemented. Computer system 400
includes a bus 402 or other communication mechanism for
communicating information, and a hardware processor 404
coupled with bus 402 for processing information. Hardware
processor 404 may be, for example, a general purpose
MmICroprocessor.

Computer system 400 also includes a main memory 406,
such as a random access memory (RAM) or other dynamic
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storage device, coupled to bus 402 for storing information
and instructions to be executed by processor 404. Main
memory 406 also may be used for storing temporary vari-
ables or other intermediate information during execution of
istructions to be executed by processor 404. Such instruc-
tions, when stored in non-transitory storage media acces-
sible to processor 404, render computer system 400 1nto a
special-purpose machine that 1s customized to perform the
operations specified 1n the instructions.

Computer system 400 further includes a read only
memory (ROM) 408 or other static storage device coupled
to bus 402 for storing static information and instructions for
processor 404. A storage device 410, such as a magnetic
disk, optical disk, or solid-state drive 1s provided and
coupled to bus 402 for storing information and instructions.

Computer system 400 may be coupled via bus 402 to a
display 412, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 414, includ-
ing alphanumeric and other keys, 1s coupled to bus 402 for
communicating information and command selections to
processor 404. Another type of user input device 1s cursor
control 416, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 404 and for controlling cursor
movement on display 412. This mput device typically has
two degrees of freedom 1n two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specily
positions 1n a plane.

Computer system 400 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 400 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 400 in response to
processor 404 executing one or more sequences of one or
more structions contained i main memory 406. Such
instructions may be read into main memory 406 from
another storage medium, such as storage device 410. Execu-
tion of the sequences of instructions contained in main
memory 406 causes processor 404 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operate i a specific fashion. Such
storage media may comprise non-volatile media and/or
volatile media. Non-volatile media includes, for example,
optical disks, magnetic disks, or solid-state drives, such as
storage device 410. Volatile media includes dynamic
memory, such as main memory 406. Common forms of
storage media include, for example, a floppy disk, a flexible
disk, hard disk, solid-state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM, NVRAM, any other memory chip or cartridge.

Storage media 1s distinct from but may be used in con-
junction with transmission media. Transmission media par-
ticipates 1n transierring information between storage media.
For example, transmission media includes coaxial cables,
copper wire and fiber optics, including the wires that com-
prise bus 402. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.
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Various forms of media may be mvolved 1n carrying one
or more sequences of one or more instructions to processor
404 for execution. For example, the instructions may ini-
tially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the 1nstructions over
a telephone line using a modem. A modem local to computer
system 400 can receive the data on the telephone line and
use an 1infra-red transmitter to convert the data to an infra-red
signal. An 1nfra-red detector can receive the data carried 1n
the mira-red signal and appropriate circuitry can place the
data on bus 402. Bus 402 carries the data to main memory
406, from which processor 404 retrieves and executes the
instructions. The instructions recetved by main memory 406
may optionally be stored on storage device 410 either before
or after execution by processor 404.

Computer system 400 also includes a communication
interface 418 coupled to bus 402. Communication interface
418 provides a two-way data communication coupling to a
network link 420 that 1s connected to a local network 422.
For example, communication interface 418 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
418 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire-
less links may also be implemented. In any such implemen-
tation, communication interface 418 sends and receives
clectrical, electromagnetic or optical signals that carry digi-
tal data streams representing various types ol information.

Network link 420 typically provides data communication
through one or more networks to other data devices. For
example, network link 420 may provide a connection
through local network 422 to a host computer 424 or to data
equipment operated by an Internet Service Provider (ISP)
426. ISP 426 1n turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 428. Local
network 422 and Internet 428 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 420 and through communication interface 418,
which carry the digital data to and from computer system
400, are example forms of transmission media.

Computer system 400 can send messages and receive
data, including program code, through the network(s), net-
work link 420 and communication interface 418. In the
Internet example, a server 430 might transmit a requested
code for an application program through Internet 428, ISP
426, local network 422 and communication interface 418.

The received code may be executed by processor 404 as
it 1s received, and/or stored in storage device 410, or other
non-volatile storage for later execution.

Software Overview

FIG. 5 1s a block diagram of a basic software system 500
that may be employed for controlling the operation of
computing system 400. Software system 500 and its com-
ponents, including their connections, relationships, and
functions, 1s meant to be exemplary only, and not meant to
limit implementations of the example embodiment(s). Other
soltware systems suitable for implementing the example
embodiment(s) may have different components, including
components with different connections, relationships, and
functions.

Software system 500 1s provided for directing the opera-
tion of computing system 400. Software system 500, which
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may be stored in system memory (RAM) 406 and on fixed
storage (e.g., hard disk or flash memory) 410, includes a
kernel or operating system (OS) 510.

The OS 3510 manages low-level aspects of computer
operation, including managing execution of processes,
memory allocation, file input and output (I/0), and device

[/0. One or more application programs, represented as
502A, 502B, 502C . . . 502N, may be “loaded” (e.g.,
transierred from fixed storage 410 into memory 406) for
execution by the system 3500. The applications or other
soltware 1mtended for use on computer system 400 may also
be stored as a set of downloadable computer-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., a Web server, an app store,
or other online service).

Software system 500 includes a graphical user interface
(GUI) 515, for receiving user commands and data 1n a
graphical (e.g., “point-and-click” or “touch gesture™) fash-
ion. These mputs, 1n turn, may be acted upon by the system
500 1n accordance with instructions from operating system
510 and/or application(s) 502. The GUI 3515 also serves to
display the results of operation from the OS 3510 and
application(s) 502, whereupon the user may supply addi-
tional inputs or terminate the session (e.g., log off).

OS 510 can execute directly on the bare hardware 520
(e.g., processor(s) 404) of computer system 400. Alterna-
tively, a hypervisor or virtual machine monitor (VMM) 530
may be interposed between the bare hardware 520 and the
OS 510. In this configuration, VMM 3530 acts as a software
“cushion” or virtualization layer between the OS 510 and the
bare hardware 520 of the computer system 400.

VMM 530 instantiates and runs one or more virtual
machine mstances (“‘guest machines™). Each guest machine
comprises a “guest” operating system, such as OS 510, and
one or more applications, such as application(s) 502,
designed to execute on the guest operating system. The
VMM 530 presents the guest operating systems with a
virtual operating platform and manages the execution of the
guest operating systems.

In some 1nstances, the VMM 3530 may allow a guest
operating system to run as 1f 1t 1s running on the bare
hardware 520 of computer system 500 directly. In these
instances, the same version of the guest operating system
configured to execute on the bare hardware 520 directly may
also execute on VMM 530 without modification or recon-
figuration. In other words, VMM 3530 may provide full
hardware and CPU virtualization to a guest operating system
in some 1nstances.

In other instances, a guest operating system may be
specially designed or configured to execute on VMM 330 for
clliciency. In these 1nstances, the guest operating system 1s
“aware” that 1t executes on a virtual machine monitor. In
other words, VMM 530 may provide para-virtualization to a
guest operating system 1n some instances.

A computer system process comprises an allotment of
hardware processor time, and an allotment of memory
(physical and/or virtual), the allotment of memory being for
storing 1nstructions executed by the hardware processor, for
storing data generated by the hardware processor executing
the mstructions, and/or for storing the hardware processor
state (e.g. content of registers) between allotments of the
hardware processor time when the computer system process
1s not running. Computer system processes run under the
control of an operating system, and may run under the
control of other programs being executed on the computer
system.
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Cloud Computing

The term “cloud computing” 1s generally used herein to
describe a computing model which enables on-demand
access to a shared pool of computing resources, such as
computer networks, servers, soltware applications, and ser-
vices, and which allows for rapid provisioning and release of
resources with minimal management eflort or service pro-
vider 1nteraction.

A cloud computing environment (sometimes referred to as
a cloud environment, or a cloud) can be implemented in a
variety of different ways to best suit diflerent requirements.
For example, 1n a public cloud environment, the underlying
computing infrastructure 1s owned by an organization that
makes its cloud services available to other organizations or
to the general public. In contrast, a private cloud environ-
ment 1s generally intended solely for use by, or within, a
single organization. A commumty cloud 1s mtended to be
shared by several organizations within a community; while
a hybrid cloud comprise two or more types of cloud (e.g.,
private, community, or public) that are bound together by
data and application portability.

Generally, a cloud computing model enables some of
those responsibilities which previously may have been pro-
vided by an organization’s own information technology
department, to mstead be delivered as service layers within
a cloud environment, for use by consumers (either within or
external to the organmization, according to the cloud’s public/
private nature). Depending on the particular implementa-
tion, the precise definition of components or features pro-
vided by or within each cloud service layer can vary, but
common examples include: Software as a Service (SaaS), 1n
which consumers use soitware applications that are runming
upon a cloud nfrastructure, while a SaaS provider manages
or controls the underlying cloud infrastructure and applica-
tions. Platform as a Service (PaaS), in which consumers can
use soltware programming languages and development tools
supported by a PaaS provider to develop, deploy, and
otherwise control their own applications, while the PaaS
provider manages or controls other aspects of the cloud
environment (1.e., everything below the run-time execution
environment). Infrastructure as a Service (IaaS), in which
consumers can deploy and run arbitrary soiftware applica-
tions, and/or provision processing, storage, networks, and
other fundamental computing resources, while an IaaS pro-
vider manages or controls the underlying physical cloud
infrastructure (i.e., everything below the operating system
layer). Database as a Service (DBaaS) in which consumers
use a database server or Database Management System that
1s running upon a cloud infrastructure, while a DbaaS
provider manages or controls the underlying cloud inira-
structure and applications.

The above-described basic computer hardware and soft-
ware and cloud computing environment presented for pur-
pose of illustrating the basic underlying computer compo-
nents that may be employed for implementing the example
embodiment(s). The example embodiment(s), however, are
not necessarily limited to any particular computing environ-
ment or computing device configuration. Instead, the
example embodiment(s) may be implemented in any type of
system architecture or processing environment that one
skilled 1n the art, 1n light of this disclosure, would under-
stand as capable of supporting the features and functions of
the example embodiment(s) presented herein.

Machine Learning Models

A machine learning model 1s tramned using a particular
machine learning algorithm. Once trained, input 1s applied to
the machine learning model to make a prediction, which
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may also be referred to herein as a predicated output or
output. Attributes of the input may be referred to as features
and the values of the features may be referred to herein as
feature values.

A machine learning model includes a model data repre-
sentation or model artifact. A model artifact comprises

parameters values, which may be referred to herein as theta
values, and which are applied by a machine learning algo-
rithm to the iput to generate a predicted output. Traiming a
machine learning model entails determining the theta values
of the model artifact. The structure and organization of the
theta values depends on the machine learning algorithm.

In supervised training, training data 1s used by a super-
vised training algorithm to train a machine learming model.
The training data includes input and a “known” output. In an
embodiment, the supervised training algorithm i1s an itera-
tive procedure. In each iteration, the machine learning
algorithm applies the model artifact and the input to generate
a predicated output. An error or variance between the
predicated output and the known output 1s calculated using
an objective function. In eflect, the output of the objective
function indicates the accuracy of the machine learning
model based on the particular state of the model artifact in
the 1teration. By applying an optimization algorithm based
on the objective function, the theta values of the model
artifact are adjusted. An example of an optimization algo-
rithm 1s gradient descent. The 1terations may be repeated
until a desired accuracy 1s achieved or some other criteria 1s
met.

In a software implementation, when a machine learning
model 1s referred to as receiving an input, executed, and/or
as generating an output or predication, a computer system
process executing a machine learning algorithm applies the
model artifact against the input to generate a predicted
output. A computer system process executes a machine
learning algorithm by executing software configured to
cause execution of the algorithm.

Classes of problems that machine learming (ML) excels at
include clustering, classification, regression, anomaly detec-
tion, prediction, and dimensionality reduction (1.e. simplifi-
cation). Examples of machine learning algorithms include
decision trees, support vector machines (SVM), Bayesian
networks, stochastic algorithms such as genetic algorithms
(GA), and connectionist topologies such as artificial neural
networks (ANN). Implementations of machine learning may
rely on matrices, symbolic models, and hierarchical and/or
associative data structures. Parameterized (1.e. configurable)
implementations of best of breed machine learning algo-
rithms may be found in open source libraries such as
Google’s TensorFlow for Python and C++ or Georgia Insti-
tute of Technology’s MLPack for C++. Shogun 1s an open
source C++ ML library with adapters for several programing
languages including C#, Ruby, Lua, Java, MatLab, R, and
Python.

Artificial Neural Networks

An artificial neural network (ANN) 1s a machine learning
model that at a high level models a system ol neurons
interconnected by directed edges. An overview of neural
networks 1s described within the context of a layered feed-
forward neural network. Other types of neural networks
share characteristics of neural networks described below.

In a layered feed forward network, such as a multilayer
perceptron (MLP), each layer comprises a group of neurons.
A layered neural network comprises an input layer, an output
layer, and one or more intermediate layers referred to idden
layers.
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Neurons 1n the mput layer and output layer are referred to
as mput neurons and output neurons, respectively. A neuron
in a hidden layer or output layer may be referred to herein
as an activation neuron. An activation neuron 1s associated
with an activation function. The mput layer does not contain
any activation neuron.

From each neuron in the input layer and a hidden layer,
there may be one or more directed edges to an activation
neuron 1n the subsequent hidden layer or output layer. Each
edge 1s associated with a weight. An edge from a neuron to
an activation neuron represents mput from the neuron to the
activation neuron, as adjusted by the weight.

For a given input to a neural network, each neuron 1n the
neural network has an activation value. For an input neuron,
the activation value 1s simply an input value for the input.
For an activation neuron, the activation value 1s the output
of the respective activation function of the activation neu-
ron.

Each edge from a particular neuron to an activation
neuron represents that the activation value of the particular
neuron 1s an input to the activation neuron, that 1s, an input
to the activation function of the activation neuron, as
adjusted by the weight of the edge. Thus, an activation
neuron in the subsequent layer represents that the particular
neuron’s activation value 1s an mput to the activation
neuron’s activation function, as adjusted by the weight of the
edge. An activation neuron can have multiple edges directed
to the activation neuron, each edge representing that the
activation value from the originating neuron, as adjusted by
the weight of the edge, 1s an input to the activation function
of the activation neuron.

Each activation neuron 1s associated with a bias. To
generate the activation value of an activation neuron, the
activation function of the neuron 1s applied to the weighted
activation values and the bias.

[llustrative Data Structures for Neural Network

The artifact of a neural network may comprise matrices of
weights and biases. Training a neural network may itera-
tively adjust the matrices of weights and biases.

For a layered feedforward network, as well as other types
ol neural networks, the artifact may comprise one or more
matrices ol edges W. A matrix W represents edges from a
layer -1 to a layer L. Given the number of neurons in layer
[.-1 and L 1s N[L-1] and N[L], respectively, the dimensions
of matrix W 1s N[L-1] columns and N[L] rows.

Biases for a particular layer L may also be stored 1n matrix
B having one column with N[L] rows.

The matrices W and B may be stored as a vector or an
array 1n RAM memory, or comma separated set of values 1n
memory. When an artifact 1s persisted 1n persistent storage,
the matrices W and B may be stored as comma separated
values, 1n compressed and/serialized form, or other suitable
persistent form.

A particular input applied to a neural network comprises
a value for each input neuron. The particular input may be
stored as vector. Training data comprises multiple inputs,
cach being referred to as sample 1n a set of samples. Each
sample includes a value for each mput neuron. A sample
may be stored as a vector of mput values, while multiple
samples may be stored as a matrix, each row 1n the matrix
being a sample.

When an input 1s applied to a neural network, activation
values are generated for the hidden layers and output layer.
For each layer, the activation values for may be stored in one
column of a matrix A having a row for every neuron 1n the
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layer. In a vectorized approach for training, activation values
may be stored 1n a matrix, having a column for every sample
in the training data.

Training a neural network requires storing and processing,
additional matrices. Optimization algorithms generate
matrices of derivative values which are used to adjust
matrices of weights W and biases B. Generating dernivative
values may use and require storing matrices of intermediate
values generated when computing activation values for each
layer.

The number of neurons and/or edges determines the size
of matrices needed to implement a neural network. The
smaller the number of neurons and edges in a neural
network, the smaller matrices and amount of memory
needed to store matrices. In addition, a smaller number of
neurons and edges reduces the amount of computation
needed to apply or train a neural network. Less neurons
means less activation values need be computed, and/or less
derivative values need be computed during training.

Properties of matrices used to implement a neural network
correspond neurons and edges. A cell 1n a matrix W repre-
sents a particular edge from a neuron 1n layer L-1 to L. An
activation neuron represents an activation function for the
layer that includes the activation function. An activation
neuron 1n layer L corresponds to a row of weights 1n a matrix
W for the edges between layer L and L-1 and a column of
weights 1 matrix W for edges between layer L and L+1.
During execution of a neural network, a neuron also corre-
sponds to one or more activation values stored 1n matrix A
for the layer and generated by an activation function.

An ANN 1s amenable to vectorization for data parallelism,
which may exploit vector hardware such as single mnstruc-
tion multiple data (SIMD), such as with a graphical pro-
cessing unit (GPU). Matrix partitioning may achieve hori-
zontal scaling such as with symmetric multiprocessing
(SMP) such as with a multicore central processing unit
(CPU) and or multiple coprocessors such as GPUs. Feed
forward computation within an ANN may occur with one
step per neural layer. Activation values m one layer are
calculated based on weighted propagations of activation
values of the previous layer, such that values are calculated
for each subsequent layer 1n sequence, such as with respec-
tive iterations of a for loop. Layering imposes sequencing of
calculations that 1s not parallelizable. Thus, network depth
(1.e. amount of layers) may cause computational latency.
Deep learning entails endowing a multilayer perceptron
(MLP) with many layers. Each layer achueves data abstrac-
tion, with complicated (1.e. multidimensional as with several
inputs) abstractions needing multiple layers that achieve
cascaded processing. Reusable matrix based implementa-
tions of an ANN and matrix operations for feed forward
processing are readily available and parallelizable 1n neural
network libranies such as Google’s TensorFlow for Python
and C++, OpenNN for C++, and University of Copenha-
gen’s fast artificial neural network (FANN). These libraries
also provide model training algorithms such as backpropa-
gation.

Backpropagation

An ANN’s output may be more or less correct. For
example, an ANN that recognizes letters may mistake an I
as an L because those letters have similar features. Correct
output may have particular value(s), while actual output may
have somewhat diflerent values. The arithmetic or geometric
difference between correct and actual outputs may be mea-
sured as error according to a loss function, such that zero
represents error free (1.e. completely accurate) behavior. For
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any edge 1n any layer, the difference between correct and
actual outputs 1s a delta value.

Backpropagation entails distributing the error backward
through the layers of the ANN 1n varying amounts to all of
the connection edges within the ANN. Propagation of error
causes adjustments to edge weights, which depends on the
gradient of the error at each edge. Gradient of an edge is
calculated by multiplying the edge’s error delta times the
activation value of the upstream neuron. When the gradient
1s negative, the greater the magnitude of error contributed to
the network by an edge, the more the edge’s weight should
be reduced, which i1s negative remnforcement. When the
gradient 1s positive, then positive reinforcement entails
increasing the weight of an edge whose activation reduced
the error. An edge weight 1s adjusted according to a per-
centage of the edge’s gradient. The steeper 1s the gradient,
the bigger 1s adjustment. Not all edge weights are adjusted
by a same amount. As model training continues with addi-
tional mput samples, the error of the ANN should decline.
Training may cease when the error stabilizes (i.e. ceases to
reduce) or vanishes beneath a threshold (1.e. approaches
zero). Example mathematical formulae and techniques for
teedforward multilayer perceptron (MLP), including matrix
operations and backpropagation, are taught in related refer-
ence “EXACT CALCULATION OF THE HESSIAN
MATRIX FOR THE MULTI-LAYER PERCEPTRON.” by
Christopher M. Bishop.

Model training may be supervised or unsupervised. For
supervised training, the desired (1.e. correct) output 1s
already known for each example in a training set. The
training set 1s configured 1n advance by (e.g. a human expert)
assigning a categorization label to each example. For
example, the traiming set for optical character recognition
may have blurry photographs of individual letters, and an
expert may label each photo 1n advance according to which
letter 1s shown. Error calculation and backpropagation
occurs as explained above.

Unsupervised model training 1s more involved because
desired outputs need to be discovered during training. Unsu-
pervised training may be easier to adopt because a human
expert 1s not needed to label training examples 1n advance.
Thus, unsupervised training saves human labor. A natural
way to achieve unsupervised traiming 1s with an autoencoder,
which 1s a kind of ANN. An autoencoder functions as an
encoder/decoder (codec) that has two sets of layers. The first
set of layers encodes an mput example mto a condensed
code that needs to be learned during model training. The
second set of layers decodes the condensed code to regen-
crate the original mput example. Both sets of layers are
trained together as one combined ANN. Error 1s defined as
the difference between the original input and the regenerated
input as decoded. After suflicient training, the decoder
outputs more or less exactly whatever 1s the original input.

An autoencoder relies on the condensed code as an
intermediate format for each input example. It may be
counter-intuitive that the mtermediate condensed codes do
not 1nitially exist and instead emerge only through model
training. Unsupervised training may achieve a vocabulary of
intermediate encodings based on features and distinctions of
unexpected relevance. For example, which examples and
which labels are used during supervised training may
depend on somewhat unscientific (e.g. anecdotal) or other-
wise 1ncomplete understanding of a problem space by a
human expert. Whereas, unsupervised training discovers an
apt mntermediate vocabulary based more or less entirely on
statistical tendencies that reliably converge upon optimality
with suflicient training due to the internal feedback by
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regenerated decodings. Autoencoder implementation and
integration techniques are taught in related U.S. patent
application Ser. No. 14/358,700, enftitled “AUTO-EN-
CODER ENHANCED SELF-DIAGNOSTIC COMPO-
NENTS FOR MODEL MONITORING”. That patent appli-
cation elevates a supervised or unsupervised ANN model as
a first class object that 1s amenable to management tech-
niques such as monitoring and governance during model
development such as during traiming.

Random Forest

A random forest or random decision forest 1s an ensemble
ol learning approaches that construct a collection of ran-
domly generated nodes and decision trees during a training
phase. Diflerent decision trees of a forest are constructed to
be each randomly restricted to only particular subsets of
feature dimensions of the data set, such as with feature
bootstrap aggregating (bagging). Therefore, the decision
trees gain accuracy as the decision trees grow without being
forced to over fit training data as would happen if the
decision trees were forced to learn all feature dimensions of
the data set. A prediction may be calculated based on a mean
(or other integration such as soft max) of the predictions
from the different decision trees.

Random forest hyper-parameters may include: number-
of-trees-in-the-forest, maximum-number-of-features-con-
sidered-for-splitting-a-node, number-ot-levels-in-each-deci-
sion-tree, minimum-number-oi-data-points-on-a-leat-node,
method-for-sampling-data-points, efc.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous spe-
cific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what 1s intended by the applicants to be the
scope of the ivention, 1s the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form 1n which such claims issue, including any
subsequent correction.

What 1s claimed 1s:
1. A method comprising;
calculating, for each feature of a plurality of features of a
training dataset, based on
statistics of values, of the feature, that occur in the
training dataset:
a first feature relevance score based on a first feature
relevance scoring function, and
a second feature relevance score based on a second
feature relevance scoring function;
calculating, for each feature of the plurality of features:
a first rank based on the first feature relevance scores of
the plurality of features, and
a second rank based on the second feature relevance
scores of the plurality of features;
generating a sequence of distinct subsets of the plurality
of features based on the first ranks of the plurality of
features and the second ranks of the plurality of fea-
tures, wherein each distinct subset 1n the sequence of
distinct subsets of the plurality of features has a distinct
S17€;
for each distinct subset of the sequence of distinct subsets
of the plurality of features:
configuring a machine learning (ML) model to accept
the distinct subset of the plurality of features,
training the ML model based on said configuring the

ML model, and
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calculating a fitness score based on said training the
ML model;
selecting a most accurate subset of features that provided
a highest training accuracy of the sequence of distinct
subsets of the plurality of features;

configuring and training the ML model based on the most

accurate subset of features.

2. A method comprising;

calculating, for each feature of a plurality of features of a

training dataset, a feature relevance score based on:

a feature relevance scoring function, and

statistics of values, of the feature, that occur in the
training dataset;

calculating, for each feature of the plurality of features, a

rank based on the {feature relevance scores of the
plurality of features;

generating a sequence of distinct subsets of the plurality

of features based on the ranks of the plurality of
features, wherein each distinct subset in the sequence
of distinct subsets of the plurality of features has a
distinct size, wherein the distinct sizes of the sequence
of distinct subsets of the plurality of features comprises
an exponential sequence of sizes;

for each distinct subset of the sequence of distinct subsets

of the plurality of features:

configuring a machine learning (ML) model to accept
the distinct subset of the plurality of features,

training the ML model based on said configuring the
ML model, and

calculating a fitness score based on said training the
ML model;

selecting a most accurate subset of features that provided

a highest training accuracy of the sequence of distinct

subsets of the plurality of features;

configuring and training the ML model based on the most

accurate subset of features.

3. The method of claim 2 wherein for each feature of the
plurality of features, the feature relevance scoring function
correlates the feature to a prediction target that the ML
model may be trained to infer.

4. The method of claim 3 wherein for each feature of the
plurality of features, correlating the feature to the prediction
target comprises calculating mutual information between the
feature and the prediction target.

5. The method of claim 3 wherein for each feature of the
plurality of features, correlating the feature to the prediction
target 1s based on an f-score.

6. The method of claim 3 wherein said prediction target
comprises a classification label.

7. The method of claim 3 wherein said prediction target
COmprises a regression.

8. The method of claim 2 wherein said calculating the
teature relevance score 1s based on an impact of the feature
upon accuracy of the ML model.

9. The method of claim 8 wherein said impact of the
feature upon accuracy of the ML model 1s based on adaptive
boosting.

10. The method of claim 2 wherein each distinct subset in
said sequence of distinct subsets of the plurality of features
comprises the previous distinct subset 1n said sequence of
distinct subsets of the plurality of features.

11. The method of claim 2 wherein training of the ML
model 1s limited to said distinct subset of the plurality of
features of the training dataset.

12. The method of claim 2 wherein the size of the
sequence of distinct subsets of the plurality of features 1s the
same as the size of the plurality of features.
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13. The method of claim 2 wherein said calculating, for
cach distinct subset of the sequence of distinct subsets of the
plurality of features, the fitness score based on training the
ML model comprises distributing a respective plurality of
distinct subsets of the sequence of distinct subsets to each
processor ol a plurality of processors.

14. The method of claim 13 wherein said respective
plurality of distinct subsets of the sequence of distinct
subsets are evaluated by said processor in descending order
of distinct subset size.

15. The method of claim 14 wherein a first processor of
the plurality of processors steals a largest pending distinct
subset from a second processor of the plurality of proces-
SOIS.

16. One or more non-transitory computer-readable media
storing 1nstructions that, when executed by one or more
Processors, cause:

calculating, for each feature of a plurality of features of a

training dataset, based on

statistics of values, of the feature, that occur in the
training dataset:

a first feature relevance score based on a first feature
relevance scoring function, and

a second feature relevance score based on a second
feature relevance scoring function;

calculating, for each feature of the plurality of features:

a first rank based on the first feature relevance scores of
the plurality of features, and

a second rank based on the second feature relevance
scores of the plurality of features;

generating a sequence of distinct subsets of the plurality

of features based on the first ranks of the plurality of
features and the second ranks of the plurality of fea-
tures, wherein each distinct subset 1n the sequence of
distinct subsets of the plurality of features has a distinct
S17€;
for each distinct subset of the sequence of distinct subsets
of the plurality of features:
configuring a machine learning (ML) model to accept
the distinct subset of the plurality of features,
training the ML model based on said configuring the
ML model, and
calculating a fitness score based on said training the
ML model;
selecting a most accurate subset of features that provided
a highest training accuracy of the sequence of distinct
subsets of the plurality of features;

configuring and training the ML model based on the most
accurate subset of features.
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17. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more
Processors, cause:

calculating, for each feature of a plurality of features of a

training dataset, a feature relevance score based on:

a feature relevance scoring function, and

statistics of values, of the feature, that occur in the
training dataset;

calculating, for each feature of the plurality of features, a

rank based on the feature relevance scores of the
plurality of features;

generating a sequence of distinct subsets of the plurality

of features based on the ranks of the plurality of
features, wherein each distinct subset in the sequence
of distinct subsets of the plurality of features has a
distinct size, wherein the distinct sizes of the sequence
of distinct subsets of the plurality of features comprises
an exponential sequence of sizes;

for each distinct subset of the sequence of distinct subsets

of the plurality of features:

configuring a machine learning (ML) model to accept
the distinct subset of the plurality of features,

training the ML model based on said configuring the
ML model, and

calculating a fitness score based on said training the
ML model;

selecting a most accurate subset of features that provided

a highest training accuracy of the sequence of distinct

subsets of the plurality of features;

configuring and training the ML model based on the most

accurate subset of features.

18. The one or more non-transitory computer-readable
media of claim 17 wherein for each feature of the plurality
ol features, the feature relevance scoring function correlates
the feature to a prediction target that the ML model may be
trained to infer.

19. The one or more non-transitory computer-readable
media of claim 17 wherein said calculating the feature
relevance score 1s based on an impact of the feature upon
accuracy of the ML model.

20. The one or more non-transitory computer-readable
media of claim 17 wherein said calculating, for each distinct
subset of the sequence of distinct subsets of the plurality of
features, the fitness score based on training the ML model
comprises distributing a respective plurality of distinct sub-
sets of the sequence of distinct subsets to each processor of
a plurality of processors.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,544,630 B2 Page 1 of 1
APPLICATION NO. : 16/417145

DATED : January 3, 2023

INVENTOR(S) : Karnagel et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

On page 2, Column 2, under Other Publications, Line 3, delete “Continous” and insert
-- Continuous --, therefor.

On page 2, Column 2, under Other Publications, Line 34, delete “Algotithm” and 1nsert
-- Algorithm --, therefor.

On page 2, Column 2, under Other Publications, Line 46, delete “Sameketal,” and mnsert
-- Samek et al., --, therefor.

On page 2, Column 2, under Other Publications, Line 47, delete “Visualizingand” and 1nsert
-- Visualizing and --, therefor.

On page 3, Column 1, under Other Publications, Line 16, delete “Be 1 1 Er” and 1nsert -- Better --,
therefor.

On page 3, Column 1, under Other Publications, Lines 51-32, delete “Seletion” and 1nsert
-- Selection --, therefor.

In the Speciiication
In Column 9, Line 63, delete “sub sets.” and insert -- subsets. --, therefor.
In Column 10, Line 28, delete “variances” and insert -- variances. --, therefor.

In Column 17, Line 38, delete “and or” and insert -- and/or --, therefor.

Signed and Sealed this
Ninth Day ot January, 2024
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Katherme Kelly Vidal
Director of the United States Patent and Trademark Office
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