12 United States Patent

Branco et al.

US011544070B2

(10) Patent No.: US 11,544,070 B2
45) Date of Patent: Jan. 3, 2023

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(62)

(1)

(52)

EFFICIENT MITIGATION OF
SIDE-CHANNEL BASED ATTACKS AGAINST
SPECULATIVE EXECUTION PROCESSING
ARCHITECTURES

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Rodrigo Branco, Hillsboro, OR (US);
Kekai Hu, Portland, OR (US); Ke Sun,
Portland, OR (US); Henrique
Kawakami, Hillsboro, OR (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 17/387,240

Filed: Jul. 28, 2021

Prior Publication Data

US 2021/0357231 Al Nov. 13, 2021

Related U.S. Application Data

Division of application No. 16/023,564, filed on Jun.
29, 2018, now Pat. No. 11,119,784,

Int. CL

GO6L 9/30 (2018.01)

GO6l 9/38 (2018.01)
(Continued)

U.S. CL

CPC GO6l 9/3844 (2013.01); GO6F 8/447

(2013.01); GO6F 9/30087 (2013.01);

(Continued)

(38) Field of Classification Search
CPC GO6F 9/3844; GO6F 8/44°7; GO6F 9/30087;
GO6F 9/30185; GO6F 9/3802;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

10,394,716 Bl 8/2019 Piry et al.
10,698,668 B1* 6/2020 Pohlack GO6F 8/71

(Continued)

OTHER PUBLICATTIONS

Lee et al.; Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing; in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, Canada, Aug. 2017.
(Year: 2017).*

(Continued)

Primary Examiner — Corey S Faherty
(74) Attorney, Agent, or Firm — Alhance 1P, LLC

(57) ABSTRACT

The present disclosure 1s directed to systems and methods
for mitigating or eliminating the eflectiveness of a side-
channel based attack, such as one or more classes of an
attack commonly known as Spectre. Novel instruction pre-
fixes, and 1n certain embodiments one or more correspond-
ing instruction prefix parameters, may be provided to

enforce a serialized order of execution for particular imstruc-
tions without serializing an entire instruction tlow, thereby
improving performance and mitigation reliability over exist-
ing solutions. In addition, improved mitigation of such
attacks 1s provided by randomizing both the execution
branch history as well as the source address of each vulner-
able indirect branch, thereby eliminating the conditions
required for such attacks.

19 Claims, 6 Drawing Sheets

‘ | :V‘550
Intermediate ("trampoline”) memory area

I
505 ’
: 539
jmp to branch target i
jmp to randomized target address ! branch target
within intermediate memory 7., ;
(‘trampoline”) area s pr 7 address
R ST 530 A
| 4 o
Y 0 U DI VR e e
: ¥ A AL R

US 11,544,070 B2

Page 2
(51) Imt. CL 2019/0243990 Al* 82019 Wei .ocovvvivvreernene. GOGF 21/74
GO6F 21/55 (2013.01) 2019/0286443 Al 9/2019 Solomatnikov et al.
2019/0311129 Al 10/2019 Clifton
GO6F 8/41 (2018'01) 2019/0339977 Al 11/2019 Wallach
(52) U.S. CL 2019/0377581 Al 12/2019 Sakashita et al.
CPC GOooF 9/30185 (2013.01); GO6F 9/3802

(2013.01); GO6F 9/3806 (2013.01); GO6F
9/3836 (2013.01); GO6F 9/3842 (2013.01);
GO6F 21/55 (2013.01); GO6F 8/41 (2013.01);
GO6LF 2221/034 (2013.01)

(58) Field of Classification Search
CPC GO6F 9/3806; GO6F 9/3836; GO6F 9/3842;
GO6F 21/55; GO6F 8/41; GO6F 2221/034;
GO6F 9/30061; GO6F 21/556
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2015/0040223 Al* 2/2015 Tobinccccceevnnnn, GOOF 21/52

726/23
2016/0378657 Al 12/2016 Bradbury et al.
2019/0130102 Al 5/2019 Johnson et al.
2019/0205140 Al 7/2019 Grisenthwaite et al.

OTHER PUBLICATTIONS

Hosseinzadeh et al.; Mitigating Branch-Shadowing Attacks on Intel
SGX using Control Flow Randomization; SysTEX 18, Oct. 15,

2018, Toronto, ON, Canada (Year: 2018).*

Dong et al.; Spectres, Virtual Ghosts, and Hardware Support; Jun.
2, 2018; ACM.

Kocher, Paul, et al., Spectre Attacks: Exploiting Speculative Execu-
tion, 40th IEEE Symposium on Security and Privacy (S&P’°19)2018,
19 pages.

Kocher, Paul. Spectre Mitigations in Microsoit’s CIC++ Compiler,
retrieved from https://www.paulkocher.com/doc/
MicrosoflCompilerSpectreMitigation html, Feb. 13, 2018, 9 pages.
Lipp, Moritz el. al., Meltdown, 27th {USENIX} Security Sympo-
sium {{USENIX} Security 18), 2018, 16 pages.

Shen et al.; Modem Processor Design: Fundamentals of Superscalar
Processors, Beta Edition; 2002; McGraw-Hill Companies, Inc.

* cited by examiner

US 11,544,070 B2

Sheet 1 of 6

Jan. 3, 2023

U.S. Patent

0vl

0Ll

vivd ald

061
JOIAJA JOVAHOLS

051
AdLINOYIO
10d1INQD

091
AdLINOYIO

dMMOOT
dld

s

0tl

Ad1INOdI0 JHOVO

0Cl
ALLINOYIO

d055400dd

I "OId

US 11,544,070 B2

¢ 9l
&
S
~ 18)s1691 X 0} Jo)sIBal Xed Wwol anjen peo E
!
@ SN[EA XD J < ONEA XEJ JI UOINIOXS O 1Joqe a8(
s 9,
sJ)SIBal TpJ pue Xed ul sanjea aledwo) Xod ‘xed dwd

19151681 XeJ 0) SJ9)SIBal Xed pue TpJ WOl SanjeA Jo wns a10)S E
g €
o Xed J9)sibal 0) [1gyuiod] Jo anjea anopy | [wo3jutod] “xed Aow
o
ery uonduosa(9p0H uonoINAsSu|
=
= 007 9oudnbas apod uononnsul

U.S. Patent

50¢
70¢
£0¢
€0
10¢

US 11,544,070 B2

Sheet 3 of 6

Jan. 3, 2023

U.S. Patent

UOINI3Xa 310}80 £OE UOIDNASU| JO SYNSSI JOJ JIEM XQJ 0) Xed WoJ anjea peo]| [xed] xgu Aow ITnsaJ” dwd jtem dads

1Joge agdl 3Tnssadu dud 1Tem >ads

UOIINJ9X3 810}8q £0F UONINIISU| JO SYNSBI JOJJIBM XD U < XEd JI UOINIIXS LOqY

JIWLLOY 1O} ITNSJ~ dwd 390| g)eald SIa)sifal TpJ pue Xed ul sanfea asedwon Xdd ‘xed dwd 3TnsaJ_dwd MDoT dads
19151691 XedJ 0] SI9)SIBal Xed pue TpJ WOl SaN[eA JO WNS 3I0)S IpJd ‘Xed ppe

XedJ Ja)sibal 0} [1auiod] Jo anjen a0l [uojuTOd] “XBJ AOW

00¢ 92udanbas apoo uonannsu|

G0¢
70
0
C0¢

-
oD

US 11,544,070 B2

S9|9A9
Y000 J0o Jaquinu uogonJsul
paulapald Jsye 1]0 UOINJ9XS

390| Buipuodsa Lo SAIJRIN23dS MO||Y

1299 Ajleuondp

=

- ON

S

-

N uogongsul |

D A

> JO UOINIDX3 O\ O\

7 HQ %007

% aAlRIN93dS Juanald

vy ek

¢r,

-

—

o

e JIWWIOD S)Ynsal

= JE }JIq %00 JIq %90

= puipuodsa.Lo? HORINASUE SO puipuodsaliod 189S oA

1es|n -

N GV Ocy Gy

-

>
~

&
D._.. o — GOV
4]
-

ON

¢ Xyoud Jiem
sapnjou|

ON

¢X1181d 490
Sapn|ou|

UORONJSUl

IXau Y21e4

Fl a0 g Tt g g gt gt g T g T g g g gt g g g o T

US 11,544,070 B2

‘!
/!
— “ _________. \\ y) —
" T g r - /! a ’
; S NSA BT LTSI ’ ’ :
— “ .__.....___. oy t................& “__..__-. “__..__-. - “ “__ F LT x “_.._ “_.._ ,ar, “ —
F s F | . ¥ X - .
L / ’» A I A R A Y
” A AAAA % wr el el it bl 4
/ , e . . - / _ﬂw...o\\\\\ ’ PP g —
e, A rEyd » o, FAFa . —d) A F
| ¢ YRR ST RS T R S EP NP A TR RY LG /
A At _..__....______......1.________‘___,__..._____T A, 1.__....1__ tola el T ¢tk\1“__1 ._._.1..“ e 4 ._____..‘__..T__... o ” » _r:f . - . a ..r..__ . u_.. “___..___.r“i
“______ ' A ﬂ_ ¥ - a u.ll.n_‘. - “__ .“.__...t_l\.ﬂ. a_V\..h__.___“ l_“__.._____.ﬂ“___‘__\...____ﬂ_“__ u___ ._-.J___‘_ 1__“.““1-____1_ 1&“\“’
. y 'La ¥ o ‘oA Foaw ’
| ¢ : D AILANI L gL AN WL A A
r / ’ . 4 4 r % o
— ﬁ.m..u..n..____h._..u.._._u.\.u..n_.m..u...1m..u__.m_.n..u..n_.m..u...1m..u..m_.n..u..n_.m..u..m_.u..u..n_.\\&\hﬂ\\\\\\\\\\\\\\\\\\\\“ “ “____ — o _
- " .___r_
P . /
P ~ # o o .___.hh\hh\.._.h.___.hh\hhh.._.h.___.hh\hhh.._.h\hh\hh_‘ﬂ'\hh\hhhhhhhh\hh 1\1
) oy oA o s
___1___...... | ._.x..___.:_...___. u..__..._:.,_. e
» b % v 3 (@ ”
4 o s L p "
o — — Ny - . 4

“Z AJOWBW 3RIpaIBIUl UIULIM
JobJe) paziwopuel o) dwl

19bJe) youeuq |

ssalppe

1006.e) youeuq o) dwl

66§ COC

_
_
_
" GZ6
_
_

Sheet 5 of 6

eale AJowaw (suljodwel],) ajelpasuwialuy

Jan. 3, 2023

VS "Old

ssalppe
1ob.e) youe.g

(3|qeJaunA)

Youelq 1oaJipu

665 105

U.S. Patent

U.S. Patent Jan. 3, 2023 Sheet 6 of 6 US 11,544,070 B2

fnhbb bbb il RO T e e e

61/
615

e
N
N 0N
L |‘ x k_-r
T et b
'EE*;:. iy
N o
-h.‘!'- "t'..."l - “‘I
G N
WY
SNSRI o2
L. S S
e
Wy I
e TR, ’
N Ehi Eﬁh'
e &é: .&i; : a2
SKEOREOA T8

N N N s a0 s o m e

| t L Add Regi
N N N S N N N N N O N N N I N N N N N S N N N N NS N NN NI IS

e

h
~
-~
3

fopas bk LU LSS S LR MS R SER L SRS

|‘ .

1‘ .

1‘ .

|‘ .

1‘ .

Ll
rr

e e S e e e e e S e e e S e e e e e e e e e e e e e e e e T T e e e e S e e e e e e e e e S e e e T e e S e T e T e e e T e T e e T e e e e e T e e M e T e T e T e e e e

612

A A A LA L L LA AL LS L ALL LA LA LA

FIG. 6

eI b R
/W PO RO
Ty i caere L N T
B . St M O
DASIRES A CARY
T R e N .
s o Nt RN RN
W et '..1:_*-:1' ' e TS
s o o o o o
.|:;:“'1 ‘I I‘ -..‘F'ﬁ ‘1‘{: -‘h :-h f'
W e Taw A WA
A e T e L TR
b
.-._ =
+\:‘."R~1
.‘I
N
1.‘::"
2 o ot - oo
"..'~.::' -'.,"\.E: ﬁ :.{:\:‘ 1 s
.'I.'I'-- 1;I:-:'I.‘-I ;I.:'-.;'-.I_l r-‘l‘}.:'-.‘ . :l..'-.l_ -l.:'l;'-.:
{I;‘ NN Ut WA
e — . . " L,
SR Y R AR
R R g oo
LI n - R . . L n
"‘--'-. I::'l::l A '|.-.| II: L] _II-TT:I- l‘-i L] I-IT I"l-l ‘.'l_r'l-
::'('I- -‘.l-l-I.'l- i‘.--l.. -I-.] 1 +‘.I-I‘I..\ - + i‘.l-l‘I.': . -‘.l..l.-I“:

Intermediate Linear Address Region

e S S

e e e R et R LY

--

B T o R N R Rt LR L LN

W
S

X
W
N

600

A e e e e e e s e st e e g g e e e e g e e g e e e e e e e
n
o
|- *
A,
e
"
A

B N N R N NN RN NN

607/

US 11,544,070 B2

1

EFFICIENT MITIGATION OF
SIDE-CHANNEL BASED ATTACKS AGAINST
SPECULATIVE EXECUTION PROCESSING
ARCHITECTURES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a division of U.S. patent application
Ser. No. 16/023,564 filed Jun. 29, 2018, entitled “EFFI-
CIENT MITIGATION OF SIDE-CHANNEL BASED
ATTACKS AGAINST SPECULATIVE EXECUTION
PROCESSING ARCHITECTURES.” The disclosures of the
prior applications are considered part of and are hereby
incorporated by reference in their entirety 1n the disclosure
of this application.

TECHNICAL FIELD

The present disclosure relates to computer security, and in
particular the prevention or mitigation of one or more
classes of side-channel based attack.

BACKGROUND

Speculative execution 1s utilized by most modern com-
puting processors to achieve high performance. Such execu-
tion allows 1structions to be executed prior of knowing that
they will be architecturally required by the intended flow of
execution. An important part of speculative execution
involves branch prediction: 1nstead of waiting for the target
of a branch instruction to be resolved, the processor attempts
to predict the control tlow and speculatively executes the
instructions on the predicted path. In many cases, the
prediction 1s correct and boosts execution performance in
terms of CPU cycles; when the prediction 1s wrong, results
of the speculatively executed path will be discarded such
that no architectural states are impacted.

Side-channel based attacks include any attack based on
information gained from the implementation of a computer
system, rather than weaknesses 1n the implemented algo-
rithm 1tself. Such side-channel based attacks may use timing,
information, power consumption, electromagnetic leaks, or
even sound as an extra source ol information that 1is
exploited to obtain information and/or data from the system.
Side-channel based attacks include those typically referred
to respectively as “Spectre” and “Meltdown,” both of which
gained widespread notoriety mn early 2018 and rely on
deducing whether data originates in a cached or un-cached
location. To a significant degree, the determination of where
data originates relies upon the precise timing of events such
as loads from memory space.

A first class of Spectre attack (a *“class I” attack) takes
advantage of branch target misprediction by a CPU to read
data from memory into cache. Upon detecting the mispre-
diction, the CPU clears the data from the pipeline, but the
data read into cache remains. A covert side-channel may
t
t.

nen be used to obtain the residual data from the cache. In
11s class of attack, the attacker trains the branch predictor
in a system to take a particular branch. For example, using
the following instructions, an attacker may train the system
by providing values for “x” that are consistently smaller than
the size of “arrayl.” The attacker thus trains the system to
speculatively execute the subsequent instruction based on
the assumption that the branch has been historically true:

10

15

20

25

30

35

40

45

50

55

60

65

2

if (x < arrayl.size()) {
int value = array2[arrayl[x] * 256] // branch 1

h

After tramning the system, the attacker sets the cache to a
known state and provides a value of “x”” that exceeds the size
of “arrayl.” Having been previously trained that “x” 1is
typically less than the size of “arrayl,” the processor
executes the branch instruction (prior to the processor
throwing the exception due to “x” being greater than the size
of “arrayl”) and uses the value found at address “x” as an

e 2y 2

index to look up the value at address “x” in array2. The
processor loads the value at address “x” 1n array2 1nto cache.
The attacker then reads all of the values of array2 and 1s able
to determine the value of “x” as the address 1 array2 having
the shortest access time.

For example, assume arrayl has 256 elements addressed
“0” to “255.” The attacker provides values of “x” between
0 and 235 to train the system that the branch instruction 1s
routinely executed. The attacker then sets the cache to a
known state and provides a value of 512 for “x” (1.e., a value
greater than 255). The value “01000000” (1.e., “64”) at
memory location 512 1s read. The processor then looks up
the value of array2 at address 64%256 and loads the value
into cache. The attacker then examines the read time for each
clement 1 array2, the read time for element at address
64%256 will be less than the read time for the other array?2
addresses, providing the attacker the information that the
address at memory location 512 1s “01000000” or “64.” By
performing the action for every memory location, the
attacker 1s able to read the contents of the memory byte-
by-byte.

Previous approaches to thwarting or mitigating class I
Spectre attacks include attempts to do so via “serializing”
istructions (e.g., LFENCE {for Intel processor architectures,
CSDB for ARM processor architectures, etc.) prior to con-
ditional statements or load instructions. Such approaches
generally mvolve disabling speculative execution entirely
until an i1dentified such nstruction 1s completed. However,
such approaches result in significant expense in terms of
processor clock cycles, as they completely disable specula-
tive execution (and associated efliciencies) every time a
serializing instruction 1s executed.

A second class of Spectre attacks (“class II” attacks)
exploit indirect branching by poisoning the Branch Target
Bufler (BTB) such that a CPU speculatively executes a
gadget that causes the CPU to read data from memory into
cache. Upon detecting the incorrect branching, the CPU
clears the data from the pipeline but, once again, the data
read into cache remains. A covert side-channel may then be
used to obtain the residual data from the cache. In this class
of attack, the attacker poisons the BTB of the victim system
by repeatedly performing indirect branches to a virtual
address 1n the victim’s system that contains the gadget. For
example, an attacker may control the content of two registers
(R1, R2) 1n the victim’s system at the time an indirect branch
occurs. The attacker must find a gadget in the victim’s
system that, upon speculative execution by the victim’s
CPU, leaks data from selected memory locations in the
victim’s system. The gadget may be formed by two 1nstruc-
tions, the first of which contains an instruction that math-
ematically and/or logically (add, subtract, XOR, etc.) com-
bines the contents of register R1 with another register in the
victim’s system and stores the result in R2. The second
istruction reads the contents of register R2, storing the
value 1n R2 in cache.

US 11,544,070 B2

3

For example, the attacker may control two registers 1n the
victim system, ebx (register R1) and edi (register R2). The

attacker then finds two instructions on the victim’s system,
such as:

adc edi,dword ptr [ebx+edx+13BE13BDh]
adc d1,byte ptr [edi]

By selecting ebx=m—-0x13BE13BD-edx the attacker 1s able
to read the victim’s memory at address “m.” The result 1s
then added to the value 1n edi (R2). The second 1nstruction
in the gadget causes a read of R2 which contains the sum of
“m” plus the attacker’s value imtially loaded into edi,
transferring the value into the cache. By detecting the
location of R2 within the cache using a side-channel timing
attack, the attacker 1s able to determine the value of “m.”
Previous approaches to thwarting or mitigating class 11
Spectre attacks include “return trampoline™ (also known as
“retpoline”), which 1s a compiler-supported mitigation tech-
nique. Retpoline essentially converts each vulnerable 1indi-
rect branch instruction into (1) a “dummy” call that pushes
a safe return address on both the process stack and the return
stack bufler (“RSB”); (2) an instruction to overwrite the
return address on the process stack with the indirect branch
target address; and (3) a “return” istruction to the target
address. However, such approaches require both a micro-
code update (consuming limited microcode patch resources)
and operationally expensive operating system (OS) updates.
Moreover, such retpoline approaches result in significant
performance detriments, as they restrict speculative execu-
tion, 1solate speculative resources of processing threads, and
necessitate flushing of speculative arrays upon security
context switches. Furthermore, because retpoline converts
all indirect branches into the bifurcated “push and return™
operations, i1t 1s incompatible with many existing control

flow integrity mitigation techniques, such as Control-tlow
Enforcement Technology (CET), Control Flow Guard

(CFG) and Return Flow Guard (RFG) and Reuse Attack
Protector (RAP).

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

Features and advantages of various embodiments of the
claimed subject matter will become apparent as the follow-
ing Detailed Description proceeds, and upon reference to the
Drawings, wherein like numerals designate like parts, and 1n
which:

FIG. 1 depicts an exemplary integrated device that incor-
porates multiple disparately architected circuitry compo-
nents 1 accordance with at least one embodiment of tech-
niques described herein;

FIG. 2 depicts an exemplary instruction code sequence
that 1s vulnerable to one or more classes of side-channel
based attack;

FIG. 3 depicts an exemplary instruction code sequence
that has been modified to provide protection against one or
more classes of side-channel based attack in accordance
with at least one embodiment of techniques described
herein;

FIG. 4 depicts an exemplary execution of an instruction
code sequence by a processor enabled in accordance with at
least one embodiment of techniques described herein;

FIG. SA depicts an exemplary program execution flow of
a vulnerable indirect branch instruction that 1s vulnerable to
one or more classes of side-channel based attacks as
described herein and elsewhere:

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5B depicts a portion of an exemplary protected
program execution flow that mitigates or eliminates the

vulnerabilities of indirect branch instructions 1n accordance
with one or more embodiments of techniques described
herein; and

FIG. 6 depicts a portion of an exemplary protected
program execution flow that mitigates or eliminates the
vulnerabilities of indirect branch instructions 1n accordance
with one or more embodiments of techniques described
herein.

Although the following Detailed Description will proceed
with reference being made to illustrative embodiments,
many alternatives, modifications and variations thereof will
be apparent to those skilled in the art.

DETAILED DESCRIPTION

In the description herein, numerous specific details are set
forth, such as may include examples of specific types of
processors and system configurations, specific hardware
structures, specific architectural and micro architectural
details, specific register configurations, specific instruction
types, specific system components, specific measurements/
heights, specific processor pipeline stages and operation eftc.
in order to provide a thorough understanding of the present
invention. It will be apparent, however, to one skilled 1n the
art that these specific details need not be employed to
practice the present invention. In other instances, well
known components or methods, such as specific and alter-
native processor architectures, specific logic circuits/code
for described algorithms, specific firmware code, specific
interconnect operation, specific logic configurations, spe-
cific manufacturing techniques and materials, specific com-
piler implementations, specific expression of algorithms in
code, specific power down and gating techmques/logic and
other specific operational details of computer system haven’t
been described in detail 1 order to avoid unnecessarily
obscuring the present invention.

The present disclosure 1s directed to improved techmques
for preventing and/or mitigating side-channel based attacks
such as the class 1 Spectre attacks described above. In
particular, certain technmiques described herein may provide
improved mitigation of same-process out-of-order execution
Spectre attacks (1.e., “class I” attacks) by utilizing selective
serializing instructions to render such attacks moot while
avoilding certain performance deficits necessitated by previ-
ous serializing approaches. In particular, techniques
described herein utilize one or more novel 1nstruction pre-
fixes, and 1n certain embodiments one or more correspond-
ing instruction prefix parameters, to enforce the order of
execution for particular instructions that may leak informa-
tion through speculative side channels. The mnstruction pre-
fix causes some 1nstructions to be explicitly ordered relative
to one another; however, the described techniques avoid
serializing the whole instruction flow, thereby improving
performance and mitigation reliability over existing solu-
tions. In addition, 1n certain embodiments dependencies are
made explicit to the CPU core, such that security issues are
mitigated with much lower performance overhead because
any speculative execution 1s provided explicit information
regarding both dependencies and hazards.

In addition, the present disclosure 1s directed to improved
techniques for preventing and/or mitigating additional side-
channel based attacks, one non-limiting example of which 1s
a class II Spectre attack as described above. In particular,
techniques described herein may provide improved mitiga-
tion of such side-channel based attacks by randomizing both

US 11,544,070 B2

S

the execution branch history as well as the source address
(1.e., the “from address™) of each vulnerable indirect branch,
thereby eliminating the conditions required for such attacks.
Various embodiments of these mitigation techniques may
potentially be applied to any CPU architectures that make
use of speculative execution, which are vulnerable to such
side-channel based attacks.

As used herein, the term “processor cache” and ““cache
circuitry” refer to cache memory present within a processor
or central processing unit (CPU) package. Such processor
cache may variously be referred to, and should be consid-
ered to include, without limitation, Level 1 (LL1) cache,
Level 2 (LL2) cache, Level 3 (LL3) cache, and/or last or lowest
level cache (LLC). Also as used herein, the term “instruc-
tion” 1s to be considered interchangeable with “directive”
unless context clearly indicates otherwise.

FIG. 1 provides a high level block diagram of an illus-
trative system 100 that includes a central processing unit
(CPU) 110 that coupled to a Branch Target Builer (“BTB”)
140 that includes BTB control circuitry 150, BTB look-up

circuitry 160, and BTB data 170 in accordance with at least
one embodiment described herein. In various embodiments,
the BTB data 170 may include multiple distinct subsets,
such as may be based on the mitiator of a branch prediction
inquiry 122. The BTB control circuitry 150 beneficially and
advantageously causes the BTB look-up circuitry 160 to
search for branch prediction data in BTB data 170, such as
upon receipt of a branch prediction inquiry 122. In various
embodiments, processor circuitry 120 may speculatively
execute 1nstructions, including branch instructions, to
improve overall system etliciency, speed, and/or responsive-
ness. To determine which branch to speculatively execute,
the processor circuitry 120 may communicate a branch
prediction mquiry 122 to the Branch Target Buller (BTB)
140.

If the BTB look-up circuitry 160 finds branch prediction
data 1n the BTB data 170, the BTB look-up circuitry 160
returns the branch prediction data 124 to the control circuitry
120. If the branch prediction data 124 returned to the
processor circuitry 120 1s incorrect, the processor circuitry
120 may communicate a message to the BTB control
circuitry 150 and the respective BTB data portion 170 may
be updated to reflect the correct branch taken by the pro-
cessor circuitry 120. If the branch prediction data 124
returned to the processor circuitry 120 1s correct (a BTB
“hit”), the BTB look-up circuitry 150 returns data indicative
of the predicted path 124 to the processor circuitry 120.

As depicted 1n FIG. 1, the CPU 110 may include processor
circuitry 120 coupled to processor cache circuitry 130. The
CPU 110 may additionally include a BTB 140 having BTB
control circuitry 150, BTB look-up circuitry 160; and BTB
data 170. The system 100 may also include one or more
storage devices 190. The one or more storage devices 190
may include machine-readable instructions that may be
executed by the processor circuitry 120 and/or the BTB
look-up circuitry 150.

The CPU 110 may 1nclude, but 1s not limited to, processor
circuitry 120, cache circuitry 130, and a BTB 140 that
includes BTB control circuitry 150 and BTB look-up cir-
cuitry 160. Although not depicted 1in FIG. 1, the CPU 110
may include other circuitry and/or structures, such as a
Translation Look-Aside Bufler (TLB) circuitry, instruction
cache circuitry, reorder builers, and similar. Example CPUs
110 may include, but are not limited to, microprocessors
such as Intel Pentium® microprocessor, Intel Core™ Duo
processor, Intel Core 13, Intel Core 15, Intel Core 17, AMD

10

15

20

25

30

35

40

45

50

55

60

65

6

Athlon™ processor, AMD Turion™ processor, AMD Sem-
pron™, AMD Ryzen® processor, and ARM Cortex® pro-
CESSOrs.

The processor circuitry 120 may include any number
and/or combination of electrical components, semiconduc-
tor devices, and/or logic elements capable of reading and
executing machine-readable instruction sets. In embodi-
ments, the processor circuitry 120 may include any number
and/or combination of any currently available and/or future
developed processors, microprocessors, controllers, and
similar. In embodiments, the processor circuitry 120 may
include circuitry capable of performing some or all of:
generating branch prediction inquiries 122, communicating
the branch prediction inquiry 122 to the BTB control cir-
cuitry 150, and receiving branch prediction data 124 from
the BTB look-up circuitry 150.

The speculative execution of a branch instruction results
in the processor circuitry 120 having a plurality of potential
execution paths. In such instances, the processor circuitry
120 communicates a branch prediction mquiry 122 to the
BTB control circuitry 150. The branch prediction mnquiry
122 may include data that 1dentifies the branch instruction.
All or a portion of the branch instruction i1dentifier may be
used by the BTB control circuitry 150 to 1dentify the mitiator
of the branch prediction inquiry 122. All or a portion of the
branch instruction identifier may be used by the BTB
look-up circuitry 160 to determine whether branch predic-
tion data exists within BTB data 170.

Generally, BTB data 170 includes predicted branch infor-
mation based upon successiul prior branch selections. In
other words, 1I the processor circuitry 120 has selected
branch “A” rather than branch “B” in response to mstruction
“C,” the BTB look-up circuitry 140 will return a branch
prediction of “A” to the processor circuitry 120. In response,
the processor circuitry 120 will then speculatively execute
the istructions included in branch “A” rather than the
instructions included 1n branch “B.” Some classes of side-
channel based attacks “poison” the data included in the a
BTB data portion 170 by repeatedly executing a branch
instructions that cause changes 1n the data stored in the BTB
data portion 170 such that the attacker 1s now able to insert
malicious code (sometimes referred to as a “gadget”) on the
predicted branch and cause the processor circuitry to specu-
latively execute a branch istruction pointing to the code. By
causing repeated errors in branch prediction through poi-
soning or corrupting the data included in BTB data 170, an
attacker 1s able to read protected or secret memory locations
at the system level on the user’s system. By causing repeated
errors 1n branch prediction through poisoning or corrupting
the data included in BTB data 170 on a client/server system,
an attacker may be able to read protected or secret memory
locations at the system level and at the at the user level of
other clients.

The cache circuitry 130 may include any number and/or
combination of electrical components, semiconductor
devices, and/or logic elements capable of non-persistently
storing digital information and/or data. In embodiments, all
or a portion of the cache circuitry 130 may be communicably
coupled to a single processor circuit 120. In other embodi-
ments, all or a portion of the cache circuitry 130 may be
shared between multiple subsets of processing circuitry 120.
In embodiments, the cache circuitry 130 may store infor-
mation and/or data as a cache line, for example, as a 64-byte
cache line.

The BTB 140 includes BTB control circuitry 150 and
B'TB look-up circuitry 160 that i1s coupled to BTB data 170,

which may include data representative of branch predictions

US 11,544,070 B2

7

for one or more particular users, systems, clients, or servers.
In embodiments, the BTB control circuitry 150 may
dynamically apportion the BTB 140 across or among one or
more segregated portions of BTB data 170.

The BTB control circuitry 150 may include any number
and/or combination of currently available and/or future
developed electrical components, semiconductor devices,
and/or logic elements capable of executing machine-read-
able 1nstruction sets that cause the BTB control circuitry to:
receive data associated with the branch prediction mquiry
122 from the processor circuitry 120; determine the initiator
of the branch prediction mquiry 122; and provide instruc-
tions to the BTB look-up circuitry 160 to search BTB data
170.

The BTB look-up circuitry 160 may include any number
and/or combination of currently available and/or future
developed electrical components, semiconductor devices,
and/or logic elements capable of receiving data associated
with the branch prediction mquiry istruction 122 from the
processor circuitry 120; determining whether branch predic-
tion data exists; and returning data associated with the
branch prediction 124 to the processor circuitry 120.

Although depicted 1n FIG. 1 as disposed 1n the CPU 110,
in embodiments, the BTB 140 may be disposed external to
and coupled to the CPU 110. In embodiments, the BTB 140
may be included as a portion of memory management
circuitry that 1s at least partially disposed 1n or coupled to the
processor circuitry 120. In embodiments, all or a portion of
the BTB 140 may be communicably coupled to a single
processor circuit 120. In other embodiments, all or a portion
of the BTB 140 may be shared between multiple portions of
processor circuitry 120.

The storage device 190 may include any number and/or
combination of currently available and/or future developed
clectrical components, semiconductor devices, and/or logic
clements capable of storing machine-readable instructions
that cause the BTB look-up circuitry 150 to determine
whether a branch prediction mquiry originated at the sys-
tem-level or at the user-level. Responsive to determiming the
branch prediction inquiry represents a system-level branch
prediction inquiry, the storage device 190 may include
instructions that cause the BTB look-up circuitry 150 to
query all or a portion of BTB data 170 to determine 1f a
branch prediction exists within the BTB 140.

FIGS. 2-4 are provided to depict operations and context
related to improved techniques for preventing and/or miti-
gating certain side-channel based attacks, such as (but not
limited to) the class I Spectre attacks described elsewhere
herein. In particular, such techniques may provide improved
mitigation of same-process out-of-order execution attacks
(1.e., “class I” attacks) by utilizing selective sernializing
istructions to render such attacks moot while avoiding
certain performance deficits necessitated by previous seri-
alizing approaches.

FIG. 2 depicts an exemplary instruction code sequence
200, which will be understood as a typical boundary check-
ing code sequence that checks to determine whether a
location 1s within a valid address range. This exemplary
instruction code sequence 200 1s vulnerable to a class 1
Spectre attack.

In normal execution flow, without speculative and/or
out-of-order execution, the exemplary instruction code
sequence 200 results 1n the following operations. Instruction
201 moves the contents of a memory location pointed by
pointer to register rax. Instruction 202 adds a value from
register rd1 to the values stored 1n register rax and stores the
result to register rax. Instruction 203 compares a value

10

15

20

25

30

35

40

45

50

55

60

65

8

stored 1n register rax with a value stored in register rcx. If,
as a result of such comparison, the value from register rax
1s determined to be greater or equal to the value from register
rcx, instruction 204 jumps to an abort function—thus pre-
venting execution of Instruction 205. Otherwise, Instruction
205 loads the value stored 1n the location of rax to rbx. Thus,
Instruction 205 1s a conditional load instruction that should
be executed only after a successtul boundary check in
Instruction 204. It will be appreciated that this exemplary
instruction sequence 200 comprises typical boundary check-
ing code that checks to determine whether the location rax
1s within a valid address range: the value stored at address
rax will be read to rbx only if rax i1s smaller than rcx;
otherwise, the abort will occur and the value stored at
address rax will not be read.

The exemplary instruction code sequence 200 works
perfectly 11 all of Instructions 1-5 are executed 1n a serialized
order. However, as noted elsewhere herein, modern proces-
sors 1mplement speculative branch predictions and out-oi-
order executions 1n order to increase efliciency and perfor-
mance. In a speculative and out-of-order execution scenario,
cache-based side-channel based attacks such as Spectre will
break this boundary check.

In a speculative execution scenario, because Instructions
201-203 involve an 1ndirect read, a math computation and a
comparison, final comparison results for Instruction 203 are
typically achieved relatively slowly. In order to improve the
performance, rather than waiting for such final comparison
results of the calculation, the processor may assume that the
bounds check 1s passed and therefore speculatively execute
Instruction 205 by reading the value at location rax to rbx.
By the time the bounds check 1s completed (1.e., “commits™),
the value 1n rbx 1s ready if the bounds check 1s passed; if the
bounds check fails, the value in rbx will be discarded and
will not be accessible.

As discussed elsewhere herein, cache-based side-channel
based attacks such as Spectre take advantage of the fact that
the access time for retrieving data 1n a cache 1s much faster
than the corresponding access time for retrieving such data
when that data 1s not in cache. Although the speculative read
of 1nstruction 5 will not commit 1f the read 1s out of bounds,
the fact that 1t 1s executed before the bounds check can be
used to generate a measurable timing side eflect that an
attacker may leverage 1n order to leak the content stored at
address rax. Therefore, as long as the out-of-order execution
of Instruction 204 and Instruction 205 exists, the timing side
channel (and corresponding vulnerability to a timing side-
channel based attack) exists.

Prior solutions for mitigating such vulnerabilities to side-
channel based attacks include serialization, such as by
adding “fence” instructions (e.g., LFENCE, MFENCE, etc.)
between Instruction 204 and Instruction 205; 1n this manner,
all speculative operations from Instruction 205 forward are
suspended until Instruction 204 commits—consequently,
there will be no out-of-order execution between Instruction
204 and Instruction 205. However, as noted above, although
such serialization mitigation prevents certain cache- and
timing-based side-channel based attacks, 1t may also result
in high performance overhead by disabling all speculative
execution when applied.

In contrast, techniques presented herein with respect to
certain embodiments include a lock-based instruction order-
ing mechanism for speculative out-of-order executions to
keep track of the serialization relationships between one or
more instructions. In exemplary such embodiments, two
new 1nstruction prefixes (herein termed “‘spec_lock™ and
“spec_wait,” although it will be appreciated that any nomen-

US 11,544,070 B2

9

clature may be used) and a lock table are introduced. In
certain embodiments, one or more of such prefixes may also
include a prefix parameter to encode or otherwise associate
a specified tag with a particular lock, allowing multiple locks
to coexist (such as may be used in a nested loop, within
different functions, or in other scenarios). For example, i1 an
8-bit prefix parameter 1s used, a corresponding lock table
may include a 256-bit array to represent up to 256 possible
locks. In various embodiments, such instruction prefixes
may be utilized by a compiler enabled by the techniques
described herein, such as to identily conditional branch
instructions deemed vulnerable to side-channel or other
attacks described elsewhere herein (e.g., Spectre attacks).
In at least some embodiments, the described instruction
prefixes may be inserted during compile time by a compiler
or JIT compiling engine. Some programming languages,
such as those that may rely on JIT compilation such as Java
and JavaScript, already include facilities for automatic code
generation (such as for bounds-check), and thus may be
readily adapted to utilize such instruction prefixes. Other
languages that may not include primitives for bounds-check
(such as the C programming language) may depend on one
or more compiler rules to identify and apply such prefixes.
Such rules already exist for the current solution for this type
of the Spectre attack (e.g., an LFENCE or other such
instruction). Various compilers may also support program-
ming and markup extensions to allow developers to manu-
ally support the use of such prefixes.
In various embodiments, execution of instruction code
sequences that include the described instruction prefixes
may be summarized as follows: when an instruction with a
lock prefix 1s fetched, a corresponding lock bit 1s set; when
an 1nstruction with a corresponding wait prefix 1s fetched, 1t
will only enter out-of-order execution 1f the corresponding
lock bit 1s not set; when an instruction with a lock prefix
completes execution, the corresponding lock bit 1s reset.
Operations exemplitying this summarized behavior are
described 1n greater detail below with respect to FIGS. 3 and

4.

FIG. 3 depicts a modified exemplary instruction code
sequence 300, which comprises a boundary checking code
sequence similar to that described above with respect to
exemplary instruction code sequence 200 of FIG. 2. In the
depicted embodiment, the exemplary instruction code
sequence 300 utilizes an instruction lock in accordance with
techniques described herein to prevent speculative execution
of particular instructions associated with that instruction
lock.

The exemplary 1nstruction code sequence 300 results in
the following operations. Instruction 301 moves the content
of a memory location indicated by pointer to register rax.
Instruction 302 adds a value from register rdi to the values
stored 1n register rax and stores the result to register rax.
Instruction 303 compares a value stored 1n register rax with
a value stored 1n register rcx, such that 1f (as a result of such
comparison) the value from register rax 1s determined to be
greater or equal to the value from register rcx, 1nstruction
304 jumps to an abort function and thereby prevents execu-
tion of Instruction 305.

In notable contrast with the similar Instruction 203 of
istruction code sequence 200 and FIG. 2, Instruction 303
turther includes an 1nstruction prefix spec_lock, creating a
speculative execution lock associated with the result of the
instruction. Moreover, although 1n certain embodiments and
scenarios a speculative execution lock may be utilized
without any additional parameters, 1n the depicted embodi-
ment the speculative execution lock created by Instruction

10

15

20

25

30

35

40

45

50

55

60

65

10

303 further includes a lock identifier parameter cmp_result.
Instruction 304 comprises the 1dentical “jge abort” directive
of Instruction 204 of FIG. 2, but 1n notable contrast further
includes the instruction prefix spec_wait and the lock 1den-
tifier parameter cmp_result, indicating that no speculative
execution of Instruction 304 is to be performed until the
speculative execution lock associated with lock identifier
parameter cmp_result has been cleared—i.e., until the com-
piler has committed the result of Instruction 303. Similarly,
Instruction 3035 comprises the “mov rbx, [rax]” directive of
Instruction 205 from FI1G. 2, but further includes the instruc-
tion prefix spec_wait and lock identifier parameter cmp_re-
sult, again indicating that no speculative execution of
Instruction 305 1s to be performed until the speculative
execution lock associated with lock identifier parameter
cmp_result has been cleared.

It will be appreciated that in accordance with the
described usage of such speculative execution locks, the
speculative execution of specified structions 1s prevented
but that normal speculative execution and out-of-order pro-
cessing—and the corresponding etliciencies and other pro-
cessing advantages associated with such modern processor
features—are otherwise enabled.

FIG. 4 depicts an exemplary execution flowchart 400, 1n
which a processor enabled via techniques presented herein 1s
presented with an instruction code sequence for execution.
The depicted operations begin at block 403, 1n which the
processor fetches a next mstruction for execution. It will be
appreciated that such next instruction may or may not be an
initial directive within the exemplary instruction code
sequence.

At block 410, the processor determines whether the
fetched 1nstruction includes a speculative execution lock
prefix, such as the “spec_lock™ prefix described above with
respect to exemplary instruction code sequence 300 FIG. 3.
As noted elsewhere herein, of course, any nomenclature may
be used to represent such a speculative execution lock. If 1t
1s determined that the fetched instruction includes a lock
prefix, the processor proceeds in block 413 to set the lock bt
corresponding to the lock identifier parameter associated
with the specified speculative execution lock. As noted
elsewhere herein, 1n certain embodiments no such lock
identifier parameter may be associated with the speculative
execution lock (such as it only a single such speculative
execution lock 1s utilized by the compiler and/or processing
core). For the depicted embodiment of FIG. 4, we will
assume that multiple speculative execution locks—and mul-
tiple corresponding lock identifier parameters—may be uti-
lized. At block 420, the processor executes the instruction
that included the speculative execution lock prefix; at block
4235, the processor clears the corresponding lock bit once the
results of the instruction have committed. It will be appre-
ciated that while block 425 i1s depicted as immediately
following block 420, significant operations may be per-
formed between the fetched instruction being executed and
the results of that instruction are committed, such as the
processor again proceeding to block 405 to fetch one or
more additional istructions for processing (either serialized
or speculative).

I1 1n block 410 1t was determined that a fetched instruction
does not include a speculative execution lock prefix, at block
430 the compiler determines whether the fetched instruction
includes a wait prefix associated with such a speculative
execution lock, such as the “spec_wait cmp_result” prefix
and lock 1dentifier parameter discussed above with respect to
Instructions 304 and 3035 of exemplary instruction code

sequence 300 within FIG. 3. If so, then at block 435 the

US 11,544,070 B2

11

compiler determines whether the lock bit corresponding to
the associated lock 1dentifier parameter 1s set. If so, then at
block 440 the compiler prevents the speculative execution of
the 1nstruction, and returns to block 405 to fetch the next
istruction for processing accordingly.

If 1 block 430 1t was determined that the fetched instruc-
tion does not 1include a wait prefix associated with a specu-
lative execution lock, or 1f 1n block 435 1s determined that
the corresponding lock bit for the identified speculative
execution lock 1s not set, then the processor proceeds to
block 445, such as to allow and/or carry out speculative
execution of the mstruction as usual.

In certain embodiments, lock bits corresponding to one or
more speculative execution locks may be cleared after a
predefined number of clock cycles, such as a predefined
number associated with a maximum possible instruction
latency of the processing core. In this manner, for example,
processing deadlocks may be avoided. In the embodiment of
FIG. 4, this type of optional clearing of the lock bits 1s
depicted at block 450.

FIGS. SA-5B and 6 are provided to depict operations and
context related to improved techniques for preventing and/or
mitigating certain side-channel based attacks such as (but
not limited to) the class II Spectre attacks described above.
In particular, such techniques may provide improved miti-
gation ol such side-channel based attacks by randomizing
both the execution branch history as well as the source
address (1.e., the “from address™) of each vulnerable indirect
branch, thereby eliminating the conditions required for such
attacks.

Processing architectures that make use of speculative
execution are vulnerable to such side-channel based attacks
due 1n large part to the following characteristics: (1) specu-
lative execution 1s not necessarily bounded by architectural
security checks; (2) cache lines filled by speculative execu-
tion 1s not reversed (e.g., “tflushed”) when the speculatively
executed code 1s dropped, thus leaving measurable trace to
architectural execution; and (3) branch prediction resources
(such as source and target addresses) are shared by entities
with different security context (e.g., diflerent processes on
the same core, user mode code and kernel mode code,
different threads of the same physical core).

As described elsewhere herein in greater detail, certain
side-channel based attacks take advantage of indirect branch
predictors inside the processor via branch target injection,
such that a malicious attacker influences the branch predic-
tion—and thus the speculative execution of the victim
process—by 1njecting a speculative branch target into the
indirect branch predictor. The speculatively executed code
in the victim process can do secret-dependent cache loading
that eventually leaks the secret value. In particular, an
attacker needs to run “tramning code” which satisfies the
tollowing conditions: (1) 1t must contain an 1ndirect branch
with an 1dentical linear address (or aliased linear address) as
the vulnerable indirect branch inside the victim process; and
(2) the branch history immediately prior to the vulnerable
indirect branch within the victim process must match that of
the attacker’s training code.

In various embodiments, such side-channel based attacks
are prevented or mitigated by breaking the necessary con-
ditions of the attack by randomizing, for each vulnerable
indirect branch, one or both of the branch history and the
source address. Via such randomization, the possibility of
successiul such side-channel based attacks may be reduced
to a level that 1s impractical to exploit, thereby eflectively
mitigating the vulnerability. In various embodiments, such
randomization may be achieved by introducing an interme-

10

15

20

25

30

35

40

45

50

55

60

65

12

diate area 1 memory that includes continuous indirect
branch structions, (e.g., “ymp rax”), which serves as a
“randomized trampoline” (or “randpoline”) between the
original source address and target address of a vulnerable
indirect branch. In at least some embodiments, each process
to be protected may be provided with a per-process inter-
mediate memory area comprising a plurality of indirect
branch instructions, an example of which 1s shown below:

//intermediate memory area:

0: fT e3 jmp rbx
2: ff e3 jmp rbx
4. fT e3 jmp rbx
6: ff e3 jmp rbx
8: fT e3 jmp rbx
a: fT e3 jmp rbx
n: fT e3 jmp rbx

Thus, in order to achieve the desired randomization
described above, 1n certain embodiments a vulnerable indi-
rect branch may be converted 1nto (1) a low-latency jump
from the original source address of the indirect branch to the
intermediate memory area, with the low-latency jump
including a random oflset; and (2) an indirect jump from the
intermediate memory area to the originally specified target
address. In this manner, both the source address of the
vulnerable indirect jump and the branch history immediately
prior to that vulnerable indirect jump are randomized. In
certain embodiments, the random oflset (which determines
the particular intermediate target address within the inter-
mediate memory area) may comprise a random number
generated at runtime. It will be appreciated that without
direct knowledge of such random oflset, an attacker may be
prevented from injecting a speculative indirect branch entry
that matches the execution tlow of a victim process without
utilizing an impractical brute force approach.

FIG. SA depicts an unmitigated execution flow of a
vulnerable indirect branch instruction. In particular, a vul-
nerable indirect branch instruction 501 branches to a target
address 599 without intermediate steps. Notably, the execu-
tion tlow 500 1s vulnerable to side-channel based attacks in
the manner described above, such as with respect to class 11
Spectre attacks.

FIG. 5B depicts an exemplary protected execution flow
that mitigates or eliminates the vulnerabilities of such 1ndi-
rect branch instructions 1 accordance with techniques
described herein. In particular, 1n contrast to the vulnerable
indirect branch instruction 501 of FIG. 5A, indirect branch
instruction 5035 has been converted to a branch instruction
directed to a randomized target address within an interme-
diate memory area 350. The imntermediate memory area 550
includes a plurality of indirect branch instructions that
includes intermediate jump instruction 525, intermediate
jump 1nstruction 530, and intermediate jump instruction
535. The particular intermediate jump instruction within the
intermediate memory area 550 to which the indirect branch
istruction 505 1s directed 1s determined by a randomized
oflset (not shown). In this manner, an attacker i1s rendered
unable to provide training code that anticipates the destina-
tion address ol that intermediate target. For example,
depending on the random oflset generated at runtime, the
indirect branch instruction 505 may be directed to any one
of the intermediate jump 1nstruction 525, mtermediate jump
instruction 530, and intermediate jump 1nstruction 335. In
this manner, the first requirement condition for a class 11

US 11,544,070 B2

13

side-channel based attack (that the attacking “traiming code”
must contain an indirect branch with an identical linear or
aliased address as the vulnerable indirect branch of the
victim process) 1s broken. It will be appreciated that in
various embodiments, of course, the intermediate “trampo-
line” memory area 530 may include many more than merely
the three intermediate jump instructions of the illustrated
embodiment, which 1s simplified for clarity.

Each of the mtermediate jump instructions 525, 530 and
535 direct execution tlow to the branch target address 599.
However, because the branch history immediately prior to
that branch target address 599 has been randomized as
described above, the second requirement condition for a
class II side-channel based attack (that the branch history
immediately prior to the vulnerable indirect branch within
the victim process must match that of the attacker’s training,
code) 1s also broken. In this manner, such side-channel based
attacks are likely prevented entirely or mitigated to an extent
that renders such attacks impracticable.

FIG. 6 depicts three distinct linear memory address
regions that include a source linear address region 605, an
intermediate linear address region 610, and a target linear
address region 615. It will be appreciated that the linear
address regions depicted 1n the illustrated embodiment need
not be associated with one another in any way, and may be
established completely independently from one another.

The source linear address region 605 includes an 1nstruc-
tion code segment that has been modified 1n accordance with
techniques described herein, such as to mitigate vulnerabil-
ity to one or more classes of side-channel based attacks. In
particular, 1n the depicted embodiment a vulnerable indirect
jump such as

1mp gword ptr [memory_address]
has been converted to

lea rax, [randpoline_base + rand_offset™2]
mov rbx, dword ptr [memory_address]
jmp rax

where randpoline_base 1s a constant known at compiling
time or loading time and may in at least the depicted
embodiment be used as an i1mmediate, and wherein
rand_oflset 1s based on a random number generated at
runtime. In various embodiments, the random number may
be eitther a pseudorandom number or a cryptographic ran-
dom number, and depending upon mitigation requirements
may be generated (as non-exclusive examples) per process,
per routine, or per branch. In certain embodiments,
rand_oflset may be stored 1n register region to avoid
memory access.

As noted elsewhere herein, the reserved intermediate
linear address region 610 comprises a plurality of 1dentical
Tump 1nstructions, each with a corresponding target address
that 1s 1dentical to the original vulnerable mdirect jump. In
the depicted embodiment, the destination address of the first
“imp rax’’ instruction 607 1s determined by the addition of
the random offset rand oflset™*2 to the base address rand-
poline_base, with the 2x multiplier corresponding to the
two-byte size of each instruction within intermediate linear
address region 610. Upon completion of that “ymp rax”
istruction 607, execution jumps to intermediate jump
instruction 612 within the intermediate linear address region
610, which 1n turn directs execution to the original target
destination instruction 617.

In various embodiments, the randomization entropy asso-
ciated with a specified intermediate memory area may be

10

15

20

25

30

35

40

45

50

55

60

65

14

related to the size of the intermediate memory area. For
example a two megabyte (ZM) intermediate memory area
per process can provide 20 bits of entropy. Moreover,
although the embodiment depicted in FIG. 6 illustrates only
a single mtermediate memory area, in other embodiments
multiple intermediate memory areas may be utilized in order

to 1ncrease randomization entropy and further mitigate the
likelihood of a successiul side-channel based attack. A

multiple-level intermediate memory area may increase such
entropy exponentially with only a very limited increase 1n
memory footprint. As one non-limiting example assuming a
dual level intermediate memory area (in which each vulner-
able indirect branch 1s modified to include a first randomized
jump to a first intermediate memory area, followed by a
second randomized jump to a second intermediate memory
area, and then a jump to the final branch target address) may
achieve 40 bit randomness entropy utilizing only a 4M
intermediate memory area per process.

It will be appreciated that even with relatively low
entropy (e.g., 16 bit randomness entropy), such randomiza-
tion renders side-channel based attacks largely impracti-
cable, at least because there 1s always noise in cache-loading
measurements due to speculative touches from arbitrary
code execution. Besides the fact that an attacker process
would potentially be required to brute force each targeted
byte of information (with an enormous corresponding time
cost), 1t 1s almost impossible to discern such a brute-forced
signal from background noise.

In various embodiments, the “randpoline” techniques
described herein may also be applied to vulnerable imndirect
calls. For example, the vulnerable indirect call

call gword ptr [memory_address]
may be converted to the following code under randpoline:

branch_origin:

jmp call_label

jmp_label:

lea rax, [randpoline_base + rand_offset™®2]
mov rbx, gword ptr [memory_address]
jmp rax

call_label:

call jmp_label

return label:

While such techniques provide protection against certain
classes of side-channel based attacks, the modified code
segment above remains consistent with the original control
flow, such that the invoking routine will return to return_la-
bel.

Unlike the “retpoline” mitigation approaches described
elsewhere herein, which convert all indirect branches 1n the
form of return, the described “randpoline” techniques do not
modily the nature of the aflected indirect branches, and are
therefore compatible with existing control flow mitigation
technologies like CFG, RFG, CET and RAP. Moreover, 1n
certain embodiments such techniques may be used i com-
bination with “retpoline” mitigation approaches 1n order to
provide more robust protection against side-channel based
attacks.

While figures of the present disclosure illustrate and/or
describe operations according to particular embodiments 1n
accordance with techniques described herein, 1t 1s to be
understood that not all such operations are necessary for
other embodiments. Indeed, 1t 1s fully contemplated herein
that 1n other embodiments of the present disclosure, the
operations 1illustrated and/or described with respect to such
figures, and/or other operations described herein, may be

US 11,544,070 B2

15

combined 1n a manner not specifically shown in any of those
drawings, but still fully consistent with the present disclo-
sure. Thus, claims directed to features and/or operations that
are not exactly shown 1n one drawing are deemed within the
scope and content of the present disclosure.

In general, devices described herein may comprise vari-
ous physical and/or logical components for communicating
information which may be implemented as hardware, sofit-
ware, or any combination thereot, as desired for a given set
ol design parameters or performance constraints. Although
the accompanying figures and corresponding text may depict
or describe a limited number of components by way of
example, 1t will be appreciated that a greater or a fewer
number of components may be employed for a given imple-
mentation.

In various embodiments, a device described herein
described herein may be implemented for a PC, CE, and/or
mobile platform as a system within and/or connected to a
device such as personal computer (PC), set-top box (STB),
television (TV) device, Internet Protocol TV (IPTV) device,
media player, and/or smart phone. Other examples of such
devices may include, without limitation, a workstation,
terminal, server, media appliance, audio/video (AN)
receiver, digital music player, entertainment system; digital
TV (DTV) device, high-definition TV (HDTV) device,
direct broadcast satellite TV (DBS) device, video on-de-
mand (VOD) device, Web TV device, digital video recorder
(DVR) device, digital versatile disc (DVD) device, high-
definition DVD (HD-DVD) device, Blu-ray disc (BD)
device, video home system (VHS) device, digital VHS
device, a digital camera, a gaming console, display device,
notebook PC, a laptop computer, portable computer, hand-
held computer, personal digital assistant (PDA), voice over
IP (VoIP) device, cellular telephone, combination cellular
telephone/PDA, pager, messaging device, wireless access
point (AP), wireless client device, wireless station (STA),
base station (BS), subscriber station (SS), mobile subscriber
center (MSC), mobile unit, and so forth.

In various embodiments, a device described and/or oth-
erwise referenced herein may form part of a wired commu-
nications system, a wireless communications system, or a
combination of both. For example, such a device may be
arranged to communicate information over one or more
types of wired communication links. Examples of a wired
communication link, may include, without limitation, a
wire, cable, bus, printed circuit board (PCB), Ethernet
connection, peer-to-peer (P2P) connection, backplane,
switch fabric, semiconductor matenal, twisted-pair wire,
co-axial cable, fiber optic connection, and so forth. Such a
device also may be arranged to communicate information
over one or more types of wireless communication links.
Examples of a wireless communication link may include,
without limitation, a radio channel, satellite channel, tele-
vision channel, broadcast channel infrared channel, radio-
frequency (RF) channel, Wireless Fidelity (WiF1) channel, a
portion of the RF spectrum, and/or one or more licensed or
license-free frequency bands. Although certain embodi-
ments may be illustrated using a particular communications
media by way of example, it may be appreciated that the
principles and techniques discussed herein may be imple-
mented using various communication media and accompa-
nying technology.

In various embodiments, a device described herein may
be arranged to operate within a network, such as a Wide Area
Network (WAN), Local Area Network (LAN), Metropolitan
Area Network (MAN), wireless WAN (WWAN), wireless
LAN (WLAN), wireless MAN (WMAN), wireless personal

10

15

20

25

30

35

40

45

50

55

60

65

16

arca network (WPAN), Worldwide Interoperability {for
Microwave Access (WiIMAX) network, broadband wireless
access (BWA) network, the Internet, the World Wide Web,
telephone network, radio network, television network, cable
network, satellite network such as a direct broadcast satellite
(DBS) network, Code Division Multiple Access (CDMA)
network, third generation (3G) network such as Wide-band
CDMA (WCDMA), fourth generation (4G) network, Time
Division Multiple Access (TDMA) network, Extended-
TDMA (E-TDMA) cellular radiotelephone network, Global
System for Mobile Communications (GSM) network, GSM
with General Packet Radio Service (GPRS) systems (GSM/
GPRS) network, Synchronous Division Multiple Access
(SDMA) network, Time Division Synchronous CDMA ('TD-
SCDMA) network, Orthogonal Frequency Division Multi-
plexing (OFDM) network, Orthogonal Frequency Division
Multiple Access (OFDMA) network, North American Digi-
tal Cellular (INADC) cellular radiotelephone network, Nar-
rowband Advanced Mobile Phone Service (NAMPS) net-
work, Universal Mobile Telephone System (UMTS)
network, and/or any other wired or wireless communications
network configured to carry data in accordance with the
described embodiments.

As used 1n this application and 1n the claims, a list of 1tems
joined by the term “and/or” can mean any combination of
the listed items. For example, the phrase “A, B and/or C” can
mean A; B; C; A and B; Aand C; B and C; or A, B and C.
As used 1n this application and 1n the claims, a list of 1tems
jomed by the term “at least one of” can mean any combi-
nation of the listed terms. For example, the phrases “at least

one of A, Bor C”’can mean A; B; C; Aand B; Aand C; B
and C; or A, B and C.

As used 1n any embodiment herein, the terms “‘system,’
“component,” or “module” may refer to, for example, sofit-
ware, firmware and/or circuitry configured to perform any of
the atorementioned operations. Software may be embodied
as a solftware package, code, instructions, instruction sets
and/or data recorded on non-transitory computer readable
storage mediums. Firmware may be embodied as code,
instructions or instruction sets and/or data that are hard-
coded (e.g., nonvolatile) in memory devices. “Circuitry”, as
used in any embodiment herein, may comprise, for example,
singly or 1n any combination, hardwired circuitry, program-
mable circuitry such as computer processors comprising one
or more individual 1nstruction processing cores, state
machine circuitry, and/or firmware that stores instructions
executed by programmable circuitry or future computing
paradigms including, for example, massive parallelism, ana-
log or quantum computing, hardware embodiments of accel-
erators such as neural net processors and non-silicon 1mple-
mentations of the above. The circuitry may, collectively or
individually, be embodied as circuitry that forms part of a
larger system, for example, an integrated circuit (IC), system
on-chip (SoC), desktop computers, laptop computers, tablet
computers, servers, smartphones, efc.

Any of the operations described herein may be 1mple-
mented 1 a system that includes one or more storage
mediums (e.g., non-transitory storage mediums) having
stored thereon, individually or in combination, instructions
that when executed by one or more processors perform the
methods. Here, the processor may include, for example, a
server CPU, a mobile device CPU, and/or other program-
mable circuitry. Also, 1t 1s intended that operations described
herein may be distributed across a plurality of physical
devices, such as processing structures at more than one
different physical location. The storage medium may include
any type of tangible medium, for example, any type of disk

b

US 11,544,070 B2

17

including hard disks, floppy disks, optical discs, compact
disc read-only memories (CD-ROMs), compact disc rewrit-
ables (CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic and static
RAMs, erasable programmable read-only memories

(EPROMs), electrically erasable programmable read-only
memories (EEPROMs), flash memories, Solid State Disks

(SSDs), embedded multimedia cards (eMMCs), secure digi-

tal input/output (SDIO) cards, magnetic or optical cards, or
any type of media suitable for storing electronic instructions.
Other embodiments may be implemented as software
executed by a programmable control device.

Thus, the present disclosure 1s directed to systems and
methods for mitigating or eliminating the effectiveness of a
side-channel based attack, such as one or more classes of an
attack commonly known as Spectre. Novel instruction pre-
fixes, and 1n certain embodiments one or more correspond-
ing instruction prefix parameters, may be provided to
enforce a serialized order of execution for particular instruc-
tions without serializing an entire instruction flow, thereby
improving performance and mitigation reliability over exist-
ing solutions. In addition, improved mitigation of such
attacks 1s provided by randomizing both the execution
branch history as well as the source address of each vulner-
able indirect branch, thereby eliminating the conditions
required for such attacks.

The following examples pertain to further embodiments.
The following examples of the present disclosure may
comprise subject material such as at least one device, a
method, at least one machine-readable medium for storing
istructions that when executed cause a machine to perform
acts based on the method, means for performing acts based
on the method and/or a system for secure display of pro-
tected content.

According to example 1 there 1s provided a system for
mitigating vulnerability to one or more side-channel based
attacks. The system may comprise one or more processors.
The system may further comprise a storage device coupled
to the one or more processors. The storage device may
include machine-readable instructions that, when executed
by at least one of the one or more processors, cause the at
least one processor to fetch a first instruction for execution
that includes a speculative execution (SE) lock prefix, and
initiate execution of the first instruction; to, after execution
of the first instruction 1s 1nitiated, fetch a second instruction;
and to, responsive to a determination that the second nstruc-
tion includes an SE prefix associated with the SE lock prefix
of the first instruction, prevent speculative execution of the
second 1nstruction until execution of the first mstruction 1s
completed.

Example 2 may include the elements of example 1,
wherein the machine-readable nstructions further cause the
at least one processor to, after execution of the first imstruc-
tion 1s mitiated, fetch a third instruction; and, responsive to
a determination that the third instruction does not include a
SE lock prefix and prior to the execution of the first
istruction being completed, mnitiate speculative execution
of the third mstruction.

Example 3 may include the elements of any of examples
1-2, wherein the first instruction further includes an SE lock
identifier associated with the SE lock prefix, and wherein
determining that the third instruction includes an SE lock
prefix associated with the SE lock prefix of the first instruc-

tion includes determining that the third mstruction includes
the SE lock 1dentifier.

10

15

20

25

30

35

40

45

50

55

60

65

18

Example 4 may include the elements of any of examples
1-3, wherein to initiate the execution of the first instruction
includes to set one or more lock bits associated with the SE
lock prefix responsive to a determination that the first
istruction includes the SE lock prefix, and wherein the
machine-readable instructions further cause the at least one
processor to clear the one or more lock bits responsive to
execution of the first instruction being completed.

Example 5 may include the elements of example 4,
wherein the first instruction further includes an SE lock
identifier associated with the SE lock prefix, and wherein the
one or more lock bits are further associated with the SE lock
identifier.

Example 6 may include the elements of any of examples
4-5, wherein the machine-readable instructions further cause
the at least one processor to initiate execution of the second
istruction responsive to a determination that the one or
more lock bits have been cleared.

According to example 7 there 1s provided a non-transitory
computer-readable medium 1ncluding machine-readable
instructions that, when executed by one or more processors,
cause the one or more processors to perform a method. The
method may comprise fetching a first instruction for execu-
tion that includes a speculative execution (SE) lock prefix,
and mitiating execution of the first instruction. The method
may further comprise, after execution of the first instruction
1s 1itiated, fetching a second instruction. The method may
turther comprise, responsive to determining that the second
instruction includes an SE prefix associated with the SE lock
prefix of the first instruction, preventing speculative execu-
tion of the second instruction until execution of the first
istruction 1s completed.

Example 8 may include the elements of example 7,
wherein the method further comprises, after initiating execu-
tion of the first mstruction, fetching a third instruction; and,
responsive to determining that the third instruction does not
include a SE lock prefix and prior to the execution of the first
instruction being completed, mitiating speculative execution
of the third instruction.

Example 9 may include the elements of any of examples
7-8, wherein the first instruction further includes an SE lock
identifier associated with the SE lock prefix, and wherein
determining that the third instruction includes an SE lock
prefix associated with the SE lock prefix of the first instruc-
tion includes determining that the third instruction includes
the SE lock 1dentifier.

Example 10 may include the elements of any of examples
7-9, wherein initiating the execution of the first instruction
includes setting one or more lock bits associated with the SE
lock prefix responsive to determining that the first imstruc-
tion includes the SE lock prefix, and wherein the method
turther comprises clearing the one or more lock bits respon-
s1ive to execution of the first istruction being completed.

Example 11 may include the elements of example 10,
wherein the first instruction further includes an SE lock
identifier associated with the SE lock prefix, and wherein the
one or more lock bits are further associated with the SE lock
identifier.

Example 12 may include the elements of any of examples
10-11, wherein the method further comprises initiating
execution of the second instruction responsive to determin-
ing that the one or more lock bits have been cleared.

According to example 13, a system 1s provided for
mitigating vulnerability to one or more side-channel based
attacks. The system may comprise one or more processors.
The system may further comprise a storage device coupled
to the one or more processors. The storage device may

US 11,544,070 B2

19

include machine-readable instructions that, when executed
by at least one of the one or more processors, cause the at
least one processor to 1dentily a targeted branch instruction
for execution, wherein the 1dentified targeted branch instruc-
tion specifies a branch target address; and replace the
targeted branch 1nstruction with an 1nstruction code
sequence. The mstruction code sequence may be to generate
a distinct intermediate target address comprising a base
address of a reserved intermediate address space and a
randomized offset; and to cause execution to proceed to the
generated distinct mtermediate target address prior to pro-
ceeding to the specified branch target address.

Example 14 may include the elements of example 13,
wherein the generated distinct intermediate target address
comprises a sum of the base address of the reserved inter-
mediate address space and the randomized oflset.

Example 15 may include the elements of any of examples
13-14, wherein the reserved intermediate address space
includes a plurality of identical instruction sequences.

Example 16 may include the elements of example 15,
wherein each of the identical 1nstruction sequences within
the plurality comprises an itermediate branch instruction
that specifies a final target address 1dentical to the specified
branch target address of the targeted branch instruction.

Example 17 may include the elements of example 16,
wherein to cause the execution to proceed to the specified
branch target address includes causing the execution of one

intermediate branch instruction of the plurality of i1dentical
intermediate branch instructions.

Example 18 may include the elements of any of examples
13-17, wherein the reserved intermediate address space 1s a
first reserved intermediate address space of multiple
reserved intermediate address spaces, wherein the distinct
intermediate target address 1s a {first intermediate target
address within the first reserved intermediate address space,
and wherein the mstruction code sequence may further be to
generate a second mtermediate target address comprising a
distinct second randomized oflset and a base address of a
second reserved intermediate address space of the multiple
reserved intermediate address spaces; and to cause execution
to proceed to the generated second intermediate target
address prior to proceeding to the specified branch target
address.

Example 19 may include the elements of example 18,
wherein the second mtermediate target address comprises a
sum of the distinct second randomized offset and the base
address of the second reserved intermediate address space.

According to example 20, a non-transitory computer-
readable medium 1s provided that includes machine-read-
able instructions that, when executed by one or more pro-
cessors, cause the one or more processors to i1dentify a
targeted branch instruction for execution, wherein the i1den-
tified targeted branch instruction specifies a branch target
address. The machine-readable mstructions may further
cause the one or more processors to replace the targeted
branch 1nstruction with a modified instruction code
sequence. The modified instruction code sequence may be to
generate a distinct intermediate target address comprising a
base address of a reserved intermediate address space and a
randomized offset, and to cause execution to proceed to the
generated distinct mtermediate target address prior to pro-
ceeding to the specified branch target address.

Example 21 may include the elements of example 20,
wherein the generated distinct intermediate target address
comprises a sum of the base address of the reserved inter-
mediate address space and the randomized offset.

10

15

20

25

30

35

40

45

50

55

60

65

20

Example 22 may include the elements of any of examples
20-21, wherein the reserved intermediate address space
includes a plurality of i1dentical instruction sequences.

Example 23 may include the elements of example 22,
wherein each of the identical instruction sequences within
the plurality comprises an intermediate branch instruction
that specifies a final target address 1dentical to the specified
branch target address of the targeted branch instruction.

Example 24 may include the elements of example 23,
wherein to cause the execution to proceed to the specified
branch target address includes to cause the execution of one
intermediate branch instruction of the plurality of identical
intermediate branch instructions.

Example 25 may include the elements of any of examples
20-24, wherein the reserved intermediate address space 1s a
first reserved intermediate address space of multiple
reserved intermediate address spaces, wherein the distinct
intermediate target address 1s a {first intermediate target
address within the first reserved intermediate address space,
and wherein the modified instruction code sequence 1is
further to generate a second ntermediate target address
comprising a distinct second randomized oflset and a base
address of a second reserved intermediate address space of
the multiple reserved intermediate address spaces; and to
cause execution to proceed to the generated second inter-
mediate target address prior to proceeding to the specified
branch target address.

According to example 26, a method 1s provided for
mitigating vulnerability to one or more side-channel based
attacks. The method may comprise fetching a first imstruc-
tion for execution that includes a speculative execution (SE)
lock prefix, and nitiating execution of the first istruction.
The method may further comprise, after execution of the
first 1nstruction 1s initiated, fetching a second instruction.
The method may further comprise, responsive to determin-
ing that the second instruction includes an SE prefix asso-
ciated with the SE lock prefix of the first instruction,
preventing speculative execution of the second instruction
until execution of the first instruction 1s completed.

Example 27 may include the elements of example 26,
wherein the method further comprises, after initiating execu-
tion of the first instruction, fetching a third instruction; and,
responsive to determining that the third instruction does not
include a SE lock prefix and prior to the execution of the first
instruction being completed, 1nitiating speculative execution
of the third mstruction.

Example 28 may include the elements of any of examples
26-27, wherein the first instruction further includes an SE
lock 1dentifier associated with the SE lock prefix, and
wherein determining that the third instruction includes an SE
lock prefix associated with the SE lock prefix of the first
instruction includes determining that the third instruction
includes the SE lock identifier.

Example 29 may include the elements of any of examples
26-28, wherein 1nitiating the execution of the first istruc-
tion includes setting one or more lock bits associated with
the SE lock prefix responsive to determining that the first
istruction includes the SE lock prefix, and wherein the
method further comprises clearing the one or more lock bits
responsive to execution of the first mstruction being com-
pleted.

Example 30 may include the elements of example 29,
wherein the first instruction further includes an SE lock
identifier associated with the SE lock prefix, and wherein the
one or more lock bits are further associated with the SE lock
identifier.

US 11,544,070 B2

21

Example 31 may include the elements of any of examples
29-30, wherein the method further comprises imtiating
execution of the second instruction responsive to determin-
ing that the one or more lock bits have been cleared.

According to example 32, a method 1s provided for
mitigating vulnerability to one or more side-channel based
attacks. The method may comprise i1dentitying a targeted
branch instruction for execution that specifies a branch
target address. The method may further comprise generating,
a distinct intermediate target address comprising a base
address of a reserved intermediate address space and a
randomized oflset, and causing execution to proceed to the
generated distinct intermediate target address prior to pro-
ceeding to the specified branch target address.

Example 33 may include the elements of example 32,
wherein the generated distinct intermediate target address
comprises a sum of the base address of the reserved inter-
mediate address space and the randomized oflset.

Example 34 may include the elements of any of examples
32-33, wherein the reserved intermediate address space
includes a plurality of i1dentical instruction sequences.

Example 35 may include the elements of example 34,
wherein each of the identical 1nstruction sequences within
the plurality comprises an intermediate branch instruction
that specifies a final target address 1dentical to the specified
branch target address of the targeted branch instruction.

Example 36 may include the elements of example 35,
wherein causing the execution to proceed to the specified
branch target address includes causing the execution of one
intermediate branch instruction of the plurality of 1dentical
intermediate branch instructions.

Example 37 may include the elements of any of examples
32-36, wherein the reserved intermediate address space 1s a
first reserved intermediate address space of multiple
reserved intermediate address spaces, wherein the distinct
intermediate target address 1s a {first intermediate target
address within the first reserved intermediate address space,
and wherein the method further includes generating a second
intermediate target address comprising a distinct second
randomized oflset and a base address of a second reserved
intermediate address space of the multiple reserved inter-
mediate address spaces; and causing execution to proceed to
the generated second intermediate target address prior to
proceeding to the specified branch target address.

What 1s claimed 1s:

1. A system for mitigating vulnerability to one or more
side-channel based attacks, the system comprising:

one or more processors; and

a storage device coupled to the one or more processors,

the storage device including machine-readable nstruc-
tions that, when executed by at least one of the one or
more processors, cause the at least one processor to:
identify a targeted branch instruction for execution,
wherein the idenfified targeted branch instruction
specifies a branch target address; and
replace the targeted branch instruction with an struc-
tion code sequence to:
generate a distinct imntermediate target address com-
prising a base address of a reserved intermediate
address space and a randomized oflset; and
cause execution to proceed to the generated distinct
intermediate target address prior to proceeding to
the specified branch target address.

2. The system of claim 1, wherein the generated distinct
intermediate target address comprises a sum of the base
address of the reserved intermediate address space and the

l

randomized offset.

10

15

20

25

30

35

40

45

50

55

60

65

22

3. The system of claim 1, wherein the reserved interme-
diate address space includes a plurality of identical instruc-
tion sequences.
4. The system of claim 3, wherein each of the i1dentical
istruction sequences within the plurality comprises an
intermediate branch instruction that specifies a final target
address 1dentical to the specified branch target address of the
targeted branch instruction.
5. The system of claim 4, wherein to cause the execution
to proceed to the specified branch target address includes
causing the execution of one mtermediate branch instruction
of the plurality of identical intermediate branch instructions.
6. The system of claim 1, wherein the reserved interme-
diate address space 1s a first reserved intermediate address
space of multiple reserved intermediate address spaces,
wherein the distinct intermediate target address 1s a first
intermediate target address within the first reserved inter-
mediate address space, and wherein the instruction code
sequence 1s further to:
generate a second ntermediate target address comprising
a distinct second randomized offset and a base address
of a second reserved intermediate address space of the
multiple reserved intermediate address spaces; and

cause execution to proceed to the generated second inter-
mediate target address prior to proceeding to the speci-
fied branch target address.

7. The system of claim 6, wherein the second intermediate
target address comprises a sum of the distinct second ran-
domized offset and the base address of the second reserved
intermediate address space.

8. A non-transitory computer-readable medium including
machine-readable instructions that, when executed by one or
more processors, cause the one or more processors to:

identily a targeted branch instruction for execution,

wherein the i1dentified targeted branch instruction
specifies a branch target address; and

replace the targeted branch instruction with a modified

istruction code sequence, the modified instruction

code sequence to:

generate a distinct intermediate target address compris-
ing a base address of a reserved intermediate address
space and a randomized oflset; and

cause execution to proceed to the generated distinct
intermediate target address prior to proceeding to the
specified branch target address.

9. The non-transitory computer-readable medium of claim
8, wherein the generated distinct intermediate target address
comprises a sum of the base address of the reserved inter-
mediate address space and the randomized oflset.

10. The non-transitory computer-readable medium of
claiam 8, wherein the reserved intermediate address space
includes a plurality of identical instruction sequences.

11. The non-transitory computer-readable medium of
claim 10, wherein each of the identical instruction sequences
within the plurality comprises an intermediate branch
instruction that specifies a final target address 1dentical to the
specified branch target address of the targeted branch
instruction.

12. The non-transitory computer-readable medium of
claim 11, wherein to cause the execution to proceed to the
specified branch target address includes to cause the execu-
tion of one mtermediate branch instruction of the plurality of
identical intermediate branch instructions.

13. The non-transitory computer-readable medium of
claim 8, wherein the reserved intermediate address space 1s
a first reserved intermediate address space of multiple
reserved intermediate address spaces, wherein the distinct

US 11,544,070 B2

23

intermediate target address 1s a first intermediate target

address within the first reserved intermediate address space,

and wheremn the modified instruction code sequence 1is
turther to:

generate a second intermediate target address comprising,

a distinct second randomized oflset and a base address

of a second reserved intermediate address space of the
multiple reserved intermediate address spaces; and

cause execution to proceed to the generated second inter-
mediate target address prior to proceeding to the speci-
fied branch target address.

14. A method comprising:

identifying a targeted branch instruction for execution,

wherein the identified targeted branch instruction
specifies a branch target address; and

replacing the targeted branch instruction with a modified

istruction code sequence, the modified instruction

code sequence comprising instructions to:

generate a distinct intermediate target address compris-
ing a base address of a reserved intermediate address
space and a randomized offset; and

cause execution to proceed to the generated distinct
intermediate target address prior to proceeding to the
specified branch target address.

15. The method of claim 14, wherein the generated
distinct intermediate target address comprises a sum of the
base address of the reserved intermediate address space and
the randomized oflset.

10

15

20

25

24

16. The method of claim 14, wherein the reserved inter-
mediate address space includes a plurality of identical
instruction sequences.
17. The method of claim 16, wherein each of the 1dentical
istruction sequences within the plurality comprises an
intermediate branch instruction that specifies a final target
address 1dentical to the specified branch target address of the
targeted branch instruction.
18. The method of claim 17, wherein the instructions to
cause the execution to proceed to the specified branch target
address 1ncludes 1nstructions to cause the execution of one
intermediate branch instruction of the plurality of 1dentical
intermediate branch instructions.
19. The method of claim 14, wherein the reserved inter-
mediate address space 1s a first reserved intermediate
address space ol multiple reserved intermediate address
spaces, wherein the distinct intermediate target address 1s a
first intermediate target address within the first reserved
intermediate address space, and wherein the modified
instruction code sequence further comprises instructions to:
generate a second 1intermediate target address comprising
a distinct second randomized oflset and a base address
of a second reserved intermediate address space of the
multiple reserved intermediate address spaces; and

cause execution to proceed to the generated second inter-
mediate target address prior to proceeding to the speci-
fied branch target address.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

