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TEMPORAL PROCESSING SCHEME AND
SENSORIMOTOR INFORMATION
PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation application of U.S.
patent application Ser. No. 14/662,063, filed on Mar. 18,
20135, which claims priority under 35 U.S.C. § 119(e) to U.S.
Provisional Patent Application No. 61/955,391 filed on Mar.
19, 2014 and U.S. Provisional Patent Application No.
62/106,620 filed on Jan. 22, 2015, all of which are incor-

porated by reference herein in their entirety.

BACKGROUND
1. Field of the Disclosure

The present disclosure relates to learning and processing
spatial patterns and temporal sequences in a temporal
memory system.

2. Description of the Related Arts

Hierarchical Temporal Memory (HTM) systems represent
a new approach to machine intelligence. In an HITM system,
training data including temporal sequences and/or spatial
patterns are presented to a network of nodes. The HITM
network then builds a model of the statistical structure
inherent to the spatial patterns and temporal sequences in the
training data, and thereby learns the underlying ‘causes’ of
the temporal sequences of patterns and sequences in the
training data. The hierarchical structures of the HTM system
enables modeling of very high dimensional input spaces
using reasonable amounts of memory and processing capac-
ty.

The training process of the HI'M system 1s largely a form
of unsupervised machine learning. During a training pro-
cess, one or more processing nodes of the HI'M system form
relationships between temporal sequences and/or spatial
patterns present in training input and their associated causes
or events. During the learning process, indexes indicative of
the cause of events corresponding to the training input may
be presented to the HIM system to allow the HTM system
to associate particular categories, causes, or events with the
training input.

Once an HIM system has built a model of a particular
input space, 1t can perform inference or prediction. To
perform inference or prediction, a novel mput including
temporal sequences or spatial patterns 1s presented to the
HTM system. During the inference stage, each node in the
HTM system produces an output that can be more invariant
and temporally stable than 1ts iput. In other words, the
output from a node 1n the HI'M system 1s more abstract and
invariant compared to its input. At its highest node, the HTM
system will generate an output indicative of the underlying
cause or event associated with the novel mnput.

SUMMARY

Embodiments relate to processing at a processing node an
input data having a temporal sequence of spatial patterns by
making predictions of the spatial patterns and generating,
output vectors having elements that are maintained active
for a longer period of time 11 the spatial patterns associate
with the elements were accurately predicted to become
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active. In contrast, elements of the output vectors associated
with spatial patterns that were not previously predicted to
become active but were nevertheless activated remain active
for a shorter period of time.

In one embodiment, cells are employed 1n the processing
node to represent temporal relationships between the spatial
patterns. After a cell becomes active, the cell forms connec-
tions to a subset of other cells 1n the processing node that are
active at a time when the cell becomes active. If a cell
became active after being predicted for 1ts activation, the cell
remains active for a longer time, and therefore, causes more
cells to form connections to the activate cell.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the embodiments can be readily under-
stood by considering the following detailed description 1n
conjunction with the accompanying drawings.

FIG. 1A 1s a conceptual diagram of a single processing
node 1n a non-hierarchical system, according to one embodi-
ment.

FIG. 1B 1s a conceptual diagram illustrating an hierarchi-
cal temporal memory (HTM) system including three layers
of processing nodes, according to one embodiment.

FIG. 2A 1s a conceptual diagram illustrating an HI'M
system with multiple processing nodes at lower levels,
according to one embodiment.

FIG. 2B 1s a conceptual diagram illustrating an HI'M
system receiving action information and sensor data as input
data, according to one embodiment.

FIG. 3 1s a block diagram 1llustrating a processing node of
an HTM system, according to one embodiment.

FIG. 4 1s a flowchart illustrating an overall process 1n a
processing node of an HTM system, according to one
embodiment.

FIG. 5 1s a flowchart illustrating a method of performing
spatial pooling 1n a processing node, according to one
embodiment.

FIG. 6 1s a block diagram illustrating a sequence proces-
sor 1n a processing node, according to one embodiment.

FIG. 7 1s a conceptual diagram illustrating operation of
columns of cells, according to one embodiment.

FIG. 8 1s a conceptual diagram 1illustrating the operation
of a cell, according to one embodiment.

FIG. 9 1s a block diagram 1illustrating a cell, according to
one embodiment.

FIG. 10 1s a block diagram illustrating an upper-layer
processing node 1n a temporal memory system, according to
one embodiment.

FIG. 11A 1s a schematic diagram 1llustrating sending of a
teedback signal from an upper node as part of an unpooling
process to place cells of a lower node 1n predictive states,
according to one embodiment.

FIG. 11B 1s a schematic diagram 1illustrating operation of
processing nodes aiter placing cells of sequence processor in
predictive states, according to one embodiment.

FIG. 12 1s a block diagram of a computing device for
implementing nodes according to embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description of embodiments, numerous
specific details are set forth 1n order to provide more
thorough understanding. However, note that the present
invention may be practiced without one or more of these
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specific details. In other instances, well-known features have
not been described 1n detail to avoid unnecessarily compli-
cating the description.

A preferred embodiment 1s now described with reference
to the figures where like reference numbers indicate 1denti-
cal or functionally similar elements. Also 1n the figures, the
left most digits of each reference number corresponds to the
figure 1n which the reference number 1s first used.

Certain aspects of the embodiments include process steps
and instructions described herein in the form of an algo-
rithm. It should be noted that the process steps and nstruc-
tions of the embodiments could be embodied 1n software,
firmware or hardware, and when embodied i1n software,
could be downloaded to reside on and be operated from
different platforms used by a variety of operating systems.

Embodiments also relate to an apparatus for performing,
the operations herein. This apparatus may be specially
constructed for the required purposes, or 1t may comprise a
general-purpose computer selectively activated or recontig-
ured by a computer program stored in the computer. Such a
computer program may be stored imn a computer readable
storage medium, such as, but 1s not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMSs, magnetic
or optical cards, application specific integrated circuits
(ASICs), or any type of media suitable for storing electronic
instructions, and each coupled to a computer system bus.
Furthermore, the computers referred to in the specification
may include a single processor or may be architectures
employing multiple processor designs for increased com-
puting capability.

The language used 1n the specification has been princi-
pally selected for readability and instructional purposes, and
may not have been selected to delineate or circumscribe the
inventive subject matter. Accordingly, the disclosure set
torth herein 1s intended to be illustrative, but not limiting, of
the scope, which 1s set forth in the claims.

Embodiments relate to a processing node 1 a temporal
memory system that performs temporal processing by acti-
vating cells where the activation of a cell 1s maintained
longer 11 the activation of the cell were previously predicted
or activation of more than a certain portion of associated
cells was correctly predicted. An active cell correctly pre-
dicted to be activated or an active cell having connections to
lower node active cells that were correctly predicted to
become active contribute to accurate prediction, and hence,
1s maintained longer than cells activated but were not
previously predicted to become active. Embodiments also
relate to a temporal memory system for detecting, learning,
and predicting spatial patterns and temporal sequences 1n
input data by using action imnformation.

Action mformation herein refers to information associ-
ated with actions taken on a logical or physical entity where
the actions are known to cause changes in the sensor data.
The logical or physical entity 1s external to a temporal
memory system. The action information may, for example,
indicate movement of a sensor (e.g. a camera), movement of
a robotic arm or vehicle, setting of a target parameter (e.g.,
temperature) that can be sensed by a sensor (e.g., thermo-
stat), or transactions (e.g., sell or buy) taken on a stock or
commodities market.

Architecture of Temporal Memory System

A temporal memory system stores temporal relationships

in sequences of spatial patterns and generates useful infor-

mation based on the stored relationships. The useful infor-
mation may 1nclude, for example, prediction of spatial
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patterns to be received, identification of spatial patterns, or
a higher level cause associated with the spatial patterns 1n
input data. The temporal memory system may be of a
non-hierarchical structure or be of a hierarchical structure.

FIG. 1A 1s a conceptual diagram of a single processing
node 104 1n a non-hierarchical system. The processing node
104 receives iput data, processes temporal sequences 1n the
mput data and generates an output. The output of the
processing node 104 1s based on the temporal relationships
between spatial patterns. For example, the output may
indicate prediction on what spatial patterns are to follow or
indicate how well the prediction matched a subsequent
spatial pattern 1n the input data.

FIG. 1B 1s a conceptual diagram of processing nodes
organized 1n a hierarchical manner. Such a hierarchically
structured temporal memory system 1s referred to as a
Hierarchical Temporal Memory (HITM) system. In an HTM
system, multiple processing nodes learn, predict, and infer
mput at different levels of abstraction. An example HTM
system 100 of FIG. 1B comprises three levels where each
level L1, L2, and L3 includes one processing node 110, 120,
and 130, respectively. HTM system 100 has three levels L1,
[.2, L3, with level L1 being the lowest level, level L3 being
the highest level, and level L2 being an intermediate level
between levels L1 and L3. Processing node 110 at the lowest
level L1 recetves a sensed input that changes over time.
Processing node 110 processes the sensed input and outputs
a signal that 1s fed to 1ts parent node 120 at level L2.
Processing node 120 at level L2 1n turn processes the signal
from processing node 120 and outputs a signal to processing
node 130 at the highest level L3. Processing node 120
outputs a signal that represents likely causes or events
associated with the input data.

The HIM system 100 has three levels L1, L2, and L3,
where level L1 1s the lowest level, level 1s L3 1s the highest
level, and level 1.2 1s an intermediate level between levels
L1 and L3. Processing node 110 at the lowest level L1
receives a sensed mput that changes over time. Processing
node 110 processes the sensed input and outputs a signal that
1s fed to 1ts parent node 120 at level L2. Processing node 120
at level L2 1n turn processes the signal from processing node
120 and outputs a signal to processing node 130 at the
highest level L3. Processing node 120 outputs a signal that
represents likely causes or events associated with the input
data.

Each processing node 110, 120, 130 may perform spatial
pooling and/or temporal processing, as described below 1n
detail with reference to FI1G. 4. As a result, the output signals
from each processing node 110, 120, 130 are more abstract
or invariant over time compared to their input signals. In one
embodiment, the top node 130 generates a final output of
HTM system 100 that 1s of the highest abstraction (e.g.,
likely causes or events) among the outputs generated 1n
HTM system 100. The final output may include distributions
indicating likelihood that certain causes or events are asso-
ciated with the sensed input.

Some of the functions performed by a processing node
include, for example, spatial pooling and temporal process-
ing. Spatial pooling herein refers to the process of mapping
a set of distinct but similar spatial patterns into a spatial
co-occurrence. Temporal processing may include, but 1s not
limited to, learning temporal sequences, performing infer-
ence, recognizing temporal sequences, predicting temporal
sequences, labeling temporal sequences, and temporal pool-
ing. Learning temporal sequences herein refers to one or
more of iitializing, expanding, contracting, merging, and
splitting temporal sequences. Predicting temporal sequences
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herein refers to assessing the likelihood that certain spatial
patterns will appear subsequently 1n the input data. Temporal
pooling herein refers to processing mput data to provide an
output that 1s more stable and invariable over time compared
to spatial patterns in the input data. Hardware, software,
firmware, or a combination thereof for performing spatial
pooling 1s hereinafter referred to as a spatial pooler. Hard-
ware, soltware, firmware or a combination thereof for per-
forming the temporal processing 1s heremafter referred to as
a sequence processor. The sequence processor may perform
one or more of learning temporal sequences, performing
inference, recognizing temporal sequences, predicting tems-
poral sequences, labeling temporal sequences and temporal
pooling.

In one embodiment, a processing node includes only a
sequence processor or the spatial pooler. For example, nodes
at the first level of the HTM system may consist of process-
ing nodes having only spatial poolers, and the nodes at the
second level of the HTM system may consist of processing
nodes having only sequence processors. Processing nodes
performing other functions (e.g., filtering) may also be
placed within the HTM system. Alternatively, a processing,
node may include two or more levels of interconnected
sequence processors or spatial poolers.

The processing nodes of the HIM system may be
arranged so that the number of processing nodes decreases
as level increases. FIG. 2A 1s a diagram 1llustrating HTM
system 200 having three levels L1, L2, and L3, where level
L1 1s the lowest level, level L3 1s the highest level, and level
[.2 1s an intermediate level between levels L1 and L.3. HTM
system 200 1s hierarchically structured so that the processing

nodes cover a larger input space as the level ascends. Level
L1 has nodes 210A, 210B, 210C, and 210D, level L2 has

nodes 220A and 220B: and level 1.3 has node 230. Nodes
210A, 210B, 210C, 210D, 220A, 220B, and 230 are hier-
archically connected 1n a tree-like structure such that each
processing node has several children nodes (that 1s, nodes
connected at a lower level) and one parent node (that 1s, node
connected at a higher level).

Further, HTM system 200 propagates bottom-up signals

up the hierarchy and propagates top-down signals down the
hierarchy. That 1s, each processing node 210A, 2108, 210C,

210D, 220A, 220B, and 230 may be arranged (1) to propa-
gate information up the HITM hierarchy to a connected
parent node, and (1) to propagate imformation down the
HTM hierarchy to any connected children nodes.

The number of levels and arrangement of processing
modes 1 FIGS. 1 and 2 are merely illustrative. Many
variants of an HTM system may be developed and deployed
depending on the specific application. For example, the
number of levels may be increased to provide different levels
ol abstraction/invariance or to accommodate different types
of sensed 1mputs (e.g., visual data and audio data). Further,
a parent node may also receive partially overlapping bottom-
up signals from multiple children nodes. An external super-
vision signal may also be fed to each of the processing nodes
to enhance spatial and/or temporal processing performance.

In one embodiment, one or more nodes of the temporal
memory system receives sensed mputs representing images,
videos, audio signals, sensor signals, data related to network
traflic, financial transaction data, communication signals
(c.g., emails, text messages and instant messages), docu-
ments, insurance records, biometric information, parameters
for manufacturing process (e.g., semiconductor fabrication
parameters), inventory counts, energy or power usage data,
data representing genes, results of scientific experiments or
parameters associated with operation of a machine (e.g.,
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vehicle operation), or medical treatment data. The temporal
memory system may process such inputs and produce an
output representing, among others, identification of objects
shown 1n an 1mage, identification of recognized gestures,
classification of digital images as pornographic or non-
pornographic, 1dentification of email messages as unsolic-
ited bulk email (*spam’) or legitimate email (‘non-spam’),
prediction of a trend in financial market, prediction of
fallures 1n a large-scale power system, identification of a
speaker 1n an audio recording, classification of loan appli-
cants as good or bad credit risks, identification of network
traflic as malicious or benign, identification of a person
appearing 1n the image, interpretation of meaning using
natural language processing, prediction of a weather fore-
cast, identification of patterns in a person’s behavior, gen-
cration of control signals for machines (e.g., automatic
vehicle navigation), determination of gene expression and
protein interactions, determination of analytic information
describing access to resources on a network, determination
ol parameters for optimizing a manufacturing process, pre-
diction of inventory, prediction of energy usage in a building
or facility, predictions of links or advertisement that users
are likely to click, identification of anomalous patterns 1n
insurance records, prediction of experiment results, 1ndica-
tion of 1llness that a person 1s likely to experience, selection
ol contents that may be of interest to a user, prediction of a
person’s behavior (e.g., ticket purchase, no-show behavior),
prediction of election results, prediction or detection of
adverse events, 1dentification of a string of text 1n an 1mage,
identification of a topic in text, and a prediction of a patient’s
reaction to medical treatments. The underlying representa-
tion (e.g., 1image, audio, video, text) can be stored 1 a
non-transitory, computer-readable storage medium.
Temporal Memory Architecture for Processing Action Infor-
mation

FIG. 2B 1s a conceptual diagram of processing nodes
organized to receive sensor data and action mformation as
input data, according to one embodiment. The sensor data
indicates data generated from a sensor that detects logical or
physical characteristics of physical or logical constructs.
The sensor data may include, for example, pixel data gen-
crated by an 1mage sensor (e.g., a camera), network load
conditions 1n a network generated by network sensors, and
surface topography data generated by tactile sensors. The
action mformation indicates parameters associated with the
operation of sensor such as a representation of the sensor’s
orientation and position or parameters associated with the
movement of sensor such as direction and distance of
movement.

An example HI'M system 280 of FIG. 2B comprises four
different processing nodes 240A, 2408, 250A and 250B.
Processing nodes 240A and 240B form lower nodes and
processing nodes 250A and 2508 form upper nodes. Each of
the processing nodes 240A, 2408, 250A, and 250B 1ncludes
a spatial pooler and a sequence processor, as described
below 1n detail with reference to FIG. 3. The lower nodes
240A, 240B may have the same number of cell columns.
The cell columns are described below 1n detail with refer-
ence to FIG. 6. The upper nodes 250A, 2508 may also have
the same number of cell columns, that may be the same as
or different from the number of cell columns in the lower
nodes 240A, 240B.

The lowest node 240A receives both the sensor data and
the action imformation as its mput data. The lowest node
240A {feeds a sparse vector indicating spatial patterns
detected from the input data to the processing node 240B.
Because the action information is included in 1ts 1input data,
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the lowest node 240A learns, detects and predicts the
changes 1n the sensor data in relation to sensor operation as
represented by the motor information. The motor informa-
tion may be correlated with the overall changes of the sensor
data. By learning the relationship between the motor infor- 5
mation and the sensor data, the lowest node 240A may
generate an output 292 that can indicate changes in the
sensor data not attributable to the motor information. Taking
an example where captured image data 1s generated by a
camera, the lowest node 240A may learn to distinguish 10
changes in the sensor data due to the panming or tilting of the
camera (1.¢., the movement of the camera).

The processing node 240B receives the output 292 (for
example, a vector 1n a sparse distributed representation)
from the processing node 240A, and learns, detects and 15
predicts changes 1n the output received from the processing
node 240A. The processing node 2408 generates processed
data 292 and feeds it to processing node 250A. The pro-
cessed data 292 from node 240B indicates changes that
cannot be predicted by node 240A. These changes may 20
represent, for example, the object moving relative to the
camera. In one embodiment, node 2408 learns high-order
sequences and makes high-order predictions.

The processing node 250A receives processed data 294
from the processing node 2408 and action information as 1ts 25
input data to learn, detect and predict the changes 1n its input
data. The action information provided to the processing node
250A may be different from the action information provided
to the processing node 240A. For example, the action
information provided to the processing node 250A may 30
represent a larger movement of a body attaching a sensor
(e.g., a camera) while the action information provided to the
processing node 240A may represent a smaller sensor move-
ment (e.g., panning of a camera). The processed output 296
from the processing node 250A 1s again fed to the processing 35
node 250B for further learning, detection and prediction.
The processing node 250A may also recerve mput from
other nodes of FIG. 2B or from other nodes in a separate
hierarchy of nodes.

The architecture of FIG. 2B 1s advantageous because the 40
spatial patterns and temporal sequences of sensor data
relative to operational parameters of a sensor can be learned
in an effective manner. There are two potential sources of
changes 1n sensor data. One source of change 1s due to the
sensors moving relative to the world. The second source of 45
change 1s due to objects 1n the world changing or moving on
their own. The architecture of FIG. 2B uses two predictive
sequence memories to successively learn and process these
two types of change. The two-stage mechanism 1s applicable
to any type of sensory data. 50
Structure of Example Processing Node and Overall Process

FI1G. 3 1s a block diagram 1illustrating processing node 300
in a temporal memory system, according to one embodi-
ment. The processing node 300 may be a stand-alone node
for operating without other processing nodes. Alternatively, 55
the processing node 300 may be part of a hierarchy of
processing nodes, for example, as described above 1n detail
with reference to FIGS. 1A through 2B. Particularly, the
processing node 300 may be the lowest node 240A receiving
sensor data and action data as 1ts input, as illustrated in FIG. 60
2B whereas upper processing nodes are embodied using a
different structure as described below in detail with refer-
ence to FIG. 10.

Processing node 300 may include, among other compo-
nents, a sequence processor 314 and a spatial pooler 320. 65
Spatial pooler 320 receives bottom-up mput 328, performs
spatial pooling, and sends sparse vector 342 in a sparse

8

distributed representation to sequence processor 314. The
sparse vector 342 includes information about patterns
detected 1n the bottom-up input 328. For a processing node
300 at the lowest level, the bottom-up mmput 328 may be
sensed mput. For processing nodes at intermediate and top
levels, the bottom-up 1nput 328 may be a bottom-up output
from a child node or children nodes. The spatial pooling 1s
described below in detail with reference to FIG. 5. The
processing nodes at different lhierarchical levels may have a
different structure, for example, as described below 1n detail
with reference to FIG. 10.

Sequence processor 314 receives the sparse vector 342,
performs temporal processing and generates the bottom-up
output 324. The bottom-up output 324 represents informa-
tion describing temporal sequences detected or predicted 1n
the spatial patterns of the bottom-up mput 328. Bottom-up
output 324 1s fed to a parent node, which may have a similar
or the same structure as processing node 300.

FIG. 4 1s a flowchart illustrating an overall process at
processing node 300, according to one embodiment. Spatial
pooler 320 receives 412 bottom-up mput 328. Then spatial
pooler 320 performs 416 spatial pooling for co-occurrences
detected in bottom-up 1mput 328, as described below 1n detail
with reference to FIG. 5A. As a result, spatial pooler 342
generates sparse vector 342 that 1s sent to sequence proces-
sor 314.

Sequence processor 314 receives sparse vector 342 and
performs 420 temporal processing based on spatially pooled
co-occurrences, as described below 1n detail with reference
to FIG. 10. Sequence processor 314 then generates 424
bottom-up output 324 that 1s sent to a parent node.

The process described in FIG. 4 1s merely illustrative.
Various additional steps may be added, and certain steps
may be omitted from the step depending on the structure and
function of the processing nodes.

Spatial Pooling Using Local Inhibition

Spatial pooler 320 performs spatial pooling by producing
the sparse vector 342 in the form of a sparse distributed
representation. In a sparse distributed representation, a num-
ber of elements in the sparse vector 342 are mactive (e.g.,
assigned a value of zero) while the remaining elements are
active (e.g., assigned a value of one). For example, sparse
vector 342 may have approximately 10% of its elements
active while approximately 90% of its elements are 1nactive.
The percentage of active elements may be fixed (1.e., a
fixed-sparsity representation) or the percentage of active
clements may change over time.

Spatial pooling 1s the process of grouping similar spatial
patterns and representing these spatial patterns using a single
vector. Taking an example of processing mput data for
100x100 mput space (i.e., 10,000 elements), the total num-
ber of unique spatial patterns is 2'°*°°°, assuming that each
clement of the mput data 1s binary (i.e., zero or one).

Reterring to FIG. 3, spatial pooler 320 includes, among,
other components, a sparsity generator 318 and a plurality of
co-occurrence detectors (CDs) 1 through Z. CDs detect
co-occurrences 1n bottom-up 1nput 328, and generate match
scores 336. Match scores 336 indicate the degree of match
between a spatial pattern of the bottom-up mput 328 and a
co-occurrence pattern associated with each CD. In one
embodiment, a higher match score indicates more overlap
between bottom-up mput 328 and the associated co-occur-
rence pattern of each CD. The match scores 336 are provided
to the sparsity generator 318. In response, the sparsity
generator 318 generates sparse vector 342 in the form of a
sparse distributed representation.
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In one embodiment, each CD i1s mapped to a subset of
clements 1n the bottom-up input 328 within predefined 1input
space. As 1llustrated 1n FIG. 3 by lines extending from CDD
1 to a subset of arrows of bottom-up mput 328, CD 1 1s
mapped to recerve a subset 332A of elements of the bottom-
up input 328 within mput space IS1. Similarly, CD 2 1s
mapped to recerve a subset of elements of the bottom-up
iput 328 within mput space 1S2. Although illustrated 1n
FIG. 3 as one-dimensional for the sake of simplification, the
iput space (e.g., IS1, IS2) may consist of two or more
dimensions.

The input space of each CD may be mutually exclusive or
may partially overlap. Also, each CD may be mapped to
receive the same number of mput elements or a different
number of mput elements. Each input element could be
binary or contain scalar values. In one embodiment, CDs are
arranged to have topological relationships to their mput
space. For example, adjacent CDs cover adjacent portions of
iput space.

The sparsity generator 318 collects the match scores 336
from the CDs, selects a number of CDs satistying conditions
based on their match scores and match scores of nearby CDs
to generate sparse vector 342. In one embodiment, when a
CD becomes dominant (e.g., the CD has a high match score),
the CD inhlibits selection of other CDs within a predeter-
mined range (heremafter referred to as “an inhibition
range”). The inhibition range may extend only to CDs
immediately adjacent to the dominant CD or may extend to
CDs that are separated from the dominant CD by a prede-
termined distance. Alternatively, sparsity generator 318 may
select a subset of CDs with highest match scores among all
CDs 1n the processing node 300.

In one embodiment, the inhibition range of processing
nodes 1increases at a higher level of the HIM system
compared to the inhibition range of processing nodes at a
lower level of the HI'M system. The inhibition ranges of the
processing nodes may be set so that the densities of the
sparse vectors 1n the processing nodes at different levels are
the same or within a predetermined range. The processing
nodes at a higher level cover a larger range of iput space
than the processing nodes at a lower level. Hence, 1n order
to achieve the same level of density across different levels of
processing nodes, the ihibition range for processing nodes
may be increased as the level 1n the hierarchy increases.

In one embodiment, a greedy winner selection algorithm
1s used to select the dominant CD.

In an example of sparse vector 342, elements correspond-
ing to the chosen CDs are indicated as being active, and
clements corresponding to unselected CDs are indicated as
being active. Assume that the spatial pooler includes 10
CDs of which the first CD and the fourth CD were selected
tor high match scores. In this example, the sparse vector may
be (1, 0, 0, 1, 0, 0, 0, 0, O, 0), where the first and fourth
clements are active but other elements are inactive. The
density of the spatial vector representing the ratio of selected
CDs among all CDs 1s governed by the inhibition range and
the selection threshold value (the density of sparse vector
342 increases as the as the percentage of selected CDs
increases). As the ihibitory range of a dominant CD
increases, the density of the sparse vector 342 decreases.
Further, as the selection threshold value increases, the den-
sity of the sparse vector increases. Conversely, as the inhibi-
tory range of a dominant CD decreases, the density of the
sparse vector 342 increases. Also, as the selection threshold
value decreases, the density of the sparse vector 342
decreases. The combination of inhibitory range and the
selection threshold value maintains the density of sparse
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vector 342 within a certain range. Alternatively, a fixed
number of CDs may be selected from all CDs based on the
match scores (e.g., a certain number of CDs with highest
match scores).

When a new spatial pattern 1s presented, the match scores
from the CDs may be updated accordingly. The updated
match scores may prompt changes 1n sparse vector 342. In
one embodiment, sparsity generator 318 implements hyster-
es1s by retaining a previously chosen CD 1n the top CDs until
a competing CD has a match score exceeding the match
score of the chosen CD by a threshold score (e.g., a match
score 20% higher). In this way, the sparse vector becomes
more stable over time and more robust to noise.

FIG. § 1s a flowchart 1llustrating a method of performing
spatial pooling 1n processing node 300, according to one
embodiment. First, the elements of bottom-up input 328 are
sent 5312 to CDs according to the mappings between the
input elements of the bottom-up mput 328 and CDs.

Each CD then generates a match score indicating the
extent to which a co-occurrence pattern associated with the
CD matches the received iput elements. Based on the
match scores 336 from CDs, sparsity generator 318 selects
516 CDs that have high match scores 336. In selecting the
CDs, local mhlibition may be employed to partially or
entirely exclude CDs within an inhibition range of a domi-
nant CD. As a result of the selection, a subset of CDs 1s
selected from the entire CDs (e.g., 50 CDs are selected from
a total of 500 CDs). Sparsity generator 318 then generates
520 sparse vector 342 1in the form of a sparse distributed
representation to indicate the selected CDs.

Since each sparse vector may represent one or more
spatial patterns, the spatial pooling achieves abstraction and
generalization 1n spatial domain. A sparse vector 342 that
changes over time 1s then provided to sequence processor
314 to perform abstraction and generalization 1n the tempo-
ral domain.

Temporal Processing in Sequence Processor

Temporal processing includes various time-based pro-
cessing of spatial patterns such as recognizing, predicting, or
labeling of temporal sequences. Sequence processor 314
learns and stores transitions between spatial patterns as
represented by sparse vector 342. Based on the learned
transitions, sequence processor 314 recognizes and predicts
the same or similar transitions in a new input signal.
Embodiments provide a temporal processing mechanism
that takes advantage of the characteristics of sparse distrib-
uted representation vectors to learn, recognize, and predict
temporal sequences ol spatial patterns or parts of spatial
patterns.

Sequence processor 314 may learn, store and detect
temporal sequences of diflerent lengths (also referred to as
“variable order” temporal processing). The variable order
temporal processing enables learning and detection of more
temporal sequences and enhances prediction, inference, or
other capabilities of the processing node.

Sequence processor 314 may also learn, store, and detect
temporal sequences while performing inference, prediction
or other temporal processing (also referred to as “online
learning™). The online learning combines a learning (or
training) phase and a temporal processing (e.g., predicting)
phase into a single phase. By combining two distinct phases
into a single phase, sequence processor 314 can process
information in a more time-eflicient manner.

In one embodiment, the sequence processor 314 receives
a sparse vector 342 that remain constant until a next discrete
time steps. A time step herein refers to a division of time for
performing digital processing at the processing node 300.
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During each time step, the sparse vector 342 1s assumed to
maintain a particular set of values. For instance, the sparsity
generator 318 periodically samples the match score 336 to
output a sparse vector 342 that may be updated aiter each
time step. Alternatively or additionally, the bottom-up input
328 1s converted into discrete values at discrete time steps,
and the processing node 300 determines values at discrete
time steps. Accordingly, the sequence processor 314 may
learn, store, and detect temporal sequences of values that are
updated over discrete time steps. Using discrete time steps
1s advantageous, among other reasons, because computa-
tional complexity 1s reduced.

FIG. 6 1s a block diagram illustrating sequence processor
314, according to one embodiment. Sequence processor 314
may include, among other components, output generator
612, columns of cells (in dashed boxes), column managers,
and column activator 618. The column activator 618
receives sparse vector 342 from spatial pooler 320. In
response, column activator 618 generates column activation
signals 634 indicating which columns to be activated based
on sparse vector 342.

The number of total columns may coincide with the total
number ol elements 1n sparse vector 342. The column
activator 618 receives sparse vector 342 and determines
which elements of sparse vector 342 are active. Then,
column activator 618 sends column activation signals 634 to
corresponding columns to activate these columns.

In one embodiment, each column includes the same
number (N) of cells. A cell has three states: inactive,
predictive, and active. A cell becomes activated (1.e., 1n an
active state) 1n response to activation by the select signal
646. When a cell 1n a column becomes activated, the active
cell mhibits activation of other cells in the same column
except 1n certain limited circumstances. The predictive state
represents a prediction that the cell will be activated by the
select signal 646 at a next time step. A cell becomes
predictive (1.e., 1n a predictive state) in response to current
sequence outputs from other cells in the same processing
node 300 or level. Alternatively or additionally, the cell
becomes predictive due to any combination of mnputs from
other nodes, inputs from action information, and to sparse
vector 342. For example, an mput from a higher-level node
represents context used to predict cell activation correspond-
ing to behavior generated in response to the context. As
another example, an input from a lower-level node repre-
sents a change in orientation or position of a sensor used to
predict cell activation corresponding to recognition of a
pattern from the sensor input. In some embodiments, a cell
may simultaneously be activated and predictive. In some
embodiments, a cell 1s either activated or predictive, and a
cell having mputs meeting conditions to make the cell both
active and predictive becomes active. A cell that 1s 1n neither
an active state nor a predictive state 1s referred to as mactive
(1.e., 1n an 1nactive state).

Each column 1s connected to an associated column man-
ager. The column manager receives the column activation
signal 634, determines activation states of cells 1n the
column (based on prediction signal 642), and sends select
signal 646 to activate one or more cells in the column under
certain circumstances. The prediction signal 642 1dentifies
which cells 1n the column are in a predictive state. In one
embodiment, the column manager sends the select signal
646 to one or more cells in the column to activate those cells
in response to the column activation signal 634.

In one embodiment, the column manager selects the cells
to activate according to the prediction signal 642. For
example, the column manager selects one or more of the
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cells 1n the column that are currently 1n a predictive state (as
indicated by the prediction signal 642). Continuing the
example, 11 the prediction signal 642 indicates that no cell in
the column 1s currently in a predictive state, the column
manager selects one or more of the cells (e.g., all of the cells
in the column) to activate. When no cell in the column 1s
currently 1 a predictive state, the column manager may
select a cell in the column for activation based on how
recently the cell was activated. Specifically, the cell most
recently activated 1n the column may be selected for acti-
vation. If no prior activated cell exists, then the best match-
ing cell or the least used cell may be chosen for activation.

In another embodiment, the column manager selects one
or more cells 1n the column even though the prediction
signal 642 indicates that other cells are 1n the predictive
state. For example, the column manager may select the cell
to learn the connections randomly or according to a prede-
termined list. The column manager sends the select signal
646 to activate the selected cells. The selected cells then
learn a temporal sequence by making connections to active
cells 1n other columns, as described below in detail with
reference to FIGS. 7 and 8. The selected cells may also make
connections to any combinations of active cells 1n other
processing nodes (including processing nodes both 1n the
same layer as the processing node 300 and in different layers
from processing node 300), inputs from different levels and
action information.

The cells individually, or collectively as a column, send
pooling output 622 to output generator 612. The pooling
output 622 identifies the state of the cells. For instance, the
pooling output 622 indicates which cells are activated and/or
which cells are predictive. In certain applications (e.g., flash
inference), a column generates a pooling output 622 to
indicate whether any of the cells 1n the column are activated.
In such application, once any cell in the column 1s activated,
the column sends a pooling output 622 indicating that the
column 1s active. The pooling output may be represented as
a binary value such as a two-bit binary value, with one bit
indicating whether the cell 1s activated and one bit indicating
whether the cell 1s predictive. Although the pooling output
622 takes a binary value in most cases, the pooling output
622 may also be a non-binary value. For example, the
pooling output 622 may include an integer or real-number
value indicating the strength of the cell’s cell activated state
or predictive state.

In one embodiment, output generator 612 collects the
pooling outputs 622 from the cells or columns and concat-
enates these outputs 1nto a vector. The concatenated vector
may be sent as bottom-up output 324 of the sequence
processor 314 to a parent processing node for further tem-
poral processing and/or spatial pooling. Alternatively, the
concatenated vector may be provided as an output of the
temporal memory system or be further processed to identify
a higher level cause of the input signal. The output generator
612 may also function as a bufler and synchronize signals
from sibling processing nodes.

The bottom-up output 324 1s also a vector 1n a sparse
distributed representation. The percentage of active (or
iactive) elements in the bottom-up output 324 may be any
percentage, but the percentage i1s often less than approxi-
mately 10%.

In one embodiment, the output generator 612 collects the
pooling outputs 622 and outputs an active cell (AC) vector
(1dentifying activated cells) and a predicted active cell
(PAC) vector 1identifying activated cells that were correctly
predicted to become active. The output generator 612 1den-
tifies the predicted active cells by comparing a list of
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currently activated cells to a list of cells 1n the predictive
state at a last time step before the current time step. The
predicted cell vector includes those cells in common
between the list of currently activated cells and the list of
cells 1n the predictive state at the last time step. Because the
predicted active cells are a subset of the activated cells (or
include all the activated cells), the number of active ele-
ments 1n the first vector equals or exceeds the number of
clements 1n the second vector.

Example Operation and Function of Cell 1n Sequence Pro-
Cessor

Sequence processor 314 performs temporal processing by
selectively activating cells (and columns), and learning
previous states of cell activations. As the learning at the cells
progresses, the cells learn to anticipate spatial patterns 1n the
bottom-up input 328 and correspondingly enter a predictive
state before corresponding spatial patterns appear 1n bottom-
up input 328, causing those cells to then transition to an
activated state. When a cell transitions from a predictive
state to an active state, the cell may remain 1n the active state
for a time after the transition. As cells remains active for a
longer time, the cells produce a more stable and invariant
bottom-up output 314 to a parent node.

FIG. 7 1s a diagram illustrating columns and output
signals from the cells, according to one embodiment. Each
circle in FIG. 7 represents a cell. When each cell becomes
active, the cell sends out pooling output 622. An activated
cell may also send out a sequence output 714 to other cells
to 1ndicate 1ts activation state. A basic 1dea behind imple-
menting temporal processing is to have a learming cell, upon
activation, detect activation states of other cells and store the
activation states 1 a “temporal memory segment.” The
stored activation states may be current activation states
and/or previous activation states of other cells. A “temporal
memory segment” herein refers to a data structure for
storing the activation states of other cells.

In storing the activation states, the cell selects a subset of
active cells and stores only the states of the selected cells. A
large number of cells 1n a processing node 300 may be active
at the same time. Therefore, a large memory space may be
needed to store activation states of all activated cells 1n the
processing node. To reduce the memory requirement, a small
number of active cells may be sub-sampled and states of the
sub-sampled cells may be stored in the temporal memory
segments of the cell. For example, when cell Z1 1s first
activated, cell Z1 could receive activation states of all active
cells (e.g., 50 cells) at this time step but stores information
for only a select number of cells (e.g., 10 cells). The
sub-sampling of cells may also contribute to generalization
of spatial patterns and/or temporal sequences.

In one embodiment, each temporal memory segment
stores the activation states of the same number of cells. In
another embodiment, each temporal memory segment stores
the activation states of a different number of cells.

When a cell detects activation of all or over a percentage
of cells stored 1n 1ts temporal memory segments, the cell
enters mnto a predictive state and produces a pooling output
622 indicating 1ts predictive state. This transition 1s predic-
tive 1n nature because the transition to the predictive state 1s
based on activation of other connected cells and not based on
receiving a column activation signal (via select signal 646)
to activate the cell.

For example, a cell may become predictive when more
than 90% of cells identified 1n a temporal memory segment
are active. Under certain conditions, the cell may also
produce sequence output 714 sent to other cells to imndicate
its activation state. In one embodiment, a cell becomes
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predictive when a fixed number of cells or more than a
threshold percentage of cells stored 1n one of 1ts temporal
memory segments become active. In other embodiments, the
cells become predictive when the activation states of other
cells partially or entirely match a list of stored activation
states.

FIG. 8 1s a conceptual diagram illustrating signals asso-
ciated with a cell 890, according to one embodiment. Cell
890 includes a body 894 and a dendrite 891. The dendrite
891 of cell 890 receives sequence inputs 830 and the body
894 of cell 890 receives select signal 646. Sequence inputs
830 are collective sequence outputs 714 sent out by other
cells having connections with cell 890. Cell 890 establishes
connections with the other cells during learning to monitor
their activation states. Cell 890 also receives select signal
646. In one embodiment, the select signal 646 becomes
active when: (1) cell 890 1s 1 a predictive state, then
transitions to an active state in response to the column
activation signal 634, and/or (11) cell 890 1s not 1n a predic-
tive state but 1s nonetheless selected for activation in
response to the column activation signal 634. For example,
the column contaiming cell 890 recerves a column activation
signal 634 but no cells 1n the column are 1n a predictive state,
so the column manager selects cell 890 as a candidate cell
for learning. In this example, cell 890 may be selected as a
candidate cell according to a ranking of cells 1n the column
by likelihood of entering the predictive state.

Activation states of other connective cells associated with
the cell 890 transitioning to the predictive state may be
stored 1n a table 874. Cell 890 generates pooling output 622
and sequence output 714 based on select signal 646 and
sequence mputs 830. Pooling output 622 1s generated when-
ever cell 890 becomes active or predictive. Sequence output
714 1s generated when certain conditions are met, as
described below 1n detail with reference to FIG. 9

FIG. 9 15 a functional block diagram 1llustrating cell 890,
according to one embodiment. Cell 890 may 1include, among
other components, a sequence signal monitor 912, a cell
activation predictor 916, a cell activator 918, a temporal
memory manager (TMM) 920, and a column inhibitor 924.
The sequence signal monitor 912 1s software, firmware,
hardware or a combination thereof for receiving sequence
inputs 830 from other cells 1n the same processing node or
level. The sequence signal monitor 912 buflers sequence
iputs 912. The stored sequence mputs 912 are referenced
by TMM 920 for processing.

TMM 920 1s software, firmware, hardware, or a combi-
nation thereof for managing temporal memory segments.
TMM 920 performs various operations associated with
writing, updating, retrieving, and comparing cell activation
states. As described above 1n detail with reference to FIG. 8,
cell activation states stored in different temporal memory
segments of TMM 920 represent activation states of other
cells at different times. When learning 1s activated, TMM
920 detects current and/or previous states of cell activations
based on the sequence 1inputs 830 and stores the detected cell
activation states in temporal memory segments. TMM 920
also compares the sequence inputs 830 to cell activation
states stored 1n temporal memory segments. If the sequence
inputs 830 indicate that (1) all elements of a temporal
memory segment are active or (11) a number or percentage of
clements of a temporal memory segment above a threshold
1s active, TMM 920 sends hit signal 930 to cell activation
predictor 916. The hit signal 930 indicates that the cell 1s in
a predictive state due to activation of cells whose activation
corresponded to subsequent activation of the cell 890. The
temporal memory manager 920 may activate learning in
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response to (1) sending the hit signal 930 indicating that the
cell 1s 1n a predictive state, or (11) recerving learning signal
932 indicating that the cell 1n 1n an active state.

Cell activation predictor 916 receives hit signal 930 from
TMM 920 and generates pooling output 622q indicating that 5
the cell 890 1s 1n a predictive state. The cell activation
predictor 916 may send indications of the cell’s previous
predictive states to the cell activator 918. For example, the
cell activation predictor 916 1ndicates to the cell activator
918 whether the cell 890 was 1n a predictive state during a 10
last time step.

The cell activator 918 receives the select signal 646 and
the inhibition signal 918 and places the cell 890 1n an
activated state when certain conditions are met. If the cell
890 1s placed 1n an activated state, the cell activator 918 15
generates pooling output 6225, sequence output 714, and
learning signal 932.

One condition for cell activation 1s that there be no
inhibition signals 918 from other cells in the same column
or in a different column. If inhibition signal 918 1s received 20
from other cells, cell 890 1s not activated despite select
signal 646. In one embodiment, pooling output 6225 1s
generated regardless of the reasons cell 890 1s activated
whereas sequence output 714 i1s generated under certain
conditions. Specifically, the sequence output 714 1s gener- 25
ated (1) when the activation of cell 890 was predicted based
activation states of other cells and (11) the prediction of the
cell 890 turned out to be correct. By generating sequence
output 714 only when the prediction of the cell 890 was
correct, other cells connected to cell 890 learn temporal 30
sequences that are productive to correct prediction while
discarding meaningless or noisy temporal sequences that do
not contribute to prediction. Alternatively, the sequence
output 714 1s generated even when the activation of the cell
890 was maccurately predicted. The sequence output 714 35
and/or the pooling output 62256 indicate that the cell 890 1s
activated for a longer time to enable more connected cells to
learn the activation state of the cell 890 while the sequence
output 714 1s activated for a short time when the activation
of the cell 890 was inaccurately predicted. 40

In response to activation of the cell 890 by the cell
activator 918, column inhibitor 924 generates inhibition
signal 928. Inhibition signals are sent to other cells i1n the
same column or 1n a different column to inhibit activation of
the other cells. The cells communicating the inhibition 45
signals may be within a predefined inhibition range, as
described above 1n detail with reference to FIG. 3.

In one embodiment, TMM 920 uses a dynamic threshold
for generating hit signal 930. Specificallyy, TMM 920
dynamically adjusts the number or percentage of elements of 50
sequence 1nputs 830 that should match the elements stored
in a temporal memory segment or an activation window
betfore hit signal 930 can be generated.

The cell 890 transitioning to a predictive state represents
a prediction based on activation of other cells 1in sequence 55
processor 314. By lowering the number of percentage of
comnciding elements to generate hit signal 930, the cell 890
may be activated more frequently. More frequent transitions
of the cell 890 to the predictive state indicate making more
liberal predictions for when the cell will be activated. 60
Lowering the requirement for coinciding elements has a
similar effect of forcing the cells or the temporal memory
system to make predictions that would otherwise not be
made. To the contrary, raising the requirement for coinciding,
clements has a similar effect of restricting the cells or the 65
temporal memory system to making only conservative and
limited predictions.
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The threshold for generating the hit signal 930 may be
adjusted by detecting activation states of cells corresponding
to a certain segment of iput space. If the level of cell
activation for such a segment drops below a level, the
dynamic threshold of cells for the segment of 1nput space 1s
lowered to prompt more transitions to the predictive state by
cells. Conversely, 11 the level of cell activation of a segment
of 1nput space i1t above a level, the dynamic threshold may
be increased to reduce transitions to the predictive state by
cells.

In one embodiment, TMM 920 compares the activation
and predictive states of cell 890 to the column activation
signal 634 to determine 11 the cell activation states stored 1n
a temporal memory segment resulted 1n improper transitions
by cell 890 to the predictive state.

For each temporal memory segment or set of cell activa-
tion prediction states, TMM 920 tallies a productivity score
that 1s increased or decreased depending on whether column
activation signal 634 activating the column followed early
transitions by cell 890 to the predictive state. It cell activa-
tion states stored in a temporal memory segment resulted in
the cell 890 becoming predictive but the transition was not
followed by column activation signal 634 activating the
column, the productivity score for the cell activation states
or temporal memory segment 1s reduced. Conversely, the
productivity score 1s increased i1f the stored cell activation
states or temporal memory segment contributed to correct
activation of cell 890. If the productivity score drops below
a threshold, the cell activation states are deleted or the
temporal memory segment 1s initialized to ““forget” the
learned connections.

Example Architecture of Upper Processing Node

FIG. 10 1s a block diagram illustrating an upper process-
ing node 1000 1n a temporal memory system, according to
one embodiment. The processing node 1000 may be a
processing node connected to a lower processing node 300
to receive bottom-up output 324. Processing node 1000 may
include, among other components, a sequence processor
1014 and a sequence pooler 1020. Sequence pooler 1020
receives bottom-up mput 1028 (includes bottom-up output
324 of FIG. 3 and other information such as action infor-
mation) from a child node or children nodes (e.g., processing
node 300), performs sequence pooling, and sends sparse
vector 1042 indicating which of the cells 1n the sequence
pooler 1020 are active.

The bottom-up mput 1028 1ncludes an active cells (AC)
vector 1n a sparse distributed representation with active
clements indicating active cells 1n the sequence processor
314 of the child processing node or children processing
nodes (e.g., processing node 300). The bottom-up input
1028 may also 1nclude a predicted active cells (PAC) vector
indicating active cells of the sequence processor 314 that are
currently active and were previously predicted to become
active or stay active.

Sequence processor 1014 receives the sparse vector 1042,
performs temporal processing and generates the bottom-up
output 1008. The bottom-up output 1008 represents infor-
mation describing temporal sequences detected or predicted
in the spatial patterns of the bottom-up 1nput 1028. In one
embodiment, the sequence processor 1014 has the same
structure and function as the sequence processor 314
described above with reference to FI1G. 6. Bottom-up output
1008 may be fed to a parent node, to another processing
node 300, or to any other component for further processing
(e.g., decoding).
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Example Architecture of Sequence Pooler

Sequence pooler 1020 performs sequence pooling by
producing the sparse vector 1042 1n the form of a sparse
distributed representation. Sequence pooling refers to group-
ing temporal sequences of spatial patterns and representing
these sequences as a single vector. Sequence pooling may
include both spatial pooling and a degree of temporal
pooling (e.g., first order temporal pooling). For example, the
sequence pooler 1020 may detect one or more distinct first
order temporal sequences of spatial patterns in the bottom-
up mput 1028.

Sequence pooler 1020 has a structure and functions
differently from spatial pooler 320 of FIG. 3. Specifically,
sequence pooler 1020 includes a single layer of cells 1050A
through 10507 (hereinafter collectively referred to as “cells
1050”") and a sparsity generator 1018. The number of cells
corresponds to the number of columns 1n sequence processor
1014.

The sparsity generator 1018 generates a sparse vector
1042 from the outputs of the cells 1050. In some embodi-
ments, the cells 1050 each output a signal indicating when
they are active, and the sparsity generator 1018 concatenates
the active signals 1nto a sparse vector 1042 that includes
active elements indicating which of the cells 1050 are active.

In some embodiments, the sparsity generator 1018 func-
tions similarly to the sparsity generator 318 described in
conjunction with FIG. 3. Specifically, the cells 1050 each
output a signal indicating a strength of activation, and the
sparsity generator 1018 selects one or more of the cells 1050
according to the strength of activation. The sparsity genera-
tor 1018 generates a sparsity vector 1042 that includes active
clements corresponding to the selected cells 1050. For
example, the sparsity generator 1018 may compare the
strength of activation to a threshold strength of activation, or
may rank the cells 1050 by their respective strengths of
activation and select one or more cells having a ranking
above a threshold ranking. As another example, the sparsity
generator 1018 applies inhibition so that a cell 1050 with a
high strength of activation inhibits selection of other cells
1050 proximate to the cell 1050.

Each of the cells 1050A through 10507 have substantially
the same structure and function as cell 890 described above
with reference to FIGS. 8 and 9 except that TMM 920 of
cells 1050A through 10507 store activation states of a subset
of active cells 1 sequence processor 314 of a lower pro-
cessing node 300. In one embodiment, each of the cells
1050A through 10507 1s mapped to a subset of columns or
cells 1 a lower node to receive activation state or predictive
state of cells 1 the lower node.

Specifically, each of cells 1050A through 10507 includes
sequence memory segments that store activation states of a
subset of cells 1n the sequence processor 314 when each of
cells 1050A through 10507 was active. The activation states
of the subset of cells 1n the sequence processor 314 are
indicated by the bottom-up mput 1028. Each of the cells
1050A through 10507 1s associated with cells of the
sequence processor 314 via the bottom-up mnput 1028.

When activated, a cell 1050 detects which of the cells 1n
the sequence processor 314 connected to the cell 1050 were
active and how many of these cells were predicted active
cells (PACs). If the number of PACs exceeds a threshold
rat1o of the number of PACs against the number of ACs, the
cell 1050 remains active beyond the current time step for a
number (e.g., two or three) of times steps or alternately, for
a fixed or variable period of time. The high number of PACs
indicates that a temporal sequence ol spatial sequences
learned by the cell 1050 was correctly predicted, and hence,
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the cell 1050 may continue to learn subsequent activation
states of cells 1n the sequence processor 314 by remaining
active for a number of times steps after the current time step.

In one embodiment, an active cell 1050 1s turned 1nactive
immediately without staying active for further time steps
when the number of PACs or the ratio of the number of PACs
relative to the number of ACs drops below a threshold. The
connection between the cells 1050A through 10507 and the
cells 1n the sequence processor 314 may be controlled by
permanence values. The permanence value in the context of
sequence pooler 1020 represents the contribution of an
active cell of a sequence processor 314 of the lower pro-
cessing node 300 to the activation of the cell in sequence
pooler 1020. When a cell 1050 becomes active, the perma-
nence values for connections to active cells 1n the sequence
processor 314 are increased whereas the permanence values
for connections to inactive cells in the sequence processor
314 are decreased. If a permanence value for a connection
to a cell in the sequence processor 314 drops below a
threshold value, the connection between the cell 1050 and
the cell 1n the sequence processor 314 may be severed, so the
activation of the cell in the sequence processor 314 no longer
contributes to activation of the cell 1050. Similarly a con-
nection between another cell 1n the sequence processor 314
and the cell 1050 may be established 1f the permanence
value increases above a threshold value, so the activation of
the cell 1n the sequence processor accordingly contributes to
activation of the cell 1050. When a connection 1s severed
between cell 1050 and a cell 1n the sequence processor 314,
the sequence pooler 1020 maintains the permanence value
and may continue to increase or decrease the permanence
value 1n response to activation of the corresponding cell in
the sequence processor 314. The threshold value for estab-
lishing a connection may be equal to or different from the
threshold value for severing a connection. For example, the
threshold value for estabhshmg a connection exceeds the
threshold value for severing a connection.

Which of the cells 1050A through 10507 are to be
activated 1s determined by the number of active cells 1n the
sequence processor 314 connected to the cells 1050A
through 10507 whose permanence value 1s above a thresh-
old value. As described above with reference to FIG. 9,
inhibition signal 918 may be sent between cells 1050 within
an 1nhibition zone to prevent certain cells from becoming
active when a cell connected to these cells 1s active. After a
cell 1050 1s activated, hysteresis may be implemented to
maintain the activated cell 1n an active state even when there
1s a competing cell that has the same number of connected
cells active or a slightly higher number of connected cells
active than the already active cell 1050.

Unpooling Operation

Unpooling refers to the operation of placing cells 1 a
sequence processor of a lower processing node to a predic-
tive state based on a feedback signal from an upper pro-
cessing node. The cells set to the predictive state are not yet
active, but are primed to become active when a column
including the cell receives a selector signal 646, despite the
presence of other cells 1n the column that should be activated
according to the scheme described above in detail with
reference to FIG. 6. In this way, context can be provided to
a processing node to improve recognition of patterns in

ambiguous 1nputs. Similarly, patterns corresponding to
behaviors 1n a sequence can be evoked.

FIG. 11A 1s a schematic diagram 1illustrating sending of a
teedback signal 1102 from an upper node 1104 as part of an
unpooling process to place cells of a lower node 1108 1n a
predictive state, according to one embodiment. The upper




US 11,537,922 B2

19

node 1104 includes, among other components, a sequence
pooler 1130. The lower node 1108 includes, among other
components, a spatial pooler 1110 and a sequence processor
1120. The structure and functions of sequence pooler 1130
are substantially the same as those of sequence pooler 1020,
described above with reference to FIG. 10, except that a
teedback signal 1102 may be sent from each cell of the
sequence pooler 1130 to the cells of the sequence processor
1120. The structures and functions of spatial pooler 1110 and
sequence processor 1120 are substantially the same as those
ol spatial pooler 320 and sequence processor 314, respec-
tively, as described above with reference to FIG. 3.

When focusing on or giving attention to a certain tem-
poral sequence, one or more cells 1n sequence pooler 1130
corresponding to the focused temporal sequence are
selected. Then a feedback signal 1102 1s sent from the
selected cells of the sequence pooler 1130 to cells 1 the
sequence processor 1120 connected to the selected cells. The
teedback signal 1102 causes the connected cells 1 the
sequence processor 1120 to be placed 1n a predictive state.

FIG. 11B 1s a schematic diagram illustrating operation
alter placing cells of sequence processor 1120 1n predictive
states, according to one embodiment. Spatial pooler 1110
receives a bottom-up mput 1122 and then generates sparse
vector 1124, as described above 1n detail with reference to
FIG. 3.

If there are any predictive cells 1n the columns selected for
activation by the sparse vector 1124, these predictive cells
are activated despite presence of other cells in the column
that would otherwise have been activated according to the
scheme described above 1n detail with reference to FIG. 3.
If there are no predictive cells in the column selected for
activation by the sparse vector 1124, a cell may be selected
from the column according to the scheme described above
with reference to FIG. 3.

A bottom-up input 1134 1s generated by the sequence
processor 1120 to indicate the activated cells and 1s sent to
the sequence pooler 1130. The sequence pooler 1130 may
perform substantially the same operation as described above
with reference to FIG. 10.

FIG. 12 1s a block diagram of a computing device 1200 for
implementing nodes according to embodiments. The com-
puting device 1200 may include, among other components,
a processor 1202, a memory 1206, an input interface 1210,
an output interface 1214, a network interface 1218 and a bus
1220 connecting these components. The processor 1202
retrieves and executes commands stored 1n memory 1206.
The memory 1206 store software components including, for
example, operating systems and modules for instantiating
and executing nodes as described herein. The mput interface
1210 recerves data from external sources such as sensor data
or action mformation. The output interface 1214 1s a com-
ponent for providing the result of computation 1 various
forms (e.g., 1mage or audio signals). The network interface
1218 enables the computing device 1200 to communicate
with other computing devices by a network. When multiple
nodes or components of a single node 1s embodied in
multiple computing devices, information associated with
temporal sequencing, spatial pooling and management of
nodes may be communicated between computing devices
via the network interface 1218.

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative designs for processing
nodes. Thus, while particular embodiments and applications
have been illustrated and described, 1t 1s to be understood
that the 1nvention 1s not limited to the precise construction
and components disclosed herein and that various modifi-
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cations, changes and variations which will be apparent to
those skilled 1n the art may be made 1n the arrangement,
operation and details of the method and apparatus disclosed
herein without departing from the spirit and scope of the
present disclosure.
The mvention claimed 1s:
1. A computer-implemented method for temporal process-
ing data, comprising;:
detecting a plurality of spatial patterns 1n an mput data at
a first time by a first node;

generating a {irst sparse vector 1 a sparse distributed
representation based on the plurality of spatial patterns
detected at the first time;

predicting spatial patterns to appear in the input data at a

second time subsequent to the first time by processing,
the generated first sparse vector based on connections
representing relationships of temporal sequences of
spatial patterns 1n the input data detected before the first
time;

generating output vectors from the first node that vary

over time based on the prediction, first elements of the
output vectors maintained active for a first period of
time responsive to prediction associated with the first
clements as being determined inaccurate, second ele-
ments 1 the output vectors maintained active for a
second period of time longer than the first period
responsive to prediction associated the second elements
determined as being accurate; and

updating, as part of training, the connections based on

activation of the first elements for the first period time
and the second elements for the second period of time.

2. The method of claim 1, wherein predicting the spatial
patterns in the mput data at the second time comprises:

cach of a plurality of cells receiving sequence inputs

indicating activation of connected cells; and
placing each of the plurality of cells in a predictive state
responsive determining that the sequence inputs indi-
cate that more than a predetermined number or a
portion of the connected cells are activated, the pre-
dictive state of the plurality of the cells indicated 1n the
output vectors.
3. The method of claim 2, further comprising activating,
cach of the plurality of cells responsive to the first sparse
vector including an active element indicating activation of a
corresponding column that includes each of the plurality of
cells.
4. The method of claim 1, wherein each of the output
vectors 1dentifies which cells 1n the first node are active at a
current time and which of the currently active cells in the
first node were predicted at a previous time prior to the
current time to become active.
5. The method of claim 4, further comprising:
mapping each of a plurality of cells in a second node to
a subset of cells 1n the first node;

selecting a subset of the plurality of cells 1n the second
node based on activation of the subset of cells 1 the
first node mapped to the plurality of cells in the second
node; and

generating a second sparse vector 1 a sparse distributed

representation indicating the selected subset of cells n
the second node, activation period of elements of the
second sparse vector determined at least on a number of
mapped subset of cells 1n the first node that are active
and were previously predicted to become active.

6. The method of claim 5, further comprising performing
a temporal sequencing higher than a first order on the second
sparse vector.
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7. The method of claim 5, further comprising:

increasing a permanence value between each of the plu-

rality of cells and a cell 1n the first node mapped to each
of the plurality of cells responsive to the cell 1n the first
node being active when each of the plurality of cells 1s
activated; and

decreasing the permanence value between each of the

plurality of cells and the cell 1n the first node mapped

to each of the plurality of cells responsive to the cell in
the first node being nactive when each of the plurality
of cells 1s activated.

8. The method of claim 5, further comprising sending a
teedback signal from the second node to the first node to
place 1n a predictive state a subset of cells in the first node
mapped to one or more of the plurality of cells 1n the second
node.

9. The method of claim 8, wherein the subset of cells 1n
the first node placed 1n the predictive state 1s prioritized for
activation responsive to receiving the mnput data.

10. The method of claim 1, further comprising;:

providing sensor data and action information associated

with the sensor data as the mput data;

temporally processing the output vectors at a second node

connected to the first node to generate a first processed

data;

providing the first processed data and the action informa-

tion to a third node; and

temporally processing the first processed data and the

action information to generate a second processed data.
11. A computing device, comprising:
a Processor;
a first node comprising:
a spatial pooler configured to detect a plurality of
spatial patterns 1n an input data at a first time, and
generate a {irst sparse vector in a sparse distributed
representation based on the plurality of spatial pat-
terns detected at the first time; and
a sequence processor configured to:
predict spatial patterns to appear in the input data at
a second time subsequent to the first time by
processing the generated first sparse vector based
on connections representing stored relationships
of temporal sequences of spatial patterns 1n the
input data detected before the first time, and

generate output vectors from the first node that vary
over time based on the prediction, first elements of
the output vectors maintained active for a first
period of time responsive to prediction associated
with the first elements as being determined inac-
curate, second eclements 1n the output vectors
maintained active for a second period of time
longer than the first period responsive to predic-
tion associated the second elements determined as
being accurate, and

update, as part of training, the connections based on
activation of the first elements for the first period
of time and the second elements for the second
period of time.

12. The computing device of claim 11, wherein the
sequence processor predicts the spatial patterns 1n the 1input
data at the second time by having each of a plurality of cells
receive sequence inputs indicating activation of connected
cells; and place each of the plurality of cells in a predictive
state responsive determining that the sequence inputs 1ndi-
cate that more than a predetermined number or a portion of
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the connected cells are activated, the predictive state of the
plurality of the cells indicated 1n the output vectors.

13. The computing device of claim 12, wherein the
sequence processor 1s further configured to activate each of
the plurality of cells responsive to the first sparse vector
including an active element indicating activation of a cor-

responding column that includes each of the plurality of
cells.

14. The computing device of claim 11, wherein each of
the output vectors 1dentifies which cells 1n the first node are
active at a current time and which of the currently active
cells 1 the first node were predicted at a previous time prior
to the current time to become active.

15. The computing device of claim 14, further comprising
a second node, the second node configured to:

map each of a plurality of cells to a subset of cells 1n the
first node,

select a subset of the plurality of cells in the second node
based on activation of the subset of cells 1n the first
node mapped to the plurality of cells in the second
node; and

generate a second sparse vector 1n a sparse distributed
representation indicating the selected subset of cells 1n
the second node, activation period of elements of the
second sparse vector determined at least on a number of
mapped subset of cells 1n the first node that are active
and were previously predicted to become active.

16. The computing device of claim 15, wherein the second
node 1s turther configured to perform a temporal sequencing
higher than a first order on the second sparse vector.

17. The computing device of claim 15, wherein the second
node 1s further configured to:

increase a permanence value between each of the plurality
of cells and a cell 1 the first node mapped to each of
the plurality of cells responsive to the cell 1n the first
node being active when each of the plurality of cells 1s
activated:; and

decrease the permanence value between each of the
plurality of cells and the cell 1n the first node mapped
to each of the plurality of cells responsive to the cell in
the first node being 1nactive when each of the plurality
of cells 1s activated.

18. The computing device of claim 15, wherein the second
node 1s further configured to send a feedback signal from the
second node to the first node to place 1n a predictive state a
subset of cells 1n the first node mapped to one or more of the
plurality of cells 1 the second node.

19. The computing device of claim 18, wherein the subset
of cells i the first node placed in the predictive state is
prioritized for activation responsive to receiving the input
data.

20. The computing device of claim 11, further compris-
ng:

a second node connected to the first node and configured
to temporally process the output vectors to generate a
first processed data; and

a third node connected to the second node and configured
to receive the first processed data and action informa-
tion associated with sensor data, and temporally pro-
cess the first processed data and the action information
to generate a second processed data, the sensor data and
the action information received at the first node as the
iput data.
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