12 United States Patent

Jameson et al.

US011537754B1

US 11,537,754 B1
Dec. 27, 2022

(10) Patent No.:
45) Date of Patent:

(54) PSEUDO PHYSICALLY UNCLONABLE
FUNCTIONS (PUES) USING ONE OR MORE
ADDRESSABLE ARRAYS OF ELEMENTS
HAVING RANDOM/PSEUDO-RANDOM

VALUES
(71) Applicant: Adesto Technologies Corporation,
Santa Clara, CA (US)
(72) Inventors: John R. Jameson, Menlo Park, CA
(US); David Kim, Sunnyvale, CA (US);
Foroozan Sarah Koushan, San Jose,
CA (US)
(73) Assignee: Adesto Technologies Corporation,
Santa Clara, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 430 days.
(21) Appl. No.: 16/571,051
(22) Filed: Sep. 13, 2019
Related U.S. Application Data
(60) Provisional application No. 62/803,874, filed on Feb.
14, 2019, provisional application No. 62/732,993,
filed on Sep. 18, 2018.
(51) Int. CL
GO6F 21/75 (2013.01)
HO4L 9/32 (2006.01)
GO6l’ 21/72 (2013.01)
G1IC 13/00 (2006.01)
GO6I 7/58 (2006.01)
G1IC 11/16 (2006.01)
(52) U.S. CL
CPC GO6F 21/75 (2013.01); GO6F 7/588

(2013.01); GO6F 21/72 (2013.01); G1IC
13/003 (2013.01); G1IC 13/004 (2013.01);
G11C 13/0023 (2013.01); HO4L 9/3278
(2013.01); GI1IC 11/1659 (2013.01); GIIC
13/0004 (2013.01)

APPLY FORMING CONDITIONS

(38) Field of Classification Search
CPC GO6F 21/72; GO6F 21/735; GO6F 7/588;

HO4L 9/3278
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
8,654,561 Bl 2/2014 Jameson et al.
8,976,568 Bl 3/2015 Jameson et al.
9,165,648 B1 10/2015 Jameson
9,361,975 B2 6/2016 Gilbert et al.
9934411 B2 4/2018 Kwongcocveee... G09C 1/00
10,311,930 B1* 6/2019 Kimccoocoevvnnn. HO41. 9/3278
2014/0293676 A1 10/2014 Lee et al.
2014/0299832 A1 10/2014 Jameson
2018/0033960 Al 2/2018 Jameson et al.

OTHER PUBLICATTIONS

Suh et al., Physical Unclonable Functions for Device Authentication
and Secret Key Generation, DAC 2007, Jun. 4-8, 2007, San Diego,

California, U.S.A.

Aman et al., Mutual Authentication 1n IoT Systems using Physical
Unclonable Functions, IEEE Internet of Things Journal, May 10,
2017, vol. 4.

* cited by examiner

Primary Examiner — Daniel B Potratz

(57) ABSTRACT

An 1ntegrated circuit device can include a plurality of
nonvolatile memory elements having values that vary ran-
domly or pseudo-randomly from one another; a selection
circuit configured to select a plurality of nonvolatile memory
clements that vary randomly or pseudo-randomly 1n
response to a recerved challenge value; and sense circuits
configured to generate a response value based on the values
of the selected nonvolatile memory elements. Related meth-
ods and systems are also disclosed.

7 Claims, 31 Drawing Sheets

é 1876

TO HASH ARRAY
1876-0

SELECT 1st HASH BIT PAIR
1876-1

FIE or UIU?

NEXT HASH -
31T PAIR HASH BITS
1876-3

876-

COPY LOGICAL Bl
TO PUF ARRAY

1876-4

U.S. Patent Dec. 27, 2022 Sheet 1 of 31 US 11,537,754 B1

RND
CHALLENGE RESPONSE
102A 106A 104A

FIG. 1A

TRANSFER
FIG. 1B
\2‘ 100C
Accept/!Accept
CHALLENGE r
102C "108C- : RESPONSE

104C

U.S. Patent Dec. 27, 2022 Sheet 2 of 31 US 11,537,754 B1

‘2——' 221

CHALLENGE
202

79051 — 2252 ~ M5A ~ 4

RAND
ARRAY
208-1

ARRAY2

ARRAYA |
208-2 %

208-A

RAND ARRAY 208

AXZ

AxH

| ACCEPT / tACCEPT

ACCEPTANCE
I TEST
233

RAND ARRAY 2084

Gop

U.S. Patent Dec. 27, 2022 Sheet 3 of 31 US 11,537,754 B1

R [235

'RAND ARRAY 291 _ _ACCEPT

208-i — ACCEPTANGE
___________ § TEST

FIG. 2C

: [23%°

| ITERATION |

IACCEPT
ACCEPTANCE |

RAND ARRAY 208+

e,
o
iy
(W

of bils pa aray

US 11,537,754 B1

Sheet 4 of 31

Dec. 27, 2022

U.S. Patent

[300

CONDITIONING 314

306

e N . T e e ™

~

(—) (—) (=) (=)= = (—)

“~NS NS NS
H _ _ *
* _ ! #

(—Y (—)Y (—) {—) -

~
w
#

{ ,_

e . . .

~

(—) {(—) {—) {—)}~

. . . .

e Nt T e TP

ﬁ)

N

RN R N SR
-

I I A g

(—Y {—) {(—} {— T:...;

e e N .

g€ d3000dd

e

)
~

<
D)
O
Li_

Q" 300

CONDITIONING 314

308

<
e
&
SE

9le

308-1

d40004d

FIG. 3B

[300

CONDITIONING 314

308

H OO E--O |~—318

9le

o
LL
-
O
Q
LL
-

CHALLENGE

FIG. 3C

RESPONSE

U.S. Patent Dec. 27, 2022 Sheet 5 of 31 US 11,537,754 B1

400B

iED

ESPONSE

MODIFIED

Lt
&,
<.
L3
o
-y
<X
”
-

£
®
p=

» RESPONSE

CHALLENGE

CHALLENGE

| 30
:'LL.

PUF ARRAY

[CHALLENGE [RESPONSE

- Address of cell
: | 0ifRc>Ry 526-0

| Addresses of cells A & B | 1T RA<=RB - 596-1
A | OWRA>RB

- Addresses of N celis I 1if M ofthe N cells have Rc < Rv
f | Oif Mofthe N cells do nothave Rc <Ry

| Addresses of N cells | 1if average R of the N cells is <= Rv — 526-3
f | Oifaverage R of the N celis if > Ry Y
t 1if median R of the N cel _

0 if median R of the N cel 526-4

526-2

Addresses of N cells

Rv = Verily resistance

RA = Resistance of celi "A”

RB = Resistance of celi "B

Re¢ = Resistance of cell FIG. 5B

U.S. Patent Dec. 27, 2022 Sheet 6 of 31 US 11,537,754 B1

[600

o
O
RRAM
| O
i{ i 508
i |
|
622*—--:—1L
622' ~—L_TTTT CMP 624 ¥—— Rv
3
RESPONSE
FIG. 6A
620
CHALLENGE RESPONSE

Address of cell 1 if Rc <= Rv & wordline number is odd
0 if Rc > Rv & wordline number is odd 026-0
1if Rc > Rv & wordline number is even
0 if Rc <= Rv & wordline number is even

1 1f RA <= RB & wordlines for A/B are even/even or odd/odd
0 if RA > RB & wordlines for A/B are even/even or odd/odd
1if RA > RB & wordlines for A/B are odd/even or even/odd
0 if RA <= RB & wordlines for A/B are odd/even or even/odd

1 if Re <= Rv & bitline number is odd

0 if Rc > Rv & hitline number is odd 620-2
1if Rc > Rv & bitline number is even

0 if Rc <= Rv & bitline number is even

1 1f RA <= RB & bitlines for A/B are even/even or odd/odd
0if RA > RB & bitlines for A/B are even/even or odd/odd
1if RA > RB & bitlines for A/B are odd/even or even/odd
0 if RA <= RB & bhitlines for A/B are odd/even or even/odd

Addresses of celis A& B

626-1

Addresses of a cell

Addresses of cells A& B

626-3

Rv = Verify resistance

RA = Resistance of cell "A"
RB = Resistance of cell "B"
R¢ = Resistance of cell

FIG. 6B

U.S. Patent Dec. 27, 2022 Sheet 7 of 31 US 11,537,754 B1

ALL CELLS IN
1 DISTRIBUTION

5
= Rv
)
£
v
|........
9
O
Lil
=
”
_—
)
=
)
O
RESISTANCE
fR<=Ry, output ="1'
fR>Ryv, output="0
FIG. 7A
CELLS IN 2 DIFFERENT DISTRIBUTIONS
- POPULATION 1 POPULATION 2
O
i
@
0 RB
—
)
O
Lil
=
|.....
<C
_—
D
-
.
O

RESISTANCE

f RA <=RB, oufput ='1’
fRA > RB, output =0

FIG. 7B

U.S. Patent Dec. 27, 2022 Sheet 8 of 31 US 11,537,754 B1

S— 828
DETERMINE TARGET RESISTANCE STATE
828-0

APPLY ELECTRICAL CONDITIONS
TO PUF BITS TO REACH TARGET RESISTANCE
(e.g., FORMING INITIAL CELLS,
PROGRAM ERASED CELLS,
ERASE PROGRAMMED CELLS)

828-1

DETERMINE STATUS OF EACH PUF BIT
823-2

DESIRED
DISTRIBUTION?
828-3

Y

REINFORCE STATUS OF EACH PUF BIT
828-4

FIG. 8

U.S. Patent Dec. 27, 2022 Sheet 9 of 31 US 11,537,754 B1

* PRa
m PRb
(.96 ERs
‘ 4+ ERa
"g?_g 0.84
B‘é 0.04 i
= E 040
3G 0.20
0.08
0.02

1e+3 le+4d 1e+5 1e+6 te+7 1e+8 1e+9

RESISTANCE
FIG. 9A
20K 10k
® PRa
= PRb
*x PRC

LogNormal
Cumulative

0 20 40 60 80 100 120 140
CONDUCTANGE (uS)

FIG. 9B

U.S. Patent Dec. 27, 2022 Sheet 10 of 31 US 11,537,754 B1

0.98

0.90
0.78

0.58
0.38

0.20
0.03

0.02
1038

Ve

LogNormal
Cumulat

tetd | 1e+5 e+ 1e+7 1e+8 1e+Q
1052 RESISTANCE

F1G. 10A

LogNormal
Cumulative

10 20 40 60 80 100 120
CONDUCTANCE (uS)

FIG. 10B

U.S. Patent Dec. 27, 2022 Sheet 11 of 31 US 11,537,754 B1

51146A

APPLY 1st PROGRAM CONDITIONS
TO RRAM BITS
1146-0

RRAM BIT
< Ry?

APPLY 2nd PROGRAM CONDITIONS
TO RRAM BIT
1146-2

USE RRAM BITS IN PUF ARRAY
1146-3

FIG. 11A

\511465

APPLY ERASE CONDITIONS
TO RRAM BITS
1146-4

RRAM BIT
< Rref?

APPLY PROGRAM CONDITIONS
TO RRAM BIT
1146-6

USE RRAM BITS IN PUF ARRAY
1146-7

FIG. 11B

U.S. Patent

SETTING CONDITIONS
(e.g. ,Forming)

RRAM
(Initial)

1206

FIG. 12A

IC SUBSTRATE

1352

HASH
ARRAY
1348

PUF
ARRAY
1308

FIG. 13A

IC DEVICE 1356

IC SUBSTRATE
1354-0

HASH
ARRAY
1348

IC SUBSTRATE
1354-1

PUF
ARRAY
1308

FIG. 13C

Dec. 27, 2022

FIG. 12B

51 350A

1354
MEMORY CELL ARRAY

Sheet 12 of 31 US 11,537,754 B1

DESTROY
HASH ARRAY

FIG. 12C FIG. 12D

51 3508

MEMORY CELL § | MEMORY CELL
ARRAY ARRAY
1352-0 1352-1

HASH PUF
ARRAY ARRAY
1348 1308

IC SUBSTRATE

FIG. 13B

51 350D

IC DEVICE IC DEVICE
1356-0 1356-1

HASH | | PUF

513500

ARRAY ARRAY
1348 1303

FIG. 13D

U.S. Patent Dec. 27, 2022 Sheet 13 of 31 US 11,537,754 B1

1458
APPLY ELECTRICAL CONDITIONS ‘5
TO RRAM TO CREATE HASH ARRAY
1458-0

SELECT 1st HASH BIT
1458-1

HASH BIT?_U

1458-2
=1
APPLY FORMING DO NOT APPLY FORMING
CONDITIONS CONDITIONS
TO COUNTERPART TO COUNTERPART
RRAM PUF BIT(s) RRAM PUF BIT
1458-3 1458-7

REAPPLY l!'
FORMING {OR PUF BIT = 17

APPLY OTHER) 458-4
CONDITIONS

1458-5 Y

NEXT | n [AS
HASH BIT HASH BIT?
1458-7 458-5

Y

FIG. 14A

U.S. Patent Dec. 27, 2022 Sheet 14 of 31 US 11,537,754 B1

é 1460

=1 (or "10")_~TiasH BIT~=0 (or "01")
1460-2

APPLY FORMING APPLY FORMING

CONDITIONS TO CONDITIONS TO
1st POSITION BIT 2nd POSITION BIT

OF PUF RRAM BIT PAIR | } OF PUF RRAM BIT PAIR

AND NOT TO AND NOT TO

2nd POSITION BIT 1st POSITION BIT

OF PUF RRAM BIT PAIR | | OF PUF RRAM BIT PAIR
1460-8 1460-9

NEXT ¥ [AST
HASH BIT PAIR HASH BIT(S)?
1460-10 460-6

Y
FIG. 14B
14628
5

1462A \.

l /-1 448 . l [—1408A f14088

rjof1T1]olofolt] [FIVIFIE[VIVIV]F FIVIF[FVIV[V]F
VIF|VIV|F|{F|IF]V:

Hash | PUF Array | PUF Array |
Array : (single-ended ; (differential :
sensing) sensing)

FIG. 14C

U.S. Patent Dec. 27, 2022 Sheet 15 of 31 US 11,537,754 B1

1516

CHALLENGEL Y [£) PUF ARRAY

1508

DEC

P
l BITS
. 154

-

RESPONSE

2
CM 624 | | o
C

15688
CREATE RRAM PUF ARRAY [
15638-0

APPLY CHALLENGE(s)
TO GENERATE RESPONSE
1568-1

GENERATE ECC DATA FROM RESPONSE
15638-2

WRITE ECC DATA TO ADDRESS
FIG. 15B CORRESPON%%CB; go RESPONSE

TO GENERATE RESPONSE W/ ECC DATA
1568-4

CHECK E';'r%r
<RESPONSE W/ ECC DATAS
1568-5

Error

CORRECT/SIGNAL
ERROR IN RESPONSE OUTPUT RESPONSE

APPLY CHALLENGE [1568C

FIG. 15C

U.S. Patent Dec. 27, 2022 Sheet 16 of 31 US 11,537,754 B1

© l
S l
= PUF ARRAY |
CHALLENGELY [) 608 167
O | 0
L1 |
-
RED 1670-1
¥
CMP 1624
3
RESPONSE
FIG. 16A
[1672
PUF \
ENTRY FAILS?
1672-0
Y

CONFIGURE REDUNDANT USE ENTRY
FOR PUF ENTRY
1672-1

F1G. 168

U.S. Patent Dec. 27, 2022 Sheet 17 of 31 US 11,537,754 B1

51 [74A

< 15!: BIT SHORT'? .

REPLACE
Pt REDUNDANT:

CELLS
1774-2

| [DIFFERENTIAL] »

COPY TO PUF k< TSHORT? ~

1774-5

ond BIT = LRS BIT(9.
1774-7

NEXT PAIR §
177410 |

FIG. 17A

FORM 1st BIT] ~1774B
177411 | 5

st :!:T OP gt
~ 177412

5O NGT FORM 2nd BIT "FORM 2nd BIT |
1774-18 | 177413 |

| REPLACE
| BITS WITH
t REDUNDANT
I CELLS
1774-15
2nd BIT = HRS BIT {e.g., 0) 1st BIT = HRS BIT (e.g., 0)

1774-19 1774-16

1st BIT = LRS BIT(g. Bl | 2ndBIT=LRS BIT(9. 1)

1774-17

1774-20

NEXT PAIR | N~
1774-21

—~TAST PAIR™
~1774-21 -

FIG. 178

U.S. Patent

Dec. 27, 2022

A
—1
lgnore Y

ENEENNYE

Hash
Array

1848

NEXT HASH '
AT IS | HASH BITS
1876-3

Sheet 18 of 31

APPLY FORMING CONDITIONS
TO HASH ARRAY

1876-0

SELECT 1st HASH BIT PAIR
1876-1

FF or UU?
876-

FIG. 18B

US 11,537,754 B1

é 1876

COPY LOGICAL BIT(s)
TO PUF ARRAY
1876-4
F1G. 18A
1878A
A
I
v
1878B
—
l 110
PUF Array | PUF Array :
(differential | (single~endea :
sensing) sensing)
N - J U - J
18088 1808A

U.S. Patent Dec. 27, 2022 Sheet 19 of 31 US 11,537,754 B1

HASH ARRAY 1948A

1982-1 1982-2

1982-0

FIG. 19A

HASH ARRAY 1943B HASH ARRAY 1948C

(@)
0@
1962-6
FIG. 19B FIG. 19C

HASH ARRAY 2048
2082-0

RNG ¢ (]
ol

2008-1
2008-0
RNG?
2086-1
S—— 2008-2- 2008-3~_L
or ¢
2086-1 1)

) >082-1
FIG. 20

U.S. Patent Dec. 27, 2022 Sheet 20 of 31

20/31

HASH ARRAY 2148A
UtiFjpiut U u

SKIP
2180

FIG. 21A

HASH ARRAY 2148B

COPY 2188-0 U] [U] [F

skip 21868 ~{F] [F] [U] [U] [OP[U] [U] [F

COPY 2188-" Ul [F] [u

U] [F] U] U] [F] U] |F][F

FIG 21B Ut UL FIUL R TUL UL F
(60/40 DISTRIBUTION)

2290 1'
SELECT CELL PAIR
2290-0

APPLY FORMING CONDITIONS
TO 1st CELL OF PAIR
2990-1

1st CELL
FORMED?
2290-2

APPLY FORMING CONDITIONS
TO 2nd CELL OF PAIR
2290-3

FIG. 22

'ng CEL
FORMED?
2290-4

US 11,537,754 B1

F)
C_—2186' (SKIP)
2188' (COPY)

U.S. Patent Dec. 27, 2022 Sheet 21 of 31 US 11,537,754 B1

- 2300A

CHALLENGE |
2302”7

..l--llllll-
CHALLENGE .Il..l...!-!

2302A' — !!.EE!IIE& NS
NN O U e e s O i o

mdEEEEEEEREE
FIG. 23A

~2304A
RESPONSE

> 2304A
RESPONSE

— 23048
RESPONSE

T
NN
NI

NN

T

T

CHALLENGE
23028

MEEER
REIIREN

HEEEENE

CHALLENGE

HEEERERERR
s bbb
2302C — 1T+~ AN)
BEEREEN
ll

~ 2304
— DATA OUT

2304C
> RESPONSE

FIG. 23C

U.S. Patent Dec. 27, 2022 Sheet 22 of 31

2300D
N

CHALLENGE
2302D

2300k
RN

CHALLENGE
23028 —

US 11,537,754 B1

llll&&&&!l!l
HEEEEYEeEEEEE
IIIIHIIIIIII

=z 1NN
.lllﬁllll...
EEERvEEgEREN
HEEEENNNNS .
HEEEERnEEEEEE
EEEEEEEEEEED
HEEEEEEEREEEE

FIG. 23D

HEEEEEEEREEEN
HEEEEEEEEEEER
EEEEEEENEEEE
HEEREEEREEEN
I O NN
HEEEEEERERNA
HEEEEREREN N7
J O I N\ o I
T]

2300F
IS

CHALLENGE
2302F

FIG. 23E

ERERECZINEEE
ENSERENENEEE
B4RpEENIERNE

EdPANININGZD | 1 LT

EENEENdEEDZN
T T TP T
EEEEEEEEEEEE
EEEEEEEEEEEE
EEEEEEEEEEEE
EEEEEEEEEEEE
EEEEEEEEEEEE
T

FIG. 23F

~ 2304D-0
RESPONSE
(Challenge

Type 1}

2304D-1
RESPONSE

(Challenge
Type 2}

br 2304k

RESPONSE

2304F
RESPONSE

US 11,537,754 B1

Sheet 23 of 31

Dec. 27, 2022

U.S. Patent

5 2400

9197 4300030 |

2402
CHALLENGE

L e wwee —— —— . — —— ——— ——
Ay

RESPONSE 2404

5 2548A
2004A

RESPONSE

EEEVAVANEEEE
ERRAEZERE NN
I
EEEIEERENEE
EEEIEE RN
EEEEEEZ AN
T E
EREZENEEN
ERENEREN N
EEEEEEEEZ NN
=S EEEREEEEE

2502A
CHALLENGE

FIG. 25A

5 25488
2504B

RESPONSE

TITIX 'ﬂll-l
HEEARZ iill.l

INEEN

Eiﬂﬂ.l.lﬂlll
A1y | |
Q.l.ll.lﬂlll

25028
CHALLENGE

U.S. Patent

CHALLENGE

CHALLENGE
Direct or
., offset)

Indirect (e

Dec. 27, 2022 Sheet 24 of 31

Iﬂlll
HilEEE
!!II!

!
:
l
l

2502C -~

11
N
i
g
T T IATT

ENAEEEEEN
HEEREREENER/ARER
HEEEREERGRANEN

J
AN\

HEERENEEEEEN
B
B
B
.
N
N
.

B
u
B
.
|
.
.
N
HEEEEEENUERER

> |
FIG. 25C

T
EEEEEEEEEEEE
ENENEEENAEE N
EEEEEEEEZ N
‘I"ﬂillllliiglﬂ

US 11,537,754 B1

15 2548C

—2504C

RESPONSE

’5 25438D

T LS L A T 2504D

e 1 LT A
IlIlilIl.’I!
HEEERERR=NAaNZ)
HERERRRZ NN
HEEEERENIIInED
HEEEEEERIIINED

Noncontiguous RING 2986

ADDS
FIG. 25D

RESPONSE

U.S. Patent Dec. 27, 2022 Sheet 25 of 31 US 11,537,754 B1

2608

2648-1

FIG. 26A FIG. 268

H P H
o748 || 2708 /1 27081 2748}
H P P:'l H
27481 | | 2708 2748| 2708 2748}

Pz
FIG. 27A 2708] 2743;
FIG. 278 i

Ri 27981
R 2798}
Rk 2798k |
RI 2798
Pi 2708

J

FIG. 27C

U.S. Patent Dec. 27, 2022 Sheet 26 of 31 US 11,537,754 B1

2862A
xfer op [
M eyl <] P
284880 |5807A 2808A
FIG. 28A
28628
—
2886 28088
e 3 28488 80
FIG. 28B

FIG. 28C

IC 2800t

HASH} PUF
20848k § 2808k

KEY

2903
2801E

Forming

FI1G. 28D FIG. 28E

U.S. Patent Dec. 27, 2022 Sheet 27 of 31 US 11,537,754 B1

2996
5

FIG. 28A <:] 2908A 2908B
Key A '

52996

-

=

EXTERNAL

KEY STORAGE
2003 K KeyB
2048
FIG. 29B
2996’1‘
2900A
TEEH Product A
b oee d b e
_ R0 ——2908A
_\'Cti} Product B
20088
29008

FIG. 29C

U.S. Patent Dec. 27, 2022 Sheet 28 of 31 US 11,537,754 B1

STORAGE 2908A

2905

RESPONSE + KEY
Product B
2908B
FIG. 29D 29008

‘5‘ 3062

CHALLENGER 3005

CHALLENGE _{ Product 3000
CKT 3007 TEY
KEY(EXT)| _ Hash L -

Array
-~ 3048

£
o

AUTH./
NOT AUTH.

3048

RESPONSE_OUT

Response

(internal 3009

FIG. 30

U.S. Patent Dec. 27, 2022 Sheet 29 of 31 US 11,537,754 B1

R IIIIEGIIII

A e |]

L !E;E-’ﬁﬁll

=2 =L SAIRIAIIN S h=e =
3641 AL LV 31640

‘1

II OGO AGILEEE
o e
L e
MGG EE=

e
=SS Vi

mmmmmmmmmmmmmgy‘.-
w——Y—A— " AN N NN Y
4 Vi 4 VA4 Vil Vil Vil A VWL Y ﬁm__"

!.r" AP i e G st o 2 304 1-0

ENl=====c—=—mun|
EERE=SSSSS=S NN
EENSEE=====EEN

s —

FIG. 31

'1

‘

—= il oy

essnaa!-!
k&&&&h”.ﬂ
NMNMMK“I'II..I

MMNMNMH““I“

4%
’
7
4!

é— 3213

D0=1§2]3|—|—[—IN

00 = [TTZIT-T-IN] © | ECCENCODER | £ [TTZT3] T[] = o
ot = (R IeF RN

FIG. 32

U.S. Patent Dec. 27, 2022 Sheet 30 of 31 US 11,537,754 B1

[3371

KEY(s)
Response(s

CHALLENGE(s) X SYSTEM
3302 3304 3373
FIG. 33
3400
BLO BL1 BL? J
O
Ilili
Ll
o7
RSN R
S - O 3406
cr) ~ Q I l l
= L 3408 4
= -- WL
Jﬂﬂ' |
WL CMPILOGIC 3424 G e = RV
ODD/EVEN
FIG. 34 RESPONSE 3404

[3541 [36088

" Anode 3543 | 5L HOBA .
Cathode WL
3547 ’ 3545 264 el
WL
3649
FIG. 36A
FIG. 368
1549 FIG. 35
Valter+ Valter-
(+) ()
lalter+ lalter

U.S. Patent

AUTHENTIC
DEVICE
3863

PUF

Dec. 27, 2022 Sheet 31 of 31

UNTRUSTED
SUPPLY CHAIN/

US 11,537,754 B1

J 3801

DEVICE

3863’ Output

ENVIRONMENTS /==~ Response
3869 PUF —
Input 3865-1
Challene
r 3867
CHALLENGE | RESPONSE
Authentic

4064540 —546464- __
1011000 101101 ——nesponse e 3860
N1 1;001 00011 1 Authentication

. I Operation

FIG. 38

(BACKGROUND)

US 11,537,754 Bl

1

PSEUDO PHYSICALLY UNCLONABLE
FUNCTIONS (PUES) USING ONE OR MORE
ADDRESSABLE ARRAYS OF ELEMENTS
HAVING RANDOM/PSEUDO-RANDOM
VALUES

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 62/732,995, filed Sep. 18, 2018

and Ser. No. 62/805,874, filed Feb. 14, 2019, the contents all
of which are incorporated by reference herein.

TECHNICAL FIELD

The present disclosure relates generally to unique 1denti-
fiers for integrated circuit devices, and more particularly to
physically unclonable functions (PUFs) that can be derived
with nonvolatile memory elements.

BACKGROUND

A physically unclonable function (PUF) 1s a physical
structure (usually a circuit) within inputs and outputs. An
input to a PUF 1s called a “challenge”. An output from a PUF
in response to a challenge 1s called a “response”. An internal
function of a PUF can map challenges to responses 1n such
a complex manner that 1t can be impossible or impracticable
build a model of the PUF from known challenge/response
pairs.

Ideally, a PUF only functions when powered and stores no
secret data. Further, different PUFs return different
responses to the same challenge and diflerent challenges to
the same PUF produce different responses. A given PUF will
return the same response to the same challenge. The differ-
ences between PUFs are due to physical differences (usually
arising during manufacturing) which are hard to measure,
hard to predict, and hard to reproduce. One example of a
conventional PUF 1s the exact frequency of a ring oscillator.

Electrical PUFs can be classified based on the type of
input they receive and the type of output they provide. Inputs
and outputs can include analog values, digital values, or
combinations thereof. Accordingly, electrical PUFs can take
any of nine different forms.

Currently, the two main uses of PUFs are authentication
and the generation of keys in cryptographic operations.

FIG. 38 1s a diagram showing an authentication system
3861 that utilizes a PUF. An authentic device 3863 can be
manufactured with a PUF 3865-0. Challenge and response
values for PUF 3865-0 can be known and/or recorded 1n an
authentication database 3867 retained by a trusted source.
An unauthenticated device 3863' can be received via an
untrusted supply chain or environment 3869. Unauthenti-
cated device 3863' can include a PUF 3865-1.

An authentication operation can be used to determine 1f
unauthenticated device 3863' 1s an authentic device (3863).
In the authentication operation, an input challenge can be
applied to the PUF 3865-1 of unauthenticated device 3863’
to generate an output response. The same input challenge
can be applied to authentication database 3867 to generate
an authentic response. The output response can be compared
to the authentic response 3869. If the output response
matches the authentic response, the device 3863' can be
determined to be the authentic device 3863. As shown by the
strikethrough of the first entry in authentication database
3867, once a challenge value has been used for an authen-
tication operation, 1t 1s not used again.

10

15

20

25

30

35

40

45

50

55

60

65

2

While PUFs can play an important role in various appli-
cations, a drawback to conventional PUFs can be the com-
plexity and/or cost of the circuits utilized to create a PUFL.

An mdustry sector that can benefit from PUF devices 1s
that of Internet-of-thing (IoT) devices. IoT devices can often
use authentication operations to receive critical data, such as
updates to firmware and/or encryption/decryption keys. Tra-
ditional static random access memory (SRAM) or delay-
based PUF's can provide only a limited number of challenge-
response pairs (CRPs) and/or sufler from high bit error rates
(BERSs) for applications requiring a large number of chal-
lenge response pairs (CRPs) over time, such as IoT appli-
cations. While 1t 1s possible to provide a greater number of
CRPs by increasing a size of a traditional PUF, the larger
s1ze, greater cost, and 1ncreased power consumption limits
the appeal of such approaches for IoT and similar devices.

It would be desirable to arrive at PUF devices capable of
providing a large number of CRPs that can scale without
significant increases in size, cost or power.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A to 1C are block diagrams of a physically

unclonable function (PUF) devices according to embodi-
ments.

FIG. 2A 1s a diagram of a “hopping” PUF device and
operations according to embodiments.

FIGS. 2B to 2D are diagrams of array operations that can
be included in hopping PUF operations like those of FIG. 33,
according to embodiments.

FIG. 2E 1s a graph showing how a hopping PUF archi-
tectures according to embodiments can provide a large
number of challenge response pairs (CRPs) at lower power
consumption and/or cost than conventional PUFs.

FIGS. 3A to 3C are a sequence of diagrams showing a
PUF device and operations according to embodiments.

FIGS. 4A and 4B are diagrams showing PUF devices 1n

which a challenge and/or response can be altered according
to embodiments.

FIGS. 5A and 5B are diagrams showing a PUF array and

operations where response values can be determined based
on a verily resistance or diflerential resistance according to
embodiments.

FIGS. 6A and 6B are diagrams showing a PUF array and
operations where response values can vary according to
challenge address values.

FIGS. 7A and 7B are diagrams showing resistance dis-
tributions of a PUF or hash array according to embodiments.

FIG. 8 1s a flow diagram of a method of forming a PUF
array according to an embodiment.

FIGS. 9A and 9B are diagrams showing methods of using,
multiple resistance distributions of an RRAM array to form
a PUF or hash array according to embodiments.

FIGS. 10A and 10B are diagrams showing how PUF or
hash array operations according to embodiments are resis-
tant to drift 1n resistance values.

FIGS. 11A and 11B are flow diagrams showing methods
of forming essentially random resistance values for bits of a
PUF or hash array according to embodiments.

FIGS. 12A to 12D are a sequence of diagrams showing
how a hash array can be used to form a PUF array according
to embodiments.

FIGS. 13A to 13D are diagrams showing various systems
that include both a hash array and PUF array according to
embodiments.

US 11,537,754 Bl

3

FIGS. 14A to 14C are diagrams showing methods for
forming a PUF array from a hash array according to embodi-
ments.

FIGS. 15A to 15C are diagrams of PUF devices and
operations that utilize error correction and/or detection
(ECC) data according to embodiments.

FIGS. 16A and 16B are diagrams of PUF devices and

operations that utilize redundancy according to embodi-
ments.

FIGS. 17A and 17B are tlow diagrams showing methods
of addressing short or open conditions in resistance elements
of a hash or PUF array according to embodiments.

FIGS. 18A and 18B are diagrams showing methods of
transferring data from a hash array to a PUF array according,
to embodiments.

FIGS. 19A to 19C are diagrams showing various ways to
step through a hash array to select values for transfer to a
PUF array according to embodiments.

FIG. 20 1s a diagram showing devices and methods for
selecting hash array values for transfer into a PUF array
according to embodiments.

FIGS. 21A and 21B are diagrams showing methods for
selecting hash array values of greater than 2 bits for transfer
into a PUF array according to embodiments.

FIG. 22 1s a flow diagram of a method for establishing
logic values 1n a hash or PUF array according to embodi-
ments.

FIGS. 23A to 23F are diagrams showing variations in
generating response values from challenge address values
according to embodiments.

FI1G. 24 1s a block diagram showing a PUF device that can
include a random number generator (RNG) when applying
challenge values to a PUF array according to an embodi-
ment.

FIGS. 25A to 25D are diagrams showing the generation of
response values with the use ol a RNG according to embodi-
ments.

FIGS. 26 A and 26B are diagrams showing the fabrication
of integrated circuits (ICs) with hash arrays and PUF arrays
on the same water according to embodiments.

FIGS. 27 A to 27C are diagrams showing how hash arrays
can be used to form PUF arrays according to embodiments.

FIGS. 28A to 28E are diagrams showing how a key value
can be generated and/or used to create a PUF array from a
hash array according to embodiments.

FIGS. 29A to 29D are diagrams showing how hash arrays,
PUF arrays and keys can be fabricated and used in an
authentication process according to embodiments.

FI1G. 30 1s a diagram of an authentication system accord-
ing to an embodiment.

FIG. 31 1s a diagram of a hash or PUF array having
redundant locations to accommodate data values read in
various different directions according to embodiments.

FIG. 32 1s a sequence of diagrams showing methods of
generating hash or

PUF array values using an initial random value and ECC
related functions according to embodiments.

FIG. 33 1s a diagram of a cryptographic system according,
to an embodiment.

FIG. 34 1s a diagram of a PUF array according to an
embodiment.

FIG. 35 1s a side cross sectional view of a resistance
clement that can be included in embodiments.

FIGS. 36A and 36B are diagrams showing memory cells
that can be included 1n embodiments.

FIG. 37 1s a diagram showing resistance setting
approaches that can be included 1n embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 38 1s a diagram showing a conventional authentica-
tion operation.

DETAILED DESCRIPTION

Embodiments described herein can include physically
unclonable functions (PUFs), or PUF-like structures that can
be formed using one or more PUF arrays of random or
essentially random wvalues. In some embodiments, such
arrays can utilize variations in the resistance of program-
mable resistance elements, such as those included 1n a
resistive random access memory (RRAM).

In some embodiments, a PUF device can include a
number of small PUF arrays. Challenge values can be varied
and applied to the PUF arrays to generate array outputs.
Array outputs can be used to access the PUF arrays once
more, or to generate a response from the PUF arrays.

In some embodiments, a PUF can be formed of an RRAM
array, with challenge values accessing groups of RRAM
cells having resistance values that can vary according pro-
cessing or other variations. Such resistance values can be
read/evaluated to generate a response to the challenge. Such
device can be considered a “pseudo-PUF” as 1t could be
theoretically possible to determine states of RRAM elements
through physical analysis of an unpowered device.

In some embodiments, an RRAM array can be a “hash”
array having resistance values that can vary according
processing or other vanations. Such resistance values can be
copied as logic values into another circuit to form a PUF
array. Such another circuit may or may not be another
RRAM array.

In the various figures shown below, like 1items are referred
to with the same reference numerals but with the leading

digit(s) corresponding to the figure number.
FIG. 1A 1s a block diagram of a PUF 100A according to

an embodiment. A PUF 100A can receive a challenge 102A
and output a response 104 A corresponding to the challenge
102A. A challenge 102A can be one or more analog values,
a digital value, or a combination thereof. Similarly, a
response 104A can be analog, digital, or a combination
thereof. Within PUF 100A, a challenge 102A, or signals
corresponding to the challenge 102A, can be applied to a
random array of elements 106A. Based on logic states of
clements 106A, response 104A can be generated. In some
embodiments, array 106A can take the form of an address-
able RRAM array. In some embodiments, resistance states
of such RRAM elements can vary according to manufac-
turing variations resulting in each PUF 100 being essentially
unique.

While embodiments can include PUFs created with an
RRAM array that utilizes a resistance variation inherent 1n
the RRAM array, other embodiments can copy random or
pseudo-random values from an RRAM array into another
device, which may or may not be an RRAM array. An

example of such an embodiment 1s shown i FIG. 1B.
FIG. 1B 1s a block diagram of a PUF 100B according to

another embodiment. A PUF 100B can include PUF array
clements 108 that can be accessed with a challenge 102B to
generate a response 104B. PUF array elements 108 can have
random/pseudorandom values provided by a hash array 112.
A hash array 112 can imnclude RRAM elements 1068 having
a resistance variation as described herein and equivalents.
Such a resistance variation (or logic values based on such
resistance variation) can be transferred 110 from hash array
1068 to PUF array elements 108 to thereby create a PUF
array. A transfer operation 110 1s not necessarily a copy
operation. As but a few examples, a transfer operation 110

US 11,537,754 Bl

S

can skip hash array values, represent hash array bit values
with fewer bits 1n a PUF array 108, or represent hash array
bit values with more bits in a PUF array 108.

PUF array elements 108 can be RRAM elements, and thus
subject to the same difliculty in determining logic states by
reverse engineering. However, 1n other embodiments PUF
array clements 208 can be any other suitable memory
clement.

Embodiments can also include PUF's in which a challenge
value can be used to access multiple arrays of essentially
random values to generate array output values. Such array
output values can be evaluated. Based on such an evaluation,
the array output values can be used to generate a response
value (or serve as the response value), or alternatively, used
to access the arrays once again. An example of such an
embodiment 1s shown 1n FIG. 1C.

FIG. 1C shows a PUF 100C having an input operation
125, a number of arrays 108C-1 to -A, a test section 133 and
an output operation 127. An imput operation 125 can
manipulate a challenge value before applying it to the arrays
(108C-1 to -A). In some embodiments, such a mampulation
can include each array (108C-1 to -A) receiving a different
value (e.g., permutation of the challenge value). Arrays
(108C-1 to -A) can be arrays of different essentially random
values, as described for embodiments herein, or equivalents.

Test section 133 can evaluate outputs of arrays (108C-1 to
-A). Based on such an evaluation, test section 133 can
indicate whether the outputs of the arrays (108C-1 to -A) are
accepted or not accepted (Accept/! Accept). Output opera-
tion 127 can vary according to results from test section 133.
IT a test section 133 indicates one result type (e.g., Accept),
output operation 127 can use outputs of arrays (108C-1 to
-A) to generate a response value 104C. If a test section 133
indicates another result type (e.g., ! Accept), output operation
1277 can use outputs of arrays (108C-1 to -A) to access arrays
(108C-1 to -A) once again (shown as Hop).

In alternate embodiments, arrays 108C-1 to -A may
include circuits configured to generate outputs without the
use of stored data values, such as circuits configured to
produce responses in traditional SRAM and delay-based
PUFs and other PUFs familiar to those skilled in the art.
Such circuits may include ring oscillators, static RAM
(SRAM) elements, delay gates, and comparators as but a
few examples. In this manner, embodiments may increase a
number of CRPs which can be extracted from circuits used
in traditional PUF implementations.

According to embodiments, a system or method can
include a number of small arrays (e.g., 512 bits) of random
binary data, on which data-dependent operations can be
performed. Such operations can increase challenge-response
pairs (CRPs) to a number far greater than what would result
iI a response were generated by simply reading out array
data.

FIG. 2A 1s a block diagram showing a system 221
according to an embodiment. A system 221 can mput a
challenge 202 composed of H “hopper” addresses (202-1 to
202-H). Hopper addresses (202-1 to 202-H) can be relatively
small addresses corresponding to small PUF arrays. In some
embodiments, hopper addresses can range from 0 to 511.
Hopper addresses (202-1 to 202-H) can be arranged in
ascending order (e.g., 123, 510 1s valid, but not 510, 123).
These restrictions can eliminate equivalent challenges,
improving the randomness of the responses.

Inside a PUF 208, mput operations (225-1 to 225-A) can
be applied to the hopper addresses (202-1 to 202-H) to
generate “A” different sets of hopper addresses. In some
embodiments, mput operations (2235-1 to 225-A) may com-

10

15

20

25

30

35

40

45

50

55

60

65

6

prise permutation operations (P1 to PA) performed on the
input hopper addresses (202-1 to 202-H). The diflerent sets
of hopper addresses output by input operations (225-1 to
225-A) can be sent to one of A different arrays 208-1 to -A.
Each array (208-1 to -A) can perform data-dependent opera-
tions on the received addresses to output one or more (shown
as R) bits (R1 to RA). Arrays (208-1 to -A) can include
essentially random values as described herein. In some
embodiments, such arrays can be formed with RRAM cells,
but can take any other suitable form.

Array outputs (R1 to RA) (generated in response to
different sets of hopper addresses output by input operations
(225-1 to 225-A) can be subject to output operations 227 to
generate a RESPONSE 204. In some embodiments, array
outputs (R1 to RA) can be used to access values 1n arrays
(208-1 to -A) which are then used to generate a response.
Such actions can take the form of any of those described
herein, or equivalents, such as those shown 1n FIGS. 19A to
20, and 23 A to 25D, as but a few examples.

Having described an overall system/method 221,
examples of array operations will now be described.

FIGS. 2B to 2D are diagrams showing a method 235 used
to produce array outputs according to an embodiment. A
method 235 can generate an array output like those shown
as R1 to RA i FIG. 2A.

Referring to FIG. 2B, 1n a given array, Nc “compare’ bits
can be read for each of the H hopper addresses. In the
example of FIG. 2B, this 1s shown by hopper address Ax1
being applied to array 208-i to generate compare bits Ncl,
and hopper address Ax2 being applied to array 208-i to
generate compare bits Nc2. Such operations can continue
until hopper address AxH 1s applied to array 208-i to
generate compare bits NcH. In some embodiments, values
Ncl to NcH can be stored 1n storage circuits 231.

Once a set of compare bits (e.g., Nc1 to NcH) have been
read out from an array 208-i, an acceptance test 233 can be
performed on the H sets of compare bits to decide i1 an array
output (e.g., R1 to RA) should be generated. An acceptance
test 233 can be any suitable logic function. In some embodi-
ments, an acceptance test 233 can determine whether all or
a portion of compare bits (e.g., Nc1 to NcH) are the same for
all H hopper addresses (Ax1 to AxH).

According to embodiments, if compare bits (Ncl to NcH)
pass an acceptance test 233, the compare bits can be used to
generate array output (e.g., R1 to RA). However, if compare
bits (Ncl1 to NcH) do not pass an acceptance test 233, the
compare bits can be used to generate new hopper addresses
to their respective array.

FIG. 2C shows an example of array operations 233 in the
event compare bits (Ncl to NcH) pass an acceptance test. In
response to passing an acceptance test (ACCEPT), all or a
portion ol compare bits (e.g., Nc1 to NcH) can be subject to
an output operation 227A. An output operation 227 A can use
compare bits (e.g., Nc1 to NcH) to generate an address that
1s applied to array 208-i to generate an array output (Ri1).
Such an output operation 227A can take the form of any of
those described herein, or equivalents. Alternatively, in
some embodiments, all or a portion of the compare bits (e.g.,
Ncl to NcH) can form the array output Ri.

FIG. 2D shows an example of array operations 235' in the
event compare bits (Ncl to NcH) do not pass an acceptance
test. In response to not passing an acceptance test (AC-
CEPT) all or a portion of compare bits (e.g., Ncl1 to NcH)
can be subject to an output operation 2278 used to generate
new hopper addresses (Ax1(new) to AxH(new)). The pro-
cess can repeat (e.g., F1G. 2B) by reading out new compare
bits from the new hopper addresses (Axl(new) to AxH

US 11,537,754 Bl

7

(new)). The acceptance test 233 can then be repeated. This
“hopping” can end when an acceptance test 1s passed, or a
maximum allowed number of hops 1s exceeded. An 1teration
counter 239 can determine when a maximum number of
hops 1s exceeded. In some embodiments, all or a portion of
the compare bits (e.g., Ncl1 to NcH) can form new hopper
addresses (Ax1(new) to AxH(new)).

Referring still to FIGS. 2B to 2D, under the requirements
that H hopper addresses of a challenge are umque and

arranged 1n ascending order, the number of valid challenges,
and hence number of CRPs (NCRP), can be given by:

NCRP=(2"a4d\/(NH! (2V4_NH)!)

where 2¥%?? is the number of logical bits in each of the A
arrays and NH 1s the number of hopper addresses.

From the above, the dependence on array size of NCRP
1s a power-law with an exponent of NH. A minimum number
of hoppers 1s NH=2, meaning NCRP scales quadratically or
better with array size, providing an eflicient path to increas-
ing the CRP space. This 1s in contrast to conventional PUF
approaches.

FIG. 2E 1s a graph showing a number of CRPs based on
Nadd and NH systems and methods like those shown in

FIGS. 2A to 2D. As shown, with just 512 bits per array
(Nadd=9) and three hoppers (NH=3), enough CRPs
(NCRP=2.2x10"7) can be generated to allow the PUF to
provide a unique CRP every 15 seconds for 10 years, enough
to support frequent security operations.

In this way, a PUF device having multiple, relatively
small arrays can generate an extremely large number of
CRPs. In some embodiments a small array can be an array
with about 8,192 or fewer addressable locations. In other
embodiments, a small array can be an array with about 2,048
or fewer addressable locations. In still other embodiments, a
small array can be an array with about 512 or fewer
addressable locations.

FIGS. 3A to 3C are a sequence of diagrams showing a
device 300 according to an embodiment. A device 300 can
be PUF array or a hash array. Device 300 can include a
RRAM array 306, conditioning circuits 314, and access
circuits 316. A RRAM array 306 can include an array of
RRAM elements (two shown as 308). Conditioning circuits
314 can apply predetermined electrical conditions to the
RRAM ceclements. Such conditions can include a voltage
and/or current. Further, a voltage/current can be static or
dynamic 1n magnitude and constant or intermittent 1n appli-
cation. Access circuits 316 can access RRAM array 306 1n
response to an mput value (e.g., CHALLENGE). In some
embodiments, access circuits can include decoder circuits
that access one or more RRAM cells 1n response to an input

value.
FIG. 3A shows a device 300 in an initial state. RRAM

cells of RRAM array 306 (two shown as 308-0) can have an
initial manufactured state (shown as I). In some embodi-
ments, RRAM cells can include a material programmable
between different resistance states by application of electri-
cal fields, and such an imitial state can be prior to the
application of any electrical signals to the RRAM cells (i.e.,
a “virgin” state).

FIG. 3B shows a device 300 undergoing a “forming
operation”. In a forming operation, electrical signals can be
applied to the RRAM cells by conditioning circuits 314.
Such a forming operation can result in some or all RRAM
cells having relatively fixed resistance, but at an essentially
random distribution. Accordingly, with respect to a reference
resistance, some RRAM cells can have a resistance greater
than a reference (shown as H, e.g., 308-1) and a resistance

5

10

15

20

25

30

35

40

45

50

55

60

65

8

less than the reference (shown as L, e.g., 308-0). In other
embodiments, such 1nitial states can be reinforced or other-
wise set by other steps (e.g., increase high resistance RRAM
cells, decrease low resistance RRAM cells).

Referring still to FIG. 3B, a forming operation can result
in essentially random values based on variations in RRAM
cell materials. This 1s 1n contrast to conventional approaches
in which an algorithm generates a random bit pattern, and
such a pattern 1s written into the RRAM array. Further,
application of forming electrical conditions can be signifi-
cantly faster. Rather than access each RRAM cell 1n a write
operation, groups of RRAM cells, or the entire RRAM array
can be “formed” at the same time. According to embodi-
ments, RRAM cells can have a resistance distribution where
X % of the RRAM cells are above a verily resistance and
100-X % are below the verity resistance. A percentage X %
can be around 50%.

After a “forming operation” and optionally other rein-
forcing operations, a RRAM array 306 can function as a
PUF array 308.

FIG. 3C shows a device 300 1n a challenge—response
operation. A CHALLENGE value 1s applied to PUF array
308, which accesses a group of cells 318. A group of cells
318 can have essentially random values, and thus serve as a
PUF RESPONSE to the imnput CHALLENGE.

While embodiments can include applying challenges to
directly select response values from a random/pseudo-ran-
dom RRAM array, embodiments can also modily challenges
and/or response values. Such arrangements can further
obscure PUF operations, making 1t even more dificult to
discern a PUF structure. Examples of two such embodi-
ments are shown 1in FIGS. 4A and 4B.

FIG. 4A1s a block diagram of a device 400A according to
an embodiment. A device 400A can include a PUF array 408
and a function block 420A. A PUF array 408 can include
memory cells having essentially random values, and in some
embodiments can include an RRAM array having inherent
essentially random resistance variation, or an array created
by a hash array having such an inherent essentially random
resistance variation. A device 400A can operate 1n a manner
like that of FIGS. 1-3B. However, prior to being applied to
a PUF array 408, all or a portion of a digital value CHAL-
LENGE can be subject to one or more operations by
function block 420A. Such operation(s) can include any
suitable arithmetic/logic operation. A function block 420A
can generate a MODIFIED CHALLENGE 402A which can
then be applied to a PUF array 408 to generate a
RESPONSE 404.

FIG. 4B 1s a block diagram of a device 400B according to
a further embodiment. A device 400B can include a PUF
array 408 and a response function block 420B. A device
400B can operate in a manner like that of FIGS. 1-3B.
However, rather than output a CHALLENGE value com-
posed of bits derived from directly reading PUF array 408,
all or a portion of the CHALLENGE value can be subject to
one or more operations by function block 420B to generate
a MODIFIED RESPONSE 404B. Such operation(s) can
include any suitable arithmetic/logic operation and can
operate on all or a portion of the RESPONSE value 404.
Further, 1n some embodiments, a function block 420B
operation can include all or a portion of a CHALLENGE
402 (e.g., via data path 422).

The 1nclusion of function blocks 420A and/or 4208 can
serve to obscure internal operations of a PUF device, making
the PUF device more dithicult to model and/or clone.

FIGS. 5A and 5B are diagrams showing a PUF device and

operations according to additional embodiments. FIG. SA 1s

US 11,537,754 Bl

9

a block diagram of PUF device 500 that includes a RRAM
based PUF array 508, a decoder 516, and a compare circuit
524. A RRAM PUF array 508 can include RRAM eclements
having random/pseudo-random (1.e., essentially) resistance
values as described herein and equivalents. A decoder 516
can apply one or more addresses (1.e., CHALLENGES) to
RRAM PUF array 508 to select a corresponding RRAM cell
or group of RRAM cells. A compare circuit 524 can compare
resistance values of selected RRAM cells (1.e., RRAM cells
selected by a CHALLENGE) to other resistance values, as
will be described herein, to thereby determine a RESPONSE
value. In some embodiments, a compare circuit 524 can
compare RRAM cell resistance values to a verily resistance
Rv. A verily resistance Rv can be a single resistance, and a
RESPONSE can be composed of binary values. However, 1n
other embodiments a verily resistance Rv can include more
than one resistance, and each RESPONSE wvalues corre-
sponding to an RRAM cell can include more than two
possible states.

Referring to FIG. 5B, various possible operations 526 of
a PUF device like that shown i FIG. 5A are shown 1n a
table. In the table, RA can be the resistance of a RRAM cell
at an address “A”’, RB can be the resistance of a RRAM cell
at an address “B”, Rc 1s the resistance of a cell (accessed by
a CHALLENGE), and Rv 1s a verily resistance.

In a first operation 526-0, a RESPONSE bit value can
vary according to whether 1t 1s greater than or less-than-or-
equal to Rv. Accordingly, compare circuit 524 can read or
receive resistance values accessed by a CHALLENGE
value, compare them to Rv, and generate “0” or “1” accord-
ingly.

In a second operation 526-1, RESPONSE bit values can
be compared to one another. Two addresses (A and B) can
be applied to RRAM PUF array 506. Such addresses can be
parts of a same CHALLENGE. In response to the two
addresses, two different resistances (RA and RB) can be
accessed. Compare circuit 524 can compare the resistances
(RA/RB) to one another and generate “0” or “1” accord-
ingly.

In a third operation 3526-2, multiple cell values can be
compared to Rv. I a certain number the cells have a
resistance greater than Rv, a RESPONSE bit can have one
value. However, 1f the certain number of cells does not have
a resistance greater than Rv, a RESPONSE bit can have
another value. In particular, “N” addresses (where N 1s odd
and >1) can be applied to a RRAM PUF array 506. Such
addresses can be parts of a same CHALLENGE. Compare
circuit 524 can compare the resistance of each of N cells to
Rv. Based on whether M cells (M<N) have a resistance
greater than Rv, a RESPONSE bit of “0” or “1” can be
generated.

In a fourth operation 526-3, an average of multiple cell
values can be compared to Rv. “N” addresses (where N 1s
>1) can be applied to a RRAM PUF array 3508. Such
addresses can be parts of a same CHALLENGE. Compare
circuit 524 can average a resistance of the N cells can
compare the average to Rv. Based on such a comparison, a
RESPONSE bit of “0” or “1” can be generated.

In a fifth operation 526-3, a median of multiple cell values
can be compared to Rv. Thus, the operation can be like that
of 526-3, but compare a median resistance to Rv.

FIGS. 6 A and 6B are diagrams showing a PUF device and
operations according to further embodiments. FIG. 6A 1s a
block diagram of PUF device 600 that includes a RRAM
PUF array 608, a decoder 616, a compare circuit 624, and an
address data path (622 or 622'). ARRAM PUF array 608 can

include RRAM elements having random/pseudo-random

10

15

20

25

30

35

40

45

50

55

60

65

10

resistance values as described herein and equivalents. A
decoder 616 can decode address values (1.e., CHALLENGE)

to RRAM PUF array 608 to select a corresponding RRAM
cell or group of RRAM cells. A compare circuit 624 can
compare resistance values of selected RRAM cells to other

resistance values, and further based on address wvalues,
determine a RESPONSE value.

Address data path 622 can provide decoded address
values to compare circuit 624. Alternate address data path
622' an apply address values directly to compare circuit 624.

Referring to FIG. 6B, various possible operations 626 of
a PUF device like that shown in FIG. 6A are shown 1n a
table. RA, RB, Rc and Rv can be values as described with
reference to FIG. 5B.

In a first operation 626-0, compare circuit 624 can com-
pare a resistance of an addressed RRAM cell to a verily
resistance Rv. Such a determination can be logically com-
bined with the address information of the cell to arrive at a
RESPONSE bit value. In the embodiment shown, the
address information can represent whether a wordline that
accesses the RRAM cell 1s even or odd.

In a second operation 626-1, resistance values of two
RRAM cells can be compared to one another. The result of
such a comparison can be logically combined with the
address mnformation of the RRAM cells to arrive at a
RESPONSE b1t value.

A third operation 626-2 can occur like a first operation
626-0 but using a bit line number as the address information.

A fourth operation 626-3 can occur like a second opera-
tion 626-1 but using a bit line pair number as the address
information.

According to embodiments, a resistance of a cell 1n a
RRAM PUF may be altered by electrical operations such as
the application of a voltage or current. Electrical operations
can include forming, program, and erase operations used 1n
memory applications for RRAM cells. Embodiments can
rely on the property that multiple RRAM cells subjected to
the same electrical operation(s) will usually not all have the
same resistance but will mstead exhibit a distribution of
resistances.

Digital responses may be obtained by specifying
addresses of cells which are all 1n a same resistance distri-
bution, such as a distribution resulting from a forming
operation, a program operation, an erase operation, or no
operation at all (1.e., as-fabricated cells). Digital responses
may also be obtained by specilying addresses of cells which
are 1n different distributions.

FIGS. 7A and 7B show examples of RRAM cell resis-
tance distributions for a case where cells have one distribu-
tion and two distributions. FIG. 7A 1s a graph showing
resistance versus a cumulative distribution for a set of
RRAM cells. Individual elements of a digital response can
be derived from cells within this same resistance distribu-
tion. That 1s, the resistances of all the cells can be obtained
via a same electrical operation or algorithm (an algorithm
may subject a given cell to more than one operation, e.g., an
erase operation followed by a program operation). In FIG.
7A, the elements of a response can be determined by
whether or not mndividual cells are above or below a verily
resistance Rv after an operation (e.g., program) has been
applied to all of them. FIG. 7A can be one representation of
an operation like that shown as 526-0 1n FIG. 5B.

FIG. 7B 1s a graph showing resistance versus a cumulative
distribution for a set of RRAM cells. Individual elements of
a digital response can be derived from cells from different R
distributions. That 1s, the resistances of RRAM cells can be
obtained via different electrical operations or algorithms. In

US 11,537,754 Bl

11

FIG. 7B, clements of a response can be determined by
comparing a RRAM cell resistance (e.g., RA) from one
distribution (Population 1) to that of a RRAM cell resistance
(e.g., RB) from another distribution (Population 2). In some
embodiments, one distribution (e.g., Population 1) can be
created by RRAM cells which have been programmed (or
formed), while another distribution (Population 2) can be
one that has been erased or not formed (1.e., as-fabricated).
FIG. 7B can be one representation of an operation like that

shown as 526-1 in FIG. 3B.

While FIGS. 7A to 7B show embodiments having one and
two distributions, as noted herein, alternate embodiments
can include embodiments having greater numbers of distri-
butions.

While embodiments can include RRAM PUFs, embodi-
ments can also include methods of preparing RRAM cells to
function 1in PUF applications. According to embodiments, a
method of preparing RRAM cells can include

Determining an 1nitial write type by choosing a target
resistance state (e.g., a low resistance state, LRS and/or
a high resistance state HRS). Once a target resistance
state has been determined, a technique for achieving
the resistance state can be selected (e.g., forming,
programming, or erasing). As but a few examples,
embodiments can include applying forming pulses to
virgin bits, erase pulses to programmed bits, or pro-
gram pulses to erased bits.

After applying the mitial electrical conditions (e.g., write
pulse), a status of each bit can be confirmed, and a
number of each state can be counted.

If the total bit count has not reached the predefined target
level for the state, the electrical conditions can be
reapplied until the desired target level 1s achieved.

A status of each bit (e.g., LRS or HRS) can be determined
by comparing 1ts resistance to one or more reference
resistances.

Once the predefined target for the states has been reached,
clectrical conditions can be applied (or reapplied) to
reinforce the target state (e.g., LRS or HRS), that a
particular bit 1s currently in. Such reinforcing condi-
tions can be used to increase the window between two
different states (e.g., LRS and HRS).

In order to widen the state (e.g., LRS-HRS) window, the
reinforcing electrical (e.g., write pulse) conditions can
be stronger than the 1mitial write pulse conditions (e.g.,
greater current, voltage and/or time).

Additional state window widening may be possible by
applying appropriate electrical conditions to the bits
that are 1n the opposite state of the target resistance
state.

Additional state window widening may also be possible
by reapplying electrical conditions to the bits that failed
during various stress tests (e.g., data retention test, bake
test and/or burn-in test).

FIG. 8 1s a flow diagram of a method 828 of setting hash
or PUF array resistance states according to an embodiment.
A method 828 can include determining a target resistance
state 828-0. Such an action can include deciding how many
RRAM cells are to have a particular resistance state, and
how many are not to have the particular resistance state.

Electrical conditions can be applied to PUF bits to reach
the target resistance 828-1. Such actions can include any
suitable conditions for a given technology and can include
but are not limited to: forming initial (1.e., virgin) RRAM
cells, programming previously erased RRAM cells, or eras-
ing previously programmed RRAM cells. A method 828 can
determine a status of each PUF bit 828-2. Such an action can

10

15

20

25

30

35

40

45

50

55

60

65

12

include sensing a resistance of each RRAM cells according
to any of the techniques described herein or equivalents.

I a desired distribution 1s not reached (N from 828-3), a
method 828 can reapply electrical conditions (return to
828-1). As understood from the descriptions herein, reap-
plied electrical conditions may or may not be the same as
previous electrical conditions. Further, reapplied electrical
conditions can be applied to a subset of RRAM cells
compared to previous electrical conditions. If a desired
distribution 1s reached (Y from 828-3), a method 828 can
reinforce a status of each PUF bit 828-4. Such an action can
include increasing a separation of diflerent state distribu-
tions. As but one example, PUF bits having low resistance
state can be subject to electrical conditions that will lower
their resistance further, and PUF bits having a high resis-
tance state can have their resistance increased further.

Additional methods for preparing RRAM cells for PUF
bit arrays will now be described. In the following descrip-
tions RRAM cells can have a higher resistance state, referred
to as an erased state or ROFF state, and a lower resistance
(RON) state.

According to embodiments, a number of stages can be
used to arrive at different RON distributions. One such
embodiment will be described with reference to FIGS. 9A
and 9B.

FIG. 9A 1s a graph showing a distribution of RRAM cells
(log normal, cumulative) based on resistance. FIG. 9A
shows the RRAM cells after being erased to the ROFF state
(ERa). From the ROFF state, the RRAM cells can be placed
in a number of different RON states through a series of
stages:

Stage #1 (PRa): Electrical conditions can be applied
(PRa) which can move RRAM cells from the ROFF state to
a lower resistance level. In some embodiments (e.g.,
CBRAM type cells), this can include using a low program-
ming current (IPR). A resulting RON resistance range can be
established by the IPR and a program (PR) Verily resistance.
PRa of FIG. 9A shows one example of RRAM cells fol-
lowing such a stage.

Stage #2 (PRb): Further electrical conditions can be
applied that move the RRAM cells to a lower resistance
level. In some embodiments (e.g., CBRAM type cells) this
can include using a higher IPR and very short pulse width.
PRb of FIG. 9B shows one example of RRAM cells 1ol-
lowing such a stage.

Stage #3 (PRc): In some embodiments, this can be a
repeat of Stage #2, but applied to “tail” bits (RRAM cells at
the edges the distribution) to further straighten a resulting
RON distribution. PRc of FIG. 9A shows one example of
RRAM cells following such a stage.

FIG. 9B is a graph showing example of PRa, PRb and PRc
distributions but in terms of conductance, and without the
ERa distribution.

Retferring back to FIG. 9A, PUF applications for the
RRAM distributions will now be described. In general, a
wide resistance distribution can be divided into different
states based on one or more reference (e.g., verily) resis-
tances. One or more of the states can then be reinforced.

In a first example, PRa conditions can be used on all bits
to randomly place them at a very wide distribution (shown
as 930/932). Then, PRc¢ conditions (operation 936) can be
applied to bits smaller than a particular resistance level
(Rvp), to place them 1n a lower resistance state 938. Such a
lower resistance 938 can have a better retention ability than
their previous state 932.

In a second example, all bits can be randomly placed 1n
a wide distribution by using the ROFF state (Era) (show as

US 11,537,754 Bl

13

930'/932"). Then, PRC conditions (operation 936') can be
applied to bits smaller than a particular resistance level
(Rve), to place them 1n a lower resistance state 938.

The examples of FIGS. 9A and 9B show CBRAM type
RRAM cells that can be programmed into three different
resistance states (PRa, PRc, ERa). Such RRAM cells can
serve as reliable bits in PUF array. FIGS. 10A and 10B show
changes 1n resistance resulting from conditions that can
correspond to changes 1n resistance over time (e.g., driit).

FIG. 10A 1s a graph showing resistance distributions of
RRAM cells (log normal, cumulative) after being subject to
various conditions. The distributions show a low resistance
state (PRc), a middle resistance state (PRa) and a high
resistance state (ERa). Further, each such state includes an
initial distribution, a distribution after a “‘relaxation” time
period of 48 hours and room temperature (condition A), and
a distribution after being heated for 20 minutes at 250° C.
(condition B). FIG. 10B shows the same distributions as
FIG. 10A, but 1n conductance, and without the ERa distri-
butions.

Referring to FIG. 10A, ERa distributions include an 1nitial
distribution 1044-0, ERa after condition A 1044-1, and ERa
after condition B 1044-2.

Referring to FIGS. 10A and 10B, PRa distributions
include an initial distribution 1040-0, PRa after condition A
1040-1, and PRa after condition B 1040-2. PRc distributions
include an 1nitial distribution 1042-0, PRc after condition A
1042-1, and PRc after condition B 1042-2.

PRa distributions can include a higher resistance group
1030 and a lower resistance group 1032. A lower resistance
group 1032 can be subject to PRc¢ conditions, to bring them
to a lower resistance distribution (e.g., PRc distribution
1038). In such a case, higher resistance PRa group 1032 can
serve as high resistance PUF bits. FIGS. 10A and 10B show
how PRa resistance values can serve as robust original PUF
bits, as data retention for higher resistance bits (i.e., 1030)
can be of little or no concern as such bits will drift to a higher
resistance over time, reinforcing their state.

FIG. 11A 1s a flow diagram of a method 1146 A for setting,
RRAM bits for use 1n a PUF array according to embodiment.
A method 1146A can include applying first program condi-
tions to RRAM bits 1146-0. Such an action can include
applying the first program conditions to all bits intended for
a PUF array. First program conditions can be selected to
create a wide distribution of essentially random resistance
values, where the randomness 1s based on a material prop-
erty of RRAM cells.

Each RRAM bit can be compared to one or more verily
resistance values Rv 1146-1. A verily resistance value can be
selected to provide the desired distribution of different
resistance states or can be some predetermined value. If an
RRAM bit resistance 1s not less than a verity resistance (N
from 1146-1), a method 1146 A can include the RRAM bit 1in
a PUF array (as a high resistance state bit) 1146-3.

If an RRAM bit resistance 1s less than a verily resistance
(Y from 1146-1), a method 1146 A include applying second
program conditions to the RRAM bit 1146-2. The RRAM bit
can then be included 1n the PUF array (as a low resistance
state bit) 1146-3.

FIG. 11B shows a method 1146B like that of FIG. 11A but
using an erase state as an mitial distribution. A method
11468 can include applying erase conditions to RRAM baits
1146-4. Such an action can include applying erase condi-
tions to all bits intended for a PUF array. In some embodi-
ments, erase conditions can create essentially random resis-
tance values, where the randomness 1s based on a material
property of RRAM cells.

10

15

20

25

30

35

40

45

50

55

60

65

14

Each RRAM bit can be compared to one or more verily
resistance values Rv 1146-5. A verity resistance value can be
selected as 1n the case of FIG. 11A. If an RRAM bt
resistance 1s not less than a verily resistance (N from
1146-5), a method 11465 can include the RRAM bit 1n a
PUF array (as a high resistance state bit) 1146-7.

If an RRAM bit resistance 1s less than a verily resistance
(Y from 1146-5), a method 1146B 1nclude applying program
conditions to the RRAM bit 1146-6. In some embodiments,
such program conditions can lower the RRAM bit resistance
to an even lower, more stable resistance state. The RRAM
bit can then be 1included in the PUF array (as a low resistance
state bit) 1146-7.

While embodiments can directly read variations in resis-
tance of an RRAM array as PUF device, other embodiments
can include RRAM arrays that are indirect sources of
resistance of a PUF device. Examples of such embodiments

will now be described.
FIG. 12A to 12D show a PUF device formation according,

to an embodiment. FIG. 12A shows a RRAM array 1206. An
RRAM array 1206 can take the form of any of those
described herein, or an equivalent.

FIG. 12B shows RRAM array 1206 being subject to
setting conditions. Setting conditions can establish one or
more RRAM cell distributions having random/pseudoran-
dom variations 1n resistance according to any of the embodi-
ments herein, or equivalents. After the application of setting,
conditions, RRAM array 1206 can be considered a “hash”
array.

FIG. 12C shows states of hash array 1248 (created by
setting conditions) being transierred (e.g., written) 1nto
another device to create PUF array 1208. Thus, the RRAM
states of hash array 1248 derived from the random/pseudo-
random variations i RRAM cells can be recreated in
another device to serve as a PUF array. A PUF array 1208
may or may not be an RRAM array.

FIG. 12D shows an optional operation according to
embodiments. Hash array 1206 can be destroyed (1.e., data
lost), thus preventing the values of PUF array from being
determined from 1its hash array. Such an action can include
setting all RRAM cells to a same state.

Embodiments that utilize a hash array as described herein
can address problems that can arise 1n some approaches that
read values from the same RRAM array used to generate the
values. For example, some RRAM cells may not reach a
desired (e.g., low-resistance state) despite having received
one or more forming operations. The retention of such
“walking wounded™” cells may be worse than 1f they were
truly virgin (i.e., had not received any forming operation). If,
for example, a forming algorithm successtully forms 50% of
the cells 1 an array when applied to 100% of the cells, the
number of “walking wounded” cells could be 50%.

Other problems can include the lack of remedies for
RRAM cells presenting shorts or opens, or the percentage of
formed cells might not be the desired amount (1.¢., 50% 1s
a typical goal). For some technologies, it 1s not clear how
robust such forming methods might be against process or
other (e.g., temperature) variations. Further, such methods
may not work well 11 differential sensing 1s to be used to read
the cells. If, for example, 50% of the cells (at random
locations) are formed, then 23% of the diflerential pairs
would both be formed cells and 25% would both be
unformed cells. In either case, the two cells of a pair could
be too close 1n resistance, making them prone to read errors
Or retention errors.

Embodiments that include hash arrays can take any suit-

able form. FIGS. 13A to 13D show examples of such

US 11,537,754 Bl

15

embodiments. FIG. 13A shows a system 1350A that includes
a hash array 1348 and corresponding PUF array 1308 (i.e.,
a PUF array 1308 having data values corresponding to
random/pseudorandom resistance values of hash array 1348)
both formed in a same memory cell array 1352. For
example, a hash array 1348 can occupy one range of
addresses, or a sector, or block, while PUF array 1308 can
occupy a different range of addresses, or a sector, or block.
Memory cell array 1352 can be formed 1n an integrated
circuit (IC) substrate 1354.

FIG. 13B shows a system 13508 according to another
embodiment. A system 1350B can include items like those
of FIG. 13B, however, hash array 1348 and PUF array 1308
can be formed i separate memory cell arrays 1352-0 and
1352-1, respectively.

FIG. 13C shows a system 13350C in the form of a IC
device 1356 having a hash array 1348 and PUF array 1308
formed on separate IC substrates 1354-0 and 1354-1.

FIG. 13D shows a system 1350D having a hash array
1348 and PUF array 1308 formed in separate IC devices
1356-0 and 1356-1, respectively. The IC devices 1365-0/1
can be connected by a communication path 1358, which may
be wired or wireless.

The embodiments of FIGS. 13A to 13D are provided by
way of example only. Further, 1n each of systems 1350A-
1350D, upon formation of a PUF array 1308, data within a
hash array 1348 can be destroyed as described herein.

FIG. 14A shows a method 1458 of forming a PUF array
from a hash array according to an embodiment. Method
1458 assumes both the hash array and PUF array are formed
in RRAM arrays (which can be diflerent RRAM arrays, or
parts of a RRAM same array). A method 14358 can include
applying electrical conditions to an RRAM array to create a
hash array 1458-0. Such an action can include any of those
described herein, or equivalents, which can create one or
more groups of RRAM cells with essentially random resis-
tance distributions. Such random resistance distributions
arise from properties inherent in the RRAM cells, and are
not written into the RRAM cells.

A method 1458 can begin at a first hash bit (1.e., a first
RRAM cell to be copied over to a PUF array) 1458-1.

A hash bit logic value can be determined 1458-2. Such an
action can include comparing a resistance of a hash RRAM
cell to one or more verily resistance values. Such a verily
resistance value(s) can be selected to divide a resistance
distribution nto a desired number of logic values (e.g., for
a binary PUF response, 50% above Rv, 50% below Rv). In
other embodiments, such an action can include determining
a logic state of two RRAM cells (i.e., diflerential sensing).

If the hash bit resistance 1s equivalent to one logic value
(=1 from 1458-2), forming conditions can be applied to
counterpart RRAM bit(s) of the PUF array 1458-3. Such an
action can include applying electric conditions to set the
RAM bits(s) to a desired state with good retention. The PUF
bit (subject to the forming conditions) can be checked to
ensure 1t now stores the desired logic value 1458-4. If the
PUF bit does not store the desired logic value (N from
1458-4), forming conditions can be reapplied 1458-5. Such
an action can include the same forming conditions as
1458-3, but alternate embodiments can include “stronger”
conditions (e.g., any of greater current, voltage, duration).

If the hash bit resistance 1s equivalent to another logic
value (=0 1n 1458-2), forming conditions are not applied to
counterpart RRAM bit(s) of the PUF array 1458-7.

Such operations can continue until a logic value for a last
hash bit has been transierred into the PUF array 1458-6 and
1458-7 or until the PUF array has been filled.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

While embodiments can include methods for creating
PUF arrays that store PUF response bits in single RRAM
cells (single ended sensing), alternate embodiments can
include the creation of PUF arrays the store response bits
with two RRAM cells (differential sensing). One such
embodiment 1s shown 1n FIG. 14B.

FIG. 14B 1s a flow diagram of a method 1460 according
to another embodiment. In FIG. 14B 1t 1s understood that a
RRAM array has been subjected to forming conditions to
create a hash array. Hash bit logic value can then be
determined 1460-2. Such an action can include those noted
for 1458-2 of FIG. 14A.

IT the hash bit resistance 1s equivalent to one logic value
(=1 or 10 from 1460-2), forming conditions can be applied
to a first bit position of a PUF RRAM bait pair, and not to the
second bit position of the pair 1460-8. Conversely, 11 the
hash bit resistance 1s equivalent to another logic value (=0 or
01 from 1460-2), forming conditions can be applied to a
second bit position of a PUF RRAM bit pair, and not to the
first bit position of the pair 1460-9.

Such operations can continue until a logic value for a last
hash bit has been transierred into the PUF array 1460-6,
1460-10.

FIG. 14C 1s a diagram showing operations like those
indicated 1n FIGS. 14A and 14B. FIG. 14C shows a hash
array 1448, a first PUF array 1408 A and a second PUF array
1408B. A hash array 1448 can be an RRAM array with
RRAM cells having an essentially random resistance distri-
bution. Such resistance values can be evaluated as either a
1 or a 0. Binary values of hash array 1448 can be transferred
by operation 1462A to another RRAM array to create first
PUF array 1408A. In the example shown, for each hash bit
having a “1”, a corresponding RRAM cell in PUF array
1408 A can be subjected to forming conditions (F). For each
hash bit having a “0”, a corresponding RRAM cell PUF
array 1408 A can remain 1n an imitial (1.e., virgin) state (V).
Operation 1462 A can be one example of that shown 1n FIG.
14A.

PUF array 1408B can utilize differential sensing and thus
store binary values with two RRAM cells. Accordingly,
binary values of hash array 1448 can be transierred by
operation 1462B to another RRAM array to create second
PUF array 1408B. In the example shown, for a hash bit
having a “1”, a corresponding RRAM cell pair can have a
first RRAM cell subject to forming conditions (F), while the
second remains in the 1nitial state (V). For a hash bit having
a “0”, a corresponding RRAM cell pair can have a first
RRAM cell remain 1n the 1nmitial state (V) while the second
bit 1s subject to forming conditions (F).

In some embodiments a read method to a hash array can
be the same as that to the corresponding PUF array. How-
ever, 1n other embodiments, a read method to a hash array
can be different from that used to access the corresponding
PUF array.

According to embodiments, a PUF array (whether created
with a hash array or not) can include error detection/
correction and/or redundancy schemes. Such error detection/
correction or redundancy can take any suitable form. Some
particular, but non-limiting examples will now be described
with reference to FIGS. 15A to 16B.

FIG. 15A shows PUF 1500 according to an embodiment.
A PUF 13500 can include features like those shown m FIG.
S5A. In addition, a PUF 1500 can include an error code
portion 1564. Error code portion 1564 can include error

detection or correction bits (referred to herein as ECC bits)
corresponding to RESPONSEs generated from CHAL-
LENGFE:s.

US 11,537,754 Bl

17

In operation, a PUF 1500 can receive a RESPONSE and
apply to PUF array 1500 to access storage cells. Compare

circuit 1524 can generate an 1nitial response value
RESPONSE(INIT) as well as corresponding ECC BITS. An
ECC circuit 1566 can evaluate RESPONSE(INIT) using the
corresponding ECC BITS for any errors. If an error is
detected the error can be corrected (1f possible) or signaled
(if not corrected or not correctable).

FIG. 15B 1s a flow diagram of a method 1568B of

generating ECC data for REPONSE values according to an
embodiment. A method 1568B can include creating an
RRAM PUF array 1568-0. Such an action can include any

of those described herein, including methods using a hash
array. Challenges can be applied to the PUF array to
generate responses 1568-1. ECC data can be generated from
the responses 1568-2. The ECC data can then be written 1nto
an address corresponding to the response 1568-3.

It 1s noted that in the case of a hash array approach, a
method may not include 1568-0/1. Rather, as response data
from the hash array 1s being transterred from into the PUF
array, ECC data can be generated and then written with the
response data into the PUF array.

FIG. 15C 1s a flow diagram of a method 1568C of
correcting response values with ECC data according to an
embodiment. A method 1568C can include applying a chal-
lenge to generate a response with corresponding ECC data
1568-4. The response can be checked for errors with the
ECC data 1568-5. If no error 1s found (No Error from
1568-5), a method can output the response. If an error 1s
found (Error from 1568-5), a method can correct the
response (1f possible), or signal the response has an error.

FIG. 16A shows PUF 1600 according to another embodi-
ment. A PUF 1600 can include features like those shown in
FIG. 5A. In addition, a PUF 1600 can include redundant
portions 1670-0/1. Redundant portion 1670-0 can be redun-
dant columns, and thus addressable by a same row address
portion of CHALLENGE inputs. Redundant portion 1670-1
can be redundant rows, and thus addressable by a same
column address portion of CHALLENGE mputs. The over-
lapping area of redundant portions 1670-0/1 can enable the
replacement of CHALLENGE mput.

In the event a PUF 1600 serves as a hash array, or 1s
formed without a hash array (1.e., its own vanability 1n
RRAM cells resistance 1s read to generate a RESPONSE),
the mnherent randomness/pseudo randomness of redundant
cells resistance can be used to generate response values. If
the PUF 1600 1s created with a hash array, redundant cells
can be written with the desired response values.

FIG. 16B shows a method 1672B of replacing defective
PUF entries according to an embodiment. A method 16728
can include determining 1 PUF entry fails 1672-0. A PUF
entry can be storage locations accessed by a challenge to
output a response. A PUF entry failure can be detected 1n any
suitable fashion, and can include, but 1s not limited to: a PUF
entry giving unreliable values (e.g., resistance too close to a
verily resistance, or differential resistance values not suili-
cient different), a PUF entry being not being writable or
retaiming a desired value, or a PUF entry indicating an error
or not being correctable with ECC data.

If a PUF entry fails, a redundant entry can be configured
as a replacement for a failing entry 1672-1. As noted above,
in some embodiments, the inherent resistance variability of
the replacement entry can be used to generate a response.
However, in other embodiments a response value from
another source (e.g., a hash array) can be written into the
redundant entry.

10

15

20

25

30

35

40

45

50

55

60

65

18

As fabricated, PUF arrays formed with some technologies
may include RRAM cells that are shorted (e.g., in a low
resistance state that cannot be changed by operations) or
open (e.g., 1n a high resistance state which may not form 1n
response to an application of forming or other conditions).

If a PUF array 1s to be read using differential sensing, the
presence ol shorts and opens may result 1n both cells of a
differential pair being in a low-resistance state (LRS) or
high-resistance state (HRS). For example, 1f a differential bit
in a RRAM PUF array 1s to be written as F/V (Formed/
Virgin), but the second cell (the V) is shorted, then the
differential pair will be F/S (Formed/Short). This may make
the bit prone to read errors, due, for example, to the
resistance of the two cells being too close 1 value to be
reliably resolved.

For PUFs that use single ended sensing of RRAM cells,
shorts or opens that conflict with mtended values can be
addressed with redundancy as described herein (e.g., FIGS.
16A/B).

According to embodiments, 1n a PUF array using difler-
ential sensing, RRAM cells can be checked for shorts or
opens. I a short or open 1s detected, 1ts resistance value can
be used to establish a desired state (e.g., LRS or HRS), and
the RRAM cell can be used in the differential pair.

FIG. 17A 1s a flow diagram of a method 1774A for
addressing RRAM cell shorts 1n a PUF having differential
sensing. A method 1774 A can include checking a first bit of
an RRAM cell differential pair for a short conditions 1774-0.
If a short 1s detected 1n the first bit (Y from 1774-0), the
second bit of the RRAM pair can be checked for a short
(1774-1). If the second bit 15 also a short (Y from 1774-1),
a method 1774A can replace the RRAM pair with redundant
RRAM cells 1774-2.

If the second bit 1s not also a short (N from 1774-1), a
method 1774A can assign the first bit as the LRS bit of a
differential pair 1774-3. Further, forming conditions will not
be applied to the second bit of the differential pair 1774-4.
Such an action can ensure the second bit will remain 1n the
HRS state.

If a short 1s not detected 1n the first bit (N from 1774-0),
the second bit of the RRAM pair can be checked for a short
(1774-5). If the second bit 1s also not a short (N from
1774-5), a method 1774 A can program/write the differential
pair 1n a conventional manner 1774-6 (e.g., one bit formed
for LRS, the other bit not formed for HRS).

I1 the second bit 1s a short while the first bit 1s not a short
(Y from 1774-5), a method 1774 A can assign the second bit
as the LRS bit of a diflerential pair 1774-7. Further, forming
conditions will not be applied to the first bit of the difler-
ential pair 1774-8 (ensuring the first bit will remain 1n HRS).

Such actions can continue until a last RRAM differential
pair 1s reached 1774-9, 1774-10.

FIG. 17B 1s a flow diagram of a method 1774B for
addressing RRAM cell opens in a PUF having differential
sensing. A method 1774B can include applying forming
conditions to a first bit 1774-11. If the first bit 1s an open
(despite the forming step) (Y from 1774-12), forming con-

ditions can be applied to the corresponding second bit
1774-13. If the second bit 1s also an open (Y from 1774-14),

a method 17748 can replace the RRAM pair with redundant
RRAM cells 1774-15.

I1 the second bit 1s not also an open (N from 1774-14), a
method 1774A can assign the first bit as the HRS bit of a
differential pair 1774-16. The second bit can be the LRS bat
of the differential pair 1774-17. In some embodiments
turther operations can be performed on the LRS bit (e.g., 1ts
resistance decreased further).

US 11,537,754 Bl

19

If the first bit 1s not an open (N from 1774-11), a method
17748 cannot apply forming conditions to the second bit

1774-18. The second bit can be assigned as the HRS bit of
a differential pair 1774-19 and the first bit can be the LRS
bit of the differential pair 1774-20. In some embodiments
turther operations can be performed on the LRS bit (e.g., 1ts

resistance decreased further).
Such actions can continue until a last RRAM differential

pair 1s reached 1774-21, 1774-22.

According to embodiments, cell pairs of a RRAM hash
array that display complementary states can be used to
program a PUF array. In particular, electrical conditions
(e.g., forming conditions) can be applied to an RRAM hash
array that selected to generate a desired distribution (e.g.,
50%) of RRAM cells having different states (e.g., formed or
unformed). If a selected RRAM cell pair consists of RRAM
cells of different states, it can be used to program a PUF
array. I a selected RRAM cell pair consists of RRAM cells

of the same state, the pair 1s not used to program a PUF array
(1.e., the pair 1s skipped over and the next pair examined).
FIGS. 18 A and 18B are diagrams showing examples of such
an embodiment.

FIG. 18A 1s a flow diagram of a method 1876 according
to an embodiment. A method 1876 can include applying a
forming operation to cells 1n a hash array 1876-0. Such an
action can include apply electrical conditions that can result
in cells being formed (e.g., having a lower resistance) or
unformed (remain in a high resistance) in an essentially
random fashion based on inherent features. A method 1876
can then being selecting pairs of cells in the hash array,
starting with a first pair 1876-1.

The selected pair of cells can be examined to determine
their state 1876-2. Such an action can include performing a
read operation to determine 1 zero, one, or two of the cells
of the pair are formed (e.g., have a low resistance). It the two
cells of a selected pair are both formed (F/F) or both
unformed (U/U), a next pair of cells can be selected 1876-3
(e.g., 1ignore the current pair).

If the selected pair have different states (e.g., F/U, U/F),
the corresponding logical bit(s) can be written into a PUF
array 1876-4. For example, if the pair 1s F/U, this can be
considered a logic 1, and a logic 1 can be written into the
PUF array. Conversely, 1 the pair 1s U/F, 1s can be consid-
ered 1t to be a logic 0, and a logic 0 can be copied into the
PUF array. Alternatively, U/F may be considered to be a
logic 1 and F/U may be considered to be a logic O.

How logic values from differential hash array are written
into a PUF array can differ according to whether the PUF
array uses single-ended or differential sensing. If a PUF
array 1s to be read using differential sensing, a logical 1 (e.g.,
F/U) from a hash array can mean the first cell of the
differential pair 1s subject to forming conditions while the
second cell remains unchanged (i.e., virgin), which can be
represented by F/V. A logical 0 (e.g., U/F) from a hash array
can mean the second cell of a differential pair 1s subject to
forming conditions while the first cell remains unchanged,
which can be represented by V/F. Alternatively, the opposite
meanings may be used (1.e., logic 1=V/F, logic 0=F/V).

If a PUF Array 1s to be read using single-ended sensing,
one logic value (i.e., I/O) can mean the corresponding PUF
array bit 1s not subject to forming conditions, while the other
logic value (1.e., I/O) can mean the corresponding PUF array
bit 1s subject to forming conditions.

Programming of a PUF array using hash array values can
continue the manner noted herein until the PUF array 1s fully
populated with a desired distribution (e.g., random distribu-

10

15

20

25

30

35

40

45

50

55

60

65

20

tion of 50% logic 1, 50% logic 0). Such actions can include
using more than one hash array to fill a PUF array.

FIG. 18B 1s a diagram showing operations like those
indicated with respect to FIG. 18A. FIG. 18B shows a hash
array 1848, a first PUF array 1808 A and a second PUF array
1808B. A hash array 1848 can be an RRAM array with
RRAM cells having an essentially random resistance distri-
bution of formed (F) and unformed (U) RRAM cells. Pairs
of cells 1 hash array 1848 can be examined, and 11 they are
in different states, written into a PUF array (1.e., 1808A
and/or 1808B) as particular logic values. Pairs of cells 1n

hash array 1848 having the same state can be skipped.

Referring still to FIG. 18B, 1n hash array 1848 a first pair
of cells (going from leit to right) have states F/U. In the case
of a single-ended sensing PUF array 1808A, operation
1878 A can be used to represent the hash array state (F/U) as
a logic “1”. In contrast, in the case of diflerential sensing
PUF array 1808B, operation 1878B can be used to form a
first cell and not form a second cell, to create a formed and
virgin pair (F/V).

A next pair of cells can be examined in hash array 1848.

Because the pair has the same state F/F, the pair can be
skipped and not represented in a corresponding PUF array
(1808A or 1808B). The next pair 1s also of the same state
(U/U) so 1t 1s skipped as well.

The fourth pair of hash array cells can have states U/F. In
the case of a single-ended sensing PUF array 1808 A, opera-
tion 1878A can be used to represent the hash array state
(U/F) as a logic “0”. In contrast, in the case of diflerential
sensing PUF array 1808B, operation 1878B can be used to
form a second cell and not form a first cell, to create a virgin
and formed pair (V/F).

While embodiments can select adjacent pairs hash cells 1n
a row-wise fashion, alternate embodiments can step through
a hash array in any of various other ways. Such embodi-
ments can reduce the number of hash cell pairs that are
skipped over as compared to an approach like that of FIG.
18B. Examples of such embodiments will now be described.

FIG. 19A shows a method of selecting hash array pairs
according to an embodiment. FIG. 19A shows a portion of
a hash array 1948A. A first hash cell pair 1982-0 can be
selected. In the example shown, first pair 1982-0 can be
adjacent cells 1 a first (e.g., row-wise) direction. However,
a second pair 1982-1 can be selected by stepping 1n different
direction (e.g., column-wise). A third pair 1982-2 can be
selected by stepping 1n a diflerent direction than the previous
pair, which in the embodiment shown, can be in the first
direction. However, a third pair 1982-2 could be selected by
going 1n yet a diflerent direction.

FIG. 19B shows another method. Pairs of hash array cells
can be selected stepping through a hash array 1948B mul-
tiple times at angles that may not be orthogonal to one
another. For example, after selecting pair 1982-3, pair
1982-4 can be selected by moving at an “angle” 1984 (1.e.,
over three, up one).

FIG. 19C shows a method that includes stepping through
a hash array 1948C multiple times, selecting pairs composed
of cells that are diflerent physical or logical distances apart.
For example, pair 1982-5 can be composed two cells having
a first physical/logical distance, while pair 1982-6 can be
composed of two cells having a second physical/logical
distance.

While embodiments can include deterministic methods
where arrays are stepped through based on set values or
algorithms, alternate embodiments can include random
number generators RNGs, or the like, to introduce essen-

US 11,537,754 Bl

21

tially random steps 1nto address selection. Examples of such
embodiments are shown 1n FIG. 20.

FI1G. 20 shows a hash array 2048 1n which hash cell pairs
can be selected using a random number generator (RNG).
For example, RNG 2086-0 can be used to choose an address
to select a first cell 2008-0. A neighboring cell 2008-1 can
be considered the second cell of the hash pair 2082-0. While
FIG. 20 shows second cell 2008-1 as a row-wise neighbor,
a second cell 2008-1 could be a neighbor 1n another direc-
tion, or neighbor at some angle, or other logical/physical
distance from cell 2008-0. In other embodiments hash pairs
can be selected by using one or more random number
generators 2086-2 for two addresses, then taking the two
cells corresponding to the addresses 2008-2/3 (or cells
neighboring them) to be a hash pair 2082-1. In approaches
like those of FIG. 20, random address values can be con-
tinued to be used such that a same cell 1n a hash array may
contribute to more than one hash pair.

According to embodiments, 1nstead of selecting pairs of
cells from a hash array for transfer into a PUF array, cells
can be selected in units of 2N cells, where N 1s an 1nteger
greater than 1. If there are N ones and N zeros 1n a unit of
2N cells, then that unit could be copied into a PUF Array.
FIG. 21 A shows an example of such an embodiment. Within
hash array 2148A, 2N cells are selected, where N=2. A
group 2186 includes three cells of state U, and so 1s not
selected. Group 2188 includes two cells of state U and two
cells of state V, and so 1s selected. Unselected group 2186
and selected group 2188' show how groups can have various
orientations (e.g., vertical instead of horizontal).

Groups of hash array cells can also be selected to arrive
at different distributions. For example, 1f a PUF Array 1s
intended to have approximately P % of 1s and approximately
(1-P) % of Os, cells could be selected from a hash array in
units of N cells. If approximately P % of cells 1n a umit are
logical 1s, that unit can be copied into a PUF array. FIG. 21B
shows an example of such an embodiment. Within hash
array 2148B, N cells are selected, where N=5. Further 1t 1s
desired to have and 60/40 distribution of 1s/0s 1n a resulting
PUF array. Groups 2188-0/1 includes 60% of their cells 1n
the state F, and so are selected. Group 2186-0 does not
include 60% of 1ts cells 1n state F, and so 1s not selected.

It 1s understood that groups of hash array cells in embodi-
ments like those of FIGS. 21A/B can be selected any
suitable stepping method, including those disclosed herein
and equivalents.

Embodiments can also utilize the variability 1n forming
operations to establish a distribution for use as a hash array
or PUF array. An example of such an embodiment will be
described with reference to FIG. 22.

FIG. 22 1s a flow diagram of a method 2290 for estab-
lishing a predetermined distribution (1n the example shown
50/50) of binary values for PUF and similar applications. A
method 2290 can include selecting two cells from an array
2290-0. Such an action can include any of those described
herein or equivalents. Forming conditions can be applied to
a first cell of the pair 2290-1. Such an action can include
forming conditions that have only a limited chance (i.e.,
ideally 50%) of placing the cell 1n the formed state.

The first cell subject to the forming conditions can be
evaluated to determine 11 1t has formed (1.e., 1s 1n the formed
state) 2290-2. If the evaluated cell 1s 1n the formed state (Y
from 2290-2) a next cell pair can be selected (return to
2290-0). If the evaluated cell 1s not 1n the formed state (N
from 2290-2) the forming conditions can be applied to the
second cell of the pair 2290-3. The second cell subject to the
forming conditions can be evaluated to determine 11 1t has

10

15

20

25

30

35

40

45

50

55

60

65

22

formed 2290-4. If the second cell 1s 1n the formed state (Y
from 2290-4) a next cell pair can be selected (return to
2290-0). It the second cell 1s 1n not in the formed state (N
from 2290-4), a method 2290 can return to 2290-1 (1.e., try
again to form the first cell).

It 15 understood that cells having states set 1n a manner
like that of FIG. 22 can be cell pairs that each store a data
value read using differential sensing. However, such cells
can also be individual cells read using single-ended sensing.

It 1s also understood that cells having states set 1 a
manner like that of FIG. 22 can serve as a PUF array, with
cells being accessed by challenge inputs to generate a
response. However, such cells can also serve as a hash array,
having the data values transferred to another array to form
a PUF array.

While FIG. 22 shows an arrangement in which cells have
a 50/50 distribution, alternate embodiments can include a
counting step to arrive at percentages other than 50/30. For
example, each cell of a group can be subject to forming
conditions until the given percentage of formed cells 1s
arrived at. If the percentage 1s not reached in a first pass,
another pass can be made.

While embodiments show response values generated
from data at an address accessed by a challenge value,
according to other embodiments, a response can be gener-
ated from data stored at other locations based on an address
specified by a challenge value. Various examples of such
embodiments will now be described.

Referring to FIG. 23 A, 1n a PUF array 2300A a challenge
2302 A can access an address as shown. However, a response
2304 A can be a string of k cells physically or logically
adjacent to the address of the challenge 2302A. In some
embodiments, responses to challenges can “wrap” around
logical or physical ends of a storage space. For example, 1n
FIG. 23 A, challenge 2302A' can result in a response 2304 A
that occupies the end of one row and the start of a next row.

Referring to FIG. 23B, 1n a PUF array 2300B, 1n response
to a challenge 2302B, a response 23048 can include data
stored 1n cells at noncontiguous addresses. In a response
comprising noncontiguous addresses, more than one address
may be skipped 1n between the selected addresses. In some
embodiments, a number of cells to be skipped may be
specifled 1n a challenge. Noncontiguous addresses can be
arrived at 1n a deterministic manner, or, as will be described
in embodiments below, a non-determimistic manner (e.g.,
essentially randomly based on a seed value).

In some embodiments, a response can be the result of a
logical and/or arithmetic operation performed on data
accessed by a challenge. For example, referring to FI1G. 23C,
in response to a challenge 2302C data values 2304' can be
accessed at k cells physically or logically adjacent to an
address specified i a challenge 2302C. Such data values
2304' can be applied to a function block 2320. Function
block can execute one or more logic or arithmetic functions
on the received data values to arrive at response 2304C. In
a particular embodiment, a response can be a sum of the
logical (0 or 1) values stored 1n k cells physically or logically
adjacent to an address specified 1n a challenge.

In some embodiments a challenge can include a physical
or logical direction from which response cells can be
selected from a PUF Array. For example, referring to FIG.
23D, depending upon a value of challenge 2302D, a
response 2304D-0 1n a first vertical direction can be selected,
or a response 2304D-1 1n a second vertical direction can be
selected. As another example, a challenge beginning with a
‘0’ can 1ndicate that response cells are to be selected from
cells 1n a vertical direction from an address specified 1n the

US 11,537,754 Bl

23

challenge, whereas a challenge beginning with a ‘1’ may
indicate that the response cells are to be selected from cells
in a horizontal direction.

In some embodiments a challenge can include an angle,
that 1s not vertical or horizontal, from which response cells
are to be selected. For example, referring to FIG. 23E, a
challenge 2302E can correspond to an address, but a
response 2304E can be selected from addresses extending at
an angle with respect to the address of the challenge 2302E.

In some embodiments a challenge can present bounds in
an address space (logical of physical) from which response
data 1s generated. For example, referring to FIG. 23F, a
challenge 2302F can include “‘vertex” addresses which
access three locations as shown. A response 2304F can be
generated at cells corresponding to addresses between those
indicated by the challenge 2302F.

According to embodiments, PUF arrays can also include
“nonce” values. Nonce values can record whether a particu-
lar response has been provided previously. In some embodi-
ments, nonce values may be stored 1n a portion of a PUF
array.

While responses can be generated from data stored at
locations 1n a deterministic manner, in other embodiments
addresses for response values can be derived 1n non-deter-
minmistic manner. Various examples of such embodiments
will now be described.

Referring to FIG. 24, a PUF device 2400 according to an
embodiment 1s shown 1n a block diagram. A PUF device
2400 can include a PUF array 2408, a challenge modifier
2492, a decoder 2416, and optionally, a response feedback
path 2494. A PUF device 2400 can operate like that shown
in FIG. 4A, however, a challenge modifier 2492 can include
a RNG 2486, which can generate essentially random values
in response to seed values. Thus, addresses to PUF array
2408 can be generated all, or 1n part, by a RNG 2486. RNG
2486 can be seeded with all or portions of a challenge 2403,
a response 2404, or combinations thereof.

FI1G. 25A shows operations 1n a PUF array 2548 A accord-
ing to an embodiment. A challenge 2502A can be applied
that would access the location noted. However, all or a
portion of a challenge 2502A can serve as a seed value to a
RNG. The RNG can generate a number of addresses at the
noted locations, to generate a response value 2504A.

FIG. 25B shows operations 1n a PUF array 2548B accord-
ing to another embodiment. A challenge 2402B can be
applied that accesses data values 2502' in PUF array 2548B.
Data values 2502' can be accessed by stepping across PUF
array 2458 according to any of the embodiments described
herein or equivalents. Further, data values 2502' can serve as
seed values to a RNG to generate addresses that access the
data for response value 2504B.

FI1G. 25C shows operations in a PUF array 2548C accord-
ing to another embodiment. A challenge 2402C can corre-
spond to an address, as shown. Such an address can be
applied as a seed to an RNG configured to generate
addresses at random distances in different directions. For
example, as shown i FIG. 25C, an output of a RNG can
correspond to a physical or logical address 1n a first direction
(e.g., 1 1 FIG. 25C) of one of k response cells, and a
subsequent output of a random number generator may
correspond to a physical or logical address 1n a second
direction (e.g., j in FIG. 25C) of a same response cell. Two
outputs of a random number generators can therefore specily
an address of a response cell 2504C.

In other embodiments, a complete address of one or more
response cells may be obtained from a same output of a
random number generator.

10

15

20

25

30

35

40

45

50

55

60

65

24

FIG. 25D shows operations 1n a PUF array 2548D accord-
ing to another embodiment. A seed for a RNG used to select
a response addresses may comprise data from noncontigu-
ous addresses. For example, as shown in FIG. 25D, a
challenge 2502D can have addresses that correspond to
noncontiguous locations. Such noncontiguous addresses can
be applied to RNG to generate addresses for response
2504D. It 1s noted that in a seed derived from noncontiguous
addresses, more than one address may be skipped 1n between
the selected addresses. As but one of numerous examples, a
number of cells to be skipped may be specified 1n a chal-
lenge.

Just as response addresses can be generated at predeter-
mined distances/locations from a challenge address (ex-
amples shown 1n FIGS. 19A/B, 23A to 23F), so may RNG
seed values be generated from a challenge address. Thus, a
challenge may include a physical or logical direction from
which cells are selected to form a seed for a RNG that 1s used
to generate a response address from a PUF Array.

For example, a challenge beginning with a ‘0’ may
indicate that a seed comprises cells selected 1n a vertical
direction from an address specified in a challenge, whereas
a challenge beginming with a ‘1’ may indicate that a seed
comprises cells selected 1n a horizontal direction from an
address specified 1n a challenge (see for example FI1G. 23D).

As another example, a challenge may indicate an angle
that 1s not vertical or horizontal from which cells used to
construct a seed are to be selected (see for example FIGS.
198, 23E).

A challenge may specily “vertex” addresses between
which cells are used to construct a seed are to be selected
(see for example FIG. 23F).

An output from a RNG seeded by all or a portion of a
challenge, or a data value accessed by a challenge, can be
used to select any or all of the of the following:

1. a logical or physical direction from which cells are
selected to form a response. Such directions may include
horizontal, vertical, non-horizontal, non-vertical, and the
like:

2. addresses which are logically or physically noncontiguous
in one direction, such that a response can be constructed
from data stored in cells at such addresses; or

3 addresses which are logically or physically noncontiguous
in more than one direction, such that a response 1s con-
structed from data stored in cells at such addresses.

As described herein, hash arrays can be created with
random values which can be transferred into another array to
form a PUF array. In some embodiments, a hash array can
be manufactured with corresponding PUF devices.

FIG. 26 A 1s a diagram showing a semiconductor wafer
2696 A on which devices are manufactured. Waler 2696 A
can 1nclude a hash array 2648A. In the embodiment shown,
waler 2696 A can include a number of PUF arrays (one
shown as 2608). Hash array 2648A can be created according,
to any of the embodiments herein, and random values of
hash array 2648 A can be transierred into some or all PUF
arrays (e.g., 2608).

FIG. 26B 1s a diagram showing a semiconductor waler
26968 that can include multiple hash arrays 2648-0 to -3. A
waler 26968 can also include a number of PUF arrays (one
shown as 2608). Hash arrays 2648-0-3 can be created
according to any of the embodiments herein. Random values
of hash arrays 2648-0 to -3 can be transferred 1into some or
all PUF arrays (e.g., 2608).

Hash arrays values can be transierred to PUF arrays in any
suitable manner. FIGS. 27A to 27C show transfer operations
according to particular embodiments. FIG. 27A shows an

US 11,537,754 Bl

25

arrangement 1n which values of one hash array 2748i/; can
be transferred to one PUF array 2708i/j, respectively. FIG.
27B shows an arrangement in which values of one hash

array 2748; can be ftransferred to multiple PUF arrays
2708i0/1/2. FIG. 27C shows an arrangement 1in which values

of different hash arrays 2748i/j/k// can be transferred to
different portions 2798i/j/k/l, respectively, of the same PUF
array 2708i.

Accordingly, in embodiments, N hash arrays may be used
to prepare M PUFs, where N=1, N>M or N<M. In specific
embodiments, one die (i.e., IC substrate) can contain one
hash array and one PUF Array, and the one hash array can
be used to prepare the one PUF Array.

According to embodiments, PUF arrays can be prepared
from hash arrays utilizing a key. A key can control how data
1s transierred from a hash array to the PUF array. A key can
thus establish variation in PUF arrays created with a same
hash array and/or provide additional variation 1n PUF array
values. Keys can control data transters between a hash array
and PUF array in any suitable fashion, including but not
limited to: determining which cells from a hash array are
copied mmto a PUF array and/or in what order cells are
copied, including methods and operations as disclosed
herein and equivalents. In some embodiments, every PUF
array created from a hash array cab have a different key. In
other embodiments, a same key may be used for more than
one PUF array.

FIG. 28A shows an operation 2862A for transferring data
from a hash array 2848A to a PUF array 2808A. A key
2801 A can control how such a data transfer occurs.

FIG. 28B shows an operation 2862B for transierring data
from a hash array 2848B to a PUF array 2808B according to
one embodiment. All or a portion of a key 2801B can serve
as a seed value for a RNG 2886. Resulting random values
from RING 2886 can be used to select cells from a hash array
2848B. Selected cells from hash array 2848 can be used to
establish logic values 1n PUF array 2808B according to any
of the embodiments described herein, or equivalents.

Keys can be selected 1n any suitable fashion. For example,
keys can be established by a manufacturer through random
number generating algorithms, or the like. However, keys
can be derived from a production process as well.

FI1G. 28C shows how a PUF array position on a wafer can
be used as all or a portion of a key value. A PUF array 2808C
can have a position on a water defined by an x-coordinate (x)
and a y-coordinate (y). Such values can be included in key
value (e.g., KEY={x.y}). Of course, operations could be
performed on coordinate values as well.

FI1G. 28D shows an arrangement 1n which a key value can
be generated on-chip (i.e., on the IC that contains the PUF
array). FIG. 28D shows a PUF IC 2808D having an RRAM
array 2806. A forming operation can be applied to RRAM
cells mn RRAM array 2806. Such a forming operation can be
configured to form approximately 50% of the cells used for
a key to which 1t i1s applied, as described herein and
equivalents. That 1s, a forming operation can create key
2801D. Resistance states of bits making up key 2801D can
be subsequently reinforced.

Once a key (e.g., 2801D) 1s created, 1t can be stored
on-chip and/or external to the PUF array device. In the latter

case, a key can be stored 1n any suitable nonvolatile fashion,
including but not limited to NVM cells, such as RRAM,

flash, MRAM, OTP, mask ROM, SONOS, phase change
memory cells. In the former case, a manufacturer may retain
a database of key values matched with chip 1D values (stored

and know by each PUF array 1C).

10

15

20

25

30

35

40

45

50

55

60

65

26

FIG. 28E 1s a block diagram of a PUF device 2800E that
includes a hash array 2848E, corresponding PUF array
2808E, and a key value 2801E. Key value 2801F can be
stored 1n nonvolatile circuits 2903 which may, or may not,
be portions of hash array 2848E or PUF array 2808E. In
some embodiments, data in hash array 2848FE can be
destroyed after PUF array 2808E 1s created.

A process of creating PUF devices for authentication
purposes according to an embodiment will now be described

with reference to FIGS. 29A to 29D.

Referring to FIG. 29A, a hash array 2948 can be created
on a waler 2996. In some embodiments this can include
forming an RRAM array with associated access circuits, and
then applying forming conditions to the RRAM as described
herein or equivalents.

Referring to FIG. 29B, a hash array 2948 can be used to
prepare PUF arrays (two shown as 2908A/B). PUF arrays
2908A/B can be RRAM arrays in diflerent integrated cir-
cuits. The corresponding integrated circuits can have any
other suitable functions. As but a few of many examples,
such 1integrated circuits can be memory circuits (e.g.,
EPROM), microcontrollers, communication circuits, pro-
cessors, etc. In some embodiments, keys (Key A, Key B) for
PUF arrays 2908A/B can retained 1n external storage 2903.
However, as noted herein, keys (Key A, Key B) can be
stored 1n the IC devices corresponding to their PUF array
2908A/B.

Retferring to FIG. 29C, a water 2996' can be diced to
create individual ICs (1.e., dice or chips). Individual ICs can
be placed 1n products. Thus one product 2900A can include

PUF array 2908 A, while another product 29008 can include
PUF array 2908B. A hash array 2948 can be stored 1n a
storage device 2903, for use in authentication processes. In
some embodiments, the data of a hash array 2948 can be
copied 1nto storage device 2903. In other embodiments, hash

array 2948 and PUF arrays 2908A/B can be created after
waler 2996 1s diced.

Referring to FIG. 29D, an authentication operation 2962
for the devices of FIG. 29C 1s shown 1 a diagram. PUF
arrays 2908 A/B can be used for authentication. According to
embodiments, authentication can include one or more of the
following steps:

a. A device that wants to check if a device 1s an authentic

device (a Challenger) can create a challenge.
b. A Challenger can send a CHALLENGE to a PUF array

(e.g., 2908A) (or a device of system 1ncluding the PUF).
c. APUF (e.g., 2908A) 1s utilized to create a RESPONSE to
the received CHALLENGE.
d. The RESPONSE 1s sent to the Challenger, along with a
KEY unique to the PUF array (e.g., 2908A) used to create
the RESPONSE.

¢. Using a recerved KEY and a hash array (2905) a Chal-
lenger can determine whether a received RESPONSE 1s the
correct response to the 1ssued CHALLENGE. A received
KEY and hash array 2905 can be used to construct a copy
of a PUF array associated with the received KEY (1.e., PUF
array 2908A). From a PUF array copy, a response to the
challenge may be created internally and compared to a
received RESPONSE. If the internally created response
matches the received RESPONSE, a PUF (e.g., 2908A) or a
device or a system containing a PUF may be considered
authenticated.

FIG. 30 shows a system 3062 for executing an authenti-
cation operation like that described 1n FIG. 29D. A system
3062 can include a challenger device 30035 and an authen-
ticated product 3000. A challenger device 3005 can include
a challenge circuit 3007, a hash array 3048, a compare

US 11,537,754 Bl

27

section 3009 and optionally, function block 3020. A chal-
lenge circuit 3007 can generate a CHALLENGE for appli-
cation to product 3000. A hash array 3048 can include a hash
array created according to any of the embodiments disclosed
herein, or equivalents. A hash array 3048 can include
ancillary circuits for accessing values and/or generating

values 1n a particular manner according to a key value. Such
key value can be received from a product (KEY(LOCAL)),

or a source external to the challenger 3007 (KEY(EXT)). A
compare section 3009 can compare an 1nternal response to
a response RESPONSE_OUT received from product 3000.

Function block 3020 can execute predetermined operations
on an output from hash array 3048. The same functions can
be executed within product 3000 to generate its RESPON-
SE_OUT. All or a portion of the operations executed by
function block 3020 can be configured with a key value.
The various circuits and portions of challenger 3005 can
take the form of circuits, including programmable logic

circuits and/or processor circuits executing instructions.
A product 3000 can include a key 3001 and a PUF array

3008. A key 3001 can be stored in nonvolatile circuits as
described herein, or equivalents. In some embodiments, a
product 3000 may not provide a key, but rather a device ID.
A challenger 3005 can use a device ID to retrieve, generate,
or otherwise acquire a key value for the hash array 3048. A
PUF array 3008 can be created with the same values as hash
array 3048.

According to embodiments, responses from a PUF array
can be generated by reading bits 1n a PUF array in any of
various directions. Portions of responses can be generated
this way, or subsequent responses can be generated 1n this
way. One example of such a PUF array 1s shown in FIG. 31.

FIG. 31 shows a PUF array 3108 having storage locations
for bit values of responses. Response values can be gener-
ated by reading bit values 1n various directions, shown 1n
3011-0 to -3. Directions can result in different types of
codewords. For example, a right codeword (3011-0) (read 1n
a left-to-right direction), a left code word 3011-1 (read 1n a
right-to-left direction), an up codeword 3011-2 (read in a
vertical up direction), and a down codeword 3011-3 (read in
a vertical down direction).

According to embodiments, a PUF array 3108 can pro-
vide linear ECC bits adjacent to the PUF array 3108 (or
considered part of the PUF array 3108). For example, region
3164-0 can include ECC bits which can support right
codewords (and optionally left codewords). Region 3164-1
can include ECC bits which can support left codewords (and
optionally right codewords). Region 3164-2 can include
ECC bits which can support up codewords (and optionally
down codewords). Region 3164-3 can include ECC bits
which can support down codewords (and optionally up
codewords).

While embodiments include establishing multiple values
with each bit corresponding to a resistance state of an
RRAM cell, in other embodiments values for a PUF array or
hash array can be generated with a series of operations.
Examples of such embodiments will now be described.

Referring to FIG. 32 a method 3213 can include the
following:

1. Generate a binary data string D0 of length N.

2. Send DO through a linear block ECC encoder to generate
a binary parity string PO of length M.

3. Replace Q=M of the N data bits (of D0) with Q of the M
parity bits to create a new data string D1 of length N.

4. Repeat steps 2 & 3 to obtain as many parity strings (P1)
as desired.

5

10

15

20

25

30

35

40

45

50

55

60

65

28

5. The P1 and/or D1 values can have characteristics similar to
those of a binary string whose elements (1s and Os) are
selected randomly. Such characteristics can include approxi-
mately 50/50 of 1s and Os, low repeat rates (many cycles
would have to be executed before a newly obtained Pi 1s the
same as a previous Pi1), and past and future strings cannot be
casily predicted from knowledge of a given string. Accord-
ingly, such values can be used to populate a PUF array.

It 1s also noted that predicting a P1 value can be especially
dificult 1f the seed value (1.e., D0) has been destroyed.

According to embodiments, a value D0 can be derived
from RRAM cells as described heremn (e.g., a string of
essentially formed/unformed cells). Further, the value DO
can be destroyed after use to generate P1 values (e.g., by

forming all unformed cells, programming all cells, erasing

all cells).

It 1s understood that FIG. 32 shows but one example of a
code generation method according to an embodiment. For
example, alternate embodiments can use an ECC decoder
instead of an ECC encoder. Further, to create a new data
string Di+1, a different portion of D1 can be replaced with P1
(1.e., not just the leftmost bits as shown in FIG. 32). In
another alternate embodiment, D1 can be used as output
values instead of P1. ECC encoders and decoders may utilize
any suitable encoding techmque, including but not limited
to: Hammingj BCH, or Reed-Solomon.

FIG. 33 1s a diagram of a system 3371 according to an
embodiment. A system 3371 can include one or more PUF
devices 3300 and a cryptographic system 3373. A PUF
device 3300 can be a PUF device according to any of the
embodiments disclosed herein, or equivalents. Challenges
3302 can be applied to the PUF device to generate responses
3304 which can serve as keys 1n cryptographic system 3373.
IT a system 3371 includes a PUFs like those of FIGS. 1C to
2D, a system 3371 can generate a large number of keys with
relatively limited circuit size.

Embodiments can include any suitable array architecture
that provides access to cells 1 response to digital input
values. An example of one particular architecture 1s shown
in FIG. 34.

FIG. 34 shows a PUF 3400 according to an embodiment.
A digital challenge 3402 can be applied to a decoder circuit
3416, which can select a word line (WL0 to WLn) 1n an
RRAM cell array 3406. Selection of a word line can connect
a row of memory cells (one memory cell shown as 3408-i)
to bit lines (BLO to BLm). Each memory cell (e.g., 3408-i)
can include one or more RRAM eclements having a resis-
tance which can vary as described herein, or an equivalent.
Compare/logic circuits 3424 can obtain digits for a digital
response 3404 according to any of the approaches shown
herein or equivalents, including with or without the use of a
verily resistance Rv and/or with or without a determination
of a word line address (WL ADD), which can be provided
by decoder circuits 3402 (or alternatively by a bit value (e.g.,
MSB) of an applied challenge 3402.

PUF arrays and/or hash arrays according to embodiments
herein can be formed using any suitable technology that can
present an unpredictable vanability 1n resistance. As but a
few examples, embodiments may include cells selected
from: conductive bridging random access memory type cells
(e.g., CBRAM), subquantum conductive bridging memory
cells, phase change memory cells (PCM), correlated electron
memory cells (e.g., CeRAM), valence change memory cells
(e.g., VCMO), anti-fuse memory cells, one time program-
mable memory cells (e.g., OTP), or multiple time program-
mable memory cells (e.g., M'TP).

US 11,537,754 Bl

29

Embodiments can include any of various resistance
change memory cells (e.g., RRAM, ReRAM, and the like).
Such resistance change memory cells can rely on any of
various resistance change mechanisms, including but not
limited to: cells whose resistance change results from a
fllamentary physical mechanism, cells whose resistance
change results from a physical mechanism operating at an
interface between material layers, or cells whose resistance
change results from a physical mechanism operating on the
bulk of a material layer.

FIG. 335 1s a cross sectional view of one particular RRAM
clement 3541 that can be included 1n embodiments. An
RRAM element 3541 can be programmable between difler-
ent resistance states, and 1n some embodiments, can provide
an essentially random variation in states when subject to
predetermined electrical conditions (e.g., forming condi-
tions). An RRAM eclement 3541 can include one or more
memory layers 3545 formed between a first electrode (e.g.,
cathode) 3547 and a second electrode (e.g., anode) 3543. By
application of electric fields, a resistance of memory layer(s)
3545 can be altered. RRAM element 3541 can be formed
above a substrate 3549 of an integrated circuit device. In
some embodiments, suich RRAM elements 3541 can be
casily integrated into an existing fabrication process, being
tformed above one or more metallization/interconnect layer.
Thus, a PUF or pseudo PUF as described herein can be
advantageously easy to add to a device, as the RRAM
clements do not occupy substrate area.

FIG. 36A shows one example of a RRAM memory cell
3608A that can be included in embodiments. RRAM

memory cell 3608A can include an RRAM element 3641.
RRAM eclement 3641 can be a two-terminal element having
one terminal connected to a word line WL and another
terminal connected to a bit line BL (i.e., a cross-point type
array). RRAM element 3641 can take the form of any
suitable programmable resistance structure, including that
shown 1n FIG. 37.

FIG. 36B shows another example of a RRAM memory
cell 36088 that can be included 1n embodiments. RRAM
memory cell 3608B can include an RRAM element 3641
and an access device 3649. RRAM element 3641 can take
the form of that shown i FIG. 36A and can have one
terminal connected to access device 3649 and another ter-
minal connected to node 3651, which may, or may not be
common to other RRAM elements (1.e., a plate). An access
device 3649 can be a three terminal device (e.g., transistor)
having a control terminal connected to a word line WL, one
current path terminal connected to a bit line BL, and another
current path terminal connected to RRAM element 3641.

FIG. 37 shows examples of alteration voltages (Valter+,
Vlater-) and/or alteration currents (lalter+ and Ialter-) that
can be applied to two terminal RRAM elements to alter or
establish a resistance distribution as described herein. It 1s
understood that a same voltage/current applied to different
RRAM ceclements can result in RRAM elements having
resistance values that can vary 1n a random or pseudorandom
fashion.

It should be appreciated that reference throughout this
description to “one embodiment” or “an embodiment”
means that a particular feature, structure or characteristic
described 1n connection with the embodiment 1s included 1n
at least one embodiment of an invention. Therefore, 1t 1s
emphasized and should be appreciated that two or more
references to “an embodiment™ or “one embodiment” or “an
alternative embodiment” in various portions of this specifi-
cation are not necessarily all referring to the same embodi-
ment. Furthermore, the particular features, structures or

10

15

20

25

30

35

40

45

50

55

60

65

30

characteristics may be combined as suitable 1n one or more
embodiments of the imnvention.

It 1s also understood that other embodiments of this
invention may be practiced 1n the absence of an element/step
not specifically disclosed herein.

Similarly, 1t should be appreciated that in the foregoing
description of exemplary embodiments of the invention,
various lfeatures of the mnvention are sometimes grouped
together 1 a single embodiment, figure, or description
thereol for the purpose of streamlining the disclosure aiding
in the understanding of one or more of the various inventive
aspects. This method of disclosure, however, 1s not to be
interpreted as retlecting an intention that the claims require
more features than are expressly recited in each claim.
Rather, inventive aspects lie in less than all features of a
single foregoing disclosed embodiment. Thus, the claims
following the detailled description are hereby expressly
incorporated into this detailed description, with each claim
standing on 1ts own as a separate embodiment of this
invention.

What 1s claimed 1s:

1. A method, comprising:

applying forming electrical conditions to at least some of

a plurality of programmable resistive elements of a
hash array to create a resistance distribution in the
elements that varies according to at least manufacturing
variations 1n the elements:

forming a physically unclonable function (PUF) array of

essentially random values from the resistive elements

of the hash array based on the resistance distribution of

the elements, mcluding

determining a logic state of at least some of the
clements of the hash array based on the resistance of
the elements of the hash array, and

copying the logic states of the elements of the hash
array to memory cells of at least one memory array
to form the PUF array; and

applying binary challenge values to the PUF array to

select a plurality of the random values.

2. The method of claim 1, wherein:

applying the forming electrical conditions 1s selected from

the group of: applying electrical conditions to newly
manufactured elements; and applying electrical condi-
tions to elements set to one resistance state that tend to
shift the elements to another resistance state.

3. The method of claim 1, wherein:

the logic state of the elements comprises m-bits; and

copying the logic state includes writing n-bits into the

memory cells of the at least one memory array for each
m-bits of the hash array;

m and n are at least one; and

n 1s selected form a value equal to, less than, or greater

than m.

4. The method of claim 1, wherein:

the memory cells of the PUF array also include program-

mable resistive memory elements.

5. The method of claim 1, wherein:

the hash array has a location selected from: a same

memory cell array as the PUF array; a diflerent memory
cells array than the PUF array; a same integrated circuit
device as the PUF array; and a different integrated
circuit device than the PUF array.

6. The method of claim 1, wherein:

copying the logic states of the hash array elements

includes copying the logic states of the hash array to a
plurality of other memory circuits to form a plurality of
PUF arrays.

US 11,537,754 Bl
31

7. The method of claim 1, wherein:
applying the forming electrical conditions includes
sensing a resistance of memory element
if the sensed resistance 1s 1n a one range, applying the
forming conditions to the element, and 5
if the sensed resistance 1s 1n another range, not applying
the forming conditions to the element.

¥ ¥ e ¥ ¥

32

	Front Page
	Drawings
	Specification
	Claims

