12 United States Patent

Nadeau et al.

USO011537617B2

(10) Patent No.: US 11,537,617 B2
45) Date of Patent: Dec. 27, 2022

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

DATA SYSTEM CONFIGURED TO
TRANSPARENTLY CACHE DATA OF DATA
SOURCES AND ACCESS THE CACHED
DATA

Applicant: Dremio Corporation, Santa Clara, CA
(US)

Inventors: Jacques Nadeau, Santa Clara, CA
(US); Tomer Shiran, Mountain View,
CA (US); Arvind Arun Pande,
Telangana (IN); Thomas W. Fry, San
Mateo, CA (US)

Assignee: Dremio Corporation, Santa Clara, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 16/861,048

Filed: Apr. 28, 2020

Prior Publication Data

US 2020/0349163 Al Nowv. 5, 2020

Related U.S. Application Data

Provisional application No. 62/840,928, filed on Apr.
30, 2019.

Int. CI.

GO6F 16/00 (2019.01)
GO6F 1672455 (2019.01)
GO6F 1672453 (2019.01)
GO6F 1672457 (2019.01)
GO6F 16/182 (2019.01)
GO6F 16/248 (2019.01)
GO6F 1627 (2019.01)

(Continued)

C START)

LOGICAL BLOCGK FOUND
iN CACHE?

NG

(52) U.S. CL
CPC ... GOGF 16/24552 (2019.01); GOGF 16/137
(2019.01); GOGF 16/182 (2019.01); GO6F
16/242 (2019.01); GOG6F 16/248 (2019.01):
GOGF 16/24542 (2019.01); GO6F 16/24573
(2019.01); GO6F 16/273 (2019.01)

(38) Field of Classification Search
CPC GO6F 16/137; GO6F 16/182; GO6F 16/242;
GO6F 16/24542; GO6F 16/24552; GO6F
16/24573; GO6F 16/248; GO6F 16/273
USPC e 707/600—899
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

10,795,817 B2 * 10/2020 Keymolen GO6F 12/0815
2014/0047190 Al1* 2/2014 Dawkins HO4L. 67/5682
711/E12.071

(Continued)

Primary Examiner — Michelle N Owyang
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

The disclosed embodiments include a method for caching by
a data system. The method includes automatically caching a
portion of a data object from an external data source to a
local cluster of nodes in accordance with a unit of caching.
The portion of the data object can be selected for caching
based on a frequency of accessing the portion of the data
object. The portion of the data object 1n the cache 1s mapped
to the external data source in accordance with a unit of
hashing. The method further includes, responsive to the data
system recerving a query for data stored in the external data
source, obtaining query results that satisty the received
query by reading the portion of the cached data object
instead of reading the data object from the external data
source.

21 Claims, 5 Drawing Sheets

ACHEL
iLE VERSION MATCHE
EXTERNAL DATA

iy QURCE 2~

NO

FOR THE FILE ARE
INVALIDATED

CAGHED LOGICAL BLOCKS

¥ 314

2 306

READ CACHED LOGICAL
BLOCK

ENTIRE LOGICAL BLOCK IS READ FROM THE
EXTERMAL DATA SQURCE
: 317
FILE VERSION INFORMATION (ETAG, ATIME)
1$ READ FROM THE EXTERNAL DATA
SOURCE
314
IF FILE HAS OTHER CACHED LOGICAL
RLOGKS AND FILE VERSION CHANGED,
UPDATE FILE VERSION AND INVALIDATE ALL
OTHER CACHED LOGICAL BLOCKS
i 316
AFTER RECEIVING DATA FROM THE
EXTERNAL DATA SQURCE, THE LOGICAL
BLOCK IS SAVED LOGALLY AND A METADATA
STORE IS UPDATED
‘ 318
READ DATA IS RETURNED AND QUERY
EXECUTION CONTINUES AS NORMAL

(o)

US 11,537,617 B2
Page 2

(51) Int. CL
GO6F 16/13
GOGF 16/242

(56)

(2019.01)
(2019.01)

References Cited

U.S. PATENT DOCUMENTS

2014/0330785 Al*

2019/0034341 Al
2019/0057090 Al
2019/0079864 Al
2019/0102412 Al
2019/0146920 Al

* ¥ % % *

* cited by examiner

11/2014

1/201
2/201
3/201
4/201

5/201

O N ND NO O

Isherwood

Shi

Hua

tttttttttt

iiiiiiiiiiiiiii

ttttttttttttttttttttt

LI B A]

tttttttttttttttttttttt

ttttttttttt

tttttttttttttttttttttttttt

GOO6F 11/1446

707/640
GO6F 12/0833
GOOF 16/13
GOoF 12/126
GO6F 16/2471
GO6F 9/00

711/141

U.S. Patent Dec. 27, 2022 Sheet 1 of 5 US 11,537,617 B2

START

102

QUERY 1S PARSED AND PLANNED AS NORMAL. RESULTING
QUERY PLAN INCLUDES QUERY FRAGMENTS DIVIDED INTO
DISTINCT PHASES FOR ANODE CLUSTER.

+++

FOR PHASES THAT READ FROM EXTERNAL DATA SOURCES
104-A

FRAGMENTS THAT READ FROM AN EXTERNAL DATA
SOURCE ARE MAPPED TO TARGET NODES

104-B

QUERY FRAGMENTS ARE SENT TO TARGETED NODES FOR
EXECUTION IN ACCORDANCE WIHTH THE MAPPING

+++
+
+
+
+
+

QUERY FRAGMENTS READ FROM EXTERNAL DATA SOURCES) |
ISSUE READ REQUESTS TO STORAGE SOFTWARE | |

FiG, 1

U.S. Patent Dec. 27, 2022 Sheet 2 of 5 US 11,537,617 B2

200
START
207
GQUERY PLANNER CALCULATES POSSIBLE NODES TO MAF
EACH QUERY FRAGMENT IN THE PHASE

” " SINGLE OR *

L __CONFIGURED? _—"
200

ONLY ONE TARGET NODE 1S
RETURNED FOR EACH QUERY
FRAGMENT. EACH QUERY FRAGMENT
1o MAPPED AND SENT TO THAT NODE
FOR PROCESSING

FOR EACH QUERY FRAGMENT, |
RETURN A SET OF POSSIBLE NODES |
TO MAP TO THE QUERY FRAGMENT

LOAD BALANCER ANALYZES THE LOAD
ON EACH POTENTIAL NODE AND
olLECTS ONE NODE OUT OF SET

212

EACH QUERY FRAGMENT 15 MAPPED
TO A SELECTED NODE AND SENT TO |

THAT NODE FOR PROCESSING

G, 2

U.S. Patent Dec. 27, 2022 Sheet 3 of 5 US 11,537,617 B2

iLE ‘J'“RS!O?\ MATCHE e

~TOGICAL BLOCK FOUND™ S
» S~ EXTERNALDATA .~

IN CACHE?

CACHED LOGICAL BLOCKS
FOR THE FILE ARE
INVALIDATED

306

310
READ CACHED LOGICAL

ENTIRE LOGICAL BLOCK IS READ FROM THE BLOCK
EXTERNAL DATA SOURCE

FILE VERSION INFORMATION (ETAG, ATIME)
IS READ FROM THE EXTERNAL DATA

SOURCE

IF FILE HAS GTHERCACHED L OGICAL
BLOCKS AND FILE VERSION CHANGED.,

UFDATE FILE VERSION AND INVALIDATE ALL
OTHER CACHED LOGICAL BLOCKS

++

AFTER RECEIVING DATA FROM THE
EXTERNAL DATA SOURCE, THE LOGICAL
BLOCK 1S SAVED LOCALLY AND AMETADATA
STORE {5 UPUATED

318

READ DATA IS RETURNED AND QUERY

EXECUTION CONTINUES AS NORMAL

FiG. 3

U.S. Patent Dec. 27, 2022 Sheet 4 of 5 US 11,537,617 B2

NODES IN A QUERY PLAN THAT READ FROM A DATA OBJECT

(.G, FiLE) USE A PARTICULAR SOFTWARE FORMAT READER
THAT DEPENDS ON THE TYPE OF FILE

FILE FORMAT READER RECEIVES A READ REQUEST AND
PARSES THE FILE DEPENDING ON ATTRIBUTES OF THE FILE
FORMAT AND THE READ REQUEST

++

406

| THE FILE FORMAT READER MAY DECIDE THAT SPECIFIC |
| REGIONS (E.G., AN ATTRIBUTE) OF A FILE SHOULD EITHER BE g
' CACHED OR PINNED TO THE CACHE BASED ONHINTS

408

SOFTWARE LAYER RECEIVES AND PROCESSES READ
REQUESTS BY USING THE HINTS. okE FIGURE 3.

G, 4

U.S. Patent Dec. 27, 2022 Sheet 5 of 5 US 11,537,617 B2

“ROCESSING SYSTEM

10 SYST
03

DISPLAY &Yo1

+ + + + + + F F +F o+ FFFFFEFFFEFFEFEFFFEFFEFEFFEFEFFFEFFEFEFFFEFFEFEFF S H

+ + + + + + F + + F + +F F F FFFFFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFEFEFEF

LB B N N N RS BB EBEEEEBEBEERNEEBNEEREEIEIEINEIENEIEIEIMNIIIEIBIIEIMIEIMESIENIIEIJEIESIE-.]

+ + + + + + + + + + + + + + + + + + F + + F + + F +

+ + + + + + + +F + F F o+ FFFFFFEFFAFEFFEFEFFEAFEFFEAFEFAFEAFEFFEAFEFAFEAFEFFEAFEFAFEFEFFEAEFEFEEF

+ + + + + + + + + + + + + + +F + F F F A FF A FAFEAFAFAFEAFFAFEAFAFEAFEAFAFEAFEAFEAFEAFEAFAFEAFEAFEFAFEAFEAFEAFEAFEAFAFEAFEAFEAFEAFEAFEAFEFEAFEAFEAFE A F

+
+*
+
+
+*
+
+
+*
+
+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+

+ + + + + + + +F + F FF o FFFFFEFFAFEFFFEFFEAFEFFEAFEFFEAFEFAFEAFEFAFEAFEFAFEAFEFFEAFEFFEAFEFEFEAFEFEAFEAFEFFEAFEFFEEFFE

CLOCK SYSHE]

210

US 11,537,617 B2

1

DATA SYSTEM CONFIGURED TO
TRANSPARENTLY CACHE DATA OF DATA
SOURCES AND ACCESS THE CACHED
DATA

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. provisional patent
application Ser. No. 62/840,928 filed Apr. 30, 2019 and tatled
“CLOUD CACHING SOLUTION,” which 1s incorporated

herein 1n its entirety by this reference thereto.

TECHNICAL FIELD

The disclosed teachings generally relate to techniques of
a data system or related platform. The disclosed teachings
more particularly relate to a data system or related platform
that can automatically cache and update cached data at a
local cluster of nodes to accelerate read requests for data at
external systems mapped to the local cluster.

BACKGROUND

With the advent of big data, organizations can cost-
cllectively store significantly larger volumes of data than
was previously possible 1n largescale data lakes. However,
traditional tools such as SQL databases are unable to eflec-
tively store or process the larger volumes of data due to cost
and technology limitations. As a result, to analyze largescale
datasets, organizations typically utilize SQL-on-Big Data
tools that provide users with SQL-based access to data
stored 1n a data lake.

There are two common methods that utilize SQL-on-Big
Data. The first method 1s to execute SQL processing of data
in the same cluster where the data 1s stored (e.g., HADOQOP)
with the goal of making HADOOP look like an SQL
database. Examples include APACHE DRILL, APACHE
IMPALA, PRESTO, HIVE, and SPARK SQL. A common
drawback 1s that the latency of these systems prevents
interactive analytics and 1s more oriented with batch style
processing.

The second method 1s to extract subsets of data or
aggregations of data separate from the data lake and store
these extracts as OLAP cubes outside of the data lake.
Examples include KYLIN and ATSCALE. This approach
provides more interactive speed, but limits users to data that
has been pre-extracted from the data lake and defined
beforechand, which prevents ad-hoc analytics on the full
dataset. As such, a need exists for an alternative to common
SQL-on-Big Data approaches.

SUMMARY

The disclosed embodiments include a method for caching,
by a data system. The method includes automatically cach-
ing at least a portion of a data object from an external data
source to a local cluster of nodes 1n accordance with a unit
of caching. In one example, the data object 1s automatically
selected for caching based on the frequency that the data
object 1s accessed (e.g., exceeds a threshold). Any portion of
the data object 1n the cache 1s mapped to the external data
source 1 accordance with a unit of hashing. The method
turther includes, responsive to the data system receiving a
query for data stored in the external data source, obtaining
a query result that satisfies the query by reading the portion

10

15

20

25

30

35

40

45

50

55

60

65

2

of the cached data object instead of reading the data object
from the external data source.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a flow diagram that illustrates a process for a
query request according to some embodiments of the present
disclosure:

FIG. 2 1s a flow diagram that illustrates a process of a
query planner and load balancing technique according to
some embodiments of the present disclosure;

FIG. 3 1s a flow diagram that illustrates a process for
logical block reading according to some embodiments of the
present disclosure;

FIG. 4 1s a flow diagram that illustrates a process for
providing caching hints from higher levels 1n a software
stack according to some embodiments of the present disclo-
sure; and

FIG. 5 1s a diagrammatic representation of a processing,
system which can implement aspects of the present disclo-
sure.

DETAILED DESCRIPTION

The embodiments set forth below represent the necessary
information to enable those skilled in the art to practice the
embodiments and illustrate the best mode of practicing the
embodiments. Upon reading the following description in
light of the accompanying figures, those skilled 1n the art
will understand the concepts of the disclosure and will
recognize applications of these concepts that are not par-
ticularly addressed herein. These concepts and applications
tall within the scope of the disclosure and the accompanying
claims.

The purpose of terminology used herein 1s only for
describing embodiments and 1s not intended to limit the
scope of the disclosure. Where context permits, words using,
the singular or plural form may also include the plural or
singular form, respectively.

As used herein, unless specifically stated otherwise, terms
such as “processing,” “computing,” “calculating,” “deter-
mining,” “displaying,” “generating,” or the like, refer to

actions and processes of a computer or similar electronic
computing device that manipulates and transforms data
represented as physical (electronic) quantities within the
computer’s memory or registers mnto other data similarly
represented as physical quantities within the computer’s
memory, registers, or other such storage medium, transmis-
sion, or display devices.

As used herein, terms such as “connected,” “coupled,” or
the like, may refer to any connection or coupling, either
direct or indirect, between two or more elements. The
coupling or connection between the elements can be physi-
cal, logical, or a combination thereof.

The disclosed embodiments include a platform as an
alternative to the SQL-on-Big Data approaches. In one
example, the platform provides a highly eflicient SQL
execution engine that processes data of a data lake separate
from a data lake. The platform can use a variety of tech-
niques to efliciently process data remotely from a data
source as described 1n U.S. patent application Ser. No.
16/392.,483, filed on Apr. 23, 2019 and titled “OPTIMIZED
DATA STRUCTURES OF A RELATIONAL CACHE
WITH A LEARNING CAPABILITY FOR ACCELERAT-
ING QUERY EXECUTION BY A DATA SYSTEM” and
U.S. patent application Ser. No. 15/631,903, filed on Jun. 23,
2017 and titled “SELF-SERVICE DATA PLATFORM,”

US 11,537,617 B2

3

cach ol which 1s incorporated herein in its entirety. The
platform and associated features offer a common memory
format that help speed up data transfer. A platform can
accelerate query executions by using optimized data struc-
tures, referred to herein as “reflections,” which can reside in
memory or on persistent storage. The reflections enable
end-users to easily specily which data from a data lake (or
other data source) to pre-extract, in either raw or aggregation
form.

Despite the use of accelerations, performance 1s slower
when users access raw data stored 1n the data lake where that
data has not been specified to be pre-extracted for a retlec-
tion. As a result, for users to experience interactive speeds
over large datasets, users need to manually create reflections
for data so that the data 1s pre-extracted and stored 1n the
platform for rapid query execution. Additionally, in cloud
installations, customers commonly use a cloud provider’s
own data lake services to store reflections (e.g., AMAZON
S3 or AZURE data lake storage (ADLS)). In these cloud-
based environments, reflections themselves are slower than
desired due to the performance limitations of the cloud
provider’s data lake solutions.

The disclosed embodiments include a data system that
solves the problems of existing systems. In some embodi-
ments, data that 1s stored in an external data lake, and 1s
commonly accessed, 1s automatically stored on a local cache
storage system. For example, the data i1s stored on a plat-
form’s cluster of nodes by using the cluster’s own local disk
resources without requiring user input. By storing data
locally, it 1s available immediately for processing and users
experience real-time or near real-time interactive perfor-
mance.

Embodiments of the data system offer various benefits.
Firstly, data stored in a data lake can be accelerated without
user mput or needing a user to specily a retlection. Instead,
the most commonly (e.g., frequently) accessed data 1s auto-
matically accelerated. Secondly, the reflections that are
stored on external data lakes, as commonly configured 1n
cloud environments, do not experience a performance deg-
radation because commonly accessed retflections are cached
locally. In addition, the caching architecture 1s designed to
flexibly support any type of external data source, runtime
changes to cluster configuration due to a node removal or
inclusion, data changes on external systems which are
outside the platiform, multiple execution engines 1n a single
cluster, high performance by sending compute to nodes were
data 1s cached, and high concurrency by creating multiple
cached copies of the same data on multiple nodes 11 hughly
accessed.

Unit of Hashing

An architecture design concept of the disclosed embodi-
ments 1nvolves mapping (e.g., linking) external data objects
to nodes of the platform. A “unit of hashing” defines the
mapping for a particular external data object, including
which compute node of the platiorm that the data object
should be cached to, and ensures that data objects are evenly
distributed across all active nodes. The term “hashing” refers
to the use of a hash function to index a hash table. In
particular, the hash function can be used to map data of
arbitrary size to fixed-size values. The values returned by the
hash function are called hash values or simply hashes. The
values can be used to index a fixed-size table called the hash
table.

In some embodiments, the mapping between the external
data objects and the nodes of the platform 1s made by
considering the following combination of inputs and only
these mputs: (a) cluster membership, which refers to a target

10

15

20

25

30

35

40

45

50

55

60

65

4

execution engine’s cluster status including number of nodes
configured and their current state; (b) file type, which refers
to the type of file; (¢) file path and name, which refers to, for
file system sources, the name of the target file and includes
a full path address and, for relational database sources, the
object’s unique path such as database.schema.table; and (d)
file or dataset split details. In some embodiments, the
mapping considers a file version 1 addition to the afore-
mentioned combination. The file version refers to the ver-
sion ol the external file such as, for example, eTag infor-
mation on AMAZON 53 or atime or mtime information on
a file system.

As used here, “atime” refers to an “access time,” which 1s
a timestamp that indicates a time that a file has been
accessed. The file may have been opened by a user, or may
have been accessed by some other program or a remote
machine. Anytime a file has been accessed, 1ts access time
changes.

As used herein, “mtime” refers to a “modification time,”
which indicates the time the contents of the file has been
changed (only the contents, not attributes). For instance, 1f
a user opens a lile and changes some (or all) of its content,
its mtime gets updated. If the user change a file’s attribute,
such as a read-write permissions or metadata, 1ts mtime
doesn’t change, but its “ctime” or “change time” will
change.

The same hash function can be applied to the inputs (a)
through (d) indicated earlier to determine the node on which
an external data object 1s cached. The same hash function
can be utilized for other functions as well. An advantage of
using the same hash function is that multiple rings can be
defined to create multiple mappings. A ring can be a con-
figuration i which a function or device 1s logically or
physically connected to two others, for example, as 11 it were
connected end-to-end.

In one example, 11 one ring 1s used, each external data
object 1s mapped to a single compute node of the platform.
However, if two rings are used, each external data object 1s
mapped to two compute nodes (e.g., a primary node and a
secondary node). As the number of rings increases, each
external data object can be mapped to a corresponding
number of compute nodes. A benefit of this approach 1s that
data mm very high demand can be mapped to multiple
compute nodes such that work on that data can be sent to
multiple nodes for higher performance or greater concur-
rency.

The data system can gracefully handle a node failure
event without losing data cached in other nodes. For
example, 1 an execution engine of the platform has ten
nodes, then external data objects can be evenly distributed
across those ten nodes. If a single node fails, data objects
mapped to other nodes are not necessarily impacted while
data objects mapped to the failed node can be remapped to
the remaining nine nodes 1n a manner that evenly distributes
the data objects that were mapped to the failed node across
t
C

ne remaining nine nodes. Doing so avoids hot spots in the
ata system by evenly spreading the additional load and data
from a failed node to the remaining nodes. This 1s advan-
tageous over other methods such as mirroring, which creates
hot spots because all processing from a failed node 1s
targeted to another node.

By including the file type, path, name and split informa-
tion as mput to the unit of hashing, any type of external data
source may be cached and evenly distributed 1n accordance
with the algorithm described herein. Moreover, in traditional
network-attached storage (NAS) file systems, a file’s full
path and file name can be considered. In object storage

US 11,537,617 B2

S

systems, the bucket, path and object name can be consid-
ered. In distributed file systems such as a HADOOP distrib-
uted file system (HDFS), partitioning and split information
can be considered.

A challenge when caching data stored on external systems
1s how to i1dentify when data changes occur, which invali-
dates previously cached data. By including the data object’s
version 1n the hashing algorithm, the cache’s data object to
node mapping 1s only valid for a single version of the data
object. As such, 11 data 1s changed, then the mapping 1s both
invalidated and the data object 1s remapped. Different sys-
tems can implement different methods to track file versions.
Data lake storage can include a hash of a data file’s contents.
For example, in AMAZON S3 this 1s called the eTag. In
another example, file systems store a last modified time
which changes every time a file 1s updated. This information
can be used to track changes 1n data objects.

Unit of Caching

Another architecture design concept of the disclosed
embodiments 1mvolves 1dentitying what data within a data
object to cache. Specifically, after identifying the node on
which to cache a data object, the disclosed embodiments can
determine the scope of the data object to cache on the
identified node. Hence, istead of caching an entire data
object, which could be many GBs or TBs 1n size, only the
frequently accessed sections of a data object can be cached.
This can be important because, 1n many file formats, work-
loads only access certain distinct parts of a file and other
parts are not used. For example, in PARQUET, files that
store data 1n columnar format and a workload will only
access sections of a file associated with the columns 1n use.

The disclosed embodiments do not require specific
knowledge of a file format structure to support numerous
diverse file formats, including existing and future unknown
formats. In some embodiments, data objects are divided into
distinct sections of a specified size, for example, into sepa-
rate 1 MB sections. The size of each distinct section can be
configurable. Each distinct section can be cached separately
based on a given section’s usage. In this manner, commonly
accessed regions of a data object are cached but the caching
algorithm 1s flexible and does not require specific knowledge
of the file format 1n use. Additionally, a default section size
may be tuned depending on the file type. For example,
different default section sizes can be defined for PARQUET
versus CSV files based on observed performance.
Flexibility in Cache Eviction

The architecture of the disclosed platform can include
higher level parts of a software stack that handle reading of
a given file format and understand file format specific
structures that could benefit caching eflectiveness. For
example, in PARQUET files, the footer contains key file
attribute information that 1s commonly accessed on every
read. As such, 1t 1s beneficial to always keep the footer in
cache 1t any other part of the data object 1s 1n the cache.
Accordingly, the disclosed platform can automatically keep
the footer in cache 1f any other part of a PARQUET file 1s
stored 1n the cache.

To support this function, suggestions or “hints” from
higher levels of software, such as a file format reader or even
a query 1tself, can be passed to the caching algorithm to help
determine which data sections to store in cache and how
“aggressively” to do so. That 1s, a “hint” may include
information that indicates portions of data sections to cache.
The “aggressiveness” refers to a degree or likelihood of
caching the data section. In the example of PARQUET files,
a hint 1s passed with read requests for footer data and
specifies to always cache these sections 1f any other part of

10

15

20

25

30

35

40

45

50

55

60

65

6

the data object 1s cached. Hints can also specily to store or
pin certain data sections or even whole files 1n cache, or to
pre-warm (e.g., pre-load 1n cache) certain sections of a file.

Although some examples of the data system are described
as supporting AMAZON S3 and MICROSOFT ADLS stor-
age systems and files stored in PARQUET format, the
disclosed embodiments are not so limited. Instead, the data
system and related platform can be implemented with a
variety of additional data sources and file formats.

There are multiple benefits of the disclosed data system
and related platform. For example, users can experience
higher performance because the data system can automati-
cally identity commonly accessed data and store 1t on nodes
of the platform. That 1s, users do not have to manually
configure external or raw reflections 1n every case. In
contrast, current best practices require creating a raw retlec-
tion on external data sources so that data 1s pre-extracted and
stored 1n the platform. In these prior systems, either all data
1s pre-extracted or users have to manually specily data
ranges of interest. In contrast, with the disclosed data
system, the platform can automatically identity ranges and
cache extracted data.

Further, caching can be automatically enabled for all
types of external data sources, without any specific coding
required for new data sources or file formats. The cached
data can be evenly distributed across resources, and the
system can gracefully handle resource failures as indicated
carlier. The cached data that can be lost due to the failed
resources 1s evenly spread across any remaining resources o
prevent hot spots. The reflections stored on external storage
systems (e.g., NAS, AMAZON S3, ADLS) do not experi-
ence degradation when cached locally. This 1s especially
important 1 public cloud deployments where customers
usually configure retlections on external storage systems.

The disclosed data system creates a consistent user expe-
rience. That 1s, the experiences of users on existing systems
vary between different data services and configurations due
to the capabilities of external data systems that are outside
of the platform’s control. Caching not only improves per-
formance but creates a consistent experience across diflerent
environments and storage services. Accordingly, the dis-
closed embodiments offer a wide impact and are cost-
cllective, which improves the experience of all users by
using available local resources.

The disclosed embodiments also include a technique for
co-locating compute resources and data. For example,
knowledge of which nodes operate on and cache data by data
object can be known during query planning and scheduling
because all inputs to the hash function are known at query
planning time. To further improve performance, the parts of
a query plan that operate on specific data objects can be
scheduled on the nodes where that data 1s or would be
cached. Doing so sends the compute for a query to the nodes
where data 1s stored, which prevents the need to transmit
data across nodes within the platform cluster and improves
performance while always reading locally from cache.

The disclosed data system also includes an embodiment
with multiple execution engines (e.g., virtual execution
engines). For example, a platform can divide a cluster into
multiple smaller execution engines. Doing so enables higher
concurrency compared to a single large pool by having
multiple pools of resources to process user requests. In some
embodiments, the cache’s mapping of data objects to nodes
1s defined separately for each individual execution engine.
This enables each execution engine to have 1ts own cache for
acceleration purposes. Moreover, this 1s beneficial 11 difler-
ent execution engines are used for different workloads where

US 11,537,617 B2

7

they will cache different data objects or to cache the same
data objects multiple times 11 workloads are run many times
and execution 1s spread across multiple execution engines.

The disclosed embodiments include wvarious process
flows. For example, FIG. 1 1s a flow diagram that illustrates
a process 100 for processing a query request. As shown, the
process 100 includes end-to-end steps that are relevant to
caching and performed to process a query (e.g., an SQL
query). In step 102, a query 1s parsed and planned as
normally done with existing techniques. The result of the
parsing and planning i1s a query plan that includes query
fragments divided into distinct phases, where each phase can
be run 1n series or parallel on a cluster of nodes, where work
for the phases 1s divided over the nodes. For example, the
phases can be processed over distributed SQL engines.

In step 104, the sub-steps 104-A and 104-B are performed
for phases that are applied to read from external data
sources. In step 104-A, query fragments that are read from
an external data source are mapped to a target node. This
mapping 1s known during query planning time prior to
execution because the mapping may only consider the unit
of hash mputs which are known at planming time. The unit
of hashing 1s based on a cluster configuration, file type, file
path and name, file split, or partition (e.g., split) details. In
step 104-B, query fragments are sent to the targeted nodes
for normal execution by using the mapping from step 104-A.

In step 106, the sub-steps 106-A and 106-B are performed
on each node during execution. In step 106-A, query frag-
ments read from external data sources cause read requests to
issue for a storage software layer as normally done in
existing techniques. The read requests can be of any size and
do not necessarily correlate to a umt of caching. The format
reader that 1s responsible for parsing each file type may
optionally add hints to the read request.

In step 106-B, the storage software layer (e.g., including
a format reader) of the data system processes the read
requests. In particular, each file 1s logically divided into
discrete logical blocks (e.g., unit of caching). For example,
cach file can be divided into 1 MB-sized logical blocks and
cach read request can be mapped to one or more of the
logical blocks. For example, a read request for 2 KB starting
at position 1.5 MB would map to the second logical block
in the file 11 logical blocks were 1 MB 1n size. A lookup
process 1s performed to determine if the logical block 1s
stored 1n local cache or a local metadata store. Additionally,
the file’s version can also be looked-up (eTag, mtime, etc).

Each node can maintain 1ts own database including infor-
mation of logical blocks cached locally and a current file
version. The lookup 1s local to individual node because the
unit of hashing already maps a file to a node. As a result,
cach node only needs to keep track of which files/logical
block 1t has cached because there are no dependencies on the
cache states of other nodes. Even 11 multiple hash rings are
used to map a file to multiple nodes, each node can track
only its own cache status. This has performance and sim-
plification advantages. For example, if the logical block 1s
currently 1n the local cache, then data 1s read and returned
from the local cache, otherwise 1t 1s read from the external
data source.

FI1G. 2 1s a flow diagram that illustrates a process 200 of
a query planner to perform load balancing. The steps of the
process 200 can be performed for each phase that reads from
an external data source. In step 202, the query planner
calculates one or more possible nodes to map each query
fragment 1n a phase. In some embodiments, the mapping i1s
calculated by using cluster configuration, file type, file path
and name, file split or partition details as inputs to the

10

15

20

25

30

35

40

45

50

55

60

65

8

consistent hash algorithm (or some other hash algorithm),
which returns possible node mappings.

In step 204, a process 1s performed to determine whether
one or more rings are configured. In step 206, 11 a single ring
1s configured, only one target node 1s returned for a given
query fragment and each query fragment 1s mapped and sent
to that node for processing. In step 208, 1 multiple rings are
configured, for each query fragment, a set ol one or more
possible nodes to map the query fragment 1s returned. In
some embodiments, each ring can create a unique evenly
distributed mapping of files-to-nodes across the cluster of
nodes. In step 210, a load balancer analyzes the load on each
potential node and selects one node out of the set. Multiple
load balancing strategies can be used to select a node. For
example, 11 a given file 1s heavily used, the load balancer can
decide to enable multiple rings for that file so that multiple
copies are cached locally, and the load balancer can map
requests for that file to multiple nodes with additional
compute resources. In step 212, each query fragment is
mapped to a selected node and sent to that node for pro-
cessing.

FIG. 3 15 a flow diagram that 1llustrates a process 300 for
logical block reading. In step 302, 1t 1s determined whether
a logical block was found 1n cache. If so, the process 300
continues by reading the block from the local cache. In step
304, the cached file version 1s checked against the external
data source’s current version to determine whether there 1s
a match. In step 306, the logical block 1s read 1f the file
version matches. The read data 1s returned, and query
execution continues as normal. In step 308, if the file version
does not match, the logical block and all other logical blocks
for the file are invalidated and processing continues as 1f the
block was not present in the cache.

In step 310, 1f the logical block was not found 1n the cache
or the file version 1s outdated, the entire logical block 1s read
from the external data source. For example, even 1f the read
request 1s for 2 KB of data, the entire 1 MB logical block that
contains the 2 KB 1is read from the external data source. In
step 312, the file version mnformation (e.g., eTag, mtime) 1s
read from the external data source.

In step 314, if the file has other logical blocks cached and
the version of that file changed, the file’s current version 1s
updated to reflect the version read from this read operation
and the file’s other logical blocks that were cached and
associated with the prior version are ivalidated.

In step 316, after receiving data from the external data
source, the logical block 1s saved locally, and a metadata
store 1s updated. In some embodiments, this happens asyn-
chronously with step 318, where the read data 1s returned
and query execution continues as normal.

FIG. 4 1s a flow diagram that i1llustrates a process 400
obtaining caching hints from higher levels 1n the software
stack. In step 402, nodes 1dentified in a query plan that read
from a file use a particular format reader that depends on the
type of data file. For example, there 1s a particular reader
configured to read and understand PARQUET files, a par-
ticular reader configured to read and understand ORC files,
a particular reader configured to read and understand CSV
files, and so on.

In step 404, the format reader receives a specific read
request and parses the file depending on specific attributes of
the file format and the read request, which may involve
multiple read operations on the underlying file. For example,
for PARQUET files, 1f the read request 1s for a specific range
of data on a specific column, the following might happen.
First, the PARQUET format reader reads the file footer for

metadata of the column 1s stored 1n the file. Additionally, 1t

US 11,537,617 B2

9

may find more information regarding where 1n the column
the given data range of interest 1s stored. Second, the
PARQUET format reader reads specific file segments from
the file that contain either the whole column or specific data
ranges within the column. Third, each of these read requests
of the prior two sub-steps 1s sent to the storage solftware
layer that handles read requests for specific ranges 1n the file
(e.g., 2 KB of data starting at position X 1n the file).

In step 406, optionally and dependent on the specifics of
the file format, the file format reader may decide that specific
regions of a file are “more mteresting” and should either be
more aggressively kept in cache or pinned to the cache. For
example, in PARQUET files, the footer contains metadata
and 1s commonly read in most requests. Accordingly, it
makes sense to pin the footer in cache as long as the file has
other blocks 1n cache. If there are additional hints that are
determined, those hints are passed with the read request to
the storage software layer. The hints provided with read

requests can be mdependent of the logical block size. If, in

the PARQUET example above, the PARQUET {ooter 1s
stored 1n the last 1.5 MB of the file, then read requests to the
tooter over that 1.5 MB would contain the hint. The result
1s that the last two logical blocks comprising 2 MB of data
would be tagged to be more aggressively stored. As such, the
storage layer does not have to understand specific details
about the file format and can support any file format while
still benefiting from file specific knowledge known to the file
format reader.

In step 408, the software layer receives one or more read
requests for specific data regions 1n the file. As the read
requests are received, they are processed as described 1n the
logical block reading section above. The storage soltware
layer can use any hints provided to adjust the cache retention
policy for that block.

Processing System

FIG. § 1s a diagrammatic representation of a processing,
system which can implement some embodiments of the
present disclosure. Examples include any combination of the
components of the data system including a cloud cache. The
processing system 500 may be a general computer or a
device specifically designed to carry out features of the
disclosed technology. The processing system 500 may be a
network device, a system-on-chip (SoC), a single-board
computer (SBC) system, a desktop or a laptop computer, a
kiosk, a mainframe, a mesh of computer systems, a handheld
mobile device, or combinations thereof.

The processing system 500 may be a standalone device or
part of a distributed system that spans multiple networks,
locations, machines, or combinations thereof. In some
embodiments, the processing system 500 operates as a
server computer (e.g., a network server computer running an
analytic engine) or a mobile device (e.g., a user device of an
enterprise network) 1n a networked environment, or a peer
machine 1n a peer-to-peer system. In some embodiments, the
processing system 500 may perform one or more steps of the
disclosed embodiments 1n real-time, near-real time, ofiline,
by batch processing, or combinations thereof.

As shown, the processing system 500 includes a bus 502
operable to transier data between hardware components.
These components 1nclude a control 504 (1.e., processing
system), a network interface 506, an Input/Output (1/0)
system 508, and a clock system 510. The processing system
500 may include other components not shown, nor further
discussed for the sake of brevity. One having ordinary skill
in the art will understand any hardware and software
included but not shown i FIG. 5.

10

15

20

25

30

35

40

45

50

55

60

65

10

The control 504 includes one or more processors 512
(e.g., central processing units (CPUs), application-specific
integrated circuits (ASICs), and/or field-programmable gate
arrays (FPGAs)) and memory 514 (which may include
software 516). The memory 514 may include, for example,
volatile memory such as random-access memory (RAM)
and/or non-volatile memory such as read-only memory
(ROM). The memory 514 can be local, remote, or distrib-
uted.

A software program (e.g., software 516), when referred to
as “implemented 1n a computer-readable storage medium,”
includes computer-readable instructions stored in a memory
(e.g., memory 314). A processor (e.g., processor 512) 1s
“configured to execute a software program”™ when at least
one value associated with the soiftware program 1s stored 1n
a register that 1s readable by the processor. In some embodi-
ments, routines executed to mmplement the disclosed
embodiments may be implemented as part of operating
system (OS) software (e.g., Microsoit Windows, Linux) or
a specific soltware application, component, program, object,
module, or sequence of mstructions referred to as “computer
programs.”

As such, the computer programs typically comprise one
or more 1nstructions set at various times 1n various memory
devices of a computer (e.g., processing system 500) and
which, when read and executed by at least one processor
(e.g., processor 512), cause the computer to perform opera-
tions to execute features involving the various aspects of the
disclosed embodiments. In some embodiments, a carrier
containing the aforementioned computer program product 1s
provided. The carrier 1s one of an electronic signal, an
optical signal, a radio signal, or a non-transitory computer-
readable storage medium (e.g., the memory 3514).

The network interface 506 may include a modem or other
interfaces (not shown) for coupling the processing system
500 to other computers over the network 518. The I/O
system 308 may operate to control various /O devices,
including peripheral devices such as a display system 520
(e.g., a monitor or touch-sensitive display) and one or more
iput devices 522 (e.g., a keyboard and/or pointing device).
Other I/O devices 524 may include, for example, a disk
drive, printer, scanner, or the like. Lastly, the clock system
510 controls a timer for use by the disclosed embodiments.

Operation of a memory device (e.g., memory 314), such
as a change 1n state from a binary one to a binary zero (or
vice versa), may comprise a perceptible physical transior-
mation. The transformation may comprise a physical trans-
formation of an article to a diflerent state or thing. For
example, a change in state may involve accumulation and
storage of charge or release of stored charge. Likewise, a
change of state may comprise a physical change or trans-
formation 1n magnetic orientation, or a physical change or
transformation 1n molecular structure, such as from crystal-
line to amorphous or vice versa.

Aspects of the disclosed embodiments may be described
in terms of algorithms and symbolic representations of
operations on data bits stored on memory. These algorithmic
descriptions and symbolic representations generally include
a sequence of operations leading to a desired result. The
operations require physical manipulations of physical quan-
tities. Usually, though not necessarily, these quantities take
the form of electric or magnetic signals capable of being
stored, transierred, combined, compared, and otherwise
mampulated. Customarily, and for convenience, these sig-
nals are referred to as bits, values, elements, symbols,
characters, terms, numbers, or the like. These and similar

US 11,537,617 B2

11

terms are associated with physical quantities and are merely
convenient labels applied to these quantities.

While embodiments have been described in the context of
tully functioning computers, those skilled i the art will
appreciate that the various embodiments are capable of
being distributed as a program product 1n a variety of forms,
and that the disclosure applies equally regardless of the
particular type ol machine or computer-readable media used
to actually eflect the distribution.

While the disclosure has been described in terms of
several embodiments, those skilled in the art will recognize
that the disclosure 1s not limited to the embodiments
described herein and can be practiced with modifications
and alterations within the spirit and scope of the embodi-
ments. Those skilled in the art will also recognize 1improve-
ments to the embodiments of the present disclosure. All such
improvements are considered within the scope of the con-
cepts disclosed heremn. Thus, the description 1s to be
regarded as 1llustrative mstead of limiting.

The invention claimed 1s:

1. A method for caching a data object 1n a data system, the
method comprising:

obtaining the data object from an external data source;

caching the data object 1n a storage location of the data

system as a cached data object,

generating a unit ol hashing corresponding to an output of

a hash algorithm based on an input indicative of the
data object;

mapping the cached data object to the external data source

in accordance with the unit of hashing,

wherein the cached data object 1s updatable automati-
cally with the external data source based on the unit
of hashing,

receiving a query configured for reading data stored at the

external data source to which the cached data object 1s

mapped in accordance with the unit of hashing,

wherein a first query result that satisfies the query
includes the data object stored at the external data
SOUrce;

in response to the query, using the unit of hashing to

obtain a second query result that 1s determined to

satisty the query by reading the cached data object

stored 1n the storage location at the data system instead

of reading the data object stored at the external data

source,

wherein the storage location of the cached data object
1s determined based on the mapping 1n accordance
with unit of hashing; and

returning the second query result including the cached

data object read from the storage location.

2. The method of claam 1 further comprising, prior to
caching the data object in the data system:

automatically selecting the data object for caching in the

data system when a frequency of accessing the data
object exceeds a threshold.

3. The method of claim 1, wherein the query 1s a first
query, the method further comprises:

receiving a second query for data stored at the external

data source;

determining that the cached data object 1s outdated rela-

tive to a current data object stored at the external data
source; and

caching the current data object 1n the data system to

replace the cached data object,

wherein a result that satisfies the second query is
obtained from the data system instead of the external
data source.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

4. The method of claim 1, wherein the input indicative of
the data object includes a combination comprising;:

an 1ndication of a cluster of nodes associated with the data

object,

a type of the data object,

a path and name of the data object, and

information about a split of the data object.

5. The method of claim 1 further comprising, prior to
determining the storage location of the cached data object
based on the unit of hashing:

determining the storage location for caching the data

object based on the unit of hashing.

6. The method of claim 1, wherein the input indicative the
data object includes a combination comprising:

an 1indication of a cluster of nodes associated with the data

object,

a type of the data object,

a path and name of the data object, or

information about a split of the data object.

7. The method of claim 1, wherein the input indicative of
the data object includes location-dependent information and
location-independent information.

8. A method comprising;

recerving a query configured for reading a data object

stored at an external data source,

wherein a {first query result that satisfies the query
includes the data object stored at the external data
SQurce;

generating a query plan by parsing the query imto a

plurality of phases, each phase being configured to read

a Ifragment of the data object from the external data

SOUICe;

generating a unit of hashing corresponding to an output of
a hash algorithm based on an input indicative of the
data object;

using a unit of hashing to map fragments of the data object

of the external data source to a cluster of nodes of a data
system:

generating a read request for the data object 1n accordance

with the umt of hashing to read the fragments of the
data object of the external data source;

processing the read request by the cluster of nodes that

divides the data object into discrete logical blocks, the
read request using the unit of hashing to determine a
link to one or more logical blocks of the external data
source and using storage software to read the one or
more logical blocks mnstead of reading the data object
stored at the external data source; and

returning a second query result that 1s determined to

satisly the query, the second query result including the
data object obtained from the one or more logical
blocks.

9. The method of claim 8, wherein the discrete logical
blocks have a common size and a scope of the read request
1s greater than the common size.

10. The method of claim 8, wherein the storage software
includes a plurality of format readers configured to process
a plurality of diflerent types of data objects.

11. The method of claim 8 further comprising, prior to
processing the read request:

performing a lookup process to compare a cached version

of the data object with a version of the data object
stored at the external data source.

12. The method of claim 8, wherein each node indepen-
dently maintains a database that only tracks locally stored
data objects and associated version information.

US 11,537,617 B2

13

13. The method of claim 8, wherein processing the read
request by the cluster of nodes comprises:

returning a set ol nodes for processing the fragments 1n

proportion to a number of configured rings.

14. The method of claim 13, wherein a load balancer >
ecnables multiple rings for a data object so that multiple
copies of data objects are cached, and the load balancer
maps read requests for a data object to the cluster of nodes.

15. A method comprising:

receiving a query configured for reading a data file stored 1©

at an external storage device, the data file being divided
into multiple discrete logical blocks and associated
with different instances of metadata stored at both a
local cache storage device and the external storage
device, 15
wherein the different instances of metadata are mapped
between the local cache storage device and the
external storage device based on a unit of hashing,
and
wherein the unit of hashing corresponds to an output of 2¢
a hash algorithm based on an input indicative of the
data file;
comparing a cached instance of a particular metadata at
the local cache storage device with a stored istance of
the particular metadata at the external storage device; 2>

determining that the cached instance of the particular
metadata 1s different from the stored instance of the
particular metadata;

responsive to determining that the cached instance of the

particular metadata is different from the stored instance 3Y
of the particular metadata, reading the data file stored

at the external storage device instead of reading the
cached instance of the particular metadata from the
local cache storage device;

returning a query result including the data file obtained 3>

from the external storage device, the query result being
determined to satisfy the query; and

updating the multiple discrete logical blocks of the local

cache storage device with the data file obtained from
the external storage device, the updated multiple dis- 4V
crete logical blocks include an updated cached 1nstance

of the particular metadata.

16. The method of claim 15 further comprising:

receiving another query for the data file;

determining that the updated cached instance of the 45

particular metadata corresponds to the stored instance
of the particular metadata;

responsive to determining that the updated cached

instance of the particular metadata corresponds to the

14

stored instance of the particular metadata, reading the
data file of the local cache storage device; and
returning another query result including the data file
obtained from the local cache storage device without
reading the data file from the external storage device.
17. The method of claim 15, wherein the different
instances of metadata include different versions of the data
file.
18. The method of claim 15, wherein processing the query
result and updating the multiple discrete logical blocks of
the local cache storage device occurs asynchronously.
19. A method comprising:
recerving, by a data system, a read request configured for
reading a data file that 1s stored at a local cache storage;
wherein a copy of the data file 1s stored at an external
data storage,
wherein the data file 1s stored at a storage location of
the local cache storage and mapped to the external
data storage based on a unit of hashing, and
wherein the unit of hashing corresponds to an output of
a hash algorithm based on an input indicative of the
data file;
selecting, by the data system, a particular format reader of
a plurality of format readers, the plurality of format
readers being configured to read different types of data
files, the particular format reader being selected based
on a type of the data file 1n the read request;

moditying, by using the particular format reader, the read
request to include an attribute of the data file, the
attribute depending on the type of the data file;

parsing, by using the particular format reader, the data file
for the read request into discrete logical blocks depend-
ing on the type of the data file; and

reading, by using the particular format reader, data of the

data file and the attribute stored at the external data
storage unless the data file stored at the local cache
storage 1s a current version of the data file stored and
the attribute such that the data file and the attribute are
read from the local cache storage 1nstead of being read
from the external data storage.

20. The method of claim 19 further comprising:

updating the data file and the attribute stored at the local

cache storage with the data file and the attribute
obtained from the external data storage.

21. The method of claiam 19, wherein the plurality of
format readers are configured to read an Apache Parquet
type file, an optimized row columnar (ORC) type file, and a
comma-separated values (CSV) type file.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

