12 United States Patent
Ohuchi

US011537308B2

US 11,537,308 B2
Dec. 27, 2022

(10) Patent No.:
45) Date of Patent:

(54) INFORMATION PROCESSING SYSTEM,
INFORMATION PROCESSING DEVICE,
STORAGE MEDIUM, AND INFORMATION

PROCESSING METHOD OF DETECTING
DESTRUCTION OF DATA DUE TO FILE
TRANSFER

(71) Applicant: FUJITSU LIMITED, Kawasaki (IP)
(72) Inventor: Yoshio Ohuchi, Zumadu (JP)
(73) Assignee: FUJITSU LIMITED, Kawasaki (IP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 183 days.

(21) Appl. No.: 17/003,300
(22) Filed: Aug. 26, 2020

(65) Prior Publication Data
US 2021/0064266 Al Mar. 4, 2021

(30) Foreign Application Priority Data
Aug. 30, 2019 (IP) oo, JP2019-157818

(51) Int. CL
GOGF 21/56
GOGF 8/41

(2013.01)
(2018.01)

(Continued)

(52) U.S. CL
CPC ... GO6F 3/0647 (2013.01); GO6F 3/0604
(2013.01); GO6F 3/0676 (2013.01); GO6F
30679 (2013.01); GO6F 11/1004 (2013.01);
GOGF 8/40 (2013.01); GO6F 8/75 (2013.01):
GOGF 8/77 (2013.01); GOGF 9/44589
(2013.01); GOGF 11/3636 (2013.01);

(Continued)

(58) Field of Classification Search
CPC GO6F 3/06477, GO6F 3/0604; GO6F 3/0676;

GO6F 3/0679; GO6F 11/1004; GO6F 8/75;
GO6F 8/40; GO6F 8/77; GO6F 21/565;
GO6F 11/3636; GO6F 21/577; GO6F
21/121; GO6F 21/53; GO6F 21/552; GO6F
21/554; GO6F 21/566; GOG6F 21/64; GO6F

0/44589; HO4L 67/06; HO4L 67/12
See application file for complete search history.

(36) References Cited

U.S. PATENT DOCUMENTS

9,176,803 B2* 11/2015 Biberdorf GOo6F 11/073
2004/0098420 Al* 5/2004 Pengccoevvnnn. GO6F 16/178

707/999.203
(Continued)

FOREIGN PATENT DOCUMENTS

7/2005
10/2007

JP 2005-182355 A
JP 2007-272490 A

OTHER PUBLICATTIONS

Michael Salib et al., Starkiller: A Static Type Inferencer and
Compiler for Python, May 2004, [Retrieved on Jul. 27, 2022].
Retrieved from the internet: <URL: https://dspace.mit.edu/bitstream/
handle/1721.1/16688/57175336-MIT.pdf?sequence=2&i1sAllowed=
y> 96 Pages (1-96) (Year: 2004).*

Primary Examiner — Ambal Rivera
(74) Attorney, Agent, or Firm — Fujitsu Patent Center

(57) ABSTRACT

An mformation processing device, includes a memory; and
a processor coupled to the memory and configured to:
generate second data by adding, to first data including a
machine language, first machine language data that may be
destroyed at a time of transfer of the first data and second
machine language data that 1s not destroyed at the time of the
transier, and transmit the second data.

6 Claims, 12 Drawing Sheets

START
COMPTLATION

l

READ SCOURCE FiLE

STORE OBJECT FILE *

¢¢¢¢¢¢¢¢¢¢¢

| WRITE DESTRUCTION DETECTION
L DATA N OBJECT FRE

| CONVERT SOURCE CODE 1O
| MACHINE LARGUAGE AND WRITE
| CONVERTED COUE IN OBIECT FILE

5124

US 11,537,308 B2
Page 2

(1)

(52)

(56)

2013/0191457 Al*

Int. CIL.
GO6F 21/60
GO6F 3/06
GO6F 11/10
GO6F 21/12
HO4L 67/06
GO6F 21/55
GO6F 21/57
GO6F 21/53
HO4L 67/12
GO6F 9/445
GO6F 8/40
GO6F 8/75
GO6EF 8/77
GO6F 11/36

U.S. CL

CPC

(2013.01
(2006.01
(2006.01
(2013.01

(2022.01
(2013.01
(2013.01
(2013.01
(2022.01
(2018.01
(2018.01
(2018.01
(2018.01
(2006.01

L e T L L A N e N L N N

GO6F 21/121 (2013.01); GO6F 21/53

(2013.01); GO6F 21/552 (2013.01); GOG6F
21/554 (2013.01); GOGF 21/565 (2013.01);

GO6F 21/566 (2013.01); GO6F 21/577

(2013.01); HO4L 67/06 (2013.01); HO4L 67/12

(2013.01)

References Cited

U.S. PATENT DOCUMENTS

7/2013 Horsman

2018/0285101 Al* 10/2018 Yahav ...

2020/0082080 Al*

* cited by examiner

3/2020 Boulton

................ HO4L 67/06

709/204
.................... GO6F 8/40
************** GO6F 21/565

U.S. Patent Dec. 27, 2022 Sheet 1 of 12 US 11,537,308 B2

FIG. 1

] ORIGINALDATA
] (HIGH-LEVEL LANGUAGE PROGRAM) | |

| FIRST MACHINE LANGUAGE
DATA (0x0a)

- SECOND MACHINE LANGUAGE
11 DATA(DS7LO0%67)

o] FIRSTDATA
1] {MACHINE LANGUAGE PROGRAM)

TRANSMISSION
ONIT)

i CODE LONVERSION ;
P (CARRIAGE RETURN {ZGDE Ox0a' —LINE FEED CODRE '0xDd’ }

SECOND DATA
{‘Ei‘?gai&##-}
- DEVICE " '

FIRST MACHINE LANGUAGE !
’ DATA {Ox0d)

| SECOND MACHINE LANGUAGE |
3 DATA {Ox71,0x67)

FIRST DATA

QHERMIN&H{}?«% UNTT

| CALCULATION OF SECOND
| MACHINE LANGUAGE DATA
3 Ox7 1~ Gxé?mi}x{}a

; CGMW&RIS{W
 FIRST MACHINE LANGUAGE
= CALCULATION RESULT?

| MISMATCH |

DETERMINATION
“DATA DESTRUCTION IS
PRESENT"

US 11,537,308 B2

Sheet 2 of 12

Dec. 27, 2022

U.S. Patent

T,

R R R R R

k -.h
..L
L L Lt Lttt
A,
- h -
|]

JJJJJJJJJ

TER TR R

oo www . wowwy

P P T .__..._...

iy

-,

]

U.S. Patent Dec. 27, 2022 Sheet 3 of 12 US 11,537,308 B2

FiG. 3

o

GRAPHIC
PROCESSING
DEVICE

INPUT
INTERFACE

STORAGE
DEVICE

OPTICAL DRIVE
| ODEVICE |

NETWORK
INTERFACE

CONNECTION
INTERFACE

b NETWORK

U.S. Patent Dec. 27, 2022 Sheet 4 of 12 US 11,537,308 B2

FIG. 4

| DEVELOPMENT COMPUTER
;; (EUC CODE)

— 120

ENITOR

COMPILER

FILE MANAGEMENT COMPUTER ;
z; (Shift_J1S CODE} __ 0

FILE MANAGEMENT
UNIT

| OPERATING ENVIRONMENT COMPUTER
(EUC CODE}

EXECUTION UNIT

QBIECT MILE

RUNTIME i

MODULE

U.S. Patent Dec. 27, 2022 Sheet 5 of 12 US 11,537,308 B2

FiG. ©

11
e .
4 ASCIT CHARACTER DATA "qg” AND "QD” THAT ARE |
NOT CONVERTED AND LINE FEED CODE AND |

CARRIAGE RETURN CODE THAT ARE CONVERTED

HEGINMING OF A
QoQo0t 7¢ PROLOGUEAD:

ﬁ{}ﬁ{}m 1 0G0L00LACLGRGTY db 0x00000000000000 / /
QOGOGTGE b /
QOQ0OTGE 01000000 db OxQ0OGOLOT

GO000238 G00G0G00 b HREEEEE S

GOG0023C OG000000 b O Q0000000

GO000240 71675144 dh “aeD”

0000244 0a0d0000 ety Fer Bx0000

00000248 41 o A"

GOG00248 HLE.

GO000G248 C745FC43424C20 mov ssebp—04 20404243
Q0000250 C705C800000000000000 mov deR00OGCEHE BOBLGOOG
GOO0025A C7O5CCOG00000G000000 mov ds000CO0CEC 00606000
0R000264 B810000000 moy eax, Q0000010
QOO00ZEY BO45FE maov ssebp-08,eax

Q000200 FFRBBACFFFFFF push ssiebptbFRFRRFRFAD
Q000272 55 puishy ebp

Q000273 8800000000 push 00000000

QGOG0278 8800004000 push 00000000

QO000270D 68CRG1G00G0H nush QO00010E

Q0000282 33C0 XGf @ax.Bax

Q0000284 AGD4G00000 mov alds:00000004
000002889 50 push eax

OO00028A FFTBFR push ssebp~08

GOGOOZE0 FF 1504000000 call JMPTRPLANY
o000283 830410 add esp, 10

RUNTIME: CALL FOR INITIALIZATION
 PROCESSING AT PROGRAM ENTRY

U.S. Patent Dec. 27, 2022 Sheet 6 of 12 US 11,537,308 B2

FIG. ©

322
S

Hg-at= 1D =)

{
 fprintf(stderr,"THE PROGRAM 'A" HAS BEEN CONVERTED BY
PLEASE RETRY THE BINARY TRANSFER¥N™)
ahott(
}

(NORMAL OPERATION AS BEFORE)

U.S. Patent

- 100

. DEVELOPMENT
. COMPUTER

GENERATE
SQURCE FILE

TRANSMIT O8Il
FILE

Dec. 27, 2022 Sheet 7 of 12

FIG. 7

200

FILE MANAGEMENT
\ COMPUTER

..... T
ACQUIRE OBJECT |
FILE :

RECEIVE OBIECT
FILE :

<77 ASCH MODE? o

— s 5107

PERFORM CODE
LCONVERSION

N TRANSMIT OBIECT |
FILE :

. COMPUTER

US 11,537,308 B2

— 300

OPERATING
ENVIRONMENT

RECEIVE OBIECT
FILE

EXECUTE
QBIECT FILE

U.S. Patent

Dec. 27, 2022 Sheet 8 of 12

5 1{21

5122
WRITE DESTRUCTION DETECTION +
DATA IN OBJECT FILE

CONVERT SOURCE CODE TO
MACHINE LANGUAGE AND WRITE
CONVERTED CODE IN OBIECT HLE

STORE OBJECT FILE

US 11,537,308 B2

U.S. Patent Dec. 27, 2022 Sheet 9 of 12 US 11,537,308 B2

F1G. O

100

DEVELOPMENT COMPUTER {EUC CODE)

SOURCE FILE

COMPILER

OBJECT FILE 11

;’ * DESTRUCTION DETECTION DATA ”i
1 00000240 71675144 db "ggQD" |
| 00000244 Da0A0000 b Ifcr Ox0000 |
i i

U.S. Patent Dec. 27, 2022 Sheet 10 of 12

START EXECUTION OF
OBJECT FILE

e

START EXECBTZ{}?% OF COMMAND FROM
BEGINNING OF OBIECT FILE

CALL INITIALIZATION PRQCESSI?&G RUNTIME
MODULE

PERFORM SUBTRACTIONS BETWEEN VALUES | 133
INCLUDED IN “00000240”, WHICH ARE ¢’ -'g’ ™
= (xla” AND “Q - 'D' = (x0d”

5134
i

" DOES VALUE AT POSITION "~~~ NO
Z_"00000244" MATCH WITH SUBTRACTION >

~_RESULT "02000000°?
S~

 QUTPUT MESSAGE I%QK&H%G FDSSEBILQ’Y OF |
| DESTROYING MACHINE LANGUAGE BY FTP
TM@SFER

SUSPEND EXE&mi}N OF BNEXECUTED
?R{}G&&E‘*‘ES

US 11,537,308 B2

U.S. Patent Dec. 27, 2022 Sheet 11 of 12 US 11,537,308 B2

FIG. 11

A —— ST

AR PR SRR SRR, WS WARRRs RN PR PR BRSPS BRGNP WP WINPT RN

|
:
100000240 71675144 db "pgQD" :
| 00000244 0a0d00R0G db Her OxDOGO |
|

FILE MANAGEMENT COMPUTER
(Shift 115 CODE)

FTP TRANSFER
(BINARY MODE)

UNTT

| OPERATING ENVIRONMENT
COMPUTER - 330

EXECUTION UNIT |, -

_______________________________ {}ETEH{QN ﬂﬁ{fg
d b 52021 11100000240 71675144 ob "g90D”
5 PERFORM } 111100000244 0a0d0000 db Hfor (0000
 COMPARISON WITH K 77777

| 0a0d0000 (MATCH) | 1 1]

ACTUAL ?%OGRAM
v A oA a v v v

L 5203}

| EXECUTE PROGRAM | |

U.S. Patent Dec. 27, 2022 Sheet 12 of 12 US 11,537,308 B2

DEVELOPMENT COMPUTER e 110
(EUC CODE) P STORAGE UNIT .

OB}ECT FILE

.
‘.‘."-"-!-'-

P 00000244 Qald0000 dby Hor Gx0000

l 00000240 71675144 db ”ﬁ}g%ﬁ”

FILE MANAGEMENT
LINTT

; OPERATING
| ENVIRONMENT COMPUTER _— 330

EXECUTION UNIT] 1 L ____
o~ od 1 ' ———————————————— ot errsososesesssestsermmosososssd o~ 323

DEESTRL}CT"E{}N
DETECTION DATA

b DOO00240 71675144 db "qgQD”
?ERF@RM 111100000244 0d0a0d00 db orifarOx00
| COMPARISON WITH fald b iseoosssssssmmmmned e
| ,0a0dloos B ACTUAL PROGRAM

{MISMATCH)

PERFORM ERROR |
DISPLAY

PROGRAM ERROR ,_,W/

- | ff.;-:z
1 THE PROGRAM 'A' HAS BEEN CONVERTED 8Y THE {|
ASCIL TRANSFER OF THE FTP AND IS DESTRUCTED.

PLEASE RETRY THE BINARY TRANSHER

US 11,537,308 B2

1

INFORMATION PROCESSING SYSTEM,
INFORMATION PROCESSING DEVICE,
STORAGE MEDIUM, AND INFORMATION
PROCESSING METHOD OF DETECTING
DESTRUCTION OF DATA DUE TO FILE
TRANSFER

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2019-

157818, filed on Aug. 30, 2019, the entire contents of which
are 1ncorporated herein by reference.

FIELD

The present invention relates to an information processing,
system, an 1nformation processing device, a storage
medium, and an mformation processing method.

BACKGROUND

There are various types of character codes for displaying
characters on a computer, such as the American Standard
Code for Information Interchange (ASCII) and the Extended
UNIX (registered trademark) Code (EUC). A programmer
who creates a computer program describes a processing
procedure 1n a high-level language using one of such char-
acter codes and creates a source file. The computer uses a
complier to interpret a high-level language command 1n the
source lile and converts a source program to a machine
language object file.

In a case of large-scale system development 1n which
many programmers participate, each of the programmers
uploads the created source file and object file from a
computer used by the programmer to a server. File transfer
techniques such as the File Transfer Protocol (FTP) can be
used for file upload. File transier methods include a method
of transierring a file as binary data and a transfer method for
text data mvolving character code conversion. In a case
where the file 1s transferred as binary data, the computer
transmits the data as 1t 1s without changing the bit-by-bit data
in the original file. On the other hand, when the transfer
method 1nvolving character code conversion 1s used, the
transmission source computer converts a character code in
the file to be transmitted to a character code used by the
transier destination computer and transmits the file. In a case
of a file 1n which a character code 1s described, such as a
source file, when the file 1s transferred by the method
involving character code conversion, a described character
string can be correctly displayed on the transmission desti-
nation computer.

As a technique related to file transfer between computers,
for example, a file transier system that checks transfer of a
file requested by a client to a server has been proposed.
Furthermore, there has been proposed a transmission source
device that transmits a file by the FTP, which can recognize
whether the file that has arrived at a transmission destination
device 1s defective. For example, Japanese Laid-open Patent

Publication No. 2005-1823335, Japanese Laid-open Patent
Publication No. 2007-272490, and the like are disclosed as

related arts.

SUMMARY

According to an aspect of the embodiments, an informa-
tion processing device, includes a memory; and a processor

10

15

20

25

30

35

40

45

50

55

60

65

2

coupled to the memory and configured to: generate second
data by adding, to first data including a machine language,
first machine language data that may be destroyed at a time
of transier of the first data and second machine language
data that 1s not destroyed at the time of the transfer, and
transmit the second data

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out 1n the claims.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a diagram 1llustrating an example of an infor-
mation processing method by an information processing
system according to a first embodiment;

FIG. 2 1s a diagram 1llustrating a system configuration
example according to a second embodiment;

FIG. 3 1s a diagram 1llustrating a configuration example of
hardware of a development computer;

FIG. 4 1s a block diagram 1illustrating functions for imple-
menting a detection mechanism for detecting the presence or
absence of code conversion at the time of file transfer;

FIG. 5 1s a diagram 1illustrating an example of an object
file:

FIG. 6 1s a diagram 1illustrating an example of a runtime
module;

FIG. 7 1s a sequence diagram 1llustrating an example of a
file transfer procedure;

FIG. 8 1s a flowchart illustrating an example of a proce-
dure of compiling processing;

FIG. 9 15 a diagram 1llustrating an example of the object
file;

FIG. 10 1s a diagram 1llustrating an example of a proce-
dure of object file execution processing;

FIG. 11 1s a diagram 1llustrating an example of destruction
detection processing 1n a case of transier in a binary mode;
and

FIG. 12 1s a diagram 1illustrating an example of the
destruction detection processing in a case of transfer in an

ASCII mode.

DESCRIPTION OF EMBODIMENTS

In principle, a machine language file such as an object file
1s transierred as binary data, but the machine language file
may be erroneously transterred by a file transier method
involving character code conversion. In this case, a part of
data of the machine language 1n the file may be converted.
For example, in a case where a part of the binary data of the
machine language has the same bit string as a character code
to be converted 1n the file transfer involving character code
conversion, a computer that performs the file transfer erro-
neously recognizes the corresponding part as the character
code to be converted and converts the corresponding part.
Hereinafter, conversion of machine language data at the time
of the file transfer 1s called destruction of the machine
language.

If the machine language 1s destroyed at the time of the file
transier, a program included 1n a transferred file cannot be
executed normally. Moreover, there are various errors that
occur when execution of the program ends abnormally due
to the destruction of the machine language, and 1t 1s diflicult
to know from error contents that the machine language has

US 11,537,308 B2

3

been destroyed at the time of the file transfer. At this time,
erroneous description cannot be found even if a mistake 1n

creating the program is suspected and contents of a source
file (character string in a high-level language) are checked.
Therefore, contents of the machine language file (machine
language code) are checked. The machine language code 1s
difficult for humans, and it takes a lot of time for a human
to check the machine language code. That is, in the case
where the machine language has been destroyed at the time
of the file transfer, 1t takes a huge amount of time and etlort
to know the fact.

In view of the above, 1t 1s desirable to be able to
automatically detect the destruction of the machine language
at the time of the {ile transfer.

Hereinafter, the present embodiment will be described
with reference to the drawings. Note that, each of embodi-
ments may be implemented in combination of a plurality of
the embodiments within a scope without contradiction.

First Embodiment

First, a first embodiment will be described. The first
embodiment 1s an information processing system capable of
automatically detecting destruction of a machine language at
the time of file transfer.

FIG. 1 1s a diagram illustrating an example of an infor-
mation processing method by an information processing
system according to a first embodiment. FIG. 1 1llustrates an
information processing method for automatically detecting
destruction of a machine language at the time of file transfer
from a transmission device 1 to a reception device 3. The
transmission device 1 and the reception device 3 are, for
example, mnformation processing devices. The transmission
device 1 and the reception device 3 are connected via a
network 2.

The transmission device 1 and the reception device 3
execute predetermined processing, so that the destruction of
the machine language at the time of the file transfer can be
automatically detected. For example, the transmission
device 1 executes an information processing program 1n
which a procedure of processing executed by the transmis-
s1ion device 1 1s described 1n order to automatically detect the
destruction of the machine language at the time of the file
transter. Similarly, the reception device 3 executes an 1nfor-
mation processing program in which a procedure of pro-
cessing executed by the reception device 3 1s described 1n
order to automatically detect the destruction of the machine
language at the time of the file transfer.

The transmission device 1 includes a storage unit 1a, a
generation unit 15, and a transmission unit 1¢. The storage
unit la 1s, for example, a memory or a storage device
included 1n the transmission device 1. The generation unit 156
1s, for example, a processor or an arithmetic circuit included
in the transmission device 1. The transmission unit 1c¢ 1s, for
example, a communication interface mcluded in the trans-
mission device 1.

The storage unit 1a stores, for example, original data 4
and second data 5 generated by the generation unit 15 based
on the original data 4. The original data 4 1s, for example, a
program described 1n a high-level language.

The generation unit 15 generates the second data 5 based
on the original data 4. The generation umt 15 generates {irst
data 5S¢ by converting a command 1n the program shown 1n
the original data 4 to the machine language, for example.
The first data 5S¢ 1s a machine language program. Further-
more, the generation umt 16 generates the second data 5 by
adding, to the first data 5S¢ including the machine language,

10

15

20

25

30

35

40

45

50

55

60

65

4

first machine language data 5a that may be destroyed at the
time of transfer of the first data 5¢ and second machine
language data 56 that 1s not destroyed at the time of the
transier. The first machine language data 5a 1s, for example,
data including a carriage return code “0Ox0a”. The second
machine language data 56 includes, for example, a plurality
of data. For example, the generation unit 15 includes, in the
second machine language data 3b, data of a first value and
a second value whose diflerence from the first value 1s equal
to a value of the first machine language data 3a. The first
value and the second value are, for example, character codes
of characters to which the same character code 1s assigned
even 1f character code systems are diflerent. In a case where
the first machine language data 5a 1s the carriage return code
“x0a” and, for example, the first value 1s a character code
“Ox71” of a half-width “q”, the second value 1s a character
code “0x67” of a half-width “g”.

The generation umt 15 may add, to the second data 5,
processing of determining whether the machine language
has been destroyed by data transfer. For example, the
generation umt 15 adds determination processing “if (car-
riage return code value 0a*(‘q’-°g’))” to the second data 5.

The transmission unit 1¢ transmits the second data 5 to the
reception device 3 via the network 2. At this time, the second
data 5 may be relayed by a device other than the transmis-
sion device 1 and the reception device 3 1n the network 2.
Furthermore, 1n the second data 5, a predetermined code
(array of bit values) 1n the second data 5 may be converted
to another code by the relay device. For example, the
carriage return code “Ox0a” may be converted to a line feed
code “Ox0d”. Theretore, second data 6 after the transter 1s
not always the same as the second data 5 before the transfer.

The reception device 3 includes a reception unit 3a, a
storage unit 36, and a determination umt 3¢. The reception
unit 3a 1s, for example, a communication interface included
in the reception device 3. The storage unit 35 1s, for example,
a memory or a storage device included in the reception
device 3. The determination unit 3¢ 1s, for example, a
processor or an arithmetic circuit included 1n the reception
device 3.

The reception unit 3a receives the second data 6 that may
have undergone code conversion at the time of the transier
via the network 2. The reception unit 3a stores the received
second data 6 in the storage unit 35, for example.

The storage unit 35 stores the second data 6. Note that the
second data 6 includes first machine language data 6a,
second machine language data 65, and {first data 6c.

The first machine language data 64 1n the received second
data 6 1s data corresponding to the first machine language
data Sa 1n the second data 5 before transmission. If the code
conversion 1s not performed at the time of the data transfer,
the first machine language data 6a in the second data 6 has
the same value as the first machine language data 5a in the
second data 5. If the code conversion 1s performed at the
time of the data transfer, the first machine language data 6a
in the second data 6 has a diflerent value from the first
machine language data Sa in the second data 5.

The second machine language data 66 in the received
second data 6 1s data corresponding to the second machine
language data 556 1n the second data 5 before transmission.
Regardless of whether the code conversion 1s not performed
at the time of the data transfer, the second machine language
data 65 1n the second data 6 has the same value as the second
machine language data 55 1n the second data 3.

The first data 6c in the received second data 6 1s data
corresponding to the first data 3¢ in the second data S before
transmission. If the code conversion 1s not performed at the

US 11,537,308 B2

S

time of the data transier, the first data 6¢ in the second data
6 has the same value as the first data 3¢ in the second data
5. If the code conversion 1s performed at the time of the data
transter, the first data 6¢ 1n the second data 6 may be partially
different from the first data 5¢ 1n the second data 5.

The determination unit 3¢ determines whether the first
data 6¢ 1s destroyed based on comparison results between
the first machine language data 6a and the second machine
language data 65 included 1n the second data 6. For example,
the determination unit 3¢ compares the first machine lan-
guage data with data calculated based on a plurality of data
included 1n the second machine language data to obtain the
comparison results.

For example, the second data 5 includes the first value and
the second value whose difference from the first value 1s
equal to the value of the first machine language data Sa. In
this case, the determination unit 3¢ compares a difference
between the first value and the second value included 1n the
second machine language data 65 with the value of the first
machine language data 6a to obtain the comparison results.
The determination unit 3¢ can execute such determination
processing based on, for example, the determination pro-
cessing “if (carriage return code value Oa*(*q’-°g’))” added
to the second data 5 by the generation unit 15.

The determination unit 3¢ determines that the first data 6c¢
1s destroyed 1f the comparison results do not match, for
example. Furthermore, the determination unit 3¢ determines
that the first data 6c 1s not destroyed if the comparison
results match, for example. In the case where the determi-
nation unit 3¢ determines that the first data 6¢ 1s destroyed,
the determination unit 3¢ Inhibits execution of a machine
language command 1n the first data 6¢ included 1n the second
data 6, for example.

In the case where the determination unit 3¢ determines
that the first data 6¢ 1s destroyed, the determination unit 3¢
may output a message indicating that the data has been
destroyed. For example, the determination unit 3¢ displays
a message “destroyed by the FIP” and stops the execution
of the processing based on the second data 6.

According to such an information processing system, 1n a
case where the code conversion of the second data 5 1is
performed while the second data 5 1s transterred via the
network 2, the presence or absence of the destruction of the
machine language data due to the code conversion 1s auto-
matically detected. For example, it 1s assumed that the
transmission device 1 uses the carriage return code “0x0a”™
for a line feed of a character string, and the reception device
3 uses the line feed code “0x0d” for a line feed of a character
string. At this time, for example, the FTP can be used as a
data transier technique from the transmission device 1 to the
reception device 3. The FTP has a transfer mode called
ASCII mode for transierring text data.

When data 1s transferred in the ASCII mode, a part of
codes are converted so that the transferred text data can be
read even between devices with different code systems. The
machine language data should not be transierred in the
ASCII mode, but 1t the ASCII mode 1s erroneously set 1n a
device that relays the data, the same bit string as a code to
be converted in the machine language data 1s converted to a
different value. For example, the carriage return code “0x0a”
1s converted to the line feed code “0x0d”.

Therefore, the generation unit 15 of the transmission
device 1 includes, 1in the second data 5, the first machine
language data 3Sa (for example, “Ox0a”) that may be
destroyed and the second machine language data 556 that 1s
not destroyed (for example, “0x71” and “0x67”"). When the
second data 5 1s transmitted from the transmission unit 1c

10

15

20

25

30

35

40

45

50

55

60

65

6

and received by the reception device 3 via the network 2, the
first machine language data 3Sa (for example, “0x0a”) 1s
converted to another value (for example, “0x0d”) 11 the code
conversion 1s performed.

In the reception device 3, the determination unit 3c¢
performs a calculation using the second machine language
data 66 (for example, calculation of a difference between
two codes). Note that the second machine language data 65
1s data that 1s not destroyed even if the code conversion
processing 1s performed at the time of the data transfer, and
thus can be calculated as intended. When the second
machine language data 65 includes “x71” and “0x67, the
difference 1s “Oxa”. The determination umt 3¢ compares a
calculation result (for example, “Ox0a”) with the {irst
machine language data 6a (for example, “0x0d”). If the code
conversion 1s performed during the data transfer, the data do
not match in the comparison. If the data do not match, the
determination unit 3¢ determines that the data 1s destroyed.
If the code conversion 1s not performed during the data
transter, the data match 1n the comparison. If the data match,
the determination unit 3¢ determines that the data i1s not
destroyed.

As described above, 1t 1s possible to automatically detect
the presence or absence of the destruction of the data at the
time ol the data transfer. By automatically detecting the
presence or absence of the destruction of the data at the time
of the data transter, for example, even 1n a case where the
data has been erroneously transferred 1n the ASCII mode at
the time of the data transier, 1t 1s easy to investigate the
reason why the processing using the transferred second data
6 does not operate normally.

Moreover, the determination unit 3¢ uses the second
machine language data 65 that 1s not destroyed even 11 the
code conversion processing 1s performed at the time of the
data transier in determining the presence or absence of the
destruction of the machine language data. Therefore, even 1n
a case where the first machine language data 6a has been
converted to a value diferent from the original first machine
language data 5q, the second machine language data 65
keeps the same value as the second machine language data
5b. However, 1n order that the second machine language data
5b 1s data that 1s not destroyed at the time of the transfer, the
same value as the first machine language data Sa cannot be

used as the value of the second machine language data 5b.
Therefore, the determination unit 3¢ calculates the same
value as the first machine language data 3a by a predeter-
mined calculation using the second machine language data
6b, to determine the presence or absence of the destruction
of the machine language data. As described above, the
determination unit 3¢ determines the presence or absence of
the destruction of the machine language data by using the
second machine language data 65 that 1s not destroyed at the
time of the transfer, and thus can reliably determine the
presence or absence of the destruction.

Furthermore, 1n a case where the determination unit 3¢
determines that there i1s the destruction of the data, the
determination unit 3¢ 1nhibits the execution of the machine
language command included in the first data 6¢, and thus can
inhibit the execution of unintended processing in the recep-
tion device 3.

Second Embodiment

Next, a second embodiment will be described. In the
second embodiment, a computer system used for software

US 11,537,308 B2

7

development can easily detect erroneously transferring a
program file described 1n a machine language 1 an ASCII
mode of the FTP.

FIG. 2 1s a diagram illustrating a system configuration
example according to the second embodiment. In the
example of FIG. 2, a development computer 100, a file
management computer 200, and an operating environment
computer 300 are connected via a network 20.

The development computer 100 1s a computer used by a
programmer to develop software. The programmer describes
a program 1n a high-level language such as COBOL or C++
by using the development computer 100 to create a source
file. The development computer 100 compiles the created
source file and generates an object file described 1n the
machine language.

The file management computer 200 1s a computer used to
manage files (1including source files and object files) created
in the system. For example, a software development man-
ager inputs an struction to download the source file or the
object file created by the programmer to the file management
computer 200. The file management computer 200 acquires,
in accordance with the instruction, the source file or the
object file from the development computer 100 by using the
FTP.

In a case of executing the downloaded object file 1n an
operating environment, the manager 1nputs, to the file man-
agement computer 200, an istruction to upload the object
file to the operating environment computer 300. The file
management computer 200 transmits, 1n accordance with the
instruction, the object file to the operating environment
computer 300 by using the FTP. Note that the file manage-
ment computer 200 can also continuously acquire the object
file from the development computer 100 and transmit the
object file to the operating environment computer 300 1n
response to an instruction to transier the object file.

The operating environment computer 300 1s a computer
having an execution environment for the created object file.
For example, the operating environment computer 300 has
a runtime module used to execute the object file.

Next, a hardware configuration of the computer will be
described.

FIG. 3 1s a diagram 1illustrating a configuration example of
hardware of the development computer. The entire device of
the development computer 100 1s controlled by a processor
101. To the processor 101, a memory 102 and a plurality of
peripheral devices are connected via a bus 109. The proces-
sor 101 may also be a multiprocessor. The processor 101 1s,
for example, a central processing umt (CPU), a micro
processing umt (MPU), or a digital signal processor (DSP).
At least a part of functions implemented by execution of a
program by the processor 101 may be implemented by an
electronic circuit such as an application specific integrated
circuit (ASIC) and a programmable logic device (PD).

The memory 102 1s used as a main storage device of the
development computer 100. The memory 102 temporarily
stores at least a part of an operating system (OS) program
and an application program to be executed by the processor
101. Furthermore, the memory 102 stores various data used
in processing by the processor 101. As the memory 102, for
example, a volatile semiconductor storage device such as a
random access memory (RAM) 1s used.

The peripheral devices connected to the bus 109 include
a storage device 103, a graphic processing device 104, an
input nterface 105, an optical drive device 106, a device
connection interface 107, and a network interface 108.

The storage device 103 writes and reads data electrically
or magnetically 1n and from a bwlt-in recording medium.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The storage device 103 1s used as an auxiliary storage device
of the computer. The storage device 103 stores the OS
program, the application program, and various data. Note
that, as the storage device 103, for example, a hard disk drive
(HDD) or a solid state drive (SSD) may be used.

To the graphic processing device 104, a monitor 21 1s
connected. The graphic processing device 104 displays an
image on a screen of the monitor 21 1 accordance with a
command from the processor 101. Examples of the monitor
21 1nclude a display device using an organic electro lumi-
nescence (EL), a liquid crystal display device, and the like.

To the input interface 105, a keyboard 22 and a mouse 23
are connected. The input interface 105 transmits signals
transmitted from the keyboard 22 and the mouse 23 to the
processor 101. Note that the mouse 23 1s an example of a
pointing device, and other pointing devices may also be
used. Examples of the other pointing devices include a touch
panel, a tablet, a touch pad, a track ball, and the like.

The optical drive device 106 reads data recorded on an
optical disc 24 by using laser light or the like. The optical
disc 24 1s a portable recording medium on which the data 1s
recorded so as to be readable by reflection of light. Examples
of the optical disc 24 include a digital versatile disc (DVD),
a DVD-RAM, a compact disc read only memory (CD-
ROM), a CD-recordable (R)/rewritable (RW), and the like.

The device connection interface 107 1s a communication
interface for connecting the peripheral devices to the devel-
opment computer 100. For example, to the device connec-
tion interface 107, a memory device 25 and a memory
reader/writer 26 may be connected. The memory device 235
1s a recording medium equipped with a communication
function with the device connection interface 107. The
memory reader/writer 26 1s a device that writes data 1n a
memory card 27 or reads data from the memory card 27. The
memory card 27 1s a card type recording medium.

The network 1nterface 108 1s connected to the network 20.
The network interface 108 exchanges data with another
computer or a communication device via the network 20.

The development computer 100 may implement a pro-
cessing function of the second embodiment with the hard-
ware configuration as described above. Note that the file
management computer 200 and the operating environment
computer 300 can also be implemented by hardware similar
to the development computer 100. Furthermore, the trans-
mission device 1 and the reception device 3 shown 1n the
first embodiment can also be implemented by hardware
similar to the development computer 100 1llustrated 1n FIG.
3.

The development computer 100 implements the process-
ing function of the second embodiment by executing, for
example, a program recorded on a computer-readable
recording medium. The program in which processing con-
tents to be executed by the development computer 100 are
described may be recorded on various recording media. For
example, the program to be executed by the development
computer 100 may be stored 1n the storage device 103. The
processor 101 loads at least a part of the program in the
storage device 103 on the memory 102 and executes the
program. It 1s also possible to record the program to be
executed by the development computer 100 on a portable
recording medium such as the optical disc 24, the memory
device 25, and the memory card 27. The program stored 1n
the portable recording medium can be executed after being
installed on the storage device 103, for example, under
control of the processor 101. The processor 101 may also
read the program directly from the portable recording
medium and execute the program.

US 11,537,308 B2

9

Similarly to the development computer 100, the operating
environment computer 300 also implements the processing
function of the second embodiment by executing, for
example, a program recorded on a computer-readable
recording medium.

Soltware development 1s performed by use of the system
having the configuration as described above. For example, a
program 1s created on the development computer 100, and
the created program 1is transierred to the operating environ-
ment computer 300 by the file management computer 200.
The operating environment computer 300 then executes the
created software and confirms whether the software operates
as designed.

As described above, 1n the case where the file manage-
ment computer 200 1s provided separately from the devel-
opment computer 100 and the operating environment com-
puter 300, character codes of OSs of all the computers are
not necessarily the same. For example, there 1s a case where
the development computer 100 and the operating environ-
ment computer 300 operate on UNIX (registered trademark)
OS systems and the file management computer 200 operates
on a WINDOWS (registered trademark) OS. The UNIX
(registered trademark) OS often uses the EUC as the char-
acter code. The WINDOWS (registered trademark) OS often
uses the Shift JIS as the character code.

For example, there 1s a case where application soiftware
useful for file management are compatible only with the
WINDOWS (registered trademark) OS. Therefore, even if
the development computer 100 and the operating environ-
ment computer 300 operate on the UNIX (registered trade-
mark) OSs, 1t may be convenient for a user to perform the
file management by the file management computer 200
operating on the WINDOWS (registered trademark) OS.

In the second embodiment, 1t 1s assumed that the character
codes of the development computer 100 and the operating
environment computer 300 are the EUCs, and the character
code of the file management computer 200 1s the Shaft_JIS.

In addition, the FTP is often used to transfer files between
computers. In the FTP, 1t 1s assumed that the character codes
of the OSs are not uniform, a binary mode and an ASCII
mode are prepared as transier modes. The binary mode 1s a
mode for transierring a binary file. In the binary mode, data
transter 1s performed while binary data in an original file 1s
not changed. The ASCII mode 1s a mode for transierring a
text file. In the ASCII mode, the data transier 1s performed
while the character code 1s converted 1n accordance with an
environment of a file transfer destination.

When an object file converted to the machine language by
the development computer 100 1s transierred by the FIP
from the development computer 100 to the operating envi-
ronment computer 300 via the file management computer
200, the object file should originally be transferred in the
binary mode. However, the object file may be transierred in
the ASCII mode due to an erroneous operation by a user.
When a machine language file 1s transferred in the ASCII
mode, a machine language code that matches a predeter-
mined character code such as a line feed code included 1n the
object file 1s converted to another code. As a result, the
machine language 1s destroyed.

As a detection mechanism for detecting destruction of a
machine language file 1n the operating environment com-
puter 300, for example, there 1s a detection mechanism for
detecting destruction of an Executable and Linkable Format
(ELF) header. The ELF header 1s file management informa-
tion provided at the beginning of a compiled file. In a case
where a data structure of the ELF header 1s destroyed, the
operating environment computer 300 can detect destruction

10

15

20

25

30

35

40

45

50

55

60

65

10

of the machine language. However, 1n a case where a part of
machine language codes 1n the object file are unintentionally
converted, the destruction of the machine language due to
the conversion cannot be detected by destruction detection
of the ELF header.

It cannot be seen what kind of a trouble such as a sigsegv
(address reference exception) and an operation result error
will occur 1t the object file 1s executed with the machine
language code destroyed. Usually, 99% or more of trouble
events such as the sigsegv and the operation result error are
caused by an error in program description. Therefore, a user
usually confirms whether a source code of a program 1s
correct. However, 1in a case where the cause 1s conversion of
the code at the time of the transfer of the object file, the
program error cannot be found even 1f the source code 1s
checked. Therefore, the user visually compares, byte by
byte, a translation list (machine language list) generated by
a compiler with a machine language extracted from the
machine language file by using an mdb command (debug-
ger). For example, the user visually compares all the tens of
millions of bytes of the machine language to be compared.
Therefore, it takes a lot of time to find the destruction of the
machine language due to the FIP transfer, which 1s the
cause.

Therefore, the system according to the second embodi-
ment 1s provided with a detection mechanism capable of
automatically detecting the presence or absence of code
conversion at the time of the file transfer.

FIG. 4 1s a block diagram 1illustrating functions for imple-
menting the detection mechanism for detecting the presence
or absence of the code conversion at the time of the file
transier. The development computer 100 includes a storage
umt 110, an editor 120, and a compiler 130.

The storage unit 110 stores a source file 111, an object file
112, and the like.

The source file 111 1s a program {file described in a
high-level language. The source file 111 1s created, for
example, by a programmer using programming soltware
such as an editor.

The object file 112 1s a machine language program file
generated by compiling the source file 111. The object file
112 includes destruction detection data. The destruction
detection data 1s information embedded 1n the object file 112
for the purpose of detecting the destruction of the machine
language. The detection data for destruction includes a code
that 1s converted and a code that 1s not converted 1n a case
where the character code 1s converted at the time of transier
of the object file 112 by the FTP.

The editor 120 recerves an mput of a command statement
in the high-level language and generates the source file 111.
The editor 120 stores the generated source file 111 1n the
storage unit 110.

The compiler 130 compiles the source file 111. For
example, the compiler 130 interprets a high-level language
command described 1n the source file 111 and generates a
machine language command for causing the computer to
execute the command. The compiler 130 writes the gener-
ated machine language command in the object file 112.
Furthermore, the compiler 130 inserts the destruction detec-
tion data at a predetermined position 1n the object file 112.

A transmission unit 140 transmits the source file 111 or the
object file 112 to the file management computer 200 1n
accordance with a request from the file management com-
puter 200.

Note that the development computer 100 1s an example of
the transmission device 1 shown in the first embodiment.
The storage unit 110 1s an example of the storage unit 1a

US 11,537,308 B2

11

shown 1n the first embodiment. The compiler 130 1s an
example of the generation unit 16 shown 1n the first embodi-
ment. The transmission unit 140 1s an example of the
transmission unit 1¢ shown 1n the first embodiment.

The file management computer 200 includes a file man-
agement unit 210. The file management unit 210 manages
the source file 111 and the object file 112 generated during,
a solftware development process. For example, the file
management unit 210 acquires the object file 112 from the
development computer 100 1n accordance with an instruc-
tion from a user. The file management unit 210 can also
transfer the acquired object file 112 to the operating envi-
ronment computer 300. The file management unit 210
implements the acquisition of the object file 112 from the
development computer 100 and the transmission of the
object file 112 to the operating environment computer 300
by the FTP.

The operating environment computer 300 includes a
reception unit 310, a storage unit 320, and an execution unit
330.

The reception unit 310 receives an object file 321 from the
file management computer 200. The reception unit 310
stores the received object file 321 1n the storage unit 320.

The storage umt 320 stores the object file 321 and a
runtime module 322. The object file 321 1s a machine
language program f{ile transmitted from the development
computer 100 via the file management computer 200. The
runtime module 322 1s a machine language program file
used to execute the object file 321.

The execution unit 330 executes the object file 321 in
accordance with an instruction from a user. Note that the
execution unit 330 executes the runtime module 322 when
the runtime module 322 is called by a command in the object
file 321.

Note that the operating environment computer 300 1s an
example of the reception device 3 shown 1n the first embodi-
ment. The reception unit 310 1s an example of the reception
unit 3a shown 1n the first embodiment. The storage unit 320
1s an example of the storage unit 35 shown in the first
embodiment. The execution unit 330 1s an example of the
determination unit 3¢ shown 1n the first embodiment.

Lines connecting the respective elements illustrated in
FIG. 4 indicate a part of a communication path, and a
communication path other than the illustrated communica-
tion path may also be set. Furthermore, the function of each
clement 1illustrated in FIG. 4 may be implemented, for
example, by allowing the computer to execute a program
module corresponding to the element.

Next, the object file in which the destruction detection
data 1s written will be described.

FIG. 5 1s a diagram 1illustrating an example of the object
file. FIG. 5 1llustrates the example 1 which the object file
112 1s displayed by a binary editor. A first item on each line
indicates a position of data in the file (the number of bytes
from the beginning of the file). In addition, a second 1tem on
cach line 1s a hexadecimal value of the binary data described
in the corresponding position. That 1s, the value shown 1n the
second 1tem 1s actual binary data included 1n the object file
112. Third and fourth items on each line are meanings of
commands shown on each line, which are interpreted by the
binary editor.

For example, in the object file 112, 71675144 1s
described from a 240th byte (position “00000240”) 1n the
hexadecimal number. This 1s a character code for each of
half-width characters ‘q’(71), ‘g’ (67), ‘Q’ (31), and ‘D’ (44),
which are not converted at the time of the file transier 1n the
ASCII mode of the FTP.

10

15

20

25

30

35

40

45

50

55

60

65

12

For example, the character code of half-width ‘g’ 1s *“71”
in both the EUC and the Shift JIS, and the code conversion

1s not performed even 1f the file transfer 1s performed in the
ASCII mode.

In the object file 112, “0a0d0000” 1s described from a
244th byte (position “00000244”) in the hexadecimal num-
ber. This 1s a line feed (LF: Line Feed) code (0a) and a
carriage return (CF: Carnage Return) code (0d), which are
converted at the time of the file transfer in the ASCII mode
of FTP.

“71675144” at the position “00000240” and “0a0d0000™
at the position “00000244” are the destruction detection data
written 1n the object file 112.

In the object file 112, “FF1504000000 1s described from
a 28Dth byte (position “0000028D) in the hexadecimal
number. This 1s a call command for a runtime that performs
initialization processing at a program entry. The called
runtime 1s a program included in the runtime module 322.

By generating the object file 112 as described above, 1t 1s
possible to detect the presence or absence of the destruction

of the machine language when the object file 112 1s trans-
terred by the FTP. A procedure for detecting the presence or
absence of the destruction of the machine language 1is
described in the runtime module 322.

FIG. 6 1s a diagram 1illustrating an example of the runtime
module. For example, the runtime module 322 includes a

branch command “If (‘g’=‘a’ !=If ||‘Q’=‘D’ !'=cr)”. This
means that a condition of the IF statement 1s true when either
““q’=‘a’ I=I1" or ““Q’ =D’ '=cr” 1s satisfied. “‘q’-‘a’ I=I1" 1s

a condition that a result obtained by subtracting a character
code of a half-width “a” from the character code of the
half-width *“q” does not match the code of “If””. The code of
“I1” at this time 1s first byte data from the position
“00000244” of the object file 112. ““Q’-*D’ !=cr” 1s a
condition that a result obtained by subtracting the character
code of the half-width “D” from the character code of the
half-width “Q” does not match the code of “cr”. The code of
“cr’ at this time 1s second byte data at the position
“00000244” of the object file 112.

The runtime module 322 describes displaying, by
“tprinti{), a message indicating that the machine language
has been destroyed and aborting the execution of the object
file by “abort()” in a case where the condition of the IF
statement 1s true.

In the operating environment computer 300, the execution
unit 330 uses the runtime module 322 as described above to
perform the imitialization processing when executing the
object file 321 transterred by the FTP. As a result, 1n a case
where the machine language of the object file 321 has been
destroyed at the time of the file transier, the destruction is
detected at the time of the mitialization processing, and the
execution of the object file 321 1s aborted.

Hereinatter, a procedure of destruction detection process-
ing of the machine language involved in the file transier will
be described 1n detail.

FIG. 7 1s a sequence diagram 1llustrating an example of a
file transfer procedure. In the development computer 100,
when a user inputs a command statement 1n the high-level
language to the editor 120, the editor 120 generates the
source file 111 (step S101). After that, the compiler 130
compiles the source file 111 in accordance with a compile
instruction from the user to generate the machine language
object file 112 (step S102). At this time, the compiler 130
includes the destruction detection data 1n the object file 112.
Details of the compiling processing will be described later

(see FIG. 8).

US 11,537,308 B2

13

After that, the user inputs, to the file management unit 210
of the file management computer 200, an instruction to
transier the object file 112 from the development computer
100 to the operating environment computer 300. At this
time, the user specifies whether a mode used for the file
transier by the FTP 1s the binary mode or the ASCII mode.
In response to the input of the transier instruction, the file
management umt 210 transmits a request for acquiring the
object file to the development computer 100 (step S103).
The transmission unit 140 of the development computer 100
then transmits the object file 112 by the FTP (step S104).

The file management unit 210 of the file management
computer 200 receives the object file 112 (step S105). Next,
the file management unit 210 determines whether the file
transfer mode 1s the ASCII mode (step S106). If the file
transter mode 1s the ASCII mode, the file management unit
210 performs code conversion of the object file 112 (step
S107). For example, the file management unit 210 searches
the object file 112 for a code that matches the carriage return
code (LF), and converts the corresponding code to the line
feed code (CR+LF) i the OS of the file management
computer 200.

Note that the file management unit 210 skips the code
conversion processing (step S107) 11 the file transfer mode
1s the binary mode. After that, the file management unit 210
transmits the object file 321 to the operating environment
computer 300 (step S108).

In the operating environment computer 300, the reception
unit 310 receives the object file 321 (step S109). After that,
when the user inputs an mstruction to execute the object file
321, the execution unit 330 executes the object file 321 (step
S110). Details of the object file execution processing will be
described later (see FIG. 10).

As 1illustrated 1n FIG. 7, the file management unit 210
performs the code conversion 1f the ASCII mode 1s specified
at the time of the transter of the object file 112. However, the
object file 112 1s described 1n the machine language and 1s
a file to be transferred in the binary mode. When the object
file 112 1s transferred 1in the ASCII mode, the code in the
object file 112 1s rewrnitten and the machine language 1is
destroyed. In order to detect such destruction of the machine
language, the destruction detection data 1s written 1n the
object file 112 at the time of the compilation.

FIG. 8 1s a flowchart illustrating an example of a proce-
dure of the compiling processing. Hereinafter, processing
illustrated in FIG. 8 will be described along step numbers.

[Step S121] The compiler 130 reads the source file 111
from the storage unit 110.

[Step S122] The compiler 130 writes the destruction
detection data in the object file 112.

[Step S123] The compiler 130 converts the source code 1n
the source file 111 to the machine language and writes the
converted code in the object file 112.

[Step S124] The compiler 130 stores the object file 112 1n
the storage unit 110.

As described above, the compiler 130 generates the object
file 112 incorporating the destruction detection data.

FIG. 9 1s a diagram 1illustrating an example of the object
file. As illustrated 1 FIG. 9, the object file 112 includes
destruction detection data 112a prepared 1n advance. In the
object file 112, an actual program 1126 that 1s a machine
language program generated based on the source file 111 1s
written after the destruction detection data 112a. Since the
destruction detection data 112a 1s written before the actual
program 1125, when the object file 112 1s executed, a
command shown 1n the destruction detection data 112qa 1s
executed before the actual program 112b.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 10 1s a diagram 1llustrating an example of a proce-
dure of the object file execution processing. Heremafter,
processing illustrated in FIG. 10 will be described along step
numbers. [0121] [Step S131] When an 1nstruction to execute
the object file 321 1s iput, the execution unit 330 starts
execution of a command from the beginning of the object
file 321.

[Step S132] The execution umt 330 calls the runtime
module 322 in response to a call command for an 1nitial-
1zation processing runtime.

[Step S133] Based on the runtime module 322, the
execution umt 330 performs subtractions “‘q’-°g’=0x0a”
and ““Q’-‘D’=0x0d” based on 71675144 described at the
position “00000240” of the object file 321. That 1s, when the
hexadecimal code “67” of the half-width “g” 1s subtracted
from the hexadecimal code “71” of the half-width “q”, the
hexadecimal number “0a” 1s obtained. Similarly, when the
hexadecimal code “44” of the half-width “D” 1s subtracted
from the hexadecimal code “31” of the half-width “Q”, the
hexadecimal number “0d” 1s obtained.

[Step S134] The execution unit 330 determines whether
the value at the position “00000244” and the subtraction
result “a0d0000” match. If the wvalue at the position
“00000244” and the subtraction result “0a0d0000” match,
the execution unit 330 advances the processing to step S135.
If the value at the position “00000244” and the subtraction
result “0a0d0000” do not match, the execution unit 330
advances the processing to step S136.

[Step S135] The execution unit 330 executes unexecuted
programs (including the actual program 1125) 1n the object
file 321. When the execution of all the programs in the object
file 321 ends, the execution unit 330 ends the object execu-
tion processing.

[Step S136] The execution unit 330 outputs a message
indicating possibility of destroying the machine language by
the FTP transfer.

[Step S137] The execution unit 330 suspends the execu-
tion of the unexecuted programs (including the actual pro-
gram 112b) in the object file 321, and ends the object
execution processing.

As described above, the presence or absence of the
destroy of the machine language in the object file 321 1s
detected. Hereinatter, with reference to FIG. 11 and FI1G. 12,
a difference 1n the destruction detection processing between
the transier 1n the binary mode and the transfer in the ASCII
mode will be described.

FIG. 11 1s a diagram illustrating an example of the
destruction detection processing in the case of the transier n
the binary mode. In the file management computer 200, in
the case where the object file 112 1s transierred in the binary
mode, the code conversion 1s not performed at the time of
the transier. Therefore, the carriage return code “0a’ and the
line feed code “0Od” included in the destruction detection
data 112a of the object file 112 belfore the transier remain
unchanged 1n destruction detection data 321a of the object
file 321 after the transfer. Even 1n a case where the actual
program 1126 of the object file 112 before the transier
includes “Oa” that matches the carriage return code, the code
remains the same 1n an actual program 3215 of the object file
321 after the transfer.

The execution unit 330 of the operating environment
computer 300 generates the carriage return code “Oa” and
the line feed code “0d” by the subtractions “‘q’-‘g’=0x0a”
and ““Q’-‘D’=0x0d” (Step S201). The execution unit 330
then compares the code “0a0d0000” generated by the sub-
tractions with the wvalue “0a0d0000” at the position
“00000244” 1n the object file 321 (step S202). In the

US 11,537,308 B2

15

example of FIG. 11, since the comparison results match, the
execution unit 330 executes the remaining programs 1n the

object file 321 (step S203).

FIG. 12 1s a diagram illustrating an example of the
destruction detection processing in the case of the transfer in 3
the ASCII mode. In the file management computer 200, in
the case where the object file 112 1s transferred 1n the ASCII
mode, the code conversion 1s performed at the time of the
transier. Therefore, the carriage return code “0a” Included in
the destruction detection data 112a of the object file 112 10
before the transfer 1s converted to “0d0a” in destruction
detection data 323a of an object file 323 after the transier.
Even 1n a case where the actual program 1125 of the object
file 112 before the transier includes “Oa” that matches the
carriage return code, the code 1s converted to “0d0a” i an 15
actual program 3235 of the object file 323 after the transier.

The execution unit 330 of the operating environment
computer 300 generates the carriage return code “0Oa” and
the line feed code “0d” by the subtractions “‘q’-‘g’=0x0a”
and “‘q’-‘D’=0x0d” (Step S211). The execution unit 330 20
then compares the code “0a0d0000” generated by the sub-
tractions with the wvalue “0d0a0d00” at the position
“00000244” 1n the object file 323 (step S212). In the
example of FIG. 12, the comparison results do not match.
Therefore, the execution unit 330 performs error display 25
without executing the remaining programs 1n the object file
323 (step S213).

For example, on a screen of an operating environment
computer 40, a message 41 saying that “The Program ‘A’ has
been converted by the ASCII transier of the FIP and 1s 30
destructed. Please retry the binary transier” 1s displayed.

As described above, 1t 1s possible to automatically detect
the destruction of the machine language that occurs at the
time of the file transfer. As a result, it 1s easy to analyze a
trouble caused by the destruction of the machine language. 35

Other Embodiments

In the second embodiment, the example of detecting the
destruction of the machine language that occurs at the time 40
of the file transfer between a computer with the EUC code
system and a computer with the Shift JIS code system has
been shown, but the code system 1s an example, and the
present invention can be similarly applied to computers of
other code systems. 45

Furthermore, 1n the second embodiment, the machine
language 1s destroyed by the file management computer 200
performing the code conversion, but another computer may
destroy the machine language. For example, file transmis-
sion software in the development computer 100 may be 50
erroneously set, and the development computer 100 may
destroy the machine language of the object file. Further-
more, file reception software 1n the operating environment
computer 300 may be erronecously set and the operating
environment computer 300 may destroy the machine lan- 55
guage of the object file.

In the second embodiment, the procedure of the destruc-
tion detection processing 1s described in the runtime module
322 prepared in advance in the operating environment
computer 300, but the procedure of the destruction detection 60
processing may also be described 1n the object file 112. For
example, the compiler 130 can add a machine language
program indicating the procedure of the destruction detec-
tion processing to the object file 112 when compiling the
source file 111. 65

The embodiments have been illustrated as described
above, but the configuration of each unit described 1n the

16

embodiments may be replaced with another having a similar
function. Furthermore, other arbitrary components and steps
may be added. Moreover, any two or more configurations
(features) of the above-described embodiments may be
combined.

All examples and conditional language provided herein
are intended for the pedagogical purposes of aiding the
reader 1n understanding the invention and the concepts
contributed by the imventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples 1n the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described 1n detail, 1t should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.

What 1s claimed 1s:
1. An mformation processing system, comprising:
a transmission device that includes a first memory and a
first processor coupled to the first memory; and
a reception device that includes a second memory and a
second processor coupled to the second memory,
wherein
the first processor 1s configured to:
generate second data by adding, to first data including,
a machine language, first machine language data that
may be destroyed at a time of transter of the first data
and second machine language data that 1s not
destroyed at the time of the transfer, and
transmit the second data, and
the second processor 1s configured to:
recelve the second data,
determine whether the first data i1s destroyed based on
a comparison result between the first machine lan-
guage data and the second machine language data
included 1n the received second data, and
inhibit execution of a machine language command 1n
the first data included 1n the second data 1n a case
where 1t 1s determined that the first data 1s destroyed.
2. The information processing system according to claim
1, wherein the second processor 1s configured to obtain the
comparison result by comparing the first machine language
data and data calculated based on a plurality of data included
in the second machine language data.
3. The information processing system according to claim
1, wherein the first processor 1s configured to generate, 1n the
second data, the second machine language data including, as
the plurality of data, a first value and a second value whose
difference from the first value 1s equal to a value of the first
machine language data,
wherein the second processor 1s configured to obtain the
comparison result by comparing the difference between
the first value and the second value included in the
second machine language data and the value of the first
machine language data.
4. An information processing device, comprising:
a memory; and
a processor coupled to the memory and configured to:
receive second data from a transmission device con-
figured to transmit the second data generated by
adding, to first data including a machine language,
first machine language data that may be destroyed at
a time of transier of the first data and second machine
language data that 1s not destroyed at the time of the
transter,

US 11,537,308 B2

17

determine whether the first data 1s destroyed based on
a comparison result between the first machine lan-
guage data and the second machine language data
included 1n the received second data, and
inhibit execution of a machine language command 1n
the first data included 1n the second data 1n a case
where 1t 1s determined that the first data 1s destroyed.
5. A non-transitory computer-readable storage medium
storing a program that causes a computer to execute a
process, the process comprising;
receiving second data from a transmission device config-
ured to transmit the second data generated by adding,
to first data including a machine language, first
machine language data that may be destroyed at a time
of transier of the first data and second machine lan-
guage data that 1s not destroyed at the time of the
transfer;
determining whether the first data 1s destroyed based on a
comparison result between the first machine language
data and the second machine language data included 1n
the received second data; and

18

inhibiting execution of a machine language command 1n

the first data included 1n the second data in a case where
it 1s determined that the first data 1s destroyed.

6. An information processing method executed by a

> computer, the information processing method comprising:

10

15

recerving second data from a transmission device config-

ured to transmit the second data generated by adding,
to first data including a machine language, first
machine language data that may be destroyed at a time
of transfer of the first data and second machine lan-

guage data that 1s not destroyed at the time of the
transfer; and

determining whether the first data 1s destroyed based on a

comparison result between the first machine language

data and the second machine language data included 1n
the received second data; and

inhibiting execution of a machine language command 1n

the first data included 1n the second data in a case where
it 1s determined that the first data 1s destroyed.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

