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Receive an input natural language query
410

(Generate a sequence of tokens by concatenating
all column names, the input natural language
query, and the SQL vocabulary
420

(GGenerate an input representation of the

sequence of tokens
430

Access a plurality of models, each mode!
configured to generate a portion of the output

database query
440

Provide the input representation as input to each
of the plurality of models to generate a portion of
the database gquery
450

Combine the plurality of portions of the database

query generated to generate the database query
460

Execute the database query to generate a results
set

470
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Determine an input representation of the input

sequence of tokens
210

Apply a multi-layer perceptron to the generated
input representation to generate scores

corresponding to various aggregation operations
220

Identify the aggregation operation for the

database query based on the generated scores
230
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Encode each column name with an LSTM
610

(Generate an input representation of the input

sequence of tokens
620

Apply a multi-layer perceptron to the generated
input representation to generate scores
corresponding to columns operations

630

Normalize the scores with a softmax function io
produce a distribution over the possible resutt
columns

640

Select the result columns based on the
normatlized scores
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NEURAL NETWORK BASED TRANSLATION
OF NATURAL LANGUAGE QUERIES TO

DATABASE QUERIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of co-pending U.S.
application Ser. No. 15/885,613, filed Jan. 31, 2018, which
claims the benefit of U.S. Provisional Application No.
62/508,367, filed May 18, 2017, which 1s incorporated by

reference herein.

BACKGROUND

Field of Art

The disclosure relates 1n general to automatic generation
of database queries, and more specifically to neural network
based models for translating natural language queries to
database queries.

Description of the Related Art

A significant amount of data available in the world 1s
stored 1n relational databases. Relational databases provide
the foundation of applications such as medical records,
financial markets, customer relations management, and so
on. However, accessing information 1n relational databases
requires an understanding of database query languages such
as the structured query language (SQL). Although database
query languages such as SQL are powerful in terms of
allowing a user to specily requests for data from a relational
database, they are diflicult to learn. To be able to write
database queries eflectively using database query languages
requires expertise i databases and strong technical knowl-
edge.

Some systems support natural language for accessing data
stored 1n the system. Natural language queries provide ease
of expression since people do not require training to use
natural language. However, these systems do not provide the
expressive power of the database query languages such as

SQL. For example, a natural language query may be inter-
preted in multiple ways and the corresponding execution of
the natural language query to access data stored 1n a rela-
tional database may be ineflicient and may not retrieve the
exact information that was requested. Accordingly, conven-
tional techniques for accessing data stored in relational
databases using either natural language queries or database
queries have drawbacks since they either provide ease of
expression or the power of expression, but not both.

BRIEF DESCRIPTION OF DRAWINGS

The disclosed embodiments have other advantages and
features which will be more readily apparent from the
detailed description, the appended claims, and the accom-
panying figures (or drawings). A brief mtroduction of the
figures 1s below.

FIG. 1 1s a high-level block diagram illustrating the
overall system environment for translating natural language
queries to database queries, 1n accordance with an embodi-
ment.

FI1G. 2 1llustrates the system architecture of the computing,
system for translating natural language queries to database
queries, 1n accordance with an embodiment.
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FIG. 3 illustrates the details of the processing performed
by the natural language to database query translator, accord-
ing to an embodiment.

FIG. 4 1llustrates the overall process for translating natu-
ral language queries to database queries, according to an
embodiment

FIG. 5 1llustrates the process of the aggregation classifier
for determining the aggregation operator of the output
database query based on a natural language query, according
to an embodiment.

FIG. 6 1llustrates the process of the result column predic-
tor for determining the columns of the SELECT clause of the
output database query based on a natural language query,
according to an embodiment.

FIG. 7 illustrates the process of training the condition
clause predictor for determining the condition clause of the
output database query, according to an embodiment.

FIG. 8 1s a high-level block diagram illustrating an
example computer for implementing the client device and/or
the computing system of FIG. 1.

The Figures (FIGS.) and the following description
describe certain embodiments by way of illustration only.
One skilled in the art will readily recognize from the
following description that alternative embodiments of the
structures and methods 1llustrated herein may be employed
without departing from the principles described herein.
Reference will now be made 1n detail to several embodi-
ments, examples of which are 1llustrated in the accompany-
ing figures.

DETAILED DESCRIPTION

A computing system uses deep neural networks for trans-
lating natural language queries to corresponding database
queries, lor example, queries specified using structured
query language (SQL). Embodiments use the structure of
SQL queries to greatly reduce the output space of generated

queries. The computing system uses deep neural networks to
translate the natural language query to a database query.

In an embodiment, the computing system uses a plurality
of machine learning based models, for example, neural
network based models to generate diflerent portions of the
output database query. For example, the computing system
may use an aggregation classifier model for determining an
aggregation operator in the database query, a result column
predictor model for determining the result columns of the
database query, and a condition clause predictor model for
determining the condition clause of the database query. In an
embodiment, the aggregation classifier model and result
column predictor model comprise multi-layer perceptrons.
The condition clause predictor model uses policy-based
reinforcement learning (RL) to generate the condition clause
of the database query. This 1s so because the condition clause
1s unordered 1n nature and multiple representations of the
condition clause may provide the same output result for the
database query. Therefore the condition clause unsuitable for
optimization using cross entropy loss. The deep neural
network 1s trained using a mixed objective that combines
cross entropy losses and RL rewards.

As an example, a database may store a table CFLDraft
with columns Pick_number, CFL_Team, Player, Position,
and College. The table may store following example rows.



US 11,526,507 B2

3

Pick_ number CFL_ Team Player Position College

27 Hamilton Connor DB Wilind
Tiger-Cats Healy Laurier

28 Calgary Anthony OL York
Stampeders Forgone

29 Ottawa L. P DT California
Renegades Ladouceur

30 Toronto Frank DL York
Argonauts Hoflman

The system receives a natural language query, for
example, “How many CFL teams are from York College?”
The system processes the received natural language query 1n
connection with the database schema comprising the table
CFLDrait to generate a database query using SQL language
“SELECT COUNT(CFL_Team) FROM CFLDrait WHERE

College="York™’. The system executes the database query
using the database schema. Two rows of the table CLFDratt
match the WHERE clause of the database query since they
have the college “York™. As a result the system returns the
result 2.

Overall System Environment

FIG. 1 1s a high-level block diagram illustrating the
overall system environment for translating natural language
queries to database queries, in accordance with an embodi-
ment. The system environment 100 includes one or more
client devices 110 connected by a network 150 to a com-
puting system 130. The computing system 130 may be an
online system but may also work oflline, for example, by
performing batch processing for translating each of a set of
natural language queries to database queries.

Here only two client devices 110a, 1106 are illustrated but
there may be multiple instances of each of these entities. For
example, there may be several computing systems 130 and
dozens or hundreds of client devices 110 1n communication
with each computing system 130. The figures use like
reference numerals to 1dentily like elements. A letter after a
reference numeral, such as “110a,” indicates that the text
refers specifically to the element having that particular
reference numeral. A reference numeral 1n the text without
a Tollowing letter, such as “110,” refers to any or all of the
clements in the figures bearing that reference numeral.

The client devices 110 are computing devices such as
smartphones with an operating system such as ANDROID®
or APPLE® IOS®, tablet computers, laptop computers,
desktop computers, electronic stereos 1n automobiles or
other vehicles, or any other type of network-enabled device
on which digital content may be listened to or otherwise
experienced. Typical client devices 110 include the hardware
and software needed to connect to the network 150 (e.g., via
Wifi and/or 4G or other wireless telecommunication stan-
dards).

The client device 110 includes a client application 120
that allows a user of the client device 110 to interact with the
computing system 130. For example, the client application
120 may be a user interface that allows users to input natural
language queries that are sent to the computing system 130.
The client application 120 receives results from the com-
puting system 130 and presents them to the user via the user
interface. In an embodiment, the client application 120 1s a
browser that allows users of client devices 110 to interact
with a web server executing on the computing system 130.

The computing system 130 includes software for perform-
ing a group ol coordinated functions or tasks. The software
may allow users of the computing system 130 to perform
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certain tasks or activities of interest, or may include system
soltware (e.g., operating systems) that provide certain func-
tionalities and services to other software. The computing
system 130 receives requests from client devices 110 and
executes computer programs associated with the received
requests. As an example, the computing system 130 may
execute computer programs responsive to a request from a
client device 110 to translate natural language queries to
database queries. Software executing on the computing
system 130 can include a complex collection of computer
programs, libraries, and related data that are written 1n a
collaborative manner, 1n which multiple parties or teams are
responsible for managing diflerent components of the soft-
ware.

In an embodiment, the computing system 130 receives a
natural language query 135 from a client device 110. The
natural language query 130 may be provided by a user via
the client application 120 executing on the computing sys-
tem 130. The computing system 130 stores a database
schema 145 that defines the structure of data stored in a
database. For example, the database schema 145 may 1den-
tify various tables stored in the database, the columns of
cach table, the relations between tables such as foreign key
relations, any constraints associated with the tables, and so
on.

The natural language to database query translator 140
receives the natural language query 135 and the database
schema 145 as mput and generates a database query 155 that
1s equivalent to the input natural language query 135. The
generated database query 155 conforms to the database
schema 145. The generated database query 1535 1s received
by a database query processor 150 that processes the data-
base query 155 using the data stored 1n the database 160. The
database query processor 150 generates the query results
165 by processing the database query 135. The computing
system 130 provides the generated query results 165 to the
client application 120 running on the client device 110 that
sent the natural language query 13S5.

In an embodiment, the natural language to database query
translator 140 performs a sequence to sequence translation.
Conventional neural network based sequence to sequence
translator search 1n a very large space. In contrast, embodi-
ments exploit the structure inherent in a database query
language to reduce the search space. In particular, the system
limits the output space of the generated sequence based on
the umion of the table schema, the mput question, and SQL
key words. In one embodiment, the natural language to
database query translator 140 uses a deep neural network
that 1s a pointer network with augmented inputs.

The network 150 provides a communication infrastruc-
ture between the client devices 110 and the record manage-
ment system 130. The network 150 1s typically the Internet,

but may be any network, including but not limited to a Local
Area Network (LAN), a Metropolitan Area Network

(MAN), a Wide Area Network (WAN), a mobile wired or
wireless network, a private network, or a virtual private
network. Portions of the network 150 may be provided by
links using communications technologies including WiFi
based on the IEEE 802.11 standard, the BLUETOOTH short
range standard, and the Wireless Universal Serial Bus (USB)
standard.
System Architecture

FIG. 2 illustrates the system architecture of the computing
system for translating natural language queries to database
queries, 1n accordance with an embodiment. The computing
system 130 comprises an input encoding module 210, a
training module 240, a natural language to database query
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translator 140, a query synthesis module 220, a query
execution engine 230, a training data store 215, and a
database 160. Conventional components such as network
interfaces, security functions, load balancers, failover serv-
ers, management and network operation consoles, and the
like are not shown so as to not obscure the details of the
system architecture.

The 1nput preprocessing module 210 preprocesses the
input data for providing as mnput to the natural language to
database query translator 140. In an embodiment, the mnput
preprocessing module 210 generates 420 a sequence of
tokens by concatenating column names from the database
schema, the mput natural language query, and the vocabu-
lary of the database query language, for example, SQL. The
input preprocessing module 210 generates one or more 1input
representations for providing to the various models that
generate the various parts of the output database query.

The natural language to database query translator 140
processes an mput natural language query for generating the
database query corresponding to the natural language query.
In an embodiment, the natural language to database query
translator 140 includes other components, for example, an
aggregation classifier 260, a result column predictor 270,
and a condition clause predictor 280, further described
herein, in connection with FIG. 3.

The natural language to database query translator 140
generates different components of the database query using
different neural networks. In an embodiment, the natural
language to database query translator 140 uses a different
neural network to generate the components of a database
query including the select columns, an aggregation operator,
and a where clause.

The training module 240 uses historical data stored in
training data store 215 to train the neural networks in the
natural language to database query translator 140. In an
embodiment, the training module 240 trains the aggregation
classifier 260 and the result column predictor 270 using
cross entropy loss, but trains the condition clause predictor
280 using policy gradient reinforcement learning 1n order to
address the unordered nature of query conditions. Utilizing
the structure of a SQL query allows the natural language to

database queries. This leads to a significantly higher perfor-
mance compared to other techniques that do not exploit the
query structure.

The query synthesis module 220 receives various com-
ponents of the database query as generated by the natural
language to database query translator 140 and combines
them to obtain a database query. The query execution
module 230 executes the database query provided by the
query synthesis module 220 using the data stored in the
database 160. The computing system 130 returns the result
ol execution of the query to the requestor of the result, for
example, a client application 120 executing on a client
device 110.

FIG. 3 illustrates the details of the processing performed
by the natural language to database query translator 140,
according to an embodiment. As shown 1n FIG. 3. The inputs
to the natural language to database query translator 140
include the natural language query 320 and the database
schema 320. In the example illustrated above based on
CFLDrait table, the natural language query 320 i1s “How
many CFL teams are from York College?” and the database
schema 320 comprises the various columns including col-
umns Pick_number, CFL_Team, Player, Position, and Col-

database query translator 140 to reduce the output space of
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lege. The example output database query 1s “SELECT
COUNT(CFL_Team)  FROM  CFLDrait WHERE

College="York™™”.

The 1nput preprocessing module 210 generates one or
more put representations and provides an nput represen-
tation to each component of the natural language to database
query translator 140 including the aggregation classifier 260,
the result column predictor 270, and the condition clause
predictor 280. Each of the aggregation classifier 260, the
result column predictor 270, and the condition clause pre-
dictor 280 generates a part of the output database query.

The result column predictor 270 generates the result
columns, for example, the columns specified in the SELECT
clause 310 of the output database query expressed using
SQL. An example of a result column i1s the column
CFL_Team in the example output database query. In an
embodiment, the result column predictor 270 1s a pointer
network that receives an encoding of a sequence of columns
as mput and points to a column 1n the sequence of columns

corresponding to a SELECT column.

The condition clause predictor 280 generates the WHERE
clause 320 of the output database query that specifies the
condition used to filter the output rows of the output data-
base query. In the above example, the WHERE clause
“College="York™ 1s the condition clause 1n the output
database query.

The aggregation classifier 260 generates an aggregation
operator 330 i1n the output database query 1 any, for
example, the COUNT operator in the example output data-
base query. The aggregation operators produce a summary
of the rows selected by the SQL. Examples of aggregation
operators that may be generated by the aggregation classifier
260 1nclude maximum (MAX), minimum (MIN), average
(AVG), sum (SUM), and so on. The aggregation classifier
260 may generate a NULL aggregation operator 1f there 1s
no aggregation operator in the output query.

-

The various components of the output database query
including the SELECT clause 310, the WHERE clause 320,
and the aggregation operator 330 are provided as input to the
query synthesis module 270. The query synthesis module
270 combines the individual components of the output
database query to generates the complete output database
query 340.

Overall Process

FIGS. 4-7 1llustrate various process for translating natural
language queries to database queries. Those of skill in the art
will recognize that other embodiments can perform the steps
of FIGS. 4-7 1n diflerent orders than those shown in the
flowcharts. Moreover, other embodiments can include dit-
terent and/or additional steps than the ones described herein.
Steps indicated as being performed by certain modules may
be performed by other modules.

FIG. 4 1llustrates the overall process for translating natu-
ral language queries to database queries, according to an
embodiment. The natural language to database query trans-
lator 140 receives 410 an mput natural language query. The
input preprocessing module 210 generates 420 a sequence of
tokens by concatenating column names from the database
schema, the mput natural language query, and the vocabu-
lary of the database query language, for example, various
keywords of the SQL language such as SELECT, FROM,
WHERE, and so on. For example, equation (1) shows the
sequence of tokens comprising the columns names x.°, the
terms X~ representing the SQL vocabulary, and the terms x“
representing the input natural language query.

(1)

x=[<col>x,%;x5°; . .. ;x5 ;<sql>x";<question>;x%]
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In equation (1), concatenation between the sequences a
and b 1s represented as [a; b]. Furthermore, the combined
sequence X includes sentinel tokens between neighboring
sequences to demarcate the boundaries. For example, token
<col> 1dentifies columns names, token <sqgl> identifies
terms representing SQL vocabulary, and token <question>
identifies terms of the mput natural language query.

The 1nput preprocessing module 210 generates 430 an
input representation of the sequence of tokens. In an
embodiment, the mput preprocessing module 210 generates
multiple 1nput representations, one for each of the plurality
of models.

The natural language to database query translator 140
accesses a plurality of neural machine learning models, each
model configured to generate a portion of the output data-
base query. In an embodiment, the natural language to
database query translator 140 loads the plurality of trained
neural network based models from a storage device to
memory. The natural language to database query translator
140 provides 450 an input representation to each of the
plurality of machine learning based models. Each of the
plurality of machine learning based models generates a
portion of the database query.

In some embodiments, the mput preprocessing module
210 generates multiple mput representations, the natural
language to database query translator 140 may provide a
different 1nput representation to each machine learning
based model. Each machine learming based model generates
a portion of the database query and provides 1t to the query
synthesis module 270. The query synthesis module 270
combines 460 the plurality of portions of the database query
to generate the tull database query. The query execution
engine 230 executes 470 the database query to generate a
results set.

Aggregation Classifier

FI1G. 3 illustrates the process of the aggregation classifier
for determining the aggregation operator of the output
database query based on a natural language query, according
to an embodiment. The aggregation classifier 260 deter-
mines the aggregation operator of the output database query
based on the type of question specified 1n the mnput natural
language query. For example, the aggregation classifier 260
may map an input question comprising the string “how
many’ to the aggregation operator COUNT, the aggregation
classifier 260 may map an input question comprising “what
1s the highest” to the aggregation operator maximum, the
aggregation classifier 260 may map an mmput question coms-
prising “what 1s the smallest” to the aggregation operator
minimum, and so on.

The aggregation classifier 260 determines 510 an input
representation ol the mput sequence of tokens. The aggre-
gation classifier 260 computes a scalar attention score
o "P=W"P*h ' for each t” token in the input sequence.
Accordingly, the aggregation classifier 260 generates a vec-
tor of scores o”?=[a,"?, a.”#, . . . ]. The aggregation
classifier 260 normalizes the vector of scores o”#, to pro-
duce a distribution over the input encodings by applying the
softmax function to the o”# vector to determine
B7P=softmax(a”?). The aggregation classifier 260 produces
a distribution over the mput encodings. The aggregation
classifier 260 determines 510 the mput representation K°*# as
the sum over the mput encodings h™“ weighted by the
normalized scores 7% as shown by the following equation.

K88 = N BT R (2)
]
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The aggregation classifier 260 comprises a multi-layer
perceptron applied to the generated input representation K“4%
to generate scores o.“%% corresponding to various aggregation
operations, for example, COUNT, MIN, MAX, the NULL
operator indicating no aggregation, and so on. The aggre-
gation classifier 260 1dentifies 530 the aggregation operation
for the database query based on the generated scores.

In an embodiment, the aggregation classifier 260 deter-
mines ¢.“®% using the following equation.

CL%88 = /788 tan h( V8BB4 h8E) 488

(3)

The terms W2, V*&2 b*“82 and c¢”“®% denote weights
corresponding to the multi-layer perceptron. The aggrega-

tion classifier 260 applies the softmax function to obtain the
distribution over the set of possible aggregation operations
Nn“#*=softmax(a“®®). The aggregation classifier 1s trained
based on the cross entropy loss L%,

Result Column Predictor

The SELECT clause 1s also referred to as the selection
columns or the result columns. The result column predictor
270 determines the selection columns based on the table
columns in the database schema as well as the natural
language query. For example, given a natural language
query “How many CFL teams . . . 7 the result column
predictor 270 determines that the selection columns include
CFL_Teams column from the CFLDrait table. Accordingly,
the result column predictor 270 solves the problem of
SELECT column prediction as a matching problem. In an
embodiment, the result column predictor 270 uses a pointer
to 1dentify a SELECT column. Given the list of column
representations and a representation of the natural language
query, the result column predictor 270 selects the column
that best matches the natural language query.

FIG. 6 1llustrates the process performed by the result
column predictor for determining the columns of the
SELECT clause of the output database query based on a
natural language query, according to an embodiment. The
result column predictor 270 uses an mput representation for
the columns by encoding 610 each column name with an
LSTM (long short term memory network). The input pre-
processing module 210 generates 620 an nput representa-
tion of a particular column j, e/, using the following
equation.

h j;ZLSTM(emb(xj;) J e Je f =} 3 I}.‘? (4)

In this equation, h;, denotes the t” encoder state of the j”
column and emb 1s a function that returns an embedding.
The mput preprocessing module 210 takes the last encoder
state to be e, column j’s representation.

The mput preprocessing module 210 constructs a repre-
sentation for the natural language query **’ using an archi-
tecture similar to that described above for K“®%. The result
column predictor 270 applies 630 a multi-layer perceptron
over the column representations, conditioned on the mput
representation, to compute the score for each column j using
the following equation.

a sel Wfsef tan k( VSEEKSEE_l_ Vcejc)

) (3)

In this equation W*, V**, and V° are weights of the
multi-layer perceptron. The result column predictor 270
normalizes 640 the scores with a softmax function to pro-
duce a distribution over the possible SELECT columns
B*“’=softmax(c”’). In the above example of the CFLDraft
table, the distribution 1s over the columns Pick number,
CFL_Team, Player, Position, and College. The result col-
umn predictor 270 selects 650 the result columns of the
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output database query based on the normalized scores. The
aggregation classifier 1s trained based on the cross entropy
loss L*¢.

Condition Clause Predictor

In an embodiment, the condition clause predictor gener-
ates the WHERE clause using a pointer decoder. However,
the WHERE conditions of a query can be swapped and the
query would vyield the same result. For example, given a
natural language query “which males are older than 18”, the
output database query can be either “SELECT name FROM
insurance WHERE age>18 AND gender="male™ or
“SELECT name FROM insurance WHERE gender="male”
AND age>18”. Both database queries obtain the correct
execution result even though the two database queries do not
match based on a string match between the two query
strings. It the first database query 1s provided as the ground
truth while training the neural network and cross entropy
loss 1s used to supervise the training, the second database
query will be wrongly penalized since 1t does not match the
first database query based on a string match. Therefore
embodiments apply reinforcement learning to learn a policy
to directly optimize the expected correctness of the execu-
tion result of the database query.

FIG. 7 1llustrates the process of training the condition
clause predictor for determining the condition clause of the
output database query, according to an embodiment. The
condition clause predictor 280 receives as mput a natural
language query 710 and a database schema 720 to generate
the database query 730. The condition clause predictor 280
sends the database query for execution using the database
160 to obtain a reward metric. The query execution engine
230 executes the generated database query 730 to obtain the
predicted query results 750. The computing system 130
stores the ground truth query results 750 1n training data
store 215. The condition clause predictor 280 compares the
predicted query results 750 with the ground truth query
results 750 to determine the reward 750. The reward 1s
provided as mput to the condition clause predictor 280 as
teedback for traiming the condition clause predictor 280.

The sequence of tokens generated by the condition clause
predictor 280 in the WHERE clause is denoted by y=[y",
yv2, ..., Vy']. Let q(y) denote the query generated by the
model and g, denote the ground truth database query cor-
responding to the natural language query. The condition
clause predictor 280 uses the following equation as the
reward metric R(q(y). q,).

(—2, 1f g(y) 1s not a valid SQL query (6)
if g(vy) 1s a valid SQL query and
Rig(y), gg =< - executes to an incorrect result
if g(y) 1s a valid SQL query and
+ executes to an correct result

Accordingly, the condition clause predictor 280 assigns a
positive reward 1f the result of execution of the generated
database query matches the expected results provided as
ground truth. The condition clause predictor 280 assigns a
negative reward if the result of execution of the generated
database query fails to match the expected results provided
as ground truth or if the generated database query is not a
valid database query.

The condition clause predictor 280 determines the loss
"¢ as the negative expected reward over possible WHERE
clauses. The training module trains the condition clause

predictor 280 using gradient descent to minimize the objec-
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tive function L=1"88+1"*'+1.""°. Accordingly, the condition
clause predictor 280 determines a total gradient as the
weilghted sum of the gradients from the cross entropy loss in
predicting the SELECT column, from the cross entropy loss
in predicting the aggregation operation, and from policy
learning for the condition clause.

The 1ncorporation of structure 1n the natural language to
database query translator 140 reduces invalid database que-
rics that may be generated. A large quantity of invalid
queries result from column names—the generated query
refers to selection columns that are not present in the table.
This 1s particularly helpiul when the column name contain
many tokens, such as “Miles (km)”, which has 4 tokens.
Introducing a classifier for the aggregation also reduces the
error rate. Use of the aggregation classifier improves the
precision and recall for predicting the COUNT operator. Use
of representation learning for generating condition clause
results 1n generation of higher quality WHERE clause that
may be ordered differently than ground truth. Training with
policy-based representation learning results 1n correct
results even 1f the order of conditions 1s differs from the
ground truth query.

Computer Architecture

FIG. 8 1s a high-level block diagram illustrating an
example computer for implementing the client device and/or
the computing system of FIG. 1. The computer 800 includes
at least one processor 802 coupled to a chipset 804. The
chipset 804 includes a memory controller hub 820 and an
input/output (I/0) controller hub 822. A memory 806 and a
graphics adapter 812 are coupled to the memory controller
hub 820, and a display 818 is coupled to the graphics adapter
812. A storage device 808, an input device 814, and network
adapter 816 are coupled to the I/O controller hub 822. Other
embodiments of the computer 800 have different architec-
tures.

The storage device 808 1s a non-transitory computer-
readable storage medium such as a hard drive, compact disk
read-only memory (CD-ROM), DVD, or a solid-state
memory device. The memory 806 holds instructions and
data used by the processor 802. The mput interface 814 1s a
touch-screen 1nterface, a mouse, track ball, or other type of
pointing device, a keyboard, or some combination thereof,
and 1s used to input data into the computer 800. In some
embodiments, the computer 800 may be configured to
receive mput (e.g., commands) from the input interface 814
via gestures from the user. The graphics adapter 812 displays
images and other information on the display 818. The
network adapter 816 couples the computer 800 to one or
more computer networks.

The computer 800 1s adapted to execute computer pro-
gram modules for providing functionality described herein.
As used herein, the term “module” refers to computer
program logic used to provide the specified functionality.
Thus, a module can be implemented 1n hardware, firmware,
and/or software. In one embodiment, program modules are
stored on the storage device 808, loaded mto the memory
806, and executed by the processor 802.

The types of computers 800 used by the enfities of FIG.
1 can vary depending upon the embodiment and the pro-
cessing power required by the entity. The computers 800 can
lack some of the components described above, such as
graphics adapters 812, and displays 818. For example, the
computing system 130 can be formed of multiple blade
servers communicating through a network such as 1 a

server farm.

Alternative Embodiments

Although the embodiments disclosed are based on rela-
tional databases and illustrated using SQL, the techniques
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disclosed are applicable to other types of databases, for
example, object based databases, object relational databases,
and so on. The techniques disclosed are applicable 11 the
database query language used for the particular type of
database supports features equivalent to result columns,
aggregation clauses, or condition clause. For example, i1 a
database query language supports condition clause, the
condition clause predictor can be used to predict the condi-
tion clause for an output database query based on an input
natural language query.

It 1s to be understood that the Figures and descriptions of
the present invention have been simplified to illustrate
clements that are relevant for a clear understanding of the
present invention, while eliminating, for the purpose of
clarity, many other elements found 1n a typical distributed
system. Those of ordinary skill in the art may recognize that
other elements and/or steps are desirable and/or required 1n
implementing the embodiments. However, because such
clements and steps are well known 1n the art, and because
they do not facilitate a better understanding of the embodi-
ments, a discussion of such elements and steps 1s not
provided herein. The disclosure herein 1s directed to all such
variations and modifications to such elements and methods
known to those skilled 1n the art.

Some portions of above description describe the embodi-
ments 1n terms of algorithms and symbolic representations
of operations on information. These algorithmic descriptions
and representations are commonly used by those skilled 1n
the data processing arts to convey the substance of their
work eflectively to others skilled in the art. These opera-
tions, while described functionally, computationally, or logi-
cally, are understood to be implemented by computer pro-
grams or equivalent electrical circuits, microcode, or the
like. Furthermore, it has also proven convement at times, to
refer to these arrangements of operations as modules, with-
out loss of generality. The described operations and their
associated modules may be embodied in soitware, firmware,
hardware, or any combinations thereof.

As used herein any reference to “one embodiment™ or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described in connection with the
embodiment 1s included in at least one embodiment. The
appearances of the phrase “in one embodiment™ 1n various
places 1n the specification are not necessarily all referring to
the same embodiment.

Some embodiments may be described using the expres-
s1on “coupled” and “connected” along with their derivatives.
It should be understood that these terms are not intended as
synonyms for each other. For example, some embodiments
may be described using the term “connected” to indicate that
two or more elements are in direct physical or electrical
contact with each other. In another example, some embodi-
ments may be described using the term “coupled” to indicate
that two or more elements are 1n direct physical or electrical
contact. The term “coupled,” however, may also mean that
two or more elements are not 1n direct contact with each
other, but yet still co-operate or interact with each other. The
embodiments are not limited 1n this context.

As used herein, the terms “comprises,” “comprising,”
“includes,” “including,” “has,” “having” or any other varia-
tion thereot, are intended to cover a non-exclusive inclusion.
For example, a process, method, article, or apparatus that
comprises a list of elements 1s not necessarily limited to only
those elements but may include other elements not expressly
listed or mnherent to such process, method, article, or appa-
ratus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
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example, a condition A or B 1s satisfied by any one of the
following: A 1s true (or present) and B 1s false (or not
present), A 1s false (or not present) and B 1s true (or present),
and both A and B are true (or present).

In addition, use of the “a” or “an” are employed to
describe elements and components of the embodiments
herein. This 1s done merely for convenience and to give a
general sense of the mvention. This description should be
read to include one or at least one and the singular also

includes the plural unless 1t 1s obvious that it 15 meant
otherwise.

Upon reading this disclosure, those of skill in the art will
appreciate still additional alternative structural and func-
tional designs for a system and a process for displaying
charts using a distortion region through the disclosed prin-
ciples herein. Thus, while particular embodiments and appli-
cations have been 1illustrated and described, it 1s to be
understood that the disclosed embodiments are not limited to
the precise construction and components disclosed herein.
Various modifications, changes and variations, which will be
apparent to those skilled in the art, may be made 1n the
arrangement, operation and details of the method and appa-

ratus disclosed herein without departing from the spirit and
scope defined in the appended claims.

We claim:
1. A computer implemented method comprising:
receiving, from a client device, an input natural language
query based on data stored using a database schema;

accessing a plurality of machine learning based models,
cach model configured to predict a portion of a data-
base query corresponding to the mput natural language
query,

for each of the plurality of machine learning based

models:
providing an input describing the input natural lan-
guage query and the database schema; and
executing the machine learning based model based on
the input to generate a portion of the database query;
combining the generated portions of the database query to
obtain the database query;

executing the database query to obtain a result set; and

sending the result set to the client device.

2. The computer implemented method of claim 1, wherein
the plurality of machine learning based models comprise an
aggregation classifier model for determining an aggregation
operator 1n the database query, wherein the aggregation
classifier model comprises a multi-layer perceptron.

3. The computer implemented method of claim 1, wherein
the plurality of machine learming based models comprise a
result column predictor model for determining a result
column of the result set of the database query, wherein the
result column predictor model comprises a multi-layer per-
ceptron.

4. The computer implemented method of claim 3, wherein
the result column generates an input representation form one
or more columns corresponding to the input natural lan-
guage query using a long short term memory network
(LSTM).

5. The computer implemented method of claim 1, wherein
the plurality of machine learming based models comprise a
condition clause predictor model for determiming a condition
clause of the database query, wherein the condition clause
predictor model 1s based on reinforcement learning.

6. The computer implemented method of claim 5, further
comprising;
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receiving a result set based on a ground truth database
query,
determining reward values based on a comparison of the
result set obtained from the database query and a result
set obtained from the ground truth database query; and
adjusting weights of the condition clause predictor model
based on the reward values.
7. The computer implemented method of claim 1, further
comprising;
generating an iput representation for providing as input
to a machine learning model, the generating compris-
ng:
determining a sequence of tokens corresponding to the
input natural language query;
determining column encodings corresponding to one or
more tokens of the sequence of tokens; and
determining the mput representation based on the col-
umn encodings.
8. The computer implemented method of claim 1, further
comprising:
generating an iput representation describing the database
schema for providing as mput to a machine learning
model from the plurality of machine learning based
models.
9. The computer implemented method of claim 1, further
comprising;
generating an input representation describing a vocabu-
lary of a database query language for providing as input
to a machine learning model from the plurality of
machine learning based models.
10. The computer implemented method of claim 1, further
comprising;
training the plurality of machine learning based models
using gradient descent to minimize an objective func-
tion representing a loss based on an output the result of
cach of the plurality of machine learning based models.
11. A non-transitory computer readable storage medium
storing 1nstructions that when executed by a computer
processor cause the computer processor to perform steps
comprising;
receiving, from a client device, an iput natural language
query based on data stored using a database schema;
accessing a plurality of machine learning based models,

cach model configured to predict a portion of a data-
base query corresponding to the input natural language
query,

for each of the plurality of machine learning based

models:
providing an input describing the mput natural lan-
guage query and the database schema; and
executing the machine learning based model based on
the input to generate a portion of the database query;
combining the generated portions of the database query to
obtain the database query;

executing the database query to obtain a result set; and

sending the result set to the client device.

12. The non-transitory computer readable storage medium
of claim 11, wherein the plurality of machine learning based
models comprise an aggregation classifier model for deter-
mimng an aggregation operator in the database query,
wherein the aggregation classifier model comprises a multi-
layer perceptron.

13. The non-transitory computer readable storage medium
of claim 11, wherein the plurality of machine learning based
models comprise a result column predictor model for deter-
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mining a result column of the result set of the database
query, wherein the result column predictor model comprises
a multi-layer perceptron.

14. The non-transitory computer readable storage medium
of claim 13, wherein the result column generates an 1mput
representation for one or more columns corresponding to the
input natural language query using a long short term
memory network (LSTM).

15. The non-transitory computer readable storage medium
of claim 11, wherein the plurality of machine learning based
models comprise a condition clause predictor model for
determining a condition clause of the database query,
wherein the condition clause predictor model 1s based on
reinforcement learning.

16. The non-transitory computer readable storage medium
of claim 15, wherein the instructions cause the computer
processor to perform steps further comprising:

recerving a result set based on a ground truth database

query,
determining reward values based on a comparison of the
result set obtained from the database query and a result
set obtained from the ground truth database query; and

adjusting weights of the condition clause predictor model
based on the reward values.

17. The non-transitory computer readable storage medium
of claim 11, wherein the instructions cause the computer
processor to perform steps further comprising;

generating an input representation for providing as input

to a machine learning model, the generating compris-

ng:

determining a sequence of tokens corresponding to the
input natural language query;

determining column encodings corresponding to one or
more tokens of the sequence of tokens; and

determining the mput representation based on the col-
umn encodings.

18. The non-transitory computer readable storage medium
of claim 11, wherein the instructions cause the computer
processor to perform steps further comprising:

generating an input representation describing the database

schema for providing as iput to a machine learning
model from the plurality of machine learning based
models.

19. The non-transitory computer readable storage medium
of claim 11, wherein the instructions cause the computer
processor to perform steps further comprising:

generating an input representation describing a vocabu-

lary of a database query language for providing as input
to a machine learning model from the plurality of
machine learning based models.

20. A computer system comprising:

a computer processor; and

a non-transitory computer readable storage medium stor-

ing istructions that when executed by the computer

processor cause the computer processor to perform

steps comprising:

receiving, from a client device, an mput natural lan-
guage query based on data stored using a database
schema;

accessing a plurality of machine learming based models,
cach model configured to predict a portion of a
database query corresponding to the input natural
language query;

for each of the plurality of machine learning based
models:
providing an input describing the input natural lan-

guage query and the database schema; and
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executing the machine learning based model based
on the 1nput to generate a portion of the database
query,
combining the generated portions of the database query
to obtain the database query; 5
executing the database query to obtain a result set; and
sending the result set to the client device.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION
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DATED : December 13, 2022
INVENTOR(S) : Zhong et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 12, in Claim 4, Line 57, delete “form one” and insert -- for one --, theretor.

In Column 13, in Claim 10, Line 37, delete “output the result of” and msert -- output of --, therefor.

Signed and Sealed this
Tweltth Day ot September, 2023
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Katherme Kelly Vidal
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