12 United States Patent
Wang et al.

US011521007B2

US 11,521,007 B2
Dec. 6, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

(56)

10,664,310 B2 *
2018/0322386 Al

ACCELERATOR RESOURCE UTILIZATION
BY NEURAL NETWORKS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Junsong Wang, Beijing (CN); Chang
Xu, Benjing (CN); Tao Wang, Beijing
(CN); Yan Gong, Benjing (CN)

Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 415 days.

Appl. No.: 16/792,353

Filed: Feb. 17, 2020

Prior Publication Data

US 2021/0256303 Al Aug. 19, 2021

Int. CI.

GO6N 20/10 (2019.01)

GO6K 9/62 (2022.01)

GO6N 3/08 (2006.01)

GO6N 3/063 (2006.01)

U.S. CL

CPC GO06K 9/6232 (2013.01); GO6N 3/063

(2013.01); GO6N 3/08 (2013.01); GO6N 20/10
(2019.01)

Field of Classification Search

None
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5/2020 Bokhari GO6N 3/02
11/2018 Sridharan

2018/0341495 Al1* 11/2018 Culurciello GO6N 3/08
2019/0042923 Al* 2/2019 Janedula GO6N 3/0445
2019/0042948 Al1* 2/2019 Lee ..ccoooovvvivnnnn, GO6N 3/0472
2019/0180170 Al1* 6/2019 Huang GO6F 13/4068
2019/0187963 Al* 6/2019 Bokhart GO6F 9/4881
2019/0220734 Al1* 7/2019 Ferdman GO6N 3/0454
2019/0370631 Al* 12/2019 Faiscccooveeviiiinnnnnn. GOO6F 8/31
2021/0019600 Al1* 1/2021 Huang GO6F 13/28
(Continued)

OTHER PUBLICATTONS

Geng et al., “A Scalable Framework for Acceleration of CNN
Training on Deeply-Pipelined FPGA Clusters with Weight and
Workload Balancing”,Jan. 7, 2019,20 pps., arXiv:1901.01007, 2019,
< https://arxiv.org/pdi/1901.0 1007 .pdf>.

(Continued)

Primary Examiner — Tsung Yin Tsai1
(74) Attorney, Agent, or Firm — Stephanie L. Carusillo

(57) ABSTRACT

A method for configuring a set of hardware accelerators to
process a CNN. In an embodiment, the method includes one
or more computer processors determining a set ol param-
eters related to a feature map to analyze at a respective layer
of the CNN, the set of parameters include quantization value
and respective values that describe a shape of the feature

map. The method further includes configuring a set of
hardware accelerators for the respective layer of the CNN.
The method further includes receiving a portion of the
feature map to the configured set of hardware accelerators
for the respective layer of the CNN, wherein the received
portion of the feature map includes a group of sequential
data slices. The method further includes analyzing the group
of sequential data slices among the configured set of hard-
ware accelerators.

17 Claims, 5 Drawing Sheets

ll_____l___l.|_.___|___|_-a_|.__l-___l___l.l.l.l___-l__..l_l_-.-_l.___-\..J.l_n..a_l.l__l___u___-._-\. _— e — e e e e e e e e e e e — e — —

, —— (A AR
Rernelb-——. ER - r R ey
2108!
SHride .
| 232 ‘“j
nput ,
201

it .

Frocess Blement (PR
Array 215

PE Z15-1 1

BE 246.31

-
3
{_“-'F"'-'F-\:I'lf-.ﬂ_-"f—“'_ﬂ'-“ﬂ-n'.ﬂﬂ"ﬂﬂ—"ﬂm_,ﬂf—:-"—:-'-'\I'-m“Mﬂﬂ-“-ﬂ“-ﬂrmﬂﬂ—rnﬂ-“#‘ﬂﬂﬂﬂ

US 11,521,007 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2021/0256303 Al* 8/2021 Wel ...oooooevviinnnn, GO6K 9/6232

OTHER PUBLICATIONS

Venieris et al., “f-CNNx : A Toolflow for Mapping Multiple
Convolutional Neural Networks on FPGAs”, 28th International
Conference on Field Programmable Logic and Applications (FPL),

2018, IEEE, 8 pps., <https://arxiv.org/pdf/1805.10174.pdf>.

Wel et al., “TGPA: Tile-Grained Pipeline Architecture for Low
Latency CNN Inference”, Proceedings of the International Confer-
ence on Computer-Aided Design, ICCAD ’18, Article No. 58, 2018,
ACM, 8 pps., <http://vast.cs.ucla.edu/sites/default/files/publications/
PID5488167.pdf>.

Zhang et al., “DNNBuilder: an Automated Tool for Building High-
Performance DNN Hardware Accelerators for FPGAS”, Conference
Paper—Nov. 2018 DOI: 10.1145/3240765.3240801, uploaded on

Nov. 7, 2018, 8 pps., <https://www.researchgate.net/publication/
328784456 _DNNBuilder an_Automated Tool for Building High-

Performance DNN Hardware Accelerators for FPGAs/link/
5be2e22592851c6b27ad918b/download>.

* cited by examiner

U.S. Patent Dec. 6, 2022 Sheet 1 of 5 US 11,521,007 B2

-
:::5!
o

=

-
<>
<t

-

Ti“i
e
-
P,

-,

system]
Weight Factor
Data 120

Hardware Intormation 10/
Analysis Progra

Configuration Progra

FIG. 1

System 130N
Storage 131N

<L P
N N
73 P
w b
- — - -
O O
oot aflmnnd
0 (S
- - -
< AL
@ D
. &
& O
< <L

US 11,521,007 B2

Sheet 2 of §

Dec. 6, 2022

U.S. Patent

QL7 AOWeR

ll

el I g el mged g S ik b el sl s e mpi il e bl e m wie i g i g el s g sl B i bk e i sl g

uingd b el mbe o ol Sobied ik ik el et syt i i i ek b el s R RN R

A E

c-Gle Ad|
CL7? Aelly

o

(T4} HUSWISIT $$820I4

T"

o
+++++++++++
*

- LOC
NG

U.S. Patent Dec. 6, 2022 Sheet 3 of 5 US 11,521,007 B2

rrrrrrrrrrrrrrrrrrr

Determine Information Asociated With An Analysis
JU2

Determine A Set Of Parameters Related To The
Data 1o Analyze
304

-

-
T T
- T
T oT
- T
-
-,

rr

'dentify Information Related To A Set Of
Hardware Accelerators
306

Configure The Set Of ardware Accelerators
308

Execute The Analysis
310

T T
- T
T T
- T
-
r T
-
-
L i E -
-
-
-
3 -

FIG. 3

U.S. Patent Dec. 6, 2022 Sheet 4 of 5 US 11,521,007 B2

rrrrrrrrrrrrrrrrrrr

Receive A Portion Of

Data 10 Analyze
402

Analyze A Group Of
Slices Of The Data
404

ncrement An

Analysis Interval Output Analyses
408 406

- Additional ™
Data Is Available To
Analyze?
407

Yes -~

rrrrrrrrrrrrrrrrrrr

FIG. 4

U.S. Patent Dec. 6, 2022 Sheet 5 of 5 US 11,521,007 B2

200
01 -
Viemory
o502
... 5@5
- Cache / Persistent "\
504 N Storage /
1 | Software
 LAnd Datal
509
/ ' |51 %
Displa /O T C - tions Unit o
piay ' Interface(s) ommunications Un
506

rrr

FIG. 5

US 11,521,007 B2

1

ACCELERATOR RESOURCE UTILIZATION
BY NEURAL NETWORKS

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of data
processing, and more particularly to configuring accelerators
to process data within a convolutional neural network.

Artificial neural networks (ANNs) are systems that can
“learn” to perform tasks without being programmed with
task-specific rules. ANNs are utilized by various artificial
intelligence (AlI) tasks or machine learning, such computer
vision, speech recognition, machine translation, medical
diagnosis, classitying, etc.

Convolutional neural networks (CNNSs) are a class of deep
neural networks. CNNs are regularized versions of multi-
layer perceptrons (e.g., fully connected networks), where
cach neuron 1n one layer 1s connected to all neurons 1n the
next layer. CNNs take advantage of hierarchical patterns in
data and assemble more complex patterns using smaller and
simpler patterns. For example, a CNN breaks down 1mages
into small patches (e.g., 5x5 pixel patch), then moves across
the 1image by a designated stride length (i.e., increment).
Therefore, on the scale of connectedness and complexity,
CNNs are on the lower extreme. CNNs use relatively little
pre-processing compared to other classification algorithms,
allowing the network to learn the filters that were hand-
engineered 1n traditional algorithms. CNNs can improve the
performance ol autonomous vehicle control, bioinformatics,
image and video recognition, image classifications, natural
language processing (NLP), etc. CNNs are also known as
“shift invariant” or “‘spatially invarniant” artificial neural
networks.

In addition, computer systems can be configured to
include various hardware accelerators that can include spe-
cialized designed integrated circuits (ICs), such as graphic
processor units (PGUs) and application specific integrated
circuits (ASICs); and/or dynamically configurable inte-
grated circuits, such as field-programmable gate array (FP-
(G As) to improve the execution and performance of models,

algorithms, and custom functions utilized by aspects of the
CNN.

SUMMARY

According to an aspect of the present invention, there 1s
a method, computer program product, and/or computer
system for configuring a set of hardware accelerators to
process a CNN. In an embodiment, the method includes at
least one computer processor determining a set of param-
cters related to a feature map to analyze at a respective layer
of the CNN, wherein the set of parameters related to the
feature map includes a quantization value; and respective
values for a first dimension, a second dimension, and a third
dimension, which correspond to a shape describing the
feature map. The method further includes at least one
computer processor configuring a set of hardware accelera-
tors for the respective layer of the CNN. The method further
includes at least one computer processor receiving a portion
of the feature map to the configured set of hardware accel-
crators for the respective layer of the CNN, wherein the
received portion of the feature map includes a group of
sequential data slices. The method further includes at least
one computer processor analyzing the group of sequential
data slices among the configured set of hardware accelera-
tors.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computing device environment, 1n
accordance with an embodiment of the present invention.

FIG. 2 1llustrates aspects of a hardware acceleration and
associated memory utilization to process data, in accordance
with an embodiment of the present invention.

FIG. 3 depicts a flowchart of steps of a configuration
program, 1n accordance with an embodiment of the present
invention.

FIG. 4 depicts a flowchart of steps of an analysis program,
in accordance with an embodiment of the present invention.

FIG. 5 1s a block diagram of components of a computer,
in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention recognize that
convolutional neural networks (CNNs) consist of an 1nput
and an output layer, as well as multiple hidden layers. The
hidden layers of a CNN can consist of a series of convolu-
tional layers that convolve data utilizing matrix math or
other dot product operation. Convolution 1s a specialized
kind of linear operation. CNNs are simply neural networks
that use convolution in place of general matrix multiplica-
tion 1n at least one of their layers. To improve the execution
of a CNN, various accelerators are used to process various
aspects of the CNN, such as calculation, comparisons,
filtering, etc., that occur among the neurons (e.g., nodes) of
the CNN as opposed to utilizing general purpose computer
processors to performing the calculations associated with the
models and algorithms of the CNN.

Embodiments of the present invention also recognize that
utilizing a single accelerator constrains the total memory and
computational capabilities available to a CNN. As used
herein, accelerators can refer to field-programmable gate
array (FPGAs), graphic processor units (GPUs), dynami-
cally configurable integrated circuits, application specific
integrated circuits (ASICs), and/or modules and adapter
cards that include one or more of the aforementioned
integrated circuits. Various integrated circuits of an accel-
erator include on-chip memory, cache memory for storing
model and weight factors associated with the algorithms of
the CNN, and process elements (PEs) that execute matrix-
math operations and other calculations of a CNN model.

Embodiments of the present invention also recognize that
in large computing system architectures and cloud comput-
ing environments that various parallelism architectures
involving a plurality of accelerators can be created to
significantly reduce the inference time associated with a
CNN. Embodiments of the present invention recognize that
some current parallelism architectures map a subnetwork of
the CNN 1nto a dedicated accelerator and then pipelines the
accelerators together. A CNN may include various types of
layers, such as convolutional layers, ReLU (rectified linear
umit) layers, pooling layers, concatenation layers, etc.

However, embodiments of the present invention recog-
nize that such a parallelism architecture produces long
latencies that increase linearly with the number of layers of
the CNN where accelerators associated to later layers of the
CNN remaiming 1dle for an extended period of time. Further,
embodiments of the present invention recognize each accel-
erator requires significant on-chip memory to butler the data
assigned and/or shared with each accelerator, especially for
high resolution data, data consisting of large number of
clements, and/or data that 1s “deep” (e.g., includes a plurality
of physical levels, virtual levels, levels based on a modifi-

US 11,521,007 B2

3

cation by a filter or other function, and/or a plurality of
channels). For example, an 1image or a feature map of shape
(1.e., dimensions): (640 [pixels wide] *360 [pixels high] *64
levels [deep]) at 16-bit quantization (e.g., resolution) would
require a buller of more than 29 MB of on-chip memory. In
addition, embodiments of the present mvention recognize
that when large data sets, images, etc., are communicated to
an accelerator, the accelerator can become memory-con-
strained and a significant percentage of process elements of
the accelerator are unused.

Embodiments of the present invention provide a solution
to immprove the utilization of on-chip memory and PE
resources of accelerator 1n addition to reducing the latency
associated with pipelining information among the neuron/
layers of a CNN. Embodiments of the present invention
determine the capabilities of a plurality of accelerators
available to a CNN to process data and configure the
accelerators, pipelining, and other computing resources to
utilize a fine-grained row/column buflering and pipelining,
scheme to further utilize 1nner pipeline features inside the
layers of a CNN (described 1n further detail with respect to
FIG. 2). In addition, embodiments of the present invention
can configure accelerators differently for each layers of a
CNN. For example, the “depth dimension”, number of
levels, number of filters associated with the original data and
intermediate feature maps can vary among the plurality of
layers of a CNN. In addition, the kernel size and stride
increment can vary between layers of the CNN.

Embodiments of the can reduce the on-chip memory
requirements for an accelerator by more than 90% for some
feature maps (e.g., data) based on the size of the kernel (e.g.,
convolutional matrix, mask, etc.) and associated stride incre-
ment. Some embodiments of the present invention utilize
vertical and horizontal stride increments that are the same.
In various embodiments, the stride increment 1s further
related to the kernel size, such as stride=1 1s commonly used
with 1x1 or 3x3 kernel, and stride=2 1s commonly used with
a 5x5 kemel. For example, based on the previously
described feature map dimensions (e.g., shape), and utilizing
a 3x3 kernel with stride=1, an accelerator can begin pro-
cessing the feature map after loading only four (1.e., 3+1)
“slices” (e.g., a subset) of the data, which requires a buller
of approximately 184 KB of on-chip memory (e.g., 4 [slices]
*360 [high] *64 [levels] and 16-bit quantization). Further, in
response to mcrementing the kernel processing to the next
group of data slices (e.g., columns of feature map elements
n-levels deep) by a horizontal stride increment, a stride
increment number of processed data slices of memory are
cleared or released from an on-chip memory builer to enable
one or more subsequent slices of data to be received for
processing. Slices, data slices, and slices of data may be used
herein interchangeably.

Similarly, embodiments of the present mvention reduce
the latency between layers of the CNN by pipelining data to
another accelerator after each slice or group of slices are
aflected by the kemnel. In one scenario, 11 the shape of the
feature map does not change between layers N and N+1 of
the CNN, then an accelerator assigned to layer N+1 of the
CNN can begin processing after less than 2% of the data 1s
buflered to or processed by the accelerator associated with
layer N of the CNN. For example, slices 4, 5, 6, and 7 are
buflered and processing within an accelerator assigned to
layer N while slices 1!, 2!, 3!, and 4! are buflered and begin
processing within an accelerator assigned to layer N+1 of the
CNN. Because intermediate feature maps can be shared
and/or duplicated among neurons of the CNN and process-
ing speeds can vary, data transfers are asynchronous. For

5

10

15

20

25

30

35

40

45

50

55

60

65

4

example, features (e.g., elements) within one slice of data
within one accelerator of a subsequent CNN layer may be
comprised of the other features generated by a plurality of
accelerators assigned to processing the prior layer of the
CNN.

Embodiments of the present invention also distribute each
level of data within a group of slices to a different PEs of an
accelerator for processing utilizing a respective kernel
matrix or mask, herein generally referred to as a kernel. In
the case of FPGAs, the PEs of an accelerator can be uniquely
configured (e.g., temporarily hardcoded) with the kernel and
related operations assigned to a level of data or a feature
map. In the case non-programmable PEs, a kernel can be
stored within the cache associated with data processing
functions, such as 1-cache.

Some embodiments of the present invention can further
reduce the latency with processing the plurality of layers of
a CNN by processing different CNN layers within an
adapter-card type accelerator that included multiple FPGA,
GPUs, etc., and utilizing internal communication architec-
tures to improve data pipelining. Similarly, embodiments of
the present invention can identily systems that include
multiple accelerators that also include interfaces that reduce
latency by utilizing protocols that do not require the main
processor of a system to facilitate transters of data between
accelerators. Examples of interfaces that can improve data
pipelining between accelerators are accelerator adapter
cards that include coherent accelerator processor interface
(CAPI), or non-volatile memory express host controller
(NVMe) technologies.

One skilled in the art would recognize that by reducing
memory requirements of accelerators, increasing the per-
centage of PEs of an accelerator that process data for a CNN,
and reducing that latency between layer of a CNN, an IT
system 1s 1improved. Further, by automating the configuring
ol accelerators utilized by a CNN based on determining the
capabilities of accelerators and the systems that include the
accelerators, the present mvention 1s integrated within a
practical application.

The descriptions of the various scenarios, instances, and
examples related to the present invention have been pre-
sented for purposes of 1llustration but are not intended to be
exhaustive or limited to the embodiments disclosed.

The present invention will now be described 1n detail with
reference to the Figures. FIG. 1 1s a functional block diagram
illustrating distributed computing environment 100, 1n
accordance with embodiments of the present mvention. In
an embodiment, distributed computing environment 100
includes: system 101 and system 130A through system
130N, all interconnected over network 140. In another
embodiment, distributed computing environment 100 rep-
resents a cloud computing environment where one or more
of system 130A through system 130N can be located at
different geographic locations. Many modifications to the
depicted environment may be made by those skilled in the
art without departing from the scope of the invention as
recited by the claims.

System 101 and system 130A through system 130N may
be: laptop computers, tablet computers, netbook computers,
personal computers (PC), desktop computers, personal digi-
tal assistants (PDA), smartphones, wearable devices (e.g.,
digital eyeglasses, smart glasses, smart watches, personal
fitness devices, etc.), or any programmable computer sys-
tems known in the art. In certain embodiments, system 101
and system 130A through system 130N represent computer
systems utilizing clustered computers and components (e.g.,
database server computers, application server computers,

US 11,521,007 B2

S

storage systems, network routers, etc.) that act as a single
pool of seamless resources when accessed through network
140, as 1s common 1n data centers and with cloud-computing
applications. In general, system 101 and system 130A
through system 130N are representative of any program-
mable electronic device or combination of programmable
clectronic devices capable of executing machine readable
program 1nstructions and communicating via network 140.
System 101 and system 130A through system 130N may
include components, as depicted and described 1n further
detail with respect to FIG. 5, 1n accordance with embodi-
ments of the present invention.

In an embodiment, system 101 includes hardware infor-
mation 102, algorithms 110, data 120, configuration pro-
gram 300 and analysis program 400. System 101 may also
include various programs and data, such as a hypervisor; a
visualization suite; one or more network daemons; network
communication programs; a network map; and various func-
tions and/or algorithms to perform various statistical, ana-
lytical, and predictive determinations (not shown). For
example, system 101 includes programs and functions that
can trace and determine structures (e.g., layers and data
s1zes) utilized by a CNN and the timing and latency of data
processing and data pipelimng among accelerators within
distributed data environment 100.

In various embodiments, system 101 can dynamically
segment and transmit data within data 120 based on the
availability of resources and computing time among system
130A through system 130N. System 101 can also transmit,
pre-emptively or dynamically transmit copies of models and
weilght factors (e.g., weight values) within models 112 and
weight factors 114 to system 130A through system 130N
based on the portion of data 120 and one or more CNN
layers assigned to respective accelerators 132A through
132N.

In an embodiment, hardware information 102 includes
information related to the computing resources of system
130A through 130N, such as respective storage types and
s1zes within a system; the configuration of the system, such
as number and capabilities of included accelerators, network
communication capabilities (e.g., protocols, bandwidth,
etc.); and availability of the resources of a respective system,
such as computer processors/cores and memory. Hardware
information 102 may also 1dentily accelerators, storage
devices, and/or networking hardware, which include fea-
tures that enhance data transter, such as CAPI and NVMe
technologies. In some embodiments, hardware information
102 includes a network map and respective historic latencies
among system 101 and system 130A through system 130N
based on previous analyses associated with respective layers
of one or more CNNs.

In an embodiment, algorithms 110 includes one or more
CNNs, machine learning programs, and/or other neural
network programs (e.g., transferrable neural networks algo-
rithms and models (e.g., long short-term memory (LSTM),
deep stacking network (DSN), deep belief network (DBN),
compound hierarchical deep models, etc.). Algorithms 110
also 1includes respective models 112 and weight factors 114
that corresponds to each layer and/or process step of a CNN
or other program included within algorithms 110. In some
embodiments, algorithms 110 include other information
related to a CNN, such structures (e.g., number of layers,
types of layers, number of neurons or nodes/layer); changes
to mput data; changes associated with the dimensions and
resolution of intermediate feature map at a CNN layer; eftc.

In an embodiment, the plurality of models included within
models 112 and the plurality of weights included within

10

15

20

25

30

35

40

45

50

55

60

65

6

weight factors 114 also are associated with respective pro-
gram or data sizes (€.g., memory requirecments) that at least
configuration program 300 can utilize in determining how to
configure a set of hardware accelerators utilized by a CNN
and the number of accelerators to configure for a respective
CNN layer. In other embodiments, one or more items
included within models 112 and/or weight factors 114 can be
modified and/or created by training or refitting related to
executing a machine learming program (not shown) that 1s
turther associated with the CNN.

In an embodiment, data 120 represents data for analysis
by a CNN, such as image data, dialog, audio recordings,
seismic data, data to classily, etc. In another embodiment,
data 120 represents real-time or streaming data for process-
ing by a CNN. In various embodiments, data 120 also
includes data utilized by a CNN for comparison purposes
and/or additional training or machine learning by the CNN.
In some embodiments, data 120 includes a plurality of data
segments for analysis that has been generated from a larger
data set. In various embodiments, data 120 or segments of
data 120 include metadata associated with the plurality of
feature map elements (e.g., data) that indexes data 120 or the
segments of data 120 along at least the width dimension
(e.g., X-axis) of the data. A width-based 1index value can be
used to describe a number of columns or slices within the
data.

Configuration program 300 1s a program for determining,
and configuring computing resources, such as accelerators to
process and/or analyze data utilizing a CNN. In an embodi-
ment, configuration program 300 determines a set of
requirements for a CNN and information associated with the
data (e.g., data 120) to analyze utilizing the CNN. In some
embodiments, configuration program 300 communicates
with a plurality of network-accessible computing systems,
such as system 130A through 130N and determines the
availability and capabilities of one or more accelerators and
other computing resources included within a network-ac-
cessible computing system. In other embodiments, comput-
ing systems of distributed computing environment 100 peri-
odically transmit information related to the availability and
capabilities of respective computing resources of a comput-
ing system, such as system 130A.

Configuration program 300 configures a plurality of
accelerators distributed among the computing systems of
distributed computing environment 100 to process and/or
analyze data utilizing models and weight factors related to
one or more layers of a CNN. In an embodiment, configu-
ration program 300 utilizes one or more programs within
system 101 to segment or partition the data for analysis (e.g.,
data 120) and distributes the data segments among the
configured accelerator included within system 130A through
130N.

In various embodiments, configuration program 300
determines and configures sets of accelerators (e.g., allo-
cates on-chip memory buflers, assigns PEs, etc.) respec-
tively associated with layers of a CNN based on a fine-
grained row/column bullering scheme that stores only a
portion of the data to process, and the number and size of
data segments to process. In addition, configuration program
300 also identifies and distributes the models and related
weilght factors corresponding to layers of the CNN based on
the distributed data segments and structure of the CNN. In
an embodiment, configuration program 300 initiates the
execution of the CNN.

In a further embodiment, configuration program 300 can
utilize other information associated with network 140 and
system 130A through 130N to make various determinations

US 11,521,007 B2

7

and hardware assignments. In one example, 1f a set layers of
a CNN can execute quickly based on historic execution
information and process small data segments, then configu-
ration program 300 may assign this set of layers to a system
that include accelerators with a large number of process
clements to pipeline data processing within a smaller group
of accelerators. In another example, 1 a layer of the CNN
processed large volumes of data, then configuration program
300 may assign this layer of the CNN to accelerators that
includes technologies that reduce latencies and improve
bandwidth while minimizing the demands on the processors
of the hosting system.

Analysis program 400 controls the receipt and analyses of
data among a plurality of accelerators configured by con-
figuration program 300 to process one or more layers of a
CNN. In some embodiments, analysis program 400 imple-
ments a fine-gramned row/column buflering and pipeliming
scheme among the plurality of configured accelerators based
on the structure of the CNN, and parameters and dictates
corresponding to layers of the CNN, such as a dimensions of
a feature map, a kernel size, a stride increment value, etc.
For example, analysis program 400 dictates the number of
data slices received to an assigned accelerator based on a
kernel size and a stride increment. Subsequently, analysis
program 400 utilizes PEs of an accelerator to process sets of
clements of the feature map (e.g., processed data) within a
group of data slices utilizing one or more kernels, models
and weight factors related to a layer of the CNN.

In response to analyzing a group of data slices, analysis
program 400 pipelines analyses and/or intermediated feature
maps to one or more nodes ol a subsequent layer of the
CNN. In various embodiments, analysis program 400 clears
(1.e., dequeues) and releases buller memory of an accelerator
corresponding to a stride increment number of sequential
data slices (e.g., lowest index value). Analysis program 400
modifies an analysis interval by a stride increment value and
analyzes another group of data slices. In addition, 1f addi-
tional unprocessed data slices are available, analysis pro-
gram 400 receives a stride increment value number of
sequential unprocessed data slices to an accelerator for
processing.

In an embodiment, system 130A through system 130N are
representative of a plurality of computing systems. A system
(e.g., system 130A through system 130N) includes respec-
tive instances ol storage 131 (e.g., storage 131A through
storage 131N) and one or more respective accelerators (e.g.,
accelerator 132 A through accelerator 132N). System 130A
through 130N may also include various programs and data,
such as a hypervisor, virtualization software, a system
management facility (SMF), communications programs, one
or more operating systems, etc. (not shown). For example,
system 130A through system 130N include software utilized
to program FPGAs related to instance of accelerator 132A.
Similarly, system 130A through system 130N may include
soltware utilized manage one or more accelerators based on
dictates of system 101 and/or the structure of the executing
CNN. System 130A through system 130N may also include
various other hardware and software resources utilized by
aspects of the present imnvention. In various embodiments,
one or more ol system 130A through system 130N can
represent other data processing elements either physical or
virtual, such as blade servers, rack-mounted servers, soft-
ware defined computing nodes, virtual machines, etc.

In an embodiment, storage 131A through storage 131N
are representative of a combination of persistent storage,
such as hard drives and flash drives; and volatile storage,
such as DDR memory (e.g., double data rate dynamic

10

15

20

25

30

35

40

45

50

55

60

65

8

random-access memory) icluded within respective system
130A through system 130N. In various embodiments, stor-
age 131A through storage 131N are utilized to store one or
more aspects of a CNN (e.g., algorithms, models, weight
factors, etc.), data to process by the CNN, and/or interme-
diate feature maps/results generated by one or more layers of
the CNN. In one example, storage 131A receives, from
system 101, a portion of data 120 to be processed by
accelerator 132A and the algorithms, models, and weight
factors related to the first layer of a CNN. In another
example, storage 131N stores the algorithms, models, and
weight factors related to the last layer of the CNN received
from system 101 and the portion of the output of the final
layer of the CNN generated by accelerator 132N.

In some embodiments, a system, such as system 130A
includes a plurality of instances of accelerator 132A, such as
accelerator 132A-1 through 132A-30 (not shown). In some
scenarios, the plurality of mstances of accelerators 132A-1
through 132A-30 included within system 130A are of a
homogeneous hardware configuration, such as the same
adapter card model from the same manufacturer, the same
amount of DDR memory, the same FPGAs, etc. In other
scenari0s, one or more accelerators of accelerators 132A-1
through 132A-30 differ from other accelerators within sys-
tem 130A. In another example, accelerators 132A-1 through
132A-10 are based on FPGAs of one manufacturer, accel-
erators 132A-11 through 132A-20 are based on two or more
models of GPUs. Instances of an accelerator may include
components, as depicted and described in further detail with
respect to FIG. 5

FIG. 1 provides only an illustration of one implementa-
tion and does not imply any limitations with regard to the
environments in which different embodiments may be
implemented. Many modifications to the depicted environ-
ment may be made by those skilled in the art without
departing from the scope of the invention as recited by the
claims.

In one embodiment, system 101 and system 130A through
system 130N communicate via network 140. Network 140
can be, for example, a local area network (LAN), a tele-
communications network (e.g., a portion of a cellular net-
work), a wireless local area network (WLAN), such as an
intranet, a wide area network (WAN), such as the Internet,
or any combination of the previous and can include wired,
wireless, or fiber optic connections. In general, network 140
can be any combination of connections and protocols that
will support communications between system 101 and sys-
tem 130A through system 130N, in accordance with
embodiments of the present invention. In various embodi-
ments, network 140 operates locally via wired, wireless, or
optical connections and can be any combination of connec-
tions and protocols (e.g., personal area network (PAN), near
field communication (NFC), laser, infrared, ultrasonic, etc.).
In some embodiments, a portion of network 140 represents
a communication architecture within a larger computing
system (not shown) that includes one or more of system
130A through system 130N (e.g., blade servers, rack
mounted servers, etc.).

FIG. 2 15 an 1llustrative example of aspects of one or more
accelerators included within system 130A through system
130N utilized to practice various embodiments of the pres-
ent invention. Accelerator 132A 1s representative of an of
accelerator that processes data for a layer of a CNN (not
shown), such as layer N. In an embodiment, accelerator
132A includes process element (PE) array 215, cache 217,

US 11,521,007 B2

9

memory 218, and a plurality of physical and virtual i1tems
depicted within long-dashed box 200, such as data slice
212A.

In an embodiment, accelerator 132B 1s representative of
one or more other accelerators. In another embodiment,
accelerator 132B represents another portion of accelerator
132A configured for processing layer N+1 of the CNN by
directly recerving an intermediate feature map/results gen-
erated by accelerator 132A for processing layer N of the
CNN. Accelerator 132B 1s related to a subsequent process-
ing layer of the CNN, such as layer N+1. In some embodi-
ments, accelerator 132B represents a combination of the
above embodiments.

In the 1llustrative example embodiment, long-dashed box
200 represents on-chip features, such as process element
(PE) array 215, cache 217, and a representation of an
allocated memory buller (e.g., the cube) that includes slices
212A, 212B, 212C, and 212D. In an embodiment, the
depicted bufler 1s a FIFO bufler (1.e., first 1n, first out). In
some embodiments, accelerator 132 A includes a plurality of
instances of long-dashed box 200 and respective compo-
nents based on the quantity of PEs and memory included
within an IC chip (not shown) of accelerator 132A. An IC
chip represented by or included within accelerator 132A
may 1include: an FPGA, a GPU, an application-specific
integrated circuit (ASIC), a programmable logic array, or
other programmable integrated circuit known in the art.
Long-dashed box 200 also includes a plurality of non-
hardware items related to accelerator 132A.

In one embodiment, input 201 i1s representative of a
stream of data corresponding to a portion of data 120 (e.g.,
an 1nitial feature map) to be analyzed by a first layer of a
CNN utilizing accelerator 132A. In another embodiment,
mput 201 1s representative of one or more intermediate
feature maps/results generated by the prior layer of a CNN.
In some scenarios, input 201 1s another intermediate feature
map related to an analysis performed by a different portion
(e.g., another PE array 215, another portion of cache 217,
and another portion of memory 218) of accelerator 132A. In
other scenarios, input 201 1s representative of intermediate
feature maps/results related to an analysis performed by one
or more different accelerators, such as accelerator 132C and
accelerator 132D (not shown) for the prior layer of the CNN
(1.e., layer N-1) and pipelined to accelerator 132A.

In various embodiments, the portion of data 120 assigned
accelerator 132A 1s represented by the plurality of instances
of data element 205A (solid circles) and the plurality of
instance of data element 205B (unfilled circles). In the
depicted example, instances of data element 205A represent
data recerved to a memory buller of accelerator 132A (e.g.,
represented by the cube that includes data slices 212A,
2128, 212C, and 212D). The plurality of instances of data
clements 205B represent data assigned to accelerator 132A
not yet received via mput 201.

In one embodiment, the size (in bits) of the portion of data
assigned to accelerator 132A for processing 1s equal to the
product of the values related to items 202A, 202B, 202C,
and 202D. In one example, input 201 represents an assigned
segment of an 1mage or a feature map and the plurality of
data elements 205A and 205B represent pixels associated
with the assigned image segment or feature map. Items
202A and 202B represent the respective width (X-axis or
number of columns) dimension and height (Y-axis, or num-
ber of rows) dimension, 1n pixels, of the assigned image
segment. The 1llustrative example depicts a feature map
cight elements wide. The value associated with item 202C
represents the quantization (1.e., resolution) 1n bits of the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

pixels (e.g., plurality data elements 205A and 205B) asso-
ciated with the assigned data. In an embodiment, the value
of item 202D (e.g., Z-axis or depth dimension) represents
the number of levels within the assigned/received data or
feature map. For example, each depth level or Z-axis incre-
ment (e.g., respective XY planes) can represent differing
filters applied to the assigned image segment, different
depths associated with an assigned 3-D 1mage segment, or
another data manipulation associated with the CNN. The
illustrative example depicts four depth levels or Z-axis
increments (e.g., item 202D).

In the illustrative example, kernel 230 (speckle filled,
rounded corner box) represents a 3x3 matrix. Stride 232
indicates an analysis increment value of one. Instances of
kernel 230 are utilized by the CNN to perform various
operations based on the values included within a kernel’s
matrix, such as identify, edge detection, sharpen, gaussian
blur, etc. In an embodiment, the number of data slices (e.g.,
YZ plane arrays of elements 205A) 1s equal to the width-
value of kernel 230 plus the increment value of stride 232.
In the illustrative example, the number of data slices asso-
ciated with accelerator 132A equals 4 (i.e., data slices 212A,
2128, 212C, and 212D). In addition, each slice or YZ (e.g.,
height/depth) plane can be related to the width-based (e.g.,
X-axis) index values associated with feature map/data ele-
ments.

In various embodiments, each depth level (1.e., Z-axis
increment or index) 1s assigned a respective instance of
kernel 230 (not shown), which can be the same matrix or
matrices of the same size, but differing values based on the
models utilized by the CNN. In the illustrative example,
respective mstances of kernel 230 preform analyses of data
clements 205 within respective XY (e.g., width/height)
planes of data within sequential sets of data slices, such as
data slices 212A, 212B, and 212C. In an embodiment,
accelerator 132A assigns a number of process elements
(PEs) of PE array 215 equal to a value for the number of
Z-axis levels (e.g., value of 1item 202D) corresponding to the
data assigned to accelerator 132A. Utilizing separate PEs,
accelerator 132A can concurrently perform groups of analy-
SES.

In the 1llustrative example, the downward pointing verti-
cal arrow associated with kernel 230 and stride 232 indicates
the direction of the stride increment and analysis of enclosed
instances of data elements 205A included within an area
bounded by an 1nstance of kernel 230. For example, the first
group ol analyses associated with instances of kernel 230
includes the uppermost three istances of data element 205A
(e.g., 1°%, 2" and 3" data elements) within each 3x3 group
of data elements included within data slices 212A, 212B,
and 212C within respective Z-axis levels. The next group of
analyses increments the istances of kernel 230 to include
the next three instances of element 205A within each sub-
sequent 3x3 group (e.g., a subset of the rows and columns)
of data elements within respective depth level (1.e., Z-axis
increment or index) based on the increment value of stride
232 (e.g., 27?37 and 47 data elements of data slices 212A,
2128, and 212C).

In an embodiment, 1n response to processing each feature
map/data element within data slices 212A, 212B, and 212C,
accelerator 132A pipelines the plurality of results (repre-
sented by output 240A) to another accelerator, such as
accelerator 132B. Subsequently, accelerator 132 A releases/
clears the on-chip memory storing data slice 212A (dis-
cussed 1n further detail with respect to FIG. 4). In the
illustrated example, the horizontal arrow represents the
buflering direction for subsequent data slices, such as data

US 11,521,007 B2

11

slice 212E (not shown). In addition, accelerator 132 A resets
the analysis index (e.g., position) of the respective istances
of kernel 230 to analyze, unidirectionally the uppermost
three instances of data element 205A 1ncluded within each
data level of data slices 212B, 212C, and 212D. For
example, 1n response to analyzing each instance of data
element 205 within each data level of slices 212A, 212B,
and 212C, kernel 230 performs the next set of analyses
starting with the 1st, 2nd, and 3rd data elements within data
slices 212B, 212C, and 212D.

PE array 215 represents a plurality of physical computa-
tional structures (e.g., PE 215-1, PPE 215-2, PE 215-3
through PE 215-N) within an IC (not shown) of accelerator
132A. PEs of PE array 215 are operatively couple and
assigned memory from cache 217. Based on the 1llustrative
example, accelerator 132A assigns four process elements:
PE 215-1, PE 215-2, PE 215-3, and PE 215-4 (not shown)
to process the data assigned to accelerator 132A.

Cache 217 1s on-chip memory included within an IC of
accelerator 132A. In an embodiment, a portion of memory
of cache 217 assigned to a PE can be configured as 1-cache
(1.e., 1nstruction cache) that can include one or more com-
putational models for a layer of a CNN. Another portion of
the memory assigned to a PE can be configured as d-cache
(1.e., data cache), which stores at least one or more weigh
values, received from system 101, and associated with a
model of the CNN. In some embodiments, another portion
of cache 217 utilizes a double buflering method (e.g., a
ping-pong buller scheme) to swap weight factors between
on-chip memory and off-chip DDR memory, represented by
memory 218.

In one embodiment, memory 218 represents DDR
memory 1ncluded on an accelerator module or accelerator
adapter card. In another embodiment, memory 218 repre-
sents DDR memory associated with memory included
within storage 131A of system 130A. In various embodi-
ments, memory 218 stores at least the weight factors asso-
ciated with the models corresponding to a layer of the CNN
that 1s processes by accelerator 132A. In some embodi-
ments, with respect to machine learning, memory 218
includes modified weight factors based on training or refit-
ting one or more models of the CNN and updating weight
factors 114.

In the illustrative example, output 240A 1s representative
of mtermediate feature map generated by accelerator 132A
and pipelined to at least accelerator 132B. In some embodi-
ments, the ellipsis after accelerator 132B represents one or
more subsequent layers of the CNN, such as layers N+2 and
N+3 and respectively assigned and configured accelerators.

FIG. 3 1s a flowchart depicting operational steps for
configuration program 300, a program that analyzes the
requirements of an analysis associated with a CNN and
configures a plurality of computing systems and included
accelerators to support processing data by the CNN, 1n
accordance with embodiments of the present invention. In
some embodiments, a client version of configuration pro-
gram 300 can execute within a system within distributed
computing environment 100 utilized to process one or more
layers of a CNN.

In step 302, configuration program 300 determines infor-
mation associated with an analysis. In an embodiment,
configuration program 300 determines information associ-
ated with an analysis, such as a CNN algorithm to utilize; the
structure of the CNN algorithm; a set of models correspond-
ing to the layer; a kernel size, a stride increment, weight
factors respectively associated with a set of models; kernel
values (e.g., matrices) respectively associated with a level of

5

10

15

20

25

30

35

40

45

50

55

60

65

12

data associated with a layer of the CNN, 1mnput data dictates,
data source location(s), output dictates, etc. Additional infor-
mation related to the CNN or the structure of the CNN
include a number of neurons, a number of layers, tensor
s1zes, numbers of activations, trainable parameters, and
non-trainable parameters.

In various embodiments, configuration program 300
determines information associated with an analysis based on
information within algorithms 110 and/or information sup-
plied by a user or computing entity, such as an Al program,
an application programming interface call, a sematic query,
a request for NLP, a machine vision program, processing of
satellite 1images, genomic analyses, voice synthesizing, data
classification, etc.

In step 304, configuration program 300 determines a set
ol parameters related to the data to analyze. In an embodi-
ment, configuration program 300 determines a set of param-
cters related to the data to analyze such as the size and
resolution of the original data to analyze within data 120, the
depth of the data original data to be processed by a CNN,
and other aspects associated with the data previously dis-
cussed with respect to FIG. 2, such as determining a number
of PEs to assign and/or configure. In another embodiment, 1f
data 120 has been distributed (e.g., broken up) among a
plurality of segments, then configuration program 300 deter-
mines a set of parameters corresponding to each segment of
the distributed data. For example, 1t the accelerators within
distributed computing environment 100 memory are con-
strained and cannot store data 120 even in the fine-grained
row/column scheme of the present invention, then either
system 101 or configuration program 300 distributes data
120 1nto smaller segments.

In some embodiments, configuration program 300 deter-
mines additional parameters related to the data to analyze
(e.g., original data, intermediated feature maps, results of
analyses, etc.), such as model sizes and storage sizes asso-
ciated with weight factors utilized by a layer of the CNN,
which affects the on-chip memory requirements and can
dictate the number of accelerators utilized for a respective
layer of the CNN. In an example, configuration program 300
determines additional parameters related to respective layers
of the CNN based on historical information included within
algorithms 110 related to eflects of an analysis, such as
whether the analysis at a layer of the CNN changes the shape
(e.g., dimensions) of an intermediate feature map, increases
or decreases the resolution of an output of an analysis, pools
and/or mergers data from various sources, etc.

In step 306, configuration program 300 identifies infor-
mation related to a set of hardware accelerators. In an
embodiment, configuration program 300 i1dentifies informa-
tion related to a set of hardware accelerators distributed
among systems of distributed computing environment 100,
such as system 130A through system 130N. In addition,
configuration program 300 also identifies other hardware
information related to system 130A through system 130N
that can affect the operation of an accelerator or the execu-
tion of the CNN, such as the availability and quantities of
other computing resources (€.g., processor cores, persistent
memory, DDR memory, network bandwidth, advanced bus
or interface architectures, etc.).

In one embodiment, configuration program 300 i1dentifies
information related to a set of hardware accelerators based
on information stored within hardware information 102. In
another embodiment, 11 configuration program 300 cannot
identily information related to a hardware accelerator, then
configuration program 300 queries one or more functions
within a system, such as an SFM to identily the capabilities

US 11,521,007 B2

13

and characteristic ol one or more hardware accelerators
included within the system. Capabilities and characteristics
corresponding to a hardware accelerator may include, a
quantity and architecture of on-chip memory available for
configuring one or more builers, a number and type of PEs
of the hardware accelerator (e.g., FPGA elements, GPU
cores and GPU core types, etc.), a quantity of cache memory
available for storing instructions, a quantity ol cache
memory for storing weight factors and other non-analyzed
data, a quantity of off-chip DDR memory associated with the
accelerator, etc.

In step 308, configuration program 300 configures a set of
hardware accelerators. In one embodiment, configuration
program 300 assigns and configures a set of hardware
accelerators based on the information and parameters deter-
mined 1n step 302, step 304, and step 306 for a respective
layer of a CNN and other information previously discussed
with respect to at least FIG. 2. For example, with respect to
a CNN layer that utilizes a 3x3 kernel and a stride increment
of 1, configuration program 300 configures a memory buller
based on storing four data slices for each accelerator utilized
at the CNN layer.

Configuration program 300 further configures the set of
accelerators by assigning a number of PE equal to the
“depth” of the data and assigning (e.g., allocating) a memory
bufler, in KB s, based on the number of slices, a resolution
of the feature map/data elements, and the number of feature
map/data elements within a slice (e.g., height™# of levels). In
addition, configuration program 300 configures on-chip
cache memory (e.g., cache 217 of FIG. 2) of the set of
accelerators utilized by the layer of the CNN based on the
s1zes of kernels, size of the models that process slices of data
utilizing the respective kernels, and the size of weight
factors, etc. Configuration program 300 may also configure
ofl-chip DDR memory assigned to store the weight factors
and other items related to the layer of the CNN.

In some embodiments, configuration program 300 also
includes other factors related to distributed computing envi-
ronment 100, 1n response to selecting and configuring hard-
ware accelerators, such as historic latency information and
CNN layer process times. In one example, configuration
program 300 utilizes latency information to determine
whether to buller additional data slices at a set of accelera-
tors for one CNN layer, and allocated an increased quantity
of memory for the additional data slices. In another example,
configuration program 300 utilizes latency information and/
or computation speeds of models to determine the systems
and/or accelerators that are assigned to process a layer of the
CNN.

Still referring to step 308, in a further embodiment
configuration program 300 selects a set of accelerators to
assign to a layer of the CNN based on improving compu-
tational ethiciencies associated with one or more models. In
one scenario, with respect to an FPGA IC (not shown),
configuration program 300 can utilize a function of a respec-
tive system, such as system 130A to dynamically configure
(e.g., temporarily hardwire) and program the plurality semi-
conductor features within the FPGA to create one or more
instances of PE array 215 optimized for one or more models
of a CNN layer. In another scenario, with respect to an GPU
IC (not shown), configuration program 300 utilizes a func-
tion of a respective system, such as system 130A can assign
specialized GPU elements, such as vector processors to
create one or more stances of PE array 215 optimized for
one or more models of a CNN layer.

In step 310, configuration program 300 executes the
analysis. In one embodiment, configuration program 300

10

15

20

25

30

35

40

45

50

55

60

65

14

begins executing an analysis by distributing the models,
weight factors, and other 1tems associated with a plurality of
layers of a CNN (e.g., within at least algorithms 110, models
112, and weight factors 114) among the sets of configured
accelerators within the systems of distributed computing
environment 100. In various embodiments, configuration
program 300 executes one or more aspects ol analysis
program 400 among the configured systems and respective
accelerators of distributed computing environment 100. In
another embodiment, configuration program 300 utilizes one
or more aspects of system 101 to aggregate the outputs,
analyses, feature maps, and/or results from analysis program
400 and/or one or more layers of the CNN to complete the
processing and/or analysis of data 120 by a CNN.

In some embodiments, configuration program 300 utilizes
one or more programs and information within system 101 to
prioritize traflic associated with the CNN across network
140 and computing resource utilization among system 130A
through system 130N that process the CNN. In a further
embodiment, 11 distributed computing environment 100 1s
resource constrained, configuration program 300 can recon-
figure one or more accelerators assigned to a prior layer of
the CNN to process one or more intermediate feature maps
by an unexecuted layer of the CNN.

FIG. 4 1s a flowchart depicting operational steps for
analysis program 400, a program that controls the pipelining
and analyses of data associated with accelerators utilized by
a CNN, 1 accordance with embodiments of the present
invention. In some embodiments, respective client instances
ol analysis program 400 executes concurrently within sys-
tems of distributed computing environment 100 utilized to
process data for one or more layers of a CNN. In another
embodiment, an 1nstance of analysis program 400 1s respec-
tively associated with a layer of a CNN and can also
interface with an instance of configuration program 300.

In step 402, analysis program 400 receives a portion of
data to analyze. In one embodiment, analysis program 400
receives a number of slices of data (previously discussed
with respect to FIG. 2) to one or more accelerators based on
the width of the kernel plus the stride increment. For
example, analysis program 400 receives four slices of data
for a kernel of matrix size 3x3 and stride=1, or seven slices
of data for a kernel of matrix size 5x5 and a stride=2. In
another embodiment, analysis program 400 utilizes stride
increments that vary within a layer of the CNN, such as
stride 1ncrement of two between feature map elements of
sequential data slices for vertical analyses, and a stride
increment of 1 slice between sequential data slices 1n
response to completing a group of vertical analyses.

In various embodiment, responsive to incrementing an
analysis interval (step 408) analysis program 400 can
receive one or more other slices of data to the accelerator. In
one scenario, 1f data 120 or a segmented version of data 120
includes one or more slices that have not been processed by
the assigned accelerator, then analysis program 400 receives
a number of data slices to the assigned accelerator equal to
the stride increment or horizontal stride increment. In
another scenario, 1f the number of unreceived data slices 1s
less that stride increment, then analysis program 400
receives the remaining data slices. System 101 may transmit
one or more “0” padded slices to enable analysis program
400 to complete another kernel width of analyses.

In some embodiments, an instance ol analysis program
400 receives a group of sequential data slices of data 120
(e.g., a subset of data) to an accelerator configured to process
a layer of a CNN (FIG. 3 step 308). In one example, analysis
program 400 determines that accelerator 132A receives

US 11,521,007 B2

15

slices N through N+3 of data 120. In other embodiments, an
instance of analysis program 400 receives a segmented
version of data 120, distributed among respective instances
of storage 132A through storage 132N, each segment
includes a plurality of data slices. In an example, system
130A receives data segments 1 through 5 (not shown) of data
120, and system 130N receives data segments 6 through 15
(not shown) of data 120. Analysis program 400 may dictate
that groups of sequential data slices, corresponding to a data
segment of data 120 are received by respective accelerators
included within one or more systems. For example, slices N
through N+3 of segment 1 are received by accelerator
132A-1 of system 130A, and slices N through N+3 of
segment 7 are received by accelerator 132B-2 of system
130B.

Still referring to step 402, 1n another embodiment an
instance of analysis program 400 supporting another stage of
the CNN receives one or more intermediate feature maps/
results for analysis from a plurality of process elements
and/or accelerators of a prior level of the CNN. In one
scenar1o, analysis program 400 receives complete slices of
intermediate feature maps/results from the prior layer of the
CNN. In other scenarios, analysis program 400 receives a
one or more elements of a feature map from a plurality of
PEs and/or accelerators of a prior level of the CNN. Sub-
sequently, analysis program 400 assembles the received
feature map elements 1nto data slices based on the structure
ol a feature map related to the layer of CNN to process.

In step 404, analysis program 400 analyzes a group of
slices of data. In an embodiment, a group of analyses
corresponding to a group of slices refers to at least a
convolutional operation, such as a matrix math or other dot
product operation that applies values within a matrnix of a
kernel respectively associated with a level of data, and
turther with respect to the current layer of the CNN to a
plurality of feature map/data elements within a group of data
slices. Analysis program 400 utilizes assigned PEs of an
accelerator to perform various analyses among a group of
sequential (e.g., consecutive) data slices based on the data
level assigned to a PE of the accelerator. In some embodi-
ments, analysis program 400 analyzes feature map/data
clements within a group of slices of data received to an
accelerator based on information and actions previously
discussed with regard to FIG. 2. In some embodiments,
analysis program 400 utilizes (e.g., swaps out) differing
weight factors related to other portions of an analysis
between on-chip memory and DDR memory (not shown) of
an accelerator for a respective system as diflerent levels
and/or portions of the data are processed by the accelerator.

In other embodiments, 1n response to executing one or
more kernel-based operations among a set of feature map/
data elements within a sequential group of data slices,
analysis program 400 further utilizes one or more models of
models 112 and related weight factors of weight factors 114
related to the layer of the CNN to perform additional
operations associated with the group of analyses for the set
ol feature map/data elements. In various embodiments, 1n
response to releasing a stride-value number of processed
data slices (e.g., slice N) and receiving a stride-value number
of new (e.g., sequential) data slices, such as slice N+4. In an
embodiment, analysis program 400 performs analyzes uni-
directionally (e.g., top-down), for another group of slices
utilizing the assigned PEs of the accelerator, such as data
slices N+1, N+2, and N+3.

In step 406, analysis program 400 outputs analyses. In
some embodiments, analysis program 400 pipelines the
results of analyses (e.g., intermediate feature maps) related

10

15

20

25

30

35

40

45

50

55

60

65

16

to a group of data slices to one or more neurons/nodes of the
CNN and included accelerators based on the structure of the
CNN. In an embodiment, as one or more models of the
current CNN layer generate results (e.g., intermediate fea-
ture maps) of an analysis, analysis program 400 can pipeline
feature maps to the subsequent (i.e., next) layer of the CNN
asynchronously. In another embodiment, the last (e.g., {inal)
layer of the CNN outputs one or more results based on the
original input data and the plurality of layers of the CNN.
Analysis program 400 may transmit the final results to
system 101 or a computing entity that requested the execu-
tion of the CNN.

In various embodiments, in addition to pipelining the
analyses corresponding to a group of consecutive data slices,
analysis program 400 clears and releases the portion of
memory corresponding to the lowest number (e.g., index
value) data slice of the processed group of consecutive data
slices from a memory bufler (not shown) of a utilized
accelerator. For example, in response to completing the
analyses corresponding to data slices 5, 6, and 7, analysis
program 400 dequeues data slice 5 and releases the bufler
memory for reuse by a subsequent data slice.

In decision step 407, analysis program 400 determines
whether additional data i1s available to analyze. In one
embodiment, analysis program 400 determines that addi-
tional data 1s available to analyze for a layer of a CNN based
on receiving one or more additional slices of data 120 from
system 101. In another embodiment, analysis program 400
determines that additional data 1s available to analyze for a
layer of a CNN based on determining that the width (e.g.,
X-axis) value of a data segment 1n process 1s at least a value
of one greater than value of the highest slice number of the
group of slices analyzed at step 404. In some embodiments,
analysis program 400 determines that additional data is
available to analyze based on a dictate that “0” padding
slices are included at the beginning and end of the data.

Responsive to determining that additional data 1s avail-
able to analyze (Yes branch, decision step 407), analysis
program 400 increments an analysis 1nterval (step 408).

In step 408 analysis program 400 increments an analysis
interval. In one embodiment, analysis program increments
an analysis interval related to a group of slices by the value
of the stride increment associated with a kernel-analysis
increment. In another embodiment, analysis program incre-
ments an analysis interval related to a group of slices by a
dictated stride increment. In some embodiment, responsive
to mcrementing an analysis interval, analysis program 400
can also indicate to a data source or data storage location,
such as storage 131A of system 130A, to transmit at least a
stride increment value number of subsequent slices of data,
or subsequent slices of a data segment.

Referring to decision step 407, responsive to determining,
that additional data 1s not available to analyze, (No branch,
decision step 407) the istance of analysis program 400
associated with at least the respective data segment and the
current layer of the CNN terminates.

FIG. 5 depicts computer system 500, which 1s represen-
tative of system 101 and system 130A through system 130N.
Computer system 500 1s an example of a system that
includes software and data 512. Computer system 500
includes processor(s) 501, cache 503, memory 502, persis-
tent storage 505, communications unit 507, mput/output
(I/0) mterface(s) 306, and communications fabric 304.
Communications fabric 504 provides communications
between cache 503, memory 502, persistent storage 503,
communications unit 507, and input/output (I/O) interface(s)
506. In some embodiments, one or more of accelerator 132A

US 11,521,007 B2

17

through accelerator 132N also include one or more compo-
nents of computer system 500.

Communications fabric 504 can be implemented with any
architecture designed for passing data and/or control infor-
mation between processors (such as microprocessors, com-
munications and network processors, €tc.), system memory,
peripheral devices, and any other hardware components
within a system. For example, communications fabric 504
can be implemented with one or more buses or a crossbar
switch.

Memory 502 and persistent storage 505 are computer
readable storage media. In this embodiment, memory 502
includes random-access memory (RAM). In general,
memory 502 can include any suitable volatile or non-volatile
computer readable storage media. Cache 503 1s a fast
memory that enhances the performance of processor(s) 501
by holding recently accessed data, and data near recently
accessed data, from memory 502.

Program 1instructions and data used to practice embodi-
ments of the present invention may be stored in persistent
storage 505 and 1n memory 502 for execution by one or
more of the respective processor(s) 301 via cache 503. In an
embodiment, persistent storage 505 includes a magnetic
hard disk drive. Alternatively, or 1n addition to a magnetic
hard disk drive, persistent storage 505 can 1nclude a solid-
state hard drive, a semiconductor storage device, a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM), a flash memory, or any other computer
readable storage media that i1s capable of storing program
istructions or digital information.

The media used by persistent storage 505 may also be
removable. In one example, a removable hard drive may be
used for persistent storage 5035. Other examples include
optical and magnetic disks, thumb drives, smart cards that
are 1nserted into a drive for transfer onto another computer
readable storage medium that i1s also part of persistent
storage 305.

Software and data 512 are stored 1n persistent storage 503
for access and/or execution by one or more of the respective
processor(s) 501 via cache 503 and one or more memories
of memory 502. With respect to system 101, software and
data 512 includes hardware information 102, algorithms
110, models 112, weight factors 114, configuration program
300, analysis program 400, and other programs and data (not
shown). With respect to system 130A through system 130N,
software and data 512 includes various and programs (not
shown) that are utilized to operate system 130A through
system 130N and data related to the current mnvention.

Communications unit 507, in these examples, provides
for communications with other data processing systems or
devices, including resources and program executing on the
Internet (not shown). In these examples, communications
unit 507 includes one or more network interface cards.
Communications unit 507 may provide communications,
through the use of either or both physical and wireless
communications links. Program instructions and data used
to practice embodiments of the present invention may be
downloaded to persistent storage 305 through communica-
tions unit 507.

I/O mterface(s) 506 allows for mput and output of data
with other devices that may be connected to each computer
system. For example, I/O interface(s) 506 may provide a
connection to external device(s) 308, such as a keyboard, a
keypad, a touch screen, and/or some other suitable input
device. External device(s) 508 can also include portable
computer readable storage media, such as, for example,
thumb drives, portable optical or magnetic disks, and

10

15

20

25

30

35

40

45

50

55

60

65

18

memory cards. Software and data used to practice embodi-
ments of the present invention can be stored on such portable
computer readable storage media and can be loaded onto
persistent storage 505 via I/O interface(s) 506. I/O interface
(s) 506 also connect to display 509.

Display 509 provides a mechanism to display data to a
user and may be, for example, a computer monitor. Display
509 can also function as a touch screen, such as the display
of a tablet computer or a smartphone.

The programs described herein are i1dentified based upon
the application for which they are implemented 1n a specific
embodiment of the invention. However, 1t should be appre-
ciated that any particular program nomenclature herein 1s
used merely for convenience, and thus the invention should
not be limited to use solely 1n any specific application
identified and/or implied by such nomenclature.

The present mnvention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present 1nvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random-access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random-access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program 1instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination

US 11,521,007 B2

19

ol one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
istructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
arca network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing information of the
computer readable program instructions to personalize the
clectronic circuitry, mn order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mmvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general-purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a sequence of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in

10

15

20

25

30

35

40

45

50

55

60

65

20

succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, 1n a par-
tially or wholly temporally overlapping manner, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1in the
art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or technical improvement over technologies

found 1n the marketplace, or to enable others of ordinary
skill 1in the art to understand the embodiments disclosed
herein.

What 1s claimed 1s:

1. A method comprising:

determining, by one or more computer processors, a set of
parameters related to a feature map to analyze at a
respective layer of a convolutional neural network
(CNN), wherein the set of parameters related to the
feature map includes a quantization value; and respec-
tive values for a first dimension, a second dimension,
and a third dimension, which correspond to a shape
describing the feature map;

configuring, by one or more computer processors, a set of
hardware accelerators for the respective layer of the
CNN;

recerving, by one or more computer processors, a portion
of the feature map to the configured set of hardware
accelerators for the respective layer of the CNN,
wherein the received portion of the feature map
includes a group of sequential data slices, and wherein
the group of sequential data slices 1s based, at least 1n
part, on a number of sequential data slices equal to a
value corresponding to a kernel size plus a value
corresponding to stride increment value corresponding
to the respective layer of the CNN; and

analyzing, by one or more computer processors, the group
of sequential data slices among the configured set of
hardware accelerators.

2. The method of claim 1: further comprising:

determining, by one or more computer processors, infor-
mation associated with an analysis related to the CNN,
wherein:

(1) the mnformation associated with the analysis related to
the CNN 1ncludes information respectively associated
with a layer of a plurality of layers of the CNN, and

(1) the information respectively associated with the layer
of the CNN includes a kernel size, a stride increment
value, and information related to a plurality of kernel
matrices, models, and weight factors utilized by one or
more analyses performed at the layer of the CNN.

3. The method of claim 1, wherein:

(1) the quantization value 1s a value 1n bits related to a
resolution of a plurality of elements that comprise the
feature map to analyze;

US 11,521,007 B2

21

(11) a value of the first dimension corresponds to a number
of elements associated with a width dimension of the
feature map to analyze;

(111) a value of the second dimension corresponds to a
number of elements associated with a height dimension
of the feature map to analyze; and

(1v) a value of the third dimension corresponds to a
number of levels associated with a depth dimension of
the feature map to analyze.

4. The method of claim 3, wherein a level of the feature

map to analyze 1s associated with a respective filter of a
plurality of filters utilized to generate the feature map.

5. The method of claim 1, wherein configuring the set of

hardware accelerators to process the respective layer of the
CNN further comprises:

identifying, by one or more computer processors, based
on the determining information associated with the
analysis related to the CNN, a kernel size and a stride

increment value corresponding to the respective layer
of the CNN; and

allocating, by one or more computer processors, a quan-
tity of memory for respective memory bullers within
the set of hardware accelerators based on the kernel
size, the stride increment value; and the determined
quantization value and the value corresponding to the
third dimension of the feature map associated with the
respective layer of the CNN.

6. The method of claim 1, wherein configuring set of

hardware accelerators for the respective layer of the CNN
turther comprises:

allocating, by one or more computer processors, a quan-
tity ol respective process elements within the set of
hardware accelerators based on the value correspond-
ing to the third dimension of the feature map associated
with the respective layer of the CNN.

7. A computer program product, the computer program

product comprising:

one or more computer readable storage media and pro-

gram 1nstructions stored on the one or more computer

readable storage media, the program instructions read-

able/executable by one or more computer processors:

program 1nstructions to determine a set of parameters
related to a feature map to analyze at a respective
layer of a convolutional neural network (CNN),
wherein the set of parameters related to the feature
map includes a quantization value; and respective
values for a first dimension, a second dimension, and
a third dimension, which correspond to a shape
describing the feature map:;

program 1nstructions to configure a set of hardware
accelerators for the respective layer of the CNN;

program instructions to receive a portion of the feature
map to the configured set of hardware accelerators
for the respective layer of the CNN, wherein the
recerved portion of the feature map includes a group
of sequential data slices, and wherein the group of
sequential data slices 1s based, at least 1n part, on a
number of sequential data slices equal to a value
corresponding to a kernel size plus a value corre-
sponding to stride increment value corresponding to
the respective layer of the CNN; and

program 1nstructions to analyze the group of sequential
data slices among the configured set of hardware
accelerators.

8. The computer program product of claim 7: further

comprising;

5

10

15

20

25

30

35

40

45

50

55

60

65

22

program instructions to determine imformation associated
with an analysis related to the CNN, wherein:

(1) the information associated with the analysis related to
the CNN 1ncludes information respectively associated
with a layer of a plurality of layers of the CNN, and

(1) the information respectively associated with the layer
of the CNN includes a kernel size, a stride increment
value, and information related to a plurality of kernel
matrices, models, and weight factors utilized by one or
more analyses performed at the layer of the CNN.

9. The computer program product of claim 7, wherein:

(1) the quantization value 1s a value 1n bits related to a
resolution of a plurality of elements that comprise the
feature map to analyze;

(1) a value of the first dimension corresponds to a number
of elements associated with a width dimension of the
feature map to analyze;

(111) a value of the second dimension corresponds to a
number of elements associated with a height dimension
of the feature map to analyze; and

(iv) a value of the third dimension corresponds to a
number of levels associated with a depth dimension of
the feature map to analyze.

10. The computer program product of claim 9, wherein a

level of the feature map to analyze i1s associated with a
respective filter of a plurality of filters utilized to generate
the feature map.

11. The computer program product of claim 7, wherein

program instructions to configure the set of hardware accel-
erators to process the respective layer of the CNN further
comprise:

program instructions to identify, based on the determining
information associated with the analysis related to the
CNN, a kernel size and a stride increment value cor-
responding to the respective layer of the CNN; and

program instructions to allocate a quantity of memory for
respective memory buflers within the set of hardware
accelerators based on the kernel size, the stride incre-
ment value; and

the determined quantization value and the value corre-
sponding to the third dimension of the feature map
associated with the respective layer of the CNN.

12. The computer program product of claim 7, wherein

program 1nstruction to configure the set of hardware accel-
crators for the respective layer of the CNN further com-
Prises:

program instructions to allocate a quantity of respective
process elements within the set of hardware accelera-
tors based on the value corresponding to the third
dimension ol the feature map associated with the
respective layer of the CNN.
13. A computer system, the computer system comprising;:
one or more computer processors;
one or more computer readable storage media; and
program 1nstructions stored on the computer readable
storage media for execution by at least one of the one
Oor more computer processors, the program instructions
comprising:
program 1nstructions to determine a set ol parameters
related to a feature map to analyze at a respective
layver of a convolutional neural network (CNN),
wherein the set of parameters related to the feature
map includes a quantization value; and respective
values for a first dimension, a second dimension, and
a third dimension, which correspond to a shape
describing the feature map;

US 11,521,007 B2

23

program 1nstructions to configure a set ol hardware
accelerators for the respective layer of the CNN;

program 1nstructions to receive a portion of the feature
map to the configured set of hardware accelerators
for the respective layer of the CNN, wherein the
recerved portion of the feature map includes a group

of sequential data slices, and wherein the group of

sequential data slices 1s based, at least 1n part, on a
number of sequential data slices equal to a value
corresponding to a kernel size plus a value corre-
sponding to stride increment value corresponding to
the respective layer of the CNN; and

program 1nstructions to analyze the group of sequential
data slices among the configured set of hardware
accelerators.

14. The computer system of claim 13: further comprising:

program 1nstructions to determine information associated
with an analysis related to the CNN, wherein:

(1) the information associated with the analysis related to
the CNN 1ncludes information respectively associated
with a layer of a plurality of layers of the CNN, and

(11) the information respectively associated with the layer
of the CNN includes a kernel size, a stride increment
value, and information related to a plurality of kernel
matrices, models, and weight factors utilized by one or
more analyses performed at the layer of the CNN.

15. The computer system of claim 13, wherein:

(1) the quantization value 1s a value in bits related to a

resolution of a plurality of elements that comprise the
feature map to analyze;

5

10

15

20

25

30

24

(1) a value of the first dimension corresponds to a number
of elements associated with a width dimension of the
feature map to analyze;

(111) a value of the second dimension corresponds to a
number of elements associated with a height dimension
of the feature map to analyze; and

(iv) a value of the third dimension corresponds to a
number of levels associated with a depth dimension of
the feature map to analyze.

16. The computer system of claim 13, wherein program

instructions to configure the set of hardware accelerators to
process the respective layer of the CNN further comprise:

program 1nstructions to identify, based on the determining
information associated with the analysis related to the
CNN, a kernel size and a stride increment value cor-
responding to the respective layer of the CNN; and

program instructions to allocate a quantity of memory for
respective memory bullers within the set of hardware
accelerators based on the kernel size, the stride incre-
ment value; and the determined quantization value and
the value corresponding to the third dimension of the
feature map associated with the respective layer of the

CNN.
17. The computer system of claim 13, wherein program

instruction to configure the set of hardware accelerators for
the respective layer of the CNN further comprises:

program 1nstructions to allocate a quantity of respective
process elements within the set of hardware accelera-
tors based on the value corresponding to the third
dimension of the feature map associated with the
respective layer of the CNN.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

