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grams encoded on a computer storage medium, for process-
ing data generated by a sensing system that rotationally
senses an environment. In one aspect, a method comprises
partitioning a predetermined period of time mto a plurality
of sub-periods, wherein the predetermined period of time 1s
a period of time for which data generated by the sensing
system constitutes a complete rotational sensing of the
environment; for each sub-period: receiving current data
generated by the sensing system during the sub-period and
characterizing a respective partial scene of the environment;
processing the current data using an object detection neural
network to generate a current object detection output that 1s
specific to the respective partial scene of the environment.
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STREAMING OBJECT DETECTION WITHIN
SENSOR DATA

BACKGROUND

This specification relates to autonomous vehicles.

Autonomous vehicles include self-driving cars, boats, and
aircraift. Autonomous vehicles use a variety of on-board
sensors and computer systems to detect nearby objects and
use such detections to make control and navigation deci-
$1011S.

Some autonomous vehicles have computer systems that
implement neural networks for object classification within
data from sensors.

Neural networks, or for brevity, networks, are machine
learning models that employ multiple layers of operations to
predict one or more outputs ifrom one or more nputs. In
some cases, neural networks include one or more hidden
layers situated between an 1put layer and an output layer.
The output of each layer 1s used as input to another layer 1in
the network, e.g., the next hidden layer or the output layer.

SUMMARY

This specification describes how a vehicle, e.g., an
autonomous or semi-autonomous vehicle, can use an on-
board system to detect objects of certain object categories in
an environment surrounding the vehicle. Each object cat-
egory can specily an object type that 1s commonly within a
vicinity of the vehicle as it travels on a road. For example,
object categories can represent pedestrians, cyclists, or other
vehicles within a proximity to the vehicle. In particular, the
on-board system can be configured to generate, at each
sub-period, an object detection output that 1s specific to a
respective partial scene of the environment. The time length
of each sub-period 1s smaller, and usually much smaller, than
the time length required for a sensor that rotationally senses
an environment to generate data which constitutes a com-
plete rotational sensing of the environment.

In general, one 1nnovative aspect of the subject matter
described 1n this specification can be embodied 1n methods
that include the actions of partitioning a predetermined
period of time nto a plurality of sub-periods, wherein the
predetermined period of time 1s a period of time for which
data generated by a sensing system that rotationally senses
an environment constitutes a complete rotational sensing of
the environment; for each sub-period: receiving current data
generated by the sensing system during the sub-period and
characterizing a respective partial scene of the environment;
processing the current data using an object detection neural
network to generate a current object detection output that 1s
specific to the respective partial scene of the environment,
wherein the object detection neural network comprises: a
sequential processing subnetwork that processes (1) a current
sequential processing subnetwork mput and (11) a preceding
sequential processing subnetwork output that 1s generated by
the sequential processing subnetwork from a preceding
sub-period, to generate a current sequential processing sub-
network output; and an object detection subnetwork that
processes, for the current data received, (1) the current
sequential processing subnetwork output and (11) a preceding
object detection output that 1s generated by the object
detection subnetwork from the preceding sub period, to
generate the current object detection output.

In some implementations, the object detection neural
network further comprises a featurization subnetwork that
process the current data generated by the sensing system for
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the sub-period to generate a current intermediate represen-
tation; and the object detection subnetwork 1s also config-
ured to process the current intermediate representation when
generating the current object detection output.

In some implementations, the current sequential process-
ing subnetwork input 1s the current intermediate represen-
tation.

In some 1implementations, the environment 1s an environ-
ment 1 a viciity of a vehicle, and wheremn the sensing
system 1s on-board the vehicle.

In some 1implementations, the sensing system comprises a
spinning LIDAR sensor, and wherein the data i1s three-
dimensional point cloud data.

In some implementations, the object detection output
comprises: (1) data defining one or more bounding boxes 1n
the current data generated by the spinning sensor in the sub
period, and (11) for each of the one or more bounding boxes,
a respective confidence score that represents a likelihood
that an object belonging to an object category from a set of
one or more object categories 1s present in the region of the
environment shown in the bounding box.

In some 1mplementations, partitioning the predetermined
period of time into the plurality of sub-periods comprises:
determining a plurality of candidate sub-periods that are
cach of different time lengths from each other; computing,
for each candidate sub-period, a respective ratio of (1) a time
length of the candidate sub-period to (1) a time length
required for processing the current data that 1s generated by
the sensing system during the candidate sub-period using the
object detection neural network; determiming, based at least
on the respective ratios, a determined time length of the
sub-period; and partitioning the predetermined period of
time into the plurality of sub-periods to each have the
determined time length.

In some implementations, determining the determined
time length of the sub-period further comprises, for each
candidate sub-period: determining that a measure of accu-
racy of the current object detection output satisfies a prede-
termined detection accuracy threshold.

Particular embodiments of the subject matter described 1n
this specification can be implemented so as to realize one or
more of the following advantages.

By processing sensor data in this manner, the on-board
system can generate timely and accurate object detection
data, even when the computational resources available on-
board the vehicle are limited, or when the system operates
with great latency, e.g., because completing each rotational
sensing of an environment to generate sensor data, detecting
objects within the sensor data, or both requires a significant
amount of time. In other words, the system can use the
techniques to reduce the operational latency 1n generating
object detection outputs which specily objects that are
identified and classified within sensor data. The system can
also use the techniques to optimize (e.g., balance) resource
usage 1n generating such object detection outputs. More
importantly, appropriate planming decisions can then be
made based on the object detection outputs 1n order to cause
the vehicle to travel along a safe and comiortable trajectory.

In addition, the on-board system can apply the techniques
to determine a specific time length for each sub-period.
Determining the time length involves evaluating multiple
candidate sub-periods that are each of diflerent time lengths
from each other and selecting the time length for which both
operational latency and object detection accuracy can satisty
corresponding criteria. As such, the technmiques further
allows the system to specifically select the time length that
facilitates optimal operation of the system.
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The details of one or more embodiments of the subject
matter of this specification are set forth 1n the accompanying,
drawings and the description below. Other features, aspects,
and advantages of the subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an example of a system.

FIG. 2 1s a flow chart of an example of a process for
performing object detection.

FIGS. 3A-B are schematic diagrams of example compo-
nents of an object detection neural network.

FIG. 4 shows example comparisons between sub-periods
that are each of different time lengths from each other.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

This specification describes how a system, e.g., an object
detection system 1n an autonomous or semi-autonomous
vehicle, can use one or more machine learning models to
automatically detect objects of certain object categories 1n
an environment surrounding the system. FEach object cat-
egory can specily an object type that 1s commonly within a
vicinity of the vehicle. For example, object categories can
represent pedestrians, cyclists, or other vehicles within a
proximity to the vehicle.

A machine learning model 1s said to be “tully-learned” 11
the model has been trained to compute a desired prediction.
In other words, a fully-learned model generates an output
based solely on being trained on training data rather than on
human-programmed decisions. For convenience, the
machine learning models, including neural networks, as
used 1n throughout this description will generally refer to
tully-learned ones.

To make such object detection predictions, the object
detection system can use sensor data generated by a sensing
system that rotationally senses the environment surrounding
the vehicle. For example, the sensing system can include a
spinning LIDAR sensor that generates as output three-
dimensional point cloud data. In order for a planning system
of the vehicle to generate planming decisions which cause
the vehicle to travel along a safe and comiortable trajectory,
the planning system must be provided with timely and
accurate detection predictions for objects 1n the vicinity of
the vehicle.

Therefore, the object detection system 1s configured to
generate, at each sub-period, an object detection output that
1s specific to a respective partial scene of the environment.
The time length of each sub-period 1s smaller, and usually
much smaller, than the time length required for the sensing
system that rotationally senses an environment to generate
data which constitutes a complete rotational sensing of the
environment.

In this manner, the object detection system can generate
timely and accurate object prediction data, even when the
computational resources available on-board the vehicle are
limited, or when the sensing system operates with great
latency, e.g., requires a significant amount of time to com-
plete each rotational sensing of an environment.

In operation, the object detection system partitions a
predetermined period of time into a plurality of sub-periods.
The predetermined period of time 1s a period of time for
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which data generated by a sensing system that rotationally
senses an environment constitutes a complete rotational
sensing of the environment.

For each sub-period of the plurality of sub-periods, the
system recerves current data generated by the sensing sys-
tem during the sub-period and characterizing a respective
partial scene of the environment.

The system processes the current data using an object
detection neural network to generate a current object detec-
tion output that 1s specific to the respective partial scene of
the environment. In brief, the object detection neural net-
work includes a sequential processing subnetwork and an
object detection subnetwork.

Specifically, the system uses the sequential processing
subnetwork to process (1) a current sequential processing
subnetwork mnput and (11) a preceding sequential processing
subnetwork output that 1s generated by the sequential pro-
cessing subnetwork from a preceding sub-period to generate
a current sequential processing subnetwork output.

The system then uses the object detection subnetwork to
process, for the current data recerved, (1) the current sequen-
tial processing subnetwork output and (1) a preceding object
detection output that 1s generated by the object detection
subnetwork from the preceding sub period to generate the
current object detection output.

In some 1implementations, to assist in the object detection
prediction, the object detection neural network also includes
a featurization subnetwork that 1s configured to generate
respective 1ntermediate representations of subnetwork
inputs. The intermediate representations typically include
data speciiying identified features of objects that are char-
acterized by the subnetwork imputs. In these implementa-
tions, the object detection neural network further includes a
featurization subnetwork that process the current data gen-
crated by the sensing system for the sub-period to generate
a current intermediate representation. The object detection
subnetwork 1s also configured to process the current inter-
mediate representation when generating the current object
detection output.

These features and additional features are described 1in
more detail below.

FIG. 1 1s a block diagram of an example on-board system
100. The on-board system 100 1s physically located on-
board a vehicle 102. The vehicle 102 in FIG. 1 1s 1llustrated
as an automobile, but the on-board system 100 can be
located on-board any appropniate vehicle type. The vehicle
102 can be a fully autonomous vehicle that uses object
detection predictions to mnform fully-autonomous driving
decisions. The vehicle 102 can also be a semi-autonomous
vehicle that uses object detection predictions to aid a human
driver. For example, the vehicle 102 can autonomously
apply the brakes if a full-vehicle prediction indicates that a
human driver 1s about to collide with a detected object, e.g.,
a pedestrian, a cyclist, another vehicle. As another example,
besides an automobile, the vehicle 102 can be a watercraft
or an aircrait. Moreover, the on-board system 100 can
include components additional to those depicted in FIG. 1
(e.g., a control subsystem or a user interface subsystem).

The on-board system 100 includes a sensing subsystem
120 which enables the on-board system 100 to “see” the
environment 1 a vicinity of the vehicle 102. The sensing
subsystem 120 includes one or more sensors, some of which
are configured to receive reflections of electromagnetic
radiation from the environment 1n the vicinity of the vehicle
102. For example, the sensing subsystem 120 can include
one or more laser sensors (e.g., LIDAR laser sensors) that
are configured to detect reflections of laser light. As another
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example, the sensing subsystem 120 can include one or more
radar sensors that are configured to detect reflections of
radio waves. As another example, the sensing subsystem 120
can 1nclude one or more camera sensors that are configured
to detect reflections of visible light.

The sensing subsystem 120 repeatedly (1.e., at each of
multiple time points) uses raw sensor measurements, data
derived from raw sensor measurements, or both to generate
sensor data 122. The raw sensor measurements 1ndicate the
directions, intensities, and distances travelled by reflected
radiation. For example, a sensor in the sensing subsystem
120 can transmit one or more pulses of electromagnetic
radiation 1n a particular direction and can measure the
intensity of any reflections as well as the time that the
reflection was received. A distance can be computed by
determining the time which elapses between transmitting a
pulse and recerving 1ts reflection. Each sensor can continu-
ally sweep a particular space 1n angle, azimuth, or both.
Sweeping 1n azimuth, for example, can allow a sensor to
detect multiple objects along the same line of sight.

The exact types or formats of the sensor data 122 may
vary, but generally, the sensor data characterizes a latest state
of an environment (1.e., an environment at the current time
point) 1 the vicinity of the vehicle 102.

The on-board system 100 can provide the sensor data 122
generated by the sensing subsystem 120 to an object detec-
tion subsystem 130 for use in generating object detection
outputs 132.

In brief, the object detection subsystem 130 implements
components that identily objects within a vicinity of the
vehicle. For example, the object detection output 132 can
include data defining one or more bounding boxes in the
sensor data 122, and for each of the one or more bounding
boxes, a respective confidence score that represents a like-
lihood that an object belonging to an object category from a
set of one or more object categories 1s present 1n the region
of the environment shown 1n the bounding box. As described
above, examples of object categories include pedestrians,
cyclists, or other vehicles near the vicinity of the vehicle 102
as 1t travels on a road.

The on-board system 100 can provide the object detection
outputs 132 to a planning subsystem 140. When the planning
subsystem 140 receives the object detection outputs 132, the
planning subsystem 140 can use the object detection outputs
132 to generate planning decisions which plan the future
trajectory of the vehicle 102. The planning decisions gen-
crated by the planning subsystem 140 can include, for
example: yielding (e.g., to pedestrians), stopping (e.g., at a
“Stop” si1gn), passing other vehicles, adjusting vehicle lane
position to accommodate a bicyclist, slowing down 1n a
school or construction zone, merging (e.g., onto a highway),
and parking. The planning decisions generated by the plan-
ning subsystem 140 can be provided to a control system (not
shown 1n the figure) of the vehicle 102. The control system
of the vehicle can control some or all of the operations of the
vehicle by implementing the planning decisions generated
by the planming system. For example, 1n response to receiv-
ing a planning decision to apply the brakes of the vehicle, the
control system of the vehicle 102 may transmit an electronic
signal to a braking control unit of the vehicle. In response to
receiving the electronic signal, the braking control umt can
mechanically apply the brakes of the vehicle.

In order for the planning subsystem 140 to generate
planning decisions which cause the vehicle 102 to travel
along a safe and comiortable trajectory, the on-board system
100 must provide the planning subsystem 140 with timely
and accurate object detection outputs 132. In various cases,

10

15

20

25

30

35

40

45

50

55

60

65

6

however, the manner of which the sensing subsystem 120
operates greatly inhibits timely object detection. This 1s
because, conventionally, the sensing subsystem 120 refrains
from 1dentifying objects until receiving every sensor data
that constitutes a complete sensing of the environment. For
example, 1f the sensing subsystem 120 includes a type of
sensors that rotationally sense the environment, then the
components within the object detection subsystem 130 typi-
cally have to wait until the sensors complete every entire
rotational sensing of the environment (“rotation cycle”)
betore beginning to 1dentily objects within the sensor data.
Depending on actual sensor configurations, 1n this example,
the range of each entire rotational sensing can have any
value between 0 to 360 degrees.

As such, to improve overall efliciency, the object detec-
tion subsystem 130 1s configured to detect objects in the
environment by leveraging the manner of which such sen-
sors operate. In briet, the object detection subsystem 130 can
generate, at each sub-period, an object detection output that
1s speciiic to a respective partial scene of the environment.
The time length of each sub-period i1s smaller, and usually
much smaller, than the time length required for a sensor that
rotationally senses the environment to generate data which
constitutes a complete rotational sensing of the environment.

In particular, the object detection subsystem 130 can do so
by implementing an object detection neural network which,
in turn, includes an object detection subnetwork, a sequen-
tial processing subnetwork, and, optionally, a featurization
subnetwork. These components and operations performed
by these components are depicted mm FIGS. 2-3 and
described 1n detail below.

FIG. 2 1s a flow chart of an example of a process 200 for
performing object detection. For convenience, the process
200 will be described as being performed by a system of one
or more computers located 1 one or more locations. For
example, a system, e.g., the on-board system 100 of FIG. 1,
appropriately programmed in accordance with this specifi-
cation, can perform the process 200.

The system partitions a predetermined period of time 1nto
a plurality of sub-periods (202). For example, a partitioner
301, which can be a hardware or software process that
outputs the sensor data for each of the plurality of sub-time
periods, can be used. The predetermined period of time 1s a
period of time for which data generated by a sensing system
that rotationally senses an environment constitutes a com-
plete rotational sensing of the environment. In other words,
the system repeatedly, 1.e., at each of multiple time points
separated by the predetermined period of time, receives
sensor data characterizing a region in the environment.

FIG. 3A 1s a schematic diagram 300A of example com-
ponents of the object detection neural network. As illustrated
in FIG. 3A, for example, the sensor data 312 includes
three-dimensional point cloud data generated from a spin-
ning LIDAR sensor mounted atop a vehicle. Correspond-
ingly, the sensor data 312 characterizes a region of an
environment surrounding the vehicle.

While the system can perform the partition 1n accordance
with any appropriate partitioning schemes, advantageously,
the partitioner 301 partitions the predetermined period of
time into multiple sub-periods to each have a same time
length that 1s smaller than the length of the predetermined
period of time. Determining such time length typically
involves evaluating a plurality of candidate sub-periods that
are each of different time lengths from each other.

In some implementations, the system selects a time length
that can facilitate optimal object detection. That 1s, the
system determines the time length for which a measure of
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accuracy of the current object detection output satisfies a
predetermined detection accuracy threshold. FIG. 4 shows
example comparisons between sub-periods that are each of
different time lengths from each other. In the example of
FIG. 4, the predetermined time length 1s 100 ms and the time
lengths for the candidate sub-periods are 25 ms (1.e., 1f the
predetermined time length were to be partitioned into 4
sub-periods), 12.5 ms, 6.25 ms, 3.125 ms, and 1.5625 ms,
respectively. In addition, in thus example, the measure of
accuracy 1s evaluated using mean average precision (mAP)
metric and the predetermined detection accuracy threshold
specifies that the object detection outputs must have mAP
scores greater than 50.0. Accordingly, in this example, the
system can select 25 ms or 12.5 ms as the determined time
length for each sub-period.

In some 1implementations, the system selects a time length
that can reduce latency and to facilitate streamlined opera-
tion of the system. In general, the term “latency” refers to the
time interval between a measurement and a detection. As
such, the latency can be computed as a sum of (1) the
predetermined time length (i.e., the period of time for which
data generated by the sensing system that rotationally senses
an environment constitutes a complete rotational sensing of
the environment) and (11) the time needed for processing the
sensor data to generate a corresponding object detection
output. In more detail, in these implementations, for each
candidate sub-period, the system computes a respective ratio
of (1) a time length of the candidate sub-period (*scan time”)
to (11) a time length required for processing the current data
that 1s generated by the sensing subsystem during the
candidate sub-period using the object detection subsystem
(“inference time”). The system then selects a determined
time length of the sub-period based at least on the respective
ratios. For example, the system selects the time length
associated with a ratio that i1s close to 1.0 m order to
cllectively balance the usage of on-board computational
resources between scanning and inference stages and, in
turn, reduce overall latency. In the example of FIG. 4, the
system can select 3.125 ms (1.e., 1f the predetermined time
length were to be partitioned mto 32 sub-periods) as the
determined time length for each sub-period.

Once the time length has been determined, the system
proceeds to partition the predetermined period of time into
the plurality of sub-periods to each have the determined time
length. For each sub-period, briefly, the system receives
current data generated by the sensing subsystem during the
sub-period (204) and processes the current data using an
object detection neural network to generate a current object
detection output that 1s specific to the respective partial
scene of the environment (206). For example, as illustrated
in FIG. 3A, the system partitions the predetermined period
of time (e.g., 100 ms) into a total of ten sub-periods (e.g., 10
ms each). For each sub-period, the system receives respec-
tive current data (e.g., current data 302A) that 1s generated
by the sensing subsystem during the sub-period.

In more detail, for each sub-period, the system receives
current data (204) that 1s generated by the sensing system
during the sub-period and that characterizes a respective
partial scene of the environment.

The system processes the current data using an object
detection neural network (206). As depicted in FIG. 3A, the
object detection neural network includes a sequential pro-
cessing subnetwork 310 and an object detection subnetwork
320. The object detection subnetwork 320 can be any
appropriate neural network that has been trained to make
predictions related to object detection, 1.e., related to detect-
ing objects in the environment surrounding the vehicle. The
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sequential processing subnetwork 310 can be any appropri-
ate neural network that has been trained to assist in the
object detection by maintaiming a memory of data received
over preceding sub-periods.

The system generates a current sequential processing
subnetwork output (208) by using the sequential processing
subnetwork. The sequential processing subnetwork 1s con-
figured to process (1) a current sequential processing sub-
network input and (1) a preceding sequential processing
subnetwork output that 1s generated by the sequential pro-
cessing subnetwork from a preceding sub-period, to gener-
ate a current sequential processing subnetwork output. In
particular, in the example of FIG. 3 A, the current sequential
processing subnetwork input 1s the current data that 1s
generated by the sensing subsystem for the current sub-
period and that characterizes a respective partial scene of the
environment.

In some implementations, the sequential processing sub-
network 1s a recurrent neural network that includes one or
more recurrent neural network layers. For example, the
recurrent layers in the sequential processing subnetwork can
be long-short term memory (LSTM) layers or gated recur-
rent unit (GRU) layers. Each layer 1n turn includes one or
more memory cells. For example, each LSTM layer can
include one or more memory cells that each include an mput
gate, a forget gate, and an output gate that allow the cell to
store previous states for the cell, e.g., for use 1n generating,
a current activation or to be provided to other components of
the LSTM neural network.

In the example of FIG. 3A, the system uses the sequential
processing subnetwork 310 to process current data 302F that
1s generated by the sensing subsystem for a particular
sub-period 1n the plurality of sub-periods. For the particular
sub-period, the sequential processing subnetwork 310
receives as input (1) the current data 302F and (11) a preced-
ing sequential processing subnetwork output 314, and gen-
erates a current sequential processing subnetwork output
316. In particular, the preceding sequential processing sub-
network output 314 1s the output that was generated by the
sequential processing subnetwork 310 for a preceding sub-
period, 1.e., the sub-period for which the sensing subsystem
generates current data 302E.

Thus, to generate a corresponding sequential processing,
subnetwork output for each sub-period, the system provides
as input to the sequential processing subnetwork (1) a current
sequential processing subnetwork input and (11) a preceding
sequential processing subnetwork output. For the very first
sub-period, because there 1s no preceding sequential pro-
cessing subnetwork output, the system can 1nstead provide
a predetermined placeholder input. The sequential process-
ing subnetwork then processes the predetermined place-
holder mput and the current subnetwork input to generate
the current sequential processing subnetwork output corre-
sponding to the first sub-period.

The system also generates a current object detection
output (210) by using the object detection subnetwork. The
object detection subnetwork 1s configured to process (1) the
current sequential processing subnetwork output and (11) a
preceding object detection output that 1s generated by the
object detection subnetwork from the preceding sub-period,
to generate the current object detection output. The current
object detection output includes data identifying objects
within the partial scene of the environment that 1s charac-
terized by the current data.

The object detection subnetwork 1s a neural network that
includes one or more neural network layers. For example,
the layers 1n the object detection subnetwork can be fully
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connected layers or convolutional layers. The object detec-
tion subnetwork can i1dentily candidate regions within the
environment characterized by the input data that are pre-
dicted to 1nclude specific objects of interest using regression
techniques. For example, the mput data can include image
data, video data, or other two-dimensional (2D) or 3D data.
The object detection subnetwork then generates bounding
boxes that specily the boundaries of the candidate regions.
Optionally, the object detection subnetwork also generates,
for each of the bounding boxes, a respective confidence
score that represents a likelihood that an object belonging to
an object category from a set of one or more object catego-
ries 1s present in the region of the environment shown 1n the
bounding box.

In the example of FIG. 3A, the system uses the object
detection subnetwork 320 to process current sequential
processing subnetwork output 316 that 1s generated by the
sequential processing subnetwork 310 for the particular
sub-period, 1.e., the sub-period for which the sensing sub-
system generates current data 302F. For the particular sub-
period, the object detection subnetwork 320 receives as
input (1) the current sequential processing subnetwork output
316 and (1) a preceding object detection output 322, and
generates a current object detection output 324F. In particu-
lar, the preceding object detection output 322 1s the output
that was generated by the object detection subnetwork 320
for the preceding sub-period, 1.e., the sub-period for which
the sensing subsystem generates current data 302E.

Thus, to generate a corresponding object detection sub-
network output for each sub-period, the system provides as
input to the object detection subnetwork (1) a current sequen-
tial processing subnetwork output and (11) a preceding object
detection output. As similarly described above, for the very
first sub-period, because there 1s no preceding object detec-
tion output, the system can 1nstead provide a predetermined
placeholder mput. The object detection subnetwork then
processes the predetermined placeholder mput and the cur-
rent sequential processing subnetwork output to generate the
current object detection output corresponding to the first
sub-period.

In some implementations, the system also includes a
featurization subnetwork that can extract or derive features
from nput data using featurization techniques. Each feature
typically includes one or more numeric values that represent
a specific property or characteristic of the mput data. As
such, the featurization subnetwork can assist 1n the object
detection by providing the object detection subnetwork with
information about such features. For example, the informa-
tion can include geometric, volumetric, or semantic features
ol respective objects characterized by the input data. As
another example, the information can include object pro-
posal, 1.e., proposed regions in the environment that are
likely to include the specific objects of interest.

For example, as depicted in FIG. 3B, the system includes
a featurization subnetwork 330 that 1s configured to process
current data 302 that 1s generated by the sensing subsystem
for each sub-period to generate a current intermediate rep-
resentation 332 which 1s 1n the form of a fixed-size multi-
dimensional array of data values. In particular, these data
values are numeric values that correspond to respective
teatures of the current data 302.

FIG. 3B 1s a schematic diagram 300B of example com-
ponents of the object detection neural network. In the
example of FIG. 3B, the system uses the featurization
subnetwork 330 to process the current data 302F that 1s
generated by the sensing subsystem for the particular sub-
period, and generate a current itermediate representation
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332. The system provides the current intermediate represen-
tation 332 to the sequential processing subnetwork 310. The
sequential processing subnetwork 310 receives as mput (1)
the current intermediate representation 332 and (11) a pre-
ceding sequential processing subnetwork output 314, and
generates a current sequential processing subnetwork output
316. The system then combines, e€.g., computes a sum
between, the current intermediate representation 332 and the
current sequential processing subnetwork output 316 and
provides the combination to the object detection subnetwork
320. The object detection subnetwork 320 receives as mput
(1) the combination and (11) a preceding object detection
output 322, and generates a current object detection output
324F. The current object detection output 324F i1dentifies
objects within the partial scene of the environment that 1s
characterized by the current data 302F.

Thus, 1n implementations where the featurization subnet-
work 1s used to assist 1n the object detection by generating
intermediate representations based on current data, the sys-
tem can provide the intermediate representations instead of,
or 1n addition to, the current data as inputs to the sequential
processing subnetwork. Similarly, the system can provide
the intermediate representations mstead of, or 1n addition to,
the current sequential processing subnetwork outputs as
inputs to the object detection subnetwork. The provision of
such intermediate representations can further improve the
performance of the system on object detection.

This specification uses the term “configured” 1n connec-
tion with systems and computer program components. For a
system ol one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that 1n operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by data processing appa-
ratus, cause the apparatus to perform the operations or
actions.

Embodiments of the subject matter and the functional
operations described in this specification can be i1mple-
mented 1n digital electronic circuitry, 1n tangibly-embodied
computer software or firmware, 1n computer hardware,
including the structures disclosed 1n this specification and
their structural equivalents, or 1n combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, 1.€., one or more modules of computer
program 1nstructions encoded on a tangible non-transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially-generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that 1s generated to encode information for transmis-
s1on to suitable receiver apparatus for execution by a data
processing apparatus.

The term “data processing apparatus™ refers to data pro-
cessing hardware and encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of example a programmable processor, a computer, or mul-
tiple processors or computers. The apparatus can also be, or
turther include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
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cation-specific integrated circuit). The apparatus can option-
ally include, 1n addition to hardware, code that creates an
execution environment for computer programs, €.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

A computer program, which may also be referred to or
described as a program, software, a software application, an
app, a module, a software module, a script, or code, can be
written 1n any form of programming language, including
compiled or interpreted languages, or declarative or proce-
dural languages; and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use 1n a computing,
environment. A program may, but need not, correspond to a
file 1n a file system. A program can be stored 1in a portion of
a lile that holds other programs or data, e.g., one or more
scripts stored 1 a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub-programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

In this specification the term “engine” 1s used broadly to
refer to a software-based system, subsystem, or process that
1s programmed to perform one or more specific functions.
Generally, an engine will be implemented as one or more
soltware modules or components, nstalled on one or more
computers 1n one or more locations. In some cases, one or
more computers will be dedicated to a particular engine; in
other cases, multiple engines can be installed and running on
the same computer or computers.

The processes and logic flows described in this specifi-
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating,
output. The processes and logic flows can also be performed
by special purpose logic circuitry, e.g., an FPGA or an ASIC,
or by a combination of special purpose logic circuitry and
one or more programmed computers.

Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive
instructions and data from a read-only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing 1nstructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated 1n, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receive data from or
transier data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto-optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded 1n another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioming System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

Computer-readable media suitable for storing computer
program 1nstructions and data include all forms ol non-
volatile memory, media and memory devices, including by
way ol example semiconductor memory devices, e.g.,
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EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-
optical disks; and CD-ROM and DVD-ROM disks.

To provide for interaction with a user, embodiments of the
subject matter described 1n this specification can be imple-
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liguid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e€.g., a mouse or a trackball, by which the
user can provide mput to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
teedback, or tactile feedback; and mput from the user can be
received 1n any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that 1s used by the user; for example, by sending web
pages to a web browser on a user’s device 1n response 1o
requests recerved from the web browser. Also, a computer
can 1nteract with a user by sending text messages or other
forms ol message to a personal device, e.g., a smartphone
that 1s running a messaging application, and receiving
responsive messages from the user 1n return.

Data processing apparatus for implementing machine
learning models can also include, for example, special-
purpose hardware accelerator units for processing common
and compute-intensive parts of machine learning training or
production, 1.e., inference, workloads.

Machine learning models can be implemented and
deployed using a machine learning framework, e.g., a Ten-
sorFlow framework, a Microsoft Cognitive Toolkit frame-
work, an Apache Singa framework, or an Apache MXNet
framework.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can iteract with an imple-
mentation of the subject matter described 1n this specifica-
tion, or any combination of one or more such back-end,
middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication, €.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some embodi-
ments, a server transmits data, e.g., an HI ML page, to a user
device, e.g., for purposes of displaying data to and receiving
user input from a user iteracting with the device, which acts
as a client. Data generated at the user device, e.g., a result
of the user interaction, can be received at the server from the
device.

While this specification contains many specific imple-
mentation details, these should not be construed as limita-
tions on the scope of any mvention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments of particular
inventions. Certain features that are described 1n this speci-
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fication 1n the context of separate embodiments can also be
implemented 1n combination 1n a single embodiment. Con-
versely, various features that are described 1n the context of
a single embodiment can also be implemented 1n multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting 1n certain combinations and even 1nitially be claimed
as such, one or more features from a claimed combination
can 1n some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a sub combination.

Similarly, while operations are depicted in the drawings
and recited 1n the claims 1n a particular order, this should not
be understood as requiring that such operations be per-
formed 1n the particular order shown or 1n sequential order,
or that all i1llustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and
parallel processing may be advantageous. Moreover, the
separation of various system modules and components 1n the
embodiments described above should not be understood as
requiring such separation in all embodiments, and it should
be understood that the described program components and
systems can generally be integrated together in a single
software product or packaged into multiple software prod-
ucts.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed 1n a different order and still achieve
desirable results. As one example, the processes depicted 1n
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous.

What 1s claimed 1s:
1. A method of processing data, comprising:
partitioning a predetermined period of time 1nto a plural-
ity of sub-periods, wherein the predetermined period of
time 1s a period of time for which data generated by a
sensing system that rotationally senses an environment
constitutes a complete rotational sensing of the envi-
ronment,
for each sub-period:
receiving current data generated by the sensing system
during the sub-period and characterizing a respective
partial scene of the environment;
processing the current data to generate a current object
detection output that 1s specific to the respective
partial scene of the environment, wherein the pro-
cessing comprises:
processing (1) a current sequential processing sub-
network mput and (1) a preceding sequential
processing subnetwork output that 1s generated by
a sequential processing subnetwork from a pre-
ceding sub-period, to generate a current sequential
processing subnetwork output; and
processing, for the current data received, (1) the
current sequential processing subnetwork output
and (11) a preceding object detection output that 1s
generated by an object detection subnetwork from
the preceding sub period, to generate the current
object detection output.
2. The method of claim 1, turther comprising;:
processing the current data generated by the sensing
system for the sub-period to generate a current inter-
mediate representation; and
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processing, by the object detection subnetwork, the cur-
rent intermediate representation when generating the
current object detection output.
3. The method of claim 1, wherein the current sequential
processing subnetwork input i1s the current intermediate
representation.
4. The method of claim 1, wherein the environment 1s an
environment 1n a vicinity of a vehicle, and wherein the
sensing system 1s on-board the vehicle.
5. The method of claim 1, wherein the sensing system
comprises a spinning LIDAR sensor, and wherein the data 1s
three-dimensional point cloud data.
6. The method of claim 1, wherein the object detection
output comprises: (1) data defining one or more bounding
boxes in the current data generated by the spinning sensor in
the sub period, and (11) for each of the one or more bounding
boxes, a respective confidence score that represents a like-
lihood that an object belonging to an object category from a
set of one or more object categories 1s present 1n the region
of the environment shown 1n the bounding box.
7. The method of claim 1, wherein partitioning the pre-
determined period of time into the plurality of sub-periods
COmMprises:
determining a plurality of candidate sub-periods that are
cach of diflerent time lengths from each other;

computing, for each candidate sub-period, a respective
ratio of (1) a time length of the candidate sub-period to
(11) a time length required for processing the current
data that 1s generated by the sensing system during the
candidate sub-period using the object detection neural
network;
determining, based at least on the respective ratios, a
determined time length of the sub-period; and

partitioning the predetermined period of time into the
plurality of sub-periods to each have the determined
time length.

8. The method of claim 7, wherein determining the
determined time length of the sub-period further comprises,
for each candidate sub-period:

determining that a measure of accuracy of the current

object detection output satisfies a predetermined detec-
tion accuracy threshold.

9. A system comprising one or more computers and one
or more storage devices storing instructions that, when
executed by the one or more computers, cause the one or
more computers to implement:

a partitoner that partitions a predetermined period of time
into a plurality of sub-periods, wherein the predeter-
mined period of time 1s a period of time for which data
generated by a sensing system that rotationally senses
an environment constitutes a complete rotational sens-
ing of the environment, and generates, for each sub-
period, current data generated by the sensing system
during the sub-period and characterizing a respective
partial scene of the environment; and

an object detection neural network that processes, for each
sub-period, the current data using an object detection
neural network to generate a current object detection
output that 1s specific to the respective partial scene of
the environment, wherein the object detection neural
network comprises:

a sequential processing subnetwork that processes (1) a
current sequential processing subnetwork mput and
(11) a preceding sequential processing subnetwork
output that 1s generated by the sequential processing,




US 11,508,147 B2

15

subnetwork from a preceding sub-period, to generate
a current sequential processing subnetwork output;
and

an object detection subnetwork that processes, for the
current data received, (1) the current sequential pro-
cessing subnetwork output and (1) a preceding
object detection output that 1s generated by the object
detection subnetwork from the preceding sub period,
to generate the current object detection output.

10. The system of claim 9, wherein:

the object detection neural network further comprises a

featurization subnetwork that process the current data
generated by the sensing system for the sub-period to
generate a current intermediate representation; and
the object detection subnetwork i1s also configured to
process the current intermediate representation when
generating the current object detection output.
11. The system of claim 9, wherein the current sequential
processing subnetwork input i1s the current intermediate
representation.
12. The system of claim 9, wherein the environment 1s an
environment 1n a vicity of a vehicle, and wherein the
sensing system 1s on-board the vehicle.
13. The system of claim 9, wherein the sensing system
comprises a spinmng LIDAR sensor, and wherein the data 1s
three-dimensional point cloud data.
14. The system of claim 9, wherein the partitioner parti-
tions the predetermined period of time into the plurality of
sub-periods by performing operations comprising:
determining a plurality of candidate sub-periods that are
cach of different time lengths from each other;

computing, for each candidate sub-period, a respective
ratio of (1) a time length of the candidate sub-period to
(11) a time length required for processing the current
data that 1s generated by the sensing system during the
candidate sub-period using the object detection neural
network:
determining, based at least on the respective ratios, a
determined time length of the sub-period; and

partitioning the predetermined period of time into the
plurality of sub-periods to each have the determined
time length.

15. The system of claim 9, wherein determining the
determined time length of the sub-period further comprises,
for each candidate sub-period:

determining that a measure of accuracy of the current

object detection output satisfies a predetermined detec-
tion accuracy threshold.

16. One or more non-transitory computer-readable stor-
age media storing 1nstructions that when executed by one or
more computers cause the one or more computers to perform
operations comprising;:

partitioning a predetermined period of time 1nto a plural-

ity of sub-periods, wherein the predetermined period of
time 1s a period of time for which data generated by a
sensing system that rotationally senses an environment
constitutes a complete rotational sensing of the envi-
ronment;
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for each sub-period:
receiving current data generated by the sensing system
during the sub-period and characterizing a respective
partial scene of the environment;
processing the current data using an object detection

neural network to generate a current object detection

output that 1s specific to the respective partial scene

of the environment, wherein the object detection

neural network comprises:

a sequential processing subnetwork that processes (1)
a current sequential processing subnetwork mput
and (11) a preceding sequential processing subnet-
work output that 1s generated by the sequential
processing subnetwork from a preceding sub-pe-
riod, to generate a current sequential processing
subnetwork output; and

an object detection subnetwork that processes, for
the current data received, (1) the current sequential
processing subnetwork output and (11) a preceding
object detection output that 1s generated by the
object detection subnetwork from the preceding
sub period, to generate the current object detection
output.

17. The non-transitory computer storage media of claim
16, wherein:

the object detection neural network further comprises a

featurization subnetwork that process the current data
generated by the sensing system for the sub-period to
generate a current intermediate representation; and
the object detection subnetwork 1s also configured to
process the current intermediate representation when
generating the current object detection output.
18. The non-transitory computer storage media of claim
16, wherein the current sequential processing subnetwork
input 1s the current intermediate representation.
19. The non-transitory computer storage media of claim
16, wherein partitioning the predetermined period of time
into the plurality of sub-periods comprises:
determining a plurality of candidate sub-periods that are
cach of diflerent time lengths from each other;

computing, for each candidate sub-period, a respective
ratio of (1) a time length of the candidate sub-period to
(11) a time length required for processing the current
data that 1s generated by the sensing system during the
candidate sub-period using the object detection neural
network;
determining, based at least on the respective ratios, a
determined time length of the sub-period; and

partitioning the predetermined period of time into the
plurality of sub-periods to each have the determined
time length.

20. The non-transitory computer storage media of claim
16, wherein determining the determined time length of the
sub-period further comprises, for each candidate sub-period:

determining that a measure of accuracy of the current

object detection output satisfies a predetermined detec-
tion accuracy threshold.
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