US011507556B2

a2 United States Patent (10) Patent No.: US 11,507,556 B2

Coker 45) Date of Patent: Nov. 22, 2022
(54) METHOD AND SYSTEM FOR (38) Field of Classification Search
ENCAPSULATING AND STORING None
INFORMATION FROM MULTIPLE See application file for complete search history.
DISPARATE DATA SOURCES
(56) References Cited
(71) Applicant: ENCAPSA TECHNOLOGY LLC, |
(72) Inventor: Christopher B. A. Coker, Annandale, 8,332,613 B1* 12/2012 Gladecoooivvnn, GOGF 3/067
VA (US) 711/E12.001
8,504,590 B2* &/2013 Coker GO6F 21/6227
: 707/802
(73) Assignee: ENCAPSA TECHNOLOGY LLC, 2010/0274788 Al* 10/2010 COKer ..veovvrven.... GOGF 16/289
Herndon, VA (US) 707/769

*) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 61 days. Burleson D. “Object SQL, Pointers and Encapsulation”, Jan. 14,
2018, http://www.dba-oracle.com/t_object_sql_pointers.htm, 4 pages.
(Year: 2018).*

OTHER PUBLICATTONS

(21) Appl. No.: 16/943,645

(22) Filed: Jul. 30, 2020 * cited by examiner

(65) Prior Publication Data Primary Examiner — Bai D Vu
US 2020/0394171 Al Dec. 17, 2020 (74) Attorney, Agent, or Firm — Charter IP LLC;
Related U.S. Application Data Matthew J Lattig
(63) Continuation of application No. (37) ABSTRACT

PCT/IB2019/050762, filed on Jan. 30, 2019. An example computer-implemented method and computer
(60) Provisional application No. 62/623,626, filed on Jan. system, each adapted for encapsulating digital data records

30, 2018. in multiple, differently structured and unstructured formats,
the data records ingested from multiple data storage loca-
(51) Int. Cl. tions, 1s described herein. In the method, each ingested data
Go6l 16/00 (2019.01) record 1s separated into a plurality of tuple structures, and for
GoOol 16/22 (2019.01) each tuple, the tuple 1s split into a data part and fieldname
GoOor 16/2455 (2019.01) part. A pointer 1s created by combining the fieldname part,
GO6l 16/28 (2019.01) a record i1dentifier of the data record, and a database 1den-
Gool 16/25 (2019.01) tifier of the storage location where the data record was
Gool 16/23 (2019.01) stored. The pointer 1s appended to the data part to form a
(52) U.S. CL digital stem cell (DSC) that 1s stored 1n a single data store,
CpC GO6F 16/2291 (2019.01); GO6F 16/2365 each formed DSC having the same structure.
(2019.01); GO6F 16724562 (2019.01); GO6F
167258 (2019.01); GO6F 16/289 (2019.01) 15 Claims, 17 Drawing Sheets

DATABASEA |---

I

DATA RECORD A

TUPLE (s} i :

(fieldname, - data) | :

: :

i

RECORDA 1\ !

| {DENTIFIER /

data part [* ™ Fieldname part |
'
!

: 7~ DBA
i \ t | INDENTIFIER
' ' "
. ! I
: !) i
! DSC creation ; | :
3 | t
data part + PR S

Data Store/Pool
DSC, .

DSC ..
DSC,.,

1 DSC,

DSC DSC,

U.S. Patent Nov. 22, 2022 Sheet 1 of 17 US 11,507,556 B2

DATABASEA --
DATA RECORD A

TUPLE ()
(fleldname, —data,)

data part Fieldname part

i

f

!
* +
|
i
i

RECORD A
IDENTIFIER

DB A
INDENTIFIER

i !

-3
AY
.
A}
o
Q)
—
+
|
.'0

)
F —
D
-

| i

! |

! I

| |

'

'

'

'

'

1

; -}

mmmmmmmm

FIG. 1

U.S. Patent Nov. 22, 2022 Sheet 2 of 17 US 11,507,556 B2

150
1000

~

~~ . _Query/info request

i ~
~
I N

Ingested data record
from database

I

S1010 N 110

7

Separate ingested data record into tuple (fieldname-data pair)
within data layer

51020

Split out data part and fieldname part from tuple

51030 Results of

. — — query
Create pointer - appending indentifying
Information of data part to fieldname part

51040

Form DSC - appending pointer to data part

S1050

Store DSC In a common data store

Pull information represented by DSCs in data store for display/anaylsis |
In presentation layer |

$3J0]S Ble(]

TOSAIN
/TOSSIN/doopeH/auU80NT

US 11,507,556 B2

™~

y—

I

-

er,

3

7 Jslulod | eleq
Jajuiod lﬂmn_

g

g

—

gl

n.,, eleq pajejnsdenus

>

-

rd

JoAe7 ejeq

U.S. Patent

i
|
i
|
i
i
i
J
I
i
i
i
i
i

}03[q0 yosess

s10algO uonensdenus

18Ae7 s|ppIny

NN PR NN EEN IDW SN MU BN AW NN 3N DD DWW PEW IBD e B e e aex w = ol

S}iNsay YoJeas

leAalllay eleq

1nduj eleq

JeAe7 uonejussald

US 11,507,556 B2

Sheet 4 of 17

Nov. 22, 2022

U.S. Patent

Jo/e7 ejeq

2J01S Ble(

A

“

A}
‘. Jehe7 uonejussald
S
\
N
N
“
S
b}
] &
) !
a—
) ¥
. N\
“
L%
A Y
“
S
“
N
“
N
b N
. s)nsal
“
\ INETaty

uolje|nsdenua-ap

uone|nsdenua

ybnoliy | -ssed

(018 ‘sungiaN TOSAIN ‘eloeIO
‘JanIaS TDOS) asegele(] Aceba

sasegele(

&

jlew

=

S1uU=WINOO(]

S

SWI04 gapA

U.S. Patent Nov. 22, 2022 Sheet 5 of 17 US 11,507,556 B2

-
P
v

4 Eb

‘users”

FIG. &

150

Client

Client
Encapsulate
~ Server Node

Response

T

130

100 \
120 Ingest

! |

an

- 9 Ol

~

—

\r,

y—

—

S [P———

- 00¢

-~

=

o

=

)

N

>~ GlLc o7

n. 0LZ 0€c

S 7
3114 dopsac O¥C |\ 910z ‘80 yose “Aepsany - o309 Jaydojsuyg o

)) et

U.S. Patent

a
aa
0 / Ol
~
7
o — Usiulg
—
7P
-
6lLC
(32112 J0)
— peoidn o) sy doig <&
>
e~
2 e1e
99edg Lodw| &
m salua 0 Jo 0 01 0 buimoys
g
o
2
rd

AW Gvc

9|de] Ul sjdelleAke ElEP ON
uadp Ag ale(] 'sdenus 'SO9Y UER SWEN qL

U.S. Patent

US 11,507,556 B2

Sheet 8 of 17

Nov. 22, 2022

U.S. Patent

L€

Ysiul

che

uadQ

8 9l

X4 0c

T P T

¥

7)38 Vo sy O
mvbgém 0
(:a) AU aAd B M eybg% o pnoyyl O3
39 766 0 834 49 06 B " o B A_gvﬁig_g% m

_. V) oAl ysiq Addo4 [(] | JLI9EH, YO X0000)
Q) 9sI(] B30T | (0] aeyy, o sanyoegeliqon D1
(£) SOAIIP pue SBIAS(] A)2 A_Qwrwm r
valc semold [(] osny [| Salrp) m
sonopy] speojumoq [| i m

SJuall

sjuawnoog] dopsag [Jo__, ” m
(9) siopjo4 ~ Jd S O]
O o -] A 9ZIueblQ
Ag Jd SIYL Ydleag| | » <JdSlYl < v~ ¢ >

US 11,507,556 B2

Sheet 9 of 17

Nov. 22, 2022

U.S. Patent

6lC

ysiul

cle

uadp

.-!

6

€Le

ove0] [oo |

A {'x) SOl IV

~ Y TB0Xg L0501
(] 1eqORy 240Dy

1) [B0K3 J0Sol)
(1 1eqoy oqopy
Ustinoo] TW.H
- 1eqoly eqopy
JUauinaoq JNIH
Jusunooq e .
SN VA
VGlc ;pﬁ

O
00¢
~ | seaAojdw3 [:aweu 9j14
T
M4 S621 OOl el 4l O
i B0 SURL) Y- SUio4 Y4104 O
* b] eSUEOUD L]
TGOV ONTIN %_._m i L]
N 907, LT 04/ DUiB0g (L
NS, oS24y Busog .
Nd 126 21021817 4Ol L
Nd 726 2107817 eIl d L
W G780z (04716 gw_; L]
Y91 B0z A0/ H3 (] [
Y 805 H0ZI8T) 583/l O3 i
Iy 851, 710272 $8]48000 OB Speqimo(] [
fojoouseq) AN SSEHERIN) L

0} 9lA

— TNE

US 11,507,556 B2

LlC m L
—
n._m it TY
= 062
@ ,539/0(dW3
2 (&

99edg Jlodw| &

m SaLIUd O Jo 0 0} 0 Buimoys
g
n.,
=
rd

¢clc

v

9|dE] Ul s|ge|leAe EejepP ON
uadp Ag ale('sdenus 'SO9Y UER SWEN q!

U.S. Patent

)
as
7 LL Ol
~
~
\;
u m—
s L
-
a0edg Jodw)| &
sallua | Jo | 0} | bumoys
™~
=
m cle
/L2 91z 05¢
o 5] (0) Pookuylosiy) 94078k G2/S1 666 0 isvjsons Jom0iees
M., uadQ Ag aleq 'sdequs 'SOOY ‘U9 oWEeN L
|
2 V0cc | -Ydess
z SO § 1807 JoUd0IsIu) 5
OLc O¥c
~ 0€c

czz | ngbo1 ~jodw) ssge; siynsey yoleag —~-/

oees) wees gz

U.S. Patent

LiC

US 11,507,556 B2

Sheet 12 of 17

Nov. 22, 2022

U.S. Patent

¢l Ol
LRk I (N /A e SLYLSH
I) - CheyeS [N JHLOIRIE
By ol SURDY £05 1 SSATVLNLNODANTD e ; I
L oreldeled) [E] LN LERR i JINDDANE
il NOJANTIEAH oty RUEDEN b | SSFa00v v LN
aL7 - T TN
AW MDA
!
Hi3OR
M o0 il s
LS
G 3hs NS
DRS00 _ {3 Ot Ll
097 ASD" | SeokoldwT; ASD™| seakojdwi3 ASD" | Seakojdwi
mwzmc,q
puno 4 (s)plooay ¢
ASD'se8A0IdWT / |1V 91L0Z ‘80 UdJep ‘Aepsan] - Jayo) Jaydoisuys Jo-

YA mo._ ;tomE_ °oo|je| SHNsayY Yoies§

|2Jeas 963]]02 U0)SOC 077

04L¢

US 11,507,556 B2

&L 9ld

m 09¢

-

. 002 zhewy.

z

79

2

“.,/.,...,, C77 e @On_ - SWI0H OWs(] rtOQE_ oolde| S)nssy Yaless
e

2

74

ores [wres ™ ozz

U.S. Patent

G9C

Vg [| e] o

89C
SISAleuy S Ja¥00) 1sydoisuy) s

U.S. Patent Nov. 22, 2022 Sheet 14 of 17 US 11,507,556 B2

Search Results — Tables Import~ Demo Forms -~ Log Out

269 2 Christopher Coker's Analysis

‘

ADDRESS]
CELLPHONE
EMAILADDRESS
262 EMERGENCYCONTACT
EMERGENCYCONTACTADDRESS e
EMERGENCYCONTACTCITY
EMERGENCYCONTACTPHONE 200
EMERGENCYCONTACTSTATE ==

FIG. 14

Search Results — Tables Import~ Demo Forms ~ Log Out

2 Christopher Coker's Analysis East Boston

268
Ple
7
265 Augusta
East Boston

San Antonio

91 OlA

US 11,507,556 B2

__ o} ¢-10
0¢ 1400 HMD
° ‘O
m SJUSLLILORRY | < m&mEEmH SUll0Eld O
S < 80)j0eld O
\
o
3 GLE
-
¥ p,
Jusied ajenaoe Uy ‘Jusied sy} o} papinoid $8alnes |
~ pUe 829 8y} Bunualunoop pue ‘sled sjusi g aU) 10 ajqisuodsas siapiaoid 81e yesy
& pue Jusfed sy} 0 1sslejul [els) auy bul o%a | Bunsisse ‘aled s)uaijed su) o) bunnalnuod
~ UOISS3]0ld UieaU Jayio Aue pue Japiaoid a1ed Uesy suj USSMIST UoneaIuNntiLo) S30BSSO|Y UBS
m Bunuswnoop ‘a1ea usied Buiuug|d Joj siseq e se saalas ajou ssalfiold Juaned sy | m@mmgﬁx@m@w
S " 10] 1984 B 98 S8AIS 8J0u Ssaifoid cm__gé “ SR EE R R T _

sjusiled O
SIONIOM 8JROU)ESH O
suonIsod o

sabessaly __ 8Jjold A O

%esw @ v 0 5BeSSO)y MON abed ALY O

U.S. Patent

US 11,507,556 B2

Sheet 16 of 17

Nov. 22, 2022

U.S. Patent

Sanolg) JUaling

SUOIOBULOY JUslNg

" |0} 1B B S8 S31U8S 80U $58if0d Jusjed ey
IOISSILIDY S ABSUY

"0} 580 B 8B S31IS 80U SSaI00 uagee 3 Jusijed a1eanage Uy ‘Jusiied sy} o} papiaoid $80IAISS pue eled au) bunuswnaop pue ‘aled s)ushed @

0SSRy s Aesuey 3 o] mb_mcame s1apinold 919 Uyiesy pue Juaned au; 10 1saiaiul [2Bat suy Bunostold ui Bugsisse
‘9100 s)ualied sy) 0} Bunglau00 [euoIssajold Uyeay Jayjo Aue pue Jspiaoid 81ea Ljesy oy Ussmaq
sellessaj| penisdsy Jusosy LofeolunLiwod Buguawnaop ‘alea jushed Buiuueid Joj Siseq & se sanias sjou ssalfoid Jusned ay |
: (wevoduwi) Wd 00:10:6 ¥e 2107 ‘€ Auenigey ‘fepuy osseq e Aqiuag | £
_Umec_w @ 9 mmmmﬁ . uoIssiwpy sAeswey | e
abeSSa

L} 9l

5o0essay Jusg
ahessapy MeN

X0gu
salessep o

SBq B 58 $8AI8S BJ0U SSBIR0. TSN sjuslied O
| SISEq B S S8AI8S 80U $38J00) woy eobed o [|][SOHOMIIETH DI

SU0RISOd O
;L|.ll ajold Ay o

abed Aoy o

XOQingo

U.S. Patent Nov. 22, 2022 Sheet 17 of 17 US 11,507,556 B2

1
X
L
L
L

&
*

L
L
4

x ne T N - N
] ‘::‘l R) “‘:"l-*l'-l.hlhﬂn* .h'i_*I'I‘i'I..ri'-l.‘-l-‘l‘i"-l.*l-'i*l_"l:hl‘l.‘i.‘i‘ihl L hq_"'ufq_"‘q
.'I"H.- b .-I-.l"l-l‘l-‘l .'q I.Ii'lll‘l.l"l‘lq.'l‘l‘l‘l"l‘l‘!..'l"l-'a"lll*l-l"I.'I:'I.'l t'l..' %
: E L l-"":""l._ FJ- LI W *l“h‘i1‘h.FH‘H+'I"h-.-i..'-.F-i"'-‘i'.h#luh‘.i“h‘i"-"i‘lFi"l_':i.ul*l
r .1 'I:"! R TE* AT kT "‘-I"l.IbI.'I*!.H-q-'l‘l-#'l‘!tl‘lll‘l"l‘l-l"l‘!-b'l‘l-"l.I:I.l-Jl.l
B i N WY l‘l.'l AWk ke "ﬂ_*i‘H*l."l:hihl.hi‘l.#i"‘lr ththi"'ihi‘ihthihll"-l"l.‘-l‘l '-I‘l.tq
.':"I.I'Li.I" .I'l LA N NN} ‘I...': “E-Itllli-l.' s -I‘b‘-l‘lllq.'lill‘lll"l-ll'l-.l"'l..'l_
"Hl_‘h‘h:‘l‘b ' R N] \:'u&‘h_:i:q.‘i"u'-ﬂ_:\“ et e R e e Y
LA}

+
L]
L
LI
L AL R
At :'q_ e e e r"i-l“i‘r“!"r’q.l'--r‘:.r::,
- b h L 5
ol l‘l"'l."-i"' 11"._*'!'.‘ -I.‘l.*j. t"i-‘i"ﬁ.‘i‘t"i" J‘:_h‘lhi"'l. i"'i. -i"'l.hi‘u*i‘t"ihl‘l l.h-I‘lhi_*ltl_"l_hl‘l_hi_*l
'I-I.I‘l.l-‘l- llH.'l '4.‘ll4‘l"l-‘l-l.‘l. .I'l.lbl‘l"l‘l"lil"l‘l"I"aq.'l‘l"l‘l‘l.lll..' ':ll..'l "I..'I"'-I..'
l_‘ l-l"l"'l.."l"l-""l."I % 3 'l.q'l-'l:" J.*I‘i."l“i.'l*l*l + I*I*H'Fl_‘ I+lhh+ihh‘i1‘h‘i"l‘i‘h“i“'-‘i“'-*'-.H':'tl hl:*-l_hl:
I.:I"I-I:‘.I-:l- I !.: l.l] I'*l-l-tq_ -I"I"I‘I"'I.I"l'.l"l .'I'I.I"'I..'l}l.l-*'l‘!q-'l‘l-l'u‘!-l-'l‘lb'l‘l"l‘l"‘l-l-}l.l-"-l-."".
q"l-*u,"-q"‘l:*u*n."'a.-"i'—t‘ihu"-iui."-"l."- :*'u"'l."'-_ et et et h‘u‘i'h‘n"t"ﬁ"t‘i"’t‘i"t‘ihihi"t‘thq‘ Fr Ak
I_:I.l_‘l,‘l'l.‘l"l‘l"l-‘l"i-‘ltl‘l"i.‘l.i.‘l_ - q_. AL e e e Yt e e
H"}“‘_"“‘:I*b‘l-b‘h‘h‘h‘l-“l‘l‘l‘l‘ﬂ_"l-ﬂltu' i'q, [J.."l_:}"l'-i."l*x."l‘ I'l.‘i‘h‘i‘h‘i"h‘i"h'ﬁ‘h‘i"h"
\“‘r‘l‘l‘l-l‘liltl- oy "1.1-"1:':.‘-.' by g 'I‘I-."I-I"liillll"l‘ b
i .ﬁ‘-!_‘i-‘li-.i. i,ti_.__-r LY ﬁt' L i-.:‘!--nli.h‘ 'k'.i.‘#'l-l'riil'r-i!i-i- - 4
l-l-‘.'a‘l‘l.':. N N N Sttt
LA Ay T, L R
"ﬂ.“ l.'I.l-l-:I-I' '...': :I"'l-l"l-:l:-l'.l"l-:'I_: -lq-'l‘!"l‘ll'l‘l-"l‘ " L
Fa q“i“i"n."i"n."’u l-_ :."n"a.."il"l.*uha."l*l*'u.. i lhl.hi'qi.hih'-*i'.‘l.hihﬂr ,
=. ll.r'l-l‘ll-ll-.rill ‘Ili.‘lll"ltll'-l'lil tl"l‘...'q. I"lii"l‘lb\‘i"l.'l .-‘1‘1 " ELE
‘lt..t ‘H*h:‘l‘-h“h‘hku b i..!*i.lll-‘_ill-‘_i.ll-ii.l! LN o ‘i"'-‘i"-‘-i"-‘i‘h'*'p‘h"i‘hq-ihh"th_tl_
e e A e R T q_":
t"'u_" p‘ - * e “ e "I'_ " . o “-I.- - “-I.h - "-i." - .‘-i.h o * ':_' i . R * L .'-i "u¥a ~ W l.t-l_ u_ta
e e AR RS .'l_il-lq.'l‘l‘i‘l‘\-‘l"‘r‘ll'l‘l*'l‘l:'l- | "y
H-‘:'Ju"u‘m"r‘u"u‘u"ﬂ". L l““h‘i“h‘i“h“i-h‘i-'ﬂr'--‘hr'-“h':-l) ".'l_*-l
e G T e T e ﬁ‘!‘l‘!‘l‘l“l‘lbl‘lb'l‘lb'l‘l-*'l‘lr e
H‘I"i"‘h‘inh‘i‘-l.‘ill.‘i“j-“i‘l L J.'n"a."t"'i."i'i."t‘t‘i"l. *a‘u*l_"l."i"u':i.‘l"l_‘u*ihi."i"'lht"'l. :"-l_
Bk k% h ok kA khEAN B L% E% FW LN + 'R 4+ W £ N ENLEESRLTSL L X
T e e N M P L Y R LN LR Y N e v TN P P L L X
R ok ok L E MR Fh ks E Ul ol Nl i il Y ARk w h mch ok b kA >
.l:I-I‘l‘I*I-Iil.I:l.'J*l I-‘I‘I'"‘.I' h-:ll:.-l.l'\-.l"'l‘l-l‘l"!- k'a.l‘r'u‘!‘r'all'*“l‘-'a‘l“l‘ll-ill-‘l, -
nh'!.l-i i"&"n'p‘i"&-’ihL‘i"p;“u_'t‘u_‘l_'" i-.::q*ltvili'.mtvimi Ty) t."'l-t\l.q-ihlll-blIl-i!_‘-‘h‘q-il-lr-.n"!:l "2
AN E N R Y R am =% B kLA WA EE L L LY HE R L% FAALEE 3
l‘.I L) l‘l- l‘ll-.|_l|.l|ll-.||l|.l|ll|-.||llIII :'q." q_ll*r_f R _l.lq.'l."-i-'l.‘_a.-_'l_l* hhl‘l'%. ‘.HI_*E‘._‘ Hu'l.‘l.r\-_hl."l‘_i__:.-‘lpl L .
I_qu‘l.:‘ﬂ_'ﬁ‘ L " S T e e q_. dr b b b w kw ok M W WO MR e A B h Wk ok E
3 e LR LN N AT L "l-_.l_.}_‘ll}- L E S I T L L Lk, 2
W t'i".i-"‘.:‘\‘ ‘L‘t"v‘t"'n‘u‘ a hi'ibﬁ.hllt'i-thl.hh' q::*‘t:':uhq.‘tht"l'p‘thq.'t‘l*i l.‘-l'.‘l.‘lh .
W ok AW L M R RS LU AT B R R N FRAELTAAALYAL
L LR AR R T T NN L LT LT *
o MW MW Mk Mok I Wk Mo ko "
(B ENENENEER L
. " [BN 4
y b T . kWO
=

L LuF N
“H':"':.:L:H:H\{ '\I‘.t:l':l;'.':liI . AR RN RS EE o kS ETEENE L W
"rl.l|l|.-::'q_h I;l_"l K, I-I'I-I'!I'Illhl-l- 'll,'r_l.“ L L X,
.L:i:l.:-i:h.'lﬂ.'i-l , : . : - AW kR il«. ata "i:ﬂll.ti:-l.‘ : l. .' _‘ ." :."'
L Y l:"_ :*lll-l IF-I" I“l l"l'l I.l_".-'
t”-_'a;“n'u‘u'-‘u_"qw\'}' T X, ettt Pt Mot s q;\“\
L E R ENEN TN L % % kW X F3F 4 FREE R ELE
Kk XN LI "R rm T RN R T RF L | .
i"l: H‘K: L | *r\. '_h.ﬁh'! L LS I N H‘:H."H‘th
l.:..l:.'l-l.ll-i.l..-i.l.q.l" Iil.lllll.l. L
" 3

e h Mg

4 F 3N ELY L

= LEA4ART)
r W
L F N L *
LY LIS LIk
" - kWY 4 MM LN ok L ok ok ok LM ‘u_.'l,'t '.ui:q.' .'i:i
1] ll_ll- ‘-u‘-q‘-u‘-u‘-u"-q . 11. L] T .l‘lql‘ﬂr‘l‘l.‘ll o '-llll'l_I|I 'l.hl . '_-l‘llu L] "I"'r
i "'lbn.l..n. 4 bk hwkoh li."'ul. | e T 1] T g Uk M h o R ok WA [t
| LA R EE A E L NN Y | I ENENRENEN) * B *r % i B R kW LEWE ALY 1 LI
N e T L :g'. o LT ML UL TN, . e et T L o
_" e W L U T T LT T SR S R M Y e Ty S e dh ok bk Y =
A E R R AR A E A R LA E Y E N TS| A F R E kLA R b B 4 B % EEEEET% L% L%A%LEE L LY
EROY AE R EEOE YA N *u Fu .hql*'l-l-i-iq-l_‘ N N N L L e L TN P T A T L %N
T T i i ¥ g T L A N LY e e e e e T e T R T R T T LT T Ty
IR A E LA R RN E R LN A NN B F3 LXK dr % b % k% k% L% k% k% Y kY FREF E b %
AREEER LR LN AT E N LR TN * T R AR L L e e T e e e e e e L
M'u_ A N R N R e e e R N] T o e R e T e e e e e e e e T T e T T e e T L w
" W e %k ohd ok kN IR EAE YL RN N X FEEELE R T % L%k N K EF R LY. EER SR T R %k LY
T n T e A T T e e e e T, e e T e e .t
T T T T e e i e e Ty I i - L T e ok A r
LA RER RN E R I E R A R A R A R A R A) FE FE NN FEELE ar % h B B N N I bk W ¥ =L
e e e T e T e A kT e T e T ZELEE Rk R LR LI
L e L T L R e L L YL UL L R LA AL
LA R R R R R E L R A Y L . L] *1_:':‘1“11.: - % R LE AR LR T R A
'l.l"\‘-h"'-‘-h‘1‘1‘-‘-&‘*‘!‘1‘5‘1‘1‘1‘-'1‘1‘4‘1' e I'li.r LN] I-I‘!-I‘HII 4‘-&‘+~1‘4‘H-+‘|--‘n n'l‘l-"\‘l-‘-h 'l‘l-‘
T T T T T e e e ' 1 - "Il T I S S i e ok Moy ok ko4 oh M O I T 4 = b
A EEREEEER TN E . UL | [} L T A EHEEEFY kA E Eh k% k% L)
A e e T e T e P T e S NN R REYTR li_l_!q_h"ll'll“l_‘ MEEUNLNL L aon
L T i R P P i i " ﬂ3.;:|.|'-|.."'n.'|."' g Ty T T T T N T L S T L ‘:-i"'- .
hh k% hwd %A LU L E M R k- B F R Lhh % LA hLEEELYT LA YR L]
R LA R R AT A o N RN R A AR A AN AL AR R R N 1.‘1‘1'I‘\ AN
ok h ki w hohorw i 3 4 o W WO W T T e e e N e e T e T e R e T N LI
EBE %k kA oh = L EF v LU W OR, N R E b kb Rk k% k% F% k% kYRR YU FR kA EW L
AR R OFALAE AL L N R N L T L T T L L I N N N LI
T L L N ! ! P L L L ALL, N e L T T T L L T L L T T, L L
Lk R A4 AR R] 4 B4 ESTENRLY R LR RS L A N A A R EE L EEEE L NN L a4
LR TN N R TR R R LR Lo R L T L L T T T L T e L L L L N
N] 4 ML WA Wk LM W ek WA 4w s mwoma ERE LN I L] UL
LN FIR3IFIF PR N L R N ENE R EN LN N L L
X " * R K .'l. EFETrExTm [LY L] i‘*"i‘bqi‘*'i‘l‘l‘i‘ltl_‘ LI
"i,"n.‘n."p;.' . % P Ty T LR L N N R ok -.h: G ST
[] L' & m £] Edar RN EEENTEN" Y LR]
‘ LR " l"l_.l-i-lll'-l- o T L LI ‘-‘-u."i\. RN
i 4] W A Wk w m ok mawy wy Lk iy owd
E R AN " rm L T e Fu oLk &
U l;:'. . * ¥ LI NN A LI U
11‘*" " . "p.:‘u_lu. ", "l,. -i"-.. iq-.. " e
[i“'l..l,_l o IRI.. B LA LAEL I
LY [] r I.ll‘! ¥ rar !.I*III‘I.II'H n -n‘ et l|-.ll'-|.l"l|-lﬂ|“'ll-Il
o Ll | o W] Ul Ul g e | i w onowd
L] w e et e e e e e e T P T e e e R e e ua DI L
] AN EA NSNS IFEF R AR Ed EAET EThRAET ELEFE SN LN AN TN FEEN N e
'q"q.q"‘ll_qq.q._r_r.n_llIlrllrllrllll.Illllllhlllllll-lllllllll!r!r.r.lr.u.q!.l._u.._qm:, . 3 = 3

BLu]=

This describes the patient’s current condition in narrative form. The Chief Complaint is a required
element. The history or state of experienced symptoms is recorded in the patient's own worgs. It
will include all pertinent and negative s_?/ml_?toms under review of body systems (ROS). Pertinent
Medical History, Surgical History, Family History, Social History along with current medications
and allergies are also recorded.

Send 300

"H, X, CH X kL E LT E L% Lk LA AT ko LA LN
!.I-II-IIll'll'll'l-l'l"l'll'l--i\il-i'll'l-l'l-l
e e e e

IR L N R N T NN L]

I EE R E R EE A E R E R R N .
LT N R R T N LA |
E R NS R E TN '--i.p,-i.q:': "
]

EEh F% F% 4 4 L4 44 L4 L ELE

U T e Y ?:-I‘.I-I.*I-I%I-I.*I-l.‘l-l
R FR YA+ EFETfEECESLARE
th'l'!ii‘q_!hq []

R *
Ih!..'!'.l-_*l.*: q‘q
LIS q"

B LA K -r

N 3

L} -l.:.l."t 1 & :_.‘-

L

SRR ‘.l’%. n
LW b ! !

- " . n

L AN A ER NS ENENK; A RALEFR

[PLra 'i.-ﬂ-".‘H"‘.‘l"‘H""."‘H"‘hlh“'ﬂ“‘h“'ﬁ'*:h:‘:h:‘.l‘i. ‘l:h:‘ll‘-“"h-‘

S et e el ettt et et e et bt Lt St et et e e e e e e e e e e e ¥ .

Replies

Felicia Bassey Friday, February 3, 2017 5:04 PM

This describes the patient’s current condition in narrative form. The Chief Complaintis a
required element. The history or state of experienced symptoms is recorded in the
Eatient’s own words. It will include all pertinent and negative symptoms under review of

ody systems (ROS). Pertinent Medical History, Surgical History, Family History, Social
History along with current medications and allergies are aiso recorded.

Add To Message 00

BII|U|S

EEE®

FIG. 20

US 11,507,556 B2

1

METHOD AND SYSTEM FOR
ENCAPSULATING AND STORING
INFORMATION FROM MULITIPLE

DISPARATE DATA SOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit under 335
US.C. § 363, § 365(c) and § 120 of PCT International

Application Serial No. PCT/IB2019/050762 to applicant
ENCAPSA TECHNOLOGY LLC, filed Jan. 30, 2019, pend-
ing, which in turn claimed priority to U.S. Prov. Pat. Appl.
Ser. No. 62/623,626 to the inventor, filed Jan. 30, 3018, now
expired. The entire contents of each application 1s hereby
incorporated by reference herein.

BACKGROUND

Field

Example embodiments in general relate to a computer
system and computer-implemented method adapted to
encapsulate and store information ingested from multiple
disparate data sources.

Related Art

In the discussion of prior art in Applicant’s commonly-
assigned U.S. Pat. Nos. 7,752,231, 8,013,214, and 8,504,
590, the entire contents of each being incorporated 1n their
entirety by reference herein, 1t was noted that conventional
databases which are set up to store user-associated informa-
tion typically employ a proprietary “record” format. A
record includes a number of fields which are uniform
throughout a particular database. Records typically include
(1) fields used to authenticate or identify users, and (2) fields
used to store data associated with the users.

In an example, 1dentitying fields may include a “First
Name” field, a “Last Name Field”, a “Social Security
Number” field, etc., and/or any other well-known 1dentifi-
cation/authentication signature (e.g., a biometric signature
ol a user’s fingerprint, retinal scan, etc.). In another example,
data fields may include “Credit History”, “Medical History”,
ctc., and/or any other well type of user-associated data.

Databases using the same record fields can be merged
with each using a common or shared communications inter-
tace protocol (CIP). For example, first and second databases
may all include the same, or at least compatible, record field
structures. The first and second databases may share and/or
merge mformation, stored in their respective record fields,
using a specific CIP because the record field structure of the
first and second databases to be combined are identical. In
this instance, First Name 1n database “A” routinely maps to
First Name 1n database “B” or Credit History in database
“B” routinely maps to Credit History in database “A”.

However, different database orientations typically include
proprietary record field structures with potentially incom-
patible field structures. For example, database A might have
a different name representing the First name information
than database B. (1.e. “Last Name” in Database A versus
“Surname” 1n database B). In such cases, a set of databases
cannot be accessed simultaneously to mngest the data records
contained therein using a specific CIP, unless the dissimilar
database employs a “translator or data mapping” application
which establishes a standard associative field structure for
both the known and dissimilar field structures of the ingested

10

15

20

25

30

35

40

45

50

55

60

65

2

digital data records. This literally means that the field
structure of database “A” 1s examined along with the field
structure of database “B”. Fields in database A are then

physically matched to corresponding fields 1n database B to
identify, to the CIP, that both field structures have the same
type of information. This process 1s known as data mapping
or data translation, and 1s especially undesirable when
employing data management routines for big data applica-
tions.

This 1s because data mapping or translator applications
are expensive to produce and maintain, and add both com-
plexity and time to inter-database communications. The
need to physically map each dissimilar field to an interme-
diary file can prove burdensome. Even 1f automated, the
time and expense 1t would take each process to establish the
standard and match each dissimilar element to 1t 1s signifi-
cant.

Additionally, record fields are typically stored together 1n
contiguous or adjacent memory address locations, such that
identifving fields and data fields are in close, physical
proximity to each other within conventionally-structured
databases. Accordingly, 11 a conventional database 1s com-
promised by a hacker, the hacker can, with relative ease,
combine the identifying fields with their associated data
fields to obtain the relevance of the data fields.

Conventional techniques to reduce a hacker’s success 1n
extracting relevance from compromised data (e.g., by cor-
rectly associating compromised data with user-information)
typically include adding layers of “active” encryption to
database storage protocols. As an example, for an entire
database configured to store numerous records, the database
1s encrypted such that the hacker cannot read any informa-
tion from the database without obtaining a key to decrypt the
database.

However, authorized users must also decrypt the database
to access the information stored therein, which adds further
laborious processing requirements and delays to database
access. Further, 11 the hacker 1s able to successtully decrypt
the database, the information present therein becomes read-
1ly available to the hacker in the conventional “ready-to-
read” format (e.g., contiguous/adjacent memory address
record field storage). Also, 1t an authorized user loses the key
required to decrypt the encrypted database, the authorized
user cannot access the database until he/she obtains a
replacement key, which can also be a painstaking process
(e.g., requiring re-authentication and distribution of the
replacement key). As such, in developing i1ts pioneering
technology Applicant did so with an eye toward the numer-
ous problems inherent 1n ingesting data records that comes
from disparately-structured data storage sources.

Applicant’s aforementioned commonly-assigned U.S.
patents described methods and systems which 1n general
introduced the concept of an “encapsulation” of information
in an “‘encapsulated” database, whereby a message was
partitioned 1nto a plurality of object class entries in the
database. Applicant defined an object class as one of a
plurality of defined, hierarchical fields stored within the
encapsulated database. As described herein, object classes
include, 1n an order from highest-level to lowest-level within
an object class hierarchy, the object classes Folder, Form,
Topic and Data. A “data field” was described as a portion of
an object class entry or 1n some cases all of an object class
entry. Additionally, a data field class was used synony-
mously with object class, and represented one of a plurality
of defined, hierarchical data fields stored within the encap-
sulated database.

US 11,507,556 B2

3

Each of the object class entries constituted a portion of an
object class from a plurality of object classes having a given
hierarchy within the database. Pointers were generated, each
pointing to one of the object class entries, which were stored
in non-adjacent storage locations within the database. At
least one of the plurality of object class entries was stored 1n
association with the generated pointer such that it pointed to
a higher-level object class entry, as determined by the
hierarchy.

SUMMARY

An example embodiment of the present invention 1s
directed to a method of encapsulating digital data records
having multiple, diflerently structured and unstructured for-
mats, the data records ingested from multiple different and
disparate data storage locations. In the method, each
ingested data record i1s separated into a plurality of tuple
structures, and for each tuple, the tuple 1s split into a data
part and ficldname part. A pointer 1s created by combiming,
the fieldname part, a record identifier of the data record, and
a database 1dentifier of the storage location where the data
record was stored. The pointer 1s appended to the data part
to form a digital stem cell (DSC) that 1s stored 1n a single
data store, each formed DSC having the same structure.

Another example embodiment 1s directed to a method of
encapsulating multiple different data records having an
unstructured or structured format, the data records contained
in {iles stored across multiple databases, at least two data-
bases of which have dissimilar structures. The method
includes ingesting files contaiming the data records from the
databases, and for each file, deconstructing one or more data
records contained 1n the file mto elemental parts having the
same structure. The elemental parts are stored 1n a single
data store. The stored elemental parts are adapted to be
freely indexed and searchable 1rrespective of the original
unstructured or structured format of the elemental parts’
underlying data record, and 1rrespective of the database
containing the file from which the underlying data record
was 1ngested.

Another example embodiment 1s directed to a computer
system adapted to encapsulate digital data records 1n mul-
tiple, differently structured and unstructured formats acces-
sible from multiple data storage locations. The system
includes an 1ngest client adapted to ingest a plurality of the
digital data records from the multiple data storage locations,
and a server node adapted to 1terate object-based program-
ming functions to separate each ingested data record into a
plurality of tuples, split out a data part and a fieldname part
from each tuple, create a pointer by combining the fiecldname
part, a record 1dentifier of the data record, and a database
identifier of the storage location where the data record was
stored, append the created pointer to the data part to form a
pointer pair which represents encapsulated data, each
formed pointer pair having the same structure, and store the
formed pointer pairs 1n a single data store of the server node.
The system includes a response client adapted to, upon a
user query to the system, de-encapsulate selected pointer
pairs 1n the data store based on the query store, for display
and analysis by the user of the original, underlying ingested
digital data records associated with the pointer pairs.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will become more fully under-
stood from the detailed description given herein below and
the accompanying drawing, wherein like elements are rep-

10

15

20

25

30

35

40

45

50

55

60

65

4

resented by like reference numerals, which are given by way
of illustration only and thus are not limitative of the example

embodiments herein.

FIG. 1 1s a simple diagram highlighting the essence of
encapsulation.

FIG. 2 15 a flow diagram to describe a method of encap-
sulating digital data records according to the example
embodiments.

FIG. 3 1s a block diagram to further describe the func-
tionality of objects 1n accordance with the example embodi-
ments.

FIG. 4 1s a block diagram to highlight the interaction
between 1ngestible digital data in the presentation layer and
the objects that create DSCs 1n the data layer, 1n accordance
with the example embodiments.

FIG. 5 1s a simplified block diagram of a specific com-
puter system for implementing the method.

FIG. 6 1s screenshot of a webpage 1llustrating an example
data browser, namely to show 1nitiation of an import func-
tion consistent with the exemplary method.

FIG. 7 1s screenshot of the same webpage of FIG. 6 to
illustrate one way 1n which digital data 1s ingested for upload
to be encapsulated, through a drag-and-drop means.

FIG. 8 1s a screenshot to show the functionality of
dragging and dropping a data file into the system so as to be
encapsulated as a DSC and stored in the common data pool.

FIG. 9 1s a screenshot similar to FIG. 8 but further
illustrates selection of a digital data file 1n the presentation
layer.

FIG. 10 1s a screenshot showing the selected file from
FIG. 9 encapsulated and stored in the data store.

FIG. 11 1s a screenshot of a webpage showing import of
a data file based on the import execution.

FIG. 12 1s a screenshot showing the reformulated data
records from the DSCs 1n the data layer, with a search term
highlighted 1n selected results.

FIG. 13 1s a partial view of a screenshot showing an
analyze function that may be imnvoked by the user to analyze
the searched results.

FIG. 14 1s the same screenshot as FIG. 13, but illustrates
a refinement of the original search query.

FIG. 15 1s a screenshot 1llustrating an example analytics
display (pie chart) based on the additional queries, for
review by the user.

FIG. 16 1s a screenshot illustrating a sender preparing a
new message to be sent to a recipient via the PMB system.

FIG. 17 1s a screenshot illustrating the sender’s outbox.

FIG. 18 1s a screenshot illustrating the recipient’s receipt
of the message via the PMB system.

FIG. 19 1s a screenshot illustrating the sender adding a
message 1n the form of a chat or IM via the PMB system.

FIG. 20 1s a screenshot illustrating the recipient’s reply to
sender.

DETAILED DESCRIPTION

In general, the example method described herein may be
implemented in computer system and/or embodied as com-
puter server software for indexing and making searchable
data from any application, server or network device.
Namely, the computer soiftware 1s implemented by a com-
puter system so as to mgest multiple different data records
(a data record being 1n any structured or unstructured format,
thus 1rrespective of structure), the data records contained
within a file located in and across multiple data storage
locations or databases. The ingested data records are then
deconstructed into elemental parts having the same struc-

US 11,507,556 B2

S

ture, and then stored 1n a single, common data store. The
stored elemental parts are freely indexed and searchable
irrespective of the original unstructured or structured format
of the elemental parts’ underlying data record, and 1rrespec-
tive of the database containing the file from which the
underlying data record was ingested.

According, the stored elemental parts (e.g., the DSCs) are
freely searchable (such as by query by a user via a GUI) 1n
the single data store. Results of the search or query are
displayed in the presentation layer as the originally ingested
data records corresponding to those elemental parts within
the single data store that form the search results. The results
may be analyzed as desired.

The function of 1ngesting can be understood as an action
of pulling the file containing one (or more) data records from
the database where the file was located, and then looking at
the file and what 1s 1n the file, such as the file structure and
extension (.pdi, gpeg, mov, .csv, etc.). The deconstructing
function 1s akin to parsing the ingested data record 1n order
to pull out only certain parts (data part and ficldname part)
that eventually will be used for encapsulation (represented
as the forming of the digital stem cell (DSC)) that 1s stored
in a single data store. As such, only a fraction of each data
record 1n a given file will actually be used for encapsulation.

The example method(s) may therefore be implemented by
at least one computer system or computing device, and/or
may be embodied as non-transitory computer readable infor-
mation storage media or as a set of machine readable
instructions stored in a storage device. Regardless of the
underlying device or system, when iterating the example
method described hereafter, the system or device 1s adapted
to encapsulate information 1n the data layer, the information
(1.e., any data source 1n a structured or unstructured format)
having been ingested in the presentation layer as two or
more disparate data storage sources are indexed to according,
to the method. Additional functional details invoked 1n the
method by the system(s) are described hereafter.

In another alternative example, a website 1in communica-
tion with the mventive computer system for implementing,
the example method may be accessible by subscribers 1n a
self-serve manner. In a further alternative example, a web-
site describing services and/or functions of the exemplary
method(s) and system(s) may be public-facing and serve
essentially as a sales brochure for a downloadable app for a
smart computing device. In addition to promoting the
mobile app, the website may promote perspectives on vari-
ous themes associated with a given computer program
product, app, download, etc. through a link to an associated
blog, which may be accessible through social media where,
for example, the blog posts regularly to FACEBOOK®,
TWITTER®, INSTAGRAM®, LINKED IN®, and the like.

A commercial platform envisioned for a consumer and/or
business enterprise may be embodied 1n one, some or all of
a downloadable software product, ofi-the-shelf retail soft-
ware product purchased for installation, a self-serve website
with or without downloadable app and/or software ifor
download, or both, each implementation based on the
example computer system(s) and/or computer-implemented
method described 1n greater detail hereafter. The commer-
cial platform, as embodied by the inventive method(s)
and/or computer system(s), may be directed to, implanted,
pointed to, or otherwise installed as middleware 1nto or on
any kind of peer-to-peer (P2P) file sharing systems and/or
services, server node(s), existing software suite(s), and/or
enmeshed 1n any kind of existing or future protocol designed
for the internet, an intranet, a P2P file sharing service,
intra-networks, etc.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one example noted above, the inventive method may be
part of a downloadable or transferable (over any communi-
cation medium) smart device app including but not limited

to: (a) B2C direct via the mobile app downloaded from a
digital distribution service such as the GOOGLE PLAY™

AMAZON® Appstore and/or App Store by APPLE®; (b) a
B2B relationship whereby users may be licensed to and/or
oflered to under a designated brand (e.g., consumers, smaller
businesses, atlinity groups, their agents and the like); and/or
(c) a B2B relationship whereby the licensing entity rebrands
the service for integration into their product suite (e.g.,
larger enterprise suites and/or corporations, national gov-
ernments and the like).

As will be appreciated by one skilled in the art, the
example embodiments of the present mmvention may be
embodied as a computing system, computing device, com-
puter-implemented method, set of machine-readable mnstruc-
tions and associated data 1n a manner more persistent than a
signal 1n transit, non-transitory computer-readable media,
and/or as a computer program product or downloadable
mobile app product for a mobile device. Accordingly,
aspects of the example embodiments may take the form of
an enftirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-
code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module”, or “system.” Furthermore, aspects
of the example embodiments may take the form of a
computer program product embodied 1n one or more com-
puter-readable medium(s) having computer-readable pro-
gram code/instructions embodied thereon.

As used herein, the term “data” i1s defined as a unique
segment ol information which joins to other segments of
information (“digital data™) to form a meaningful and rec-
ognizable knowledge stream. In the context of the example
embodiments described hereafter, the data to be ingested
from disparate storage locations 1s generically referred to as
a “data record” or “data records” collectively, and/or occa-
sionally as digital data.

However, 1t should be understood that the various types of
digital data or information ingested from disparate data
stores (such as databases, server stores, and the like) include
but are not limited to, by example, the alorementioned data
records (and/or tables or other tabular data i1n various
formats), mput forms such as a web forms, images such as
pdf or jpeg files with associated metadata, etc., video/movie/
streaming files 1n various file formats, audio files 1 various
formats, other editable files and/or documents in various
formats (e.g., formats such as those associated with any of
a word processing file, any data or database file, spreadsheet
file, compressed file, disc and media file, executable file,
font file, internet-related file, presentation file, programming
file, system-related file, and the like), text messages, elec-
tronic mail messages, files or records associated with social
media-related postings, and also includes any document or
file structure or type containing data which has not hereto-
fore been developed but which may be created, developed,
envisaged, or anticipated 1n the future.

As used heremn a “storage location” (in its singular or
plural) by example includes but 1s not limited to databases
(e.g., relational, object-oriented, key-value), data stores such
as distributed or open source data stores, simple files such as
spreadsheets, email storage systems (client and server), and
the like. A storage location also may be envisaged 1n a
broader sense within a class of storage systems that include
file systems, directory services for networks, and files that
store virtual machines such as a VMware data store. Further,

US 11,507,556 B2

7

a storage location herein includes and pool, container, or
other storage system which has not heretofore been devel-
oped but which may be created, developed, envisaged, or
anticipated 1n the future. For the purposes of simplicity and
convenience only hereafter, a storage location from which a
data record 1s to be ingested for encapsulation shall be
referred to primarily as a database

As used herein, the term “tuple” may be defined as a finite
function that maps each fieldname field 1n a data record
(hereafter “Fieldname™) to a certain data field or a certain
value 1 the data record (hereaiter “Data™), e.g.,
Tuple=Fieldname+Data. A tuple may be synonymous with
and 1s also referred to occasionally hereafter as a ““data-
ficldname pair”. As used herein, the term “pointer” means
information that identifies the tuple or fieldname-data patr,
and which occasionally may be referred to as an “identifier”
or “identifying information”. This 1dentifying information
includes but 1s not limited to: the record identifier for the
data record, the database identifier which identifies the
database from which the data record (and hence the field
name-data pair or tuple) has been mgested, and additional
clements or fields associated with the data record (e.g., a
timestamp, owner, geographic location, etc.)).

As employed hereafter, the phrase “Digital Stem Cell”,
also known or referred to hereatiter as a “DSC” or occasion-
ally referred to as a “‘pointer pair’, represents a Data
part+Pointer, and 1s representative of the underlying digital
data or information (such as one or more data records as
defined above) ingested from the presentation layer. Alter-
natively, the Data part+pointer that forms the DSC or pointer
pair may be occasionally referred to as simply “elemental
parts”. A DSC (or the elemental parts) or pointer pair 1s the
end result of encapsulation, whereby each fieldname-data
pair (tuple) in a data record that has been ingested from a
storage location such as a database has been split or sepa-
rated into a data part and a fieldname part, a pointer has been
created, with the pointer then appended to the data part to
torm the DSC (pointer pair). As will explained 1n more detail
below, the pointer 1n general 1s created by combining the
previously-noted identifier information (record identifier,
database 1dentifier, additional identifying elements) with the
ficldname part that was split from the fieldname-data pair.
The formed pointer 1s then appended to the data part to form
the DSC. Each DSC 1s stored within the data layer in a
common storage location, pool, or container known as a
“data store”.

The phrase “data store” (also occasionally referred to as
an “encapsulated data store”, “data warchouse”, or “data
pool”) hereatfter represents a single container, pool, or stor-
age location having no structural limitations, where a plu-
rality of these freely associated DSCs are stored. As such,
the data store 1s simply a collection of freely associated,
individual DSCs. Unlike traditional database structures,
there are no structural barriers in the data store.

The meaning of the term “encapsulation™ as used here-
after 1s the process of creating and storing these DSCs 1n the
data store. Thus, encapsulation represents Applicant’s
enabling process to merge data records (e.g., digital data
clements, records, and the like as noted above) that are
ingested, recetved or accessed from disparate databases
(e.g., storage locations, systems and the like as noted above)
from the presentation layer, into the data store within the
data layer by converting the ingested data records into
representative DSCs within the data layer.

Additionally as used hereafter, the phrase “enCapsa
objects” (or occasionally also referred to as simply
“objects”) may be understood as programming functions

10

15

20

25

30

35

40

45

50

55

60

65

8

adapted to encapsulate or (de-encapsulate) digital data
within either a middle or business layer, or 1n the data layer,
depending on the configuration. The enCapsa objects are
adapted or configured to both create DSCs 1n the data layer
and also “re-form” the originally ingested digital data (such
as data records) from the DSCs 1n the presentation layer.

Moreover, 1n the context of this detailed description, the
phrase “object library™ refers to a library that 1s represented
as a series of programming constructs 1n the form of exposed
functions (the enCapsa objects) that allow encapsulation to
form the DSC (or de-encapsulation of the DSC to recon-
struct the original data record). In this respect, enCapsa
objects are configured so as to pass data between the
presentation and data layers. For example, the objects might
take a data record from an mput or ingested form (as a DSC)
and pass it to the data store and, conversely, take the DSC
from the data store to something 1n the presentation layer,
¢.g., like a dashboard to re-construct the data record from the
DSC based on a search query, for example.

FIG. 1 1s a simple diagram to highlight the essence of
Applicant’s process of encapsulation. Before delving into
greater detail in regard to the exemplary computer-imple-
mented method(s) and computing systems(s), Applicant
provides an overview for purposes of context, and for a
follow-on discussion of certain themes or properties attrib-
utable to their encapsulation technology.

The essence of Applicant’s encapsulation methodology 1s
that any data record 1n any database can be broken down 1nto
ficldname-data pairs (or tuples) to create Digital Stem Cells
(DSCs). The general 1idea 1s that one can take digital data
(such as a data record) from any storage location within the
presentation layer, such that within the data layer the data
record 1s separated into a plurality of fieldname-data
ingested from the underlying data record. As such, since
only these two fields are parsed or pulled out form the
underlying data record, structure of the data record becomes
a non-1ssue. In other words, the structure of the underlying
data source and the data 1tself 1s not taken into consideration.

Recall that each ingested data record 1s deconstructed nto
clemental parts having the same structure. The elemental
parts are adapted to be freely indexed and stored 1n a single
data store. The stored elemental parts are freely searchable
(such as by query by a user via a GUI) 1n the single data store
irrespective of the original format (structured or unstruc-
tured) of the data record or the data source from which the
data record 1s ingested. Results of the search are displayed
as the originally ingested data records corresponding to their
clemental parts as stored within the single data store. The
results may be analyzed as desired.

Accordingly, and 1n real time, each ficldname-data pair 1s
separated 1nto a data part and a fieldname part, and almost
simultaneously a pointer 1s created and the DSC 1s formed
from the pointer and fieldname-data pair, hence the above-
described elemental parts that are freely searchable in the
data store. Namely, the pointer 1s created by combining the
fiecldname part split out from the pair, the 1dentifier infor-
mation associated with the data record (record 1dentifier for
the data record), and the database 1dentifier which 1dentifies
the database that 1s indexed to in order to ingest the data
record stored therein. The now-formed pointer (fieldname+
record 1dentifier+database 1dentifier) 1s appended to the data
part that was split from the fieldname-data pair to form the
DSC. As noted above, the pointer contains all the identifier
and positional information that ties the data field of the data
record to 1ts source storage location (1ts database).

This 1s shown by FIG. 1, in which an mput, retrieved or
ingested “data record A” from *“database A” in the presen-

US 11,507,556 B2

9

tation layer 1s comprised of a numbers of fields, but only the
fiecldname field and the data field of data record A 1s parsed
out for encapsulation. Namely, the ingested digital data 1s
encapsulated in the middle or data layers by first breaking
down this data from data record A into tuples (1.e., field-
name-data pairs (fieldname, -data, ,)), splitting each
pair 1nto a fieldname part and a data part, and then creating,
a pointer using the split ficldname part and i1dentifying
information for the data part (1dentifiers shown by dotted
line arrows). The pointer thus formed 1s then appended to the
data part to realize a “pointer pair” which 1s represented as
the newly created DSC. The ingesting, breaking down 1nto
tuples which are then split out to form the pointer that 1s
combined with the data part represents encapsulation, the
birth of the DSC. The DSC thus formed by encapsulation 1s
stored 1n a common, singular data store with other freely
associating DSCs within the data layer. This freely associa-
tive nature 1n a single common data store 1s analogous to a
fish 1n a school of fish swimming freely within the ocean.
Hence, there are no structural barriers.

Creating these DSCs gives certain properties to the tuple,
namely: independence, plasticity, uniformity, hierarchy,
security, and portability. These properties allow data from
disparate systems to co-exist securely within a single store
and allow them to be connected. The encapsulation process
creates units of data that are self-referencing and able to
stand by themselves within a specific pool of data. Each
DSC contains all the knowledge i1t needs to recreate 1its
position 1n the original database or data store. It also has the
ability to exist with other DSCs from other databases or data
stores within a common data pool making, by extension,
data from different databases or data stores exist in the same
space.

DSCs and what 1s inherent 1n the concept of the unitary or
common single data store can create what 1s called “linked
data”, the enabling concept behind what 1s known as the
Semantic Web. The 1dea of the Semantic Web 1s to make it
so that data can be linked to other data 1n a meaningtul way
so that 1t can be followed by machines and not necessarily
humans. That 1s, machines should be able to establish a
logical path between two or more 1tems of mnformation. For
example, John “is the parent of” Janet. As will be shown and
described 1n more detail hereafter, Applicant’s encapsulation
method has a direct relationship to the concept of linked
data.

The common 1dea behind the Semantic Web and linked
data 1s that, 1f a user conducts a search for “John Smith”, the
user should be able to find John Smith’s children or his last
three addresses. With encapsulation, 11 the user searches the
data pool for all the data elements belonging to “John
Smith”, they should be able to further narrow this down to
anything related to “John Smith” simply by increasing the
number of required common elements that must be satistied
as return results. So, 1f the user posits that all results must
meet the terms “John”, “Smith”, “Street Address”, “City”,
“State” and “ZIP Code” all those DSCs that meet this criteria
will be returned. Presumably, anybody who lives or lived at

that address, (1.e., John Smith’s wife and children) will show
up

These searches are evaluated at the level of the DSC. The
data part of the pointer pair that 1s the DSC 1s being searched
in order to return all data pairs that meet the criteria
mentioned. This 1s done for a reason. Namely, searching the
DSCs removes the need to consider structure 1n searches or
queries 1n the presentation layer. That 1s, the field name does
not have to be mentioned 1n a search; rather, just a list of
terms that are being searched for, such as a name, a city, an

10

15

20

25

30

35

40

45

50

55

60

65

10

occupation, a SSN, and the like. The pointer of the DSC tells
the user what field, record, database, data store or document
the DSC belongs to.

Again, 1t 1s important to note that, at the start of the search,
structure of the underlying data source and the data 1tself 1s
not taken into consideration. The benefit of employing
Applicant’s method of encapsulation 1s that any document,
database or data store on the planet can be searched. This 1s
powerful because it also means that any search will pull up
not just the document or database record that 1s being looked
for, but also (1f one increases the number of terms) all the
things that the document or database record i1s about, close
to, or refers to—that 1s, the things 1t relates to.

Adding to this 1s the notion that 1n the common data store
the notion of proximity searches among DSCs 1s really a
search for data in quite diflerent databases or data reposi-
tories. One can thus envisage a Web or HTML based system
that allows you to enter at the “http://” request line a search
term, click on any displayed record and be taken to all the
records that are related to it.

The process of encapsulation also adds certain, very-
specific properties to the ingested digital data, including
hierarchy and uniformity, removes the need to create and
manage schemas, allows the ingested digital data to reside
anywhere, and allows the DSC to store anything. In other
words, the DSC can contain anything; that 1s, the data part
of the DSC can be anything. For the uniformity property, a
DSC only has to be defined once. Once defined, copies of 1t
can be used again and again to house different data values.
By only having to define a DSC once, diflerent entities can
share the same field names such as “address” or “phone
number” without having to define them again.

For the hierarchy property, a concept that was generally
introduced i Applicant’s early U.S. patents, each DSC can
be part of collections that in turn may be part of other
collections. Data in the single data store or pool thus
becomes hierarchical, as each DSC carries information
through the data record, and database 1dentifiers carry infor-
mation on the enftity areas or collections 1t belongs to. This
1s analogous to a document referencing the folder that
contains 1it.

These and other properties of a DSC makes any database
infinitely extensible and relatively secure. These properties
also permit information from different data storage loca-
tions, databases and/or systems, no matter how differently
they are structured, to exist in a single space, the common
data pool. The possibility for all data to reside 1n one space
means that all data 1s searchable, regardless of its underlying
structure. Searches can take place efliciently and at greater
speed simply because all the mgested digital data reside 1n
the same space.

FIG. 2 15 a flow diagram to describe a method of encap-
sulating digital data records in multiple, differently struc-
tured and unstructured formats, the digital data having been
ingested 1n the presentation layer from multiple storage
locations across the iternet 150, according to the example
embodiments. For exemplary purposes only, the method 1s
shown 1n the context of a web user 110 entering a query on
the internet 150, such as via a browser.

In method 1000, each ingested data record within the
middle layer (or data layer as an alternative) 1s broken down
or separated (step S1010) into one or more tuples (or
ficldname-data pairs). For the purposes of FIG. 2 the method
of encapsulation 1000 1s shown for a single tuple of a data
record, 1t being understood that thousands to millions (or
more) encapsulations of tuples may be done per second or
minute, depending on the rate of mput of data, the process-

US 11,507,556 B2

11

ing power of the servers, and the storage space. For the step
of ingesting, the files contaiming the data records are
ingested, the files residing in the multiple data storage
locations. Hence a given ingested file contains one or more
ingested data records. The ingested data record may be
understood as any combination of digital data 1n an unstruc-
tured format, and/or 1n a structured format in the presenta-
tion layer, such as multiple data records from various storage
locations, where at least two of which have dissimilar field
structures with respect to one another.

Next, the tuple 1s split out (step S1020) into 1ts data part
and 1ts ficldname part. As previously noted, i1dentifying
information associated with the data part 1s combined with
the split out fieldname part to create the pointer (step
51030). The i1dentifying information includes at least the
record 1dentifier for the data record, and the database 1den-
tifier which identifies the database from which the data
record (and hence the ficldname-data pair or tuple) has been
ingested.

The 1dentitying information may also include additional
clements or fields associated with the data record (e.g., a
timestamp, owner, geographic location, etc.). The pointer
includes information about 1ts data part, and upon being
appended to the data part (step S1040) forms the digital stem
cell (DSC). As will be shown, each DSC includes informa-
tion adapted to be reformed 1n a presentation layer so as to
display the original, underlying data record that corresponds
to the DSC for further analysis.

The separating, splitting, creating, and appending steps
noted above represent an encapsulation of the ingested
digital data record to create or form the DSC. As shown 1n
more detail hereaiter, the separating, splitting, creating, and
appending functions are executed by object-based program-
ming functions (“enCapsa objects” or simply “objects™)
adapted to both encapsulate and de-encapsulate the ingested
data records.

Each DSC 1s then stored (S1050) 1n a common, single
data store in the data layer. Each DSC further adapted to
freely associate with other DSCs therein. For example, each
stored DSC 1s freely searchable irrespective of the original
structured or unstructured format of 1ts underlying data
record, and irrespective of the data storage location from
which the data record was ingested, the stored DSCs co-
existing without any structural barriers between them 1n the
data store.

The stored DSCs may further be configured as encapsu-
lated data of an extractable or exportable file, such as a .csv
file, although any other file format configurable for export or
extraction 1s envisioned herein. Additionally, the DSCs
stored 1n the common data pool may be considered as a
merged set, where a search or query 1s limited to selected
tables 1n the pool. According, it 1s not necessary to employ
any kind of data mapping process, algorithm, or subroutine,
as 1s currently needed in combining digital data from mul-
tiple storage sources or databases which have mncompatible
field structures, as 1s often the case. The merged data set thus
1s embodied or represented by the stored DSCs, and can be
merged or configured 1nto an extractable or exportable file as
noted above.

Optionally, and based on recerving an information storage
request from a communication entity in the presentation
layer (such as a query by the user 110) one or more of the
DSCs are pulled from the data store (step S1060, dotted line
box) for display and analysis 1n the presentation layer so as
to access the original, underlying ingested digital data
records associated with the DSCs. This function essentially
reforms (or de-encapsulates) the originally ingested digital

10

15

20

25

30

35

40

45

50

55

60

65

12

data records. The DSCs retrieved from the common data
store 1n the data layer are thus de-encapsulated using objects
for display and review of the orniginal, underlying ingested
digital data associated therewith.

The merged data set of DSCs may be adapted to be filtered
based on at least one of a common word, phrase, and term.
In one example, digital data may be searched in fields
common to all unstructured and structured data formats,
with the digital data aligned in successive rows by all
common fields. The results from the searching and aligning
functions may be saved as a new external file of encapsu-
lated 1information.

Thus, unlike conventional merging of records or tables
from disparate databases, which have incompatible field
structures requiring a data mapping application to establish
a standard associative field structure for both the known and
the dissimilar field structures in the records/tables to be
combined, the DSCs require no data mapping or translator
application to perform a search, query or record retrieval 1n
the presentation layer. This 1s because the encapsulation
process does not require any field structures to initiate,
constitute or propagate a search of DSCs stored in the
common data store. In fact, no data mapping or translator
application 1s required at any step in the encapsulation
process, nor 1s any data mapping needed upon retrieval or
downloading of the original, ingested underlying digital data
associated with the DSCs to display in the presentation layer.

Accordingly, the described method for encapsulating and
storing i1nformation from multiple disparate data sources
illustrates how data records can be deconstructed mto
clemental parts, which can occur at the word level (as 1n
input forms, data tables and metadata) or at the file level
(PDFs, images, etc.) In each instance the word, document or
image 1s encapsulated as a DSC and stored 1n an underlying
data store (such as a LUCENE® big data store). Of note, the
system/method herein 1s not a database itself; rather, encap-
sulation relies on the underlying data store, in this one
example LUCENE, to perform persistence. Persistence 1s
“the continuance of an eflect after 1ts cause 1s removed”. In
the context of storing data 1n a computer system, this means
that the data survives after the process with which 1t was
created has ended. In other words, for a data store to be
considered persistent, 1t must write to non-volatile storage.

In this light, Applicant’s method and system may be
viewed a three-tiered model to broker a relationship between
the data layer and the presentation layer. Namely, 1t serves
as the middle layer to transform data requests and com-
mands from the presentation layer into persistence in the
data layer, by providing intelligence to transform an 1nput
form 1n the presentation layer into a specialized document 1n
a data layer (such as a LUCENE data layer).

In one variant or implementation of the method, Applicant
envisions whereby the above method of encapsulating infor-
mation 1s performed 1n a smart computing device. The smart
computing device may include but 1s not limited to one or
more of a personal digital assistant, laptop, cell phone, tablet
personal computer, RFID device, laser-based communica-
tion device, LED-based communication device, mobile
navigation system, mobile entertainment system, mobile
information system, mobile writing system and text mes-
saging system. The common data store described above 1s
configurable to be part of the device, or connected to the
device, stored on but not connectively integrated with the
device, or generated or hosted by the device. Also, the data
store 1s adapted to be at least one of transmitted, transferred,
transformed or translated by the device.

US 11,507,556 B2

13

In another variant or implementation of the method,
Applicant envisions a non-transitory, computer-readable
information storage media having stored thereon informa-
tion. When the stored information 1s executed by a processor
the above encapsulation method i1s iterated. In another
potential commercial application, Applicant envisions a
control method embodied as a middleware product, which 1s
configured to perform the steps of FIG. 2. Namely, this could
be commercially sold as a “plug-and-play” middleware
product or middleware which lays on top of an existing
infrastructure, system, network, and the like. The middle-
ware encapsulates digital data 1n multiple, differently struc-
tured and unstructured formats that 1s ingested from multiple
data storage locations.

In another commercial implementation of the method,
Applicant envisions the development of a search engine
(private or public-facing) for presenting information in a
presentation layer based on a query by a user. The search
engine may include one or more computers and one or more
storage devices storing instructions that are operable, when
executed by the one or more computers, to cause the one or
more computers to perform the steps in method 1000 so as
to present the information collected 1n response to the query
to the user.

A further specially-envisaged commercial application 1s
in the form of a peer-to-peer (P2P) file sharing service which
1s adapted to iterate method 1000. In this implementation,
the P2P service has 1ts own P2P network with one or more
nodes, and implementation of the method shown 1n FIG. 2
would invoke a data browser enabling a user or machine to
access media file content (such as books, music, video files
inclusive of movies and episodic series content, video or
clectronic games, etc.) by searching other connected com-
puters on the P2P network to locate the desired content. In
an example, one or more nodes of the P2P network are
end-user computers and distribution servers.

FIGS. 3 and 4 are block diagrams to further describe the
functionality of the objects 1n accordance with the example
embodiments. Referring to FIGS. 3 and 4, enCapsa Objects
(or simply “objects™) are part of a simple but powertul
programming library that can be installed within any devel-
opment environment to tie massive amounts of disparate
data together. Developers and integrators can use the power
of Applicant’s encapsulation process 1n their own projects to
bring together digital data from multiple sources to be
searched as though 1t were a single database.

Developers 1nstall object libranies, reference them 1n their
code and use the menu functions of the API possesses to pass
data from input forms, ingest tools, and links to legacy
databases to the data store. Any developer can install a
simple search bar on a windows form or on any webpage to
search the data store for information from anywhere in the
enterprise, or employ any off-the-shelf tool to analyze the
global data returned 1n response to a search query.

The objects have full database emulation, with an ability
to store, manage and manipulate massive amounts of data in
their own right (possibly on the order of zettabytes (depend-
ing on the processing capability of the underlying server/
nodes or processors), where 1,024 megabytes=1 gigabyte;
1,024 gigabytes=1 terabyte; 1,024 terabytes=1 petabyte;
1,024 petabytes=1 exabyte; one sextillion bytes (10°" bytes
or 1,024 exabytes)=1 zettabyte). The objects permit data-
bases and digital data elements with varying structure to
exist 1 the same space. They can be dynamically created,
updated and/or removed (i.e., on the fly).

The objects lie within the middle layer (also known as the
business layer 1n a typical application architecture) between

10

15

20

25

30

35

40

45

50

55

60

65

14

the presentation and data layers, although objects may be
tull participants in the data layer. As shown 1n FIGS. 3 and
4, objects are configurable to take data from the presentation
layer (such as a search query or information request) and
then apply it to the data layer. In a sense, objects act like bots
or agents (“soldiers” following an order) to break-up and
store digital data 1n the data layer that 1s ingested from the
presentation layer. Data from many different presentation
layer sources can be stored 1n one space, making searching
and analyzing of this disparate data very easy.

Thus, the atlorementioned objects present a unique way to
manage and unite data within the enterprise and between
various enterprises. By simply placing elements of the
enCapsa Object API within code, developers and designers
can unite vast amounts of disparate data, turning over big
data projects from that typically take months into mere
minutes.

FIG. 5 illustrates an exemplary general computer system
block diagram adapted to implement the method. Computer
system 100 1s adapted to encapsulate digital data records 1n
multlple dif erently structured and unstructured formats that
1s 1ngested 1n the presentation layer from multiple data
storage locations. System 100 1n general comprises a pro-
cessing hardware set and a computer readable storage device
medium. The processing hardware set 1s structured, con-
nected and/or programmed to run program instructions
stored on the computer readable storage medium so as to
iterate the method 1000 of FIG. 2.

Referring now to FIG. 5, computer system 100 includes
one or more application servers or clients, shown here as an
ingest client 120, a response client 130, and an encapsulate
client 140 (also referred to hereaiter as a “server node”),
which are adapted to interface with one or more computing
device(s) employed by users 110 connected over a network
in the presentation layer, here shown as the internet 150.
Internet 150 may be any network topology, including one or
more of a personal area network (PAN), a local area network
(LAN), a campus area network (CAN), a metropolitan area
network (MAN), a wide area network (WAN), a broadband
network (BBN), and the like.

The ingest client 120 makes the connection between the
objects within the exemplary method 1000 and the digital
data “out in the world”. Namely, ingest client 120 ingests
data records from the presentation layer that may be 1n
multiple, differently structured and unstructured formats
from multiple data storage locations, databases, system and

the like.

Within the middle layer, the server node 140 performs the
functions to encapsulate the ingested data record as DSCs,
Namely, the object-based programming functions within
server node 140 execute the separating, splitting, creating,
and appending functions of FIG. 2 to both encapsulate and
de-encapsulate the ingested data records. The formed DSCs
are stored within the data layer in the data store of server
node 140. The data store may be internal to the server
node(s) 140 or external, or distributed among multiple
nodes.

The information represented by these DSCs may then be
pulled from the data store of server node 140 within the data
later by the response client 130 for display and analysis 1n
the presentation layer This function essentially reforms (or
de-encapsulates using objects) the originally ingested digital
data records. In an example, such may be implemented in the
form of an information storage request being recerved from
a communication entity (such as user 110) to retrieve one or
more of the DSCs from the common data store, for display

and review of the original, underlying ingested data record

US 11,507,556 B2

15

associated with the DSC. Said another way, upon a query by
a user 110 to the system 100, the response client 130
accesses the data store in the server node 140 to retrieve
results information based thereon. The results are relayed
directly back to the user 110 as an immediate reply to the
query.

In an example implementation of the method 1000, the

newly created DSCs may be stored 1n a large database such
as LUCENE®. Developed by the Apache Software Foun-

dation, LUCENE 1s a high-performance, full-featured text
search engine library wrtten enftirely 1n JAVA. It 1s a
technology suitable for nearly any application that requires
tull-text search, especially cross-platiorm.

FIG. 6 1s a screenshot of a webpage to describe how a user
may use a data browser service consistent with the exem-
plary method. Initially, the user might click a hypertext link
(not shown) and s1gn up as a subscriber to the data browser
service by entering credential data (ID/PW) and then reading
and acceptmg the EULA. Screenshot 200 of the webpage 1n
FIG. 6 1s provided to show initiation of an import function
consistent with the exemplary method. In FIG. 6, upon
clicking the import action button 210, the user will be able
to 1mgest (manually by drag-and-drop or click, our auto-
mated if by machine) all the files they want to encapsulate
for search 1nto the gray import space 213.

FIG. 7 1s a screenshot of a webpage showing one way in
which digital data 1s ingested for upload to be encapsulated,
through a drag-and-drop means. Namely, FIG. 7 illustrates
the kind of tabular data that would be shown (at 2435) upon
the user clicking the Tables link 240.

FIGS. 8, 9, 10 and 11 are screenshots to show the
functionality of dragging and dropping a selected data file
into the system so as to be encapsulated as a DSC and stored
in the common data pool. Here i FIG. 8, the user has
selected the Desktop file link 215A from the drop-down
menu 215 of FIG. 6. This opens a pop-up folder on the user’s
desktop, whereby he selects (FIG. 9) a specific file 250 for
encapsulation, and then drags and drops it into the import
space 213. Once all desired files have been encapsulated as
DSCs 1n the data pool (FIG. 10), the user clicks the finish
button 219, which will launch a positive visual sign that all
files have been encapsulated. This can also be vernfied by
clicking on Tables link 240. In FIG. 11, screenshot 200
indicates that a file 250 has already been ingested, encap-
sulated and stored as a DSC in the data pool. At this point
the user may open the file at 216, delete 1t at 217, or enter
a search query to search the DSCs 1n the data pool.

FIGS. 12-15 highlight a search query process on the
encapsulated information stored in the data store. FIG. 12
shows the reformulated data records from the DSCs (results
270) 1n the data layer (based on a “boston college™ query),
with the search term highlighted in selected results. The
partial view of FIG. 13 shows an analyze function 260 that
may be mvoked by the user to analyze the searched results.
Various analytical results displays 265 may be selected by
the user. The user refines their search results 1n FIG. 14,
drilling down by entering a “city” query 269 in search box
268. It desired, the user may drill down even more on their
original search by accessing drop-down menu 262. Once
satisiied, the user may view speciiic results for analysis; one
example analytics display 1s shown as a pie chart in FIG. 15.
Based on the city search of the file, a graphical representa-
tion may be provided based the first, subsequent or all of the
search queries, for review by the user.

Based on Applicant’s encapsulation schema, a unique
kind of protected communications platform has been devel-
oped, described herein as a “private mailbox™ or “PMB”.

10

15

20

25

30

35

40

45

50

55

60

65

16

PMB 1s a totally private, absolutely secure, spam-1iree inter-
net communications platform. PMB 1s a closed loop™ sys-
tem, with each authorized user having the equivalent of a
buddy list. The user may only send and receive messages
from those on their list.

PMB 1s based upon encapsulation, which serves as the
behind-the-scenes engine that drives PMB. Similar to as
previously described, the server node 140 and associated
data store may be used so as to mediate (or broker) a
message between two or more parties. Similar to YAHOO®,
HOTMAIL®, or GMAIL®, PMB has 1ts own web portal.

FIGS. 16 through 20 should be referenced in describing
the basic operation. To send messages, a user would log on
to their account, such as at www.privatemailbox.com. As
shown 1n FIG. 16, the user would then pull up a standard
“form” 310, similar to the aforementioned e-mail services’
message forms. The message 315 1s typed in and sent to one
or more recipients. FIG. 17 shows a screenshot illustrating
the sender’s outbox, and FIG. 18 is a screenshot 1llustrating
the recipient’s receipt of the message via the PMB system.
Upon sending, objects from the process iterated by the
server node 140 break-up the message 3135 into the tuple+
pointer structure, thereby creating the DSC that 1s deposited
into the common data store. Should the message 315 contain
attachments 320, these too are encapsulated as DSC {for
storing 1n the data layer, and then de-encapsulated in the
presentation layer to reform the message to authorized
recipients, which share the data store.

Should the recipient be on-line at the time the message
315 1s sent, PMB acts essentially as an Instant Message. The
data store lets the recipient know, 1n real time, that the
message 315 has been delivered. I they are not on-line,
PMB acts exactly as e-mail, and the de-encapsulated mes-
sage 315 1s stored in the recipient’s in-box. When the
recipient responds, the reverse happens. Their message 1s
sent to the encapsulated data store 1n the forms of DSCs, and
the original sender 1s notified in real time of the reply.

FIG. 19 1s a screenshot illustrating the sender adding a
message 1n the form of a chat or IM via the PMB system and
FIG. 20 1s a screenshot illustrating the recipient’s reply to
sender. PMB with 1ts encapsulation engine 1s designed to
combine the best features of e-mail, chat, and IM. A notable
difference however 1s that messages 315 processed by the
PMB system are stored in the enCapsa data store after the
session 15 completed. Traditional chat does not do this. In
essence, one can have a running “chat” session over a long
period of time, with the messages 315 stored 1n the encap-
sulated data store.

Applicant has previously discussed the inherent security
provided by encapsulation. This applies to PMB in the same
manner. Recall how traditional databases store data 1n a
“rows and columns™ approach; this data i1s sent over the
internet 1n this fashion. This 1t 1s predictable. For example,
“First name” 1s always next to “last name™. If a hacker gains
unauthorized access to the data, and can figure out the
relationships between the columns, the data may be used for
nefarious purposes. Data sent over the internet 1s organized
the same way. If intercepted at one of the hops, and 1t the
relationships are solved, that data may also be used for
unintended purposes.

But as Applicant’s process of encapsulation essentially
breaks data up and then “spreads™ 1t around (as freely
associating DSCs) throughout the common data pool. If
someone ever did compromise the data pool, or intercepted
an encapsulated message sent over the internet, they would
be unable to piece together any meaningiul relationships.
For example, they may see a social security number, but

US 11,507,556 B2

17

have no way of knowing who it belonged to. Applicant
knows this to be true, as a graduate class of software data
scientists at MIT had no success hacking into and then
reconstituting meaningiul relationships form the data.

PMB messaging does not employ and hard encryption.
Encryption 1s an “add-on”, laying over a message like a
blanket. It uses “keys” and only authorized users, 1.e., those
with the keys, may look under the blanket to see the
data/message. Encryption thus requires a separate step, as
cach message has to be encrypted prior to being transmitted.
This takes time and absorbs computer memory. Additionally,
users of encrypted messages get frustrated using the soft-
ware.

Encapsulation 1s organic to the data itself. The data 1s
broken up and only those with authorized access can reas-
semble it. Since encapsulation 1s “bwlt into” the PMB
system, 1t 15 seamless and transparent to users. Users do
nothing to obtain the protection afforded by the process.
Moreover, Applicant’” encapsulation process meets or
exceeds standards established by the federal government for
the transmission and storage of sensitive information, all
done without encryption. For example, most if not all of the
data standards set by the government, such as HIPAA,
SarOx, GLBA and the like are technology neutral. Until
now, the only way to protect this data was through encryp-
tion; as such i1t remains the industry standard by default.
Conversely, Applicant’ encapsulation process 1s fully com-
pliant with these regulations without the hassles of encryp-
tion. Obviously, the ability to protect sensitive data (such as
patient medical data and private financial data records)
across communications 1s much greater with Applicant’
technology, as compared to traditional e-mail services. This
1s yet another unique feature of PMB.

When adopted, PMB further provides a spam-iree envi-
ronment. Traditional e-mail services like YAHOO, GMAIL

and MICROSOFT® OUTLOOK® employ SMTP and
POP3 (or IMAP) to send and receive electronic mail. SMTP
1s used to send mail; for OUTLOOK, a TLS encrypted
connection 1s used to encrypt message content sent through
port 25 (port 387 11 25 blocked). The e-mail program uses
POP3 with SSL encryption to receive messages, via port
995, and employs IMAP protocol with SSL encryption to
copy or mirror email stored on an email server to the user’s
desktop or device, via port 993.

Look as these ports as a gateway, one that 1s cracked open
like a door. Anyone monitoring one of those ports during a
message hoop can easily send/receive messages using the
same protocol. Spammers exploit this, sending unwanted
content right to the sender’s or recipient’s “open door”.

Conversely, Applicant’s PMB does not utilize any of the
above protocols for messaging/communications. It 1s
equivalent to a private network. Only those 1mvited into the
network are able to send/recerve messages between each
other. Thus 1n the simplest of terms, SPAM would “bounce
ofl” the PMB server nodes, hence spam filters are supertlu-
ous.

Projected Uses of Applicant’s Technology. The following
TABLE 1 summarizes the feasibility of integrating the
above-described encapsulation technologies into various
market streams and industries, as well as government and
law enforcement. Although these only represent a few
exemplary market segments, others are viable.

10

15

20

25

30

35

40

45

50

55

60

65

18
TABLE 1

POTENTIAL USE CASES

MARKET

SEGMENT APPLICATIONS

Search Engines
(Google, Bing,
Yahoo, Ask . . .)

Extend the capability of search engines to report
more detailed and accurate search responses based
on ability to aggregate disparate information from
multiple storage sources

Increase the speed of data aggregation by
encapsulating all found disparate data prior to
applying the search criteria

Redesign storage and retrieval file systems to
eliminate locating, indexing and management issues
associated with aggregating disparate data

Increase efficiency of integrating the functionality

of desktop and mobile operating systems (OSX &
I0S, Windows & Android, interaction with those OSs)
Solid State storage devices that incorporate
encapsulation into their format schema instead of
existing data organization structures (FAT 32, GUID,
etc.)

Consolidate regional, local, departmental and
interagency data bases

Operating
Systems

Hardware (Chip)
Design

Governmental
(Local, State,
National)
Healthcare Information consolidation of patient data records
from multiple, disparate databases and the sharing
thereof

Access Monitoring

Drug conflict alerts

Mobile trauma monitoring and treatment (EMT’s,
Medivac, Remote Medical Services . . .)

Real Time patient monitoring (Local & Remote)
Consolidating and maintaining multiple disparate
data sources internally

Consolidating and maintaining multiple disparate
data sources for clients (Cisco Model)

Designing and implementing multi-field disparate
databases using enCapsa instead of indexes and
tables

Monitor information and surveillance of multiple,
disparate data sources

Monitor known or suspected terrorists, terrorist
cells, etc. from the aggregation of disparate data
Direct connection to disparate communications,
news sources, telecommunications and satellite
transmission Sources

Security analytics from disparate sources in real
time, readiness and alert systems

Traditional
Database

Providers
(Oracle, SAP,

FileMaker,
Access . . .)

Intelligence
Community

Referring to TABLE 1 and 1n a specific healthcare use-
case scenario, implementation of the encapsulation schema
within a healthcare concern’s existing IT infrastructure
would enable the creation of a data warchouse for patient
medical records 1 a fraction of the time needed by tradi-
tional data vendors, as the example process eliminates the
time, complexity and expense of data mapping. For imple-
mentation, several modules could be devices, two (2) of

which are described brietly as exemplary of the possibilities.

The first could be a Case Management Module (CMM)
for the healthcare concern. Here, all data within a hospital’s
infrastructure would be aggregated to create a holistic view
of an individual patient or group of patients. The data store
of system 100 could be implemented 1n the form of a CMM
pointing to the existing IT infrastructure or laying as middle-
ware on top of one or more server nodes. The CMM would
support the creation and storage of an electronic file folder
on each patient that 1s automatically updated as new data (on
the patient) 1s created within the hospital environment. Case
managers thus would only need to open the folder to see the
latest updates on a patient. Alerts could be programmed to
inform case managers when things have changed.

The second exemplary product could be a Readmissions

Predictive Modeling Module (RPMM). Using data provided

US 11,507,556 B2

19

by a state’s Department of Health and that of the healthcare
concern, a RPMM with powerful algorithms could be cre-
ated to predict the likelihood of a hospital readmissions
based on data produced by new patients upon their initial
admission. By identilying these potential readmissions and
thereby focusing care, punitive readmission penalties can be
meaningfully reduced.

Applicant’s method of encapsulation greatly enhances the
process of ingesting and retrieving multiple disparate forms
of data. Applicant’s method and system of encapsulation
creates an immediately accessible data pool of any and all
digital data and metadata ingested 1nto 1t. I the data sources
are directly connected to enCapsa, the data 1s maintained and
accurately reported in real time with no formatting or
structuring time lag. This can include photos, emails, video,
data base mformation (regardless of format), forms, docu-
ments, PDF’s, etc., virtually any digitized data. The example
method does this without any formatting or structuring of
the data. Once ingested into the data pool, the example
method and system may use the LUCENE search engine (as
an example) to search and extract ingested data for analysis,
reporting, alerts, etc. Accordingly, the encapsulation method
1s not a database 1tself, but a way of storing disparate data
in another store or database for search and retrieval.

As information has a shelf life, Applicant’s method and
system ol encapsulation oflers real-time access. Computers
need data; humans need information. Applicant” proposed
systems and methods provide the business end user all of 1ts
information fast, in real time, and ad hoc. In other words,
100% of a company’s data 1s available for analytics/analy-
s1s, versus the current average of about 12% today. Appli-
cant’s technologies therefore enable the big enterprise to see
all of their information without barriers. As such, the encap-
sulation techniques provide a “new way to database” 1n the
21% century.

In a simple working example, the encapsulation process
has been shown to process complex disparate data (such as
patient medical records) at a rate in excess of 100,000
patient health records per second so as to provide a fully
searchable and intelligent database. This 1s the equivalent of
greater than a terabyte (1B) per hour rate. In contrasting this
with the conventional data mapping process, the same may
take several hundred man-hours employing manual and
soltware-accelerated data mapping techniques.

The example method and system may provide even
turther advantages and benefits. The ability to have unfet-
tered access to all company data 1n an organized, searchable
format thus enables better business decisions to be made
based on the mformation available, thereby enhancing the
ability to extract more actionable and relevant information.
Also, Applicant’s method and system may provide for
substantial cost savings as a further benefit.

The present invention, 1n 1ts various embodiments, con-
figurations, and aspects, includes components, methods,
processes, systems and/or apparatuses substantially as
depicted and described herein, including various embodi-
ments, sub-combinations, and subsets thereof. Those of skill
in the art will understand how to make and use the present
invention after understanding the present disclosure.

The present invention, 1n 1ts various embodiments, con-
figurations, and aspects, mcludes providing devices and
processes 1n the absence of items not depicted and/or
described herein or 1n various embodiments, configurations,
or aspects hereol, including in the absence of such items as
may have been used 1n previous devices or processes, €.g.,
for improving performance, achieving ease and/or reducing
cost of implementation.

10

15

20

25

30

35

40

45

50

55

60

65

20

I claim:

1. A method of encapsulating digital data records having
multiple, differently structured and unstructured formats,
cach of the data records representing an original data record
that 1s ingested from multiple different and disparate data
storage locations, comprising;:

separating each ingested original data record into a plu-

rality of tuples,

splitting out a data part and a fieldname part from each

tuple,

creating a pointer by combining the ficldname part, a

record identifier of the original data record, and a
database identifier of the storage location where the
original data record was stored,

appending the created pointer to the data part to form a
digital stem cell (DSC), each formed DSC having the
same structure and each formed DSC representing
encapsulated data of 1ts corresponding ingested original
data record, and

storing each DSC 1n a single data store so that one or more
of the DSCs are subject to retrieval for reconstruction
of the original data record at some later time upon a
query to the single data store.

2. The method of claim 1, wherein for retrieval and
reconstruction each DSC includes information adapted to be
reformed 1n a presentation layer, upon the query, so as to
display the imngested original data record that corresponds to
the DSC for analysis.

3. The method of claam 1, wherein ingesting further
includes ingesting files containing the data records, the files
residing 1n the multiple data storage locations.

4. The method of claim 1, wherein

the steps of separating, splitting, creating, and appending
are executed by object-based programming functions
adapted to both encapsulate and de-encapsulate the
ingested original data records, and

the object-based programming functions both create the
DSCs and reform the ingested original data records
from the DSCs.

5. The method of claim 1, wherein each stored DSC 1s
freely searchable irrespective of the original structured or
unstructured format of 1ts underlying ingested original data
record, and irrespective of the data storage location from
which the data record was ingested, the stored DSCs co-
existing without any structural barriers between them in the
data store.

6. The method of claim 1, further comprising configuring
the stored DSCs as encapsulated information of an extract-
able or exportable file.

7. A computer system adapted to encapsulate digital data
records 1n multiple, differently structured and unstructured
formats that are ingested from multiple data storage loca-
tions, the system comprising a processing hardware set and
a computer readable storage device medium, wherein the
processing hardware set 1s structured, connected and/or
programmed to run program instructions stored on the
computer readable storage medium, the program instruc-
tions run by the processing hardware set including the steps
of claim 1.

8. A search engine for presenting information in a pre-
sentation layer based on a query by a user, the search engine
including one or more computers and one or more storage
devices storing instructions that are operable, when executed
by the one or more computers, to cause the one or more
computers to perform the steps of claim 1 so as to present
information collected 1n response to the query to the user.

US 11,507,556 B2

21

9. A method of encapsulating multiple different data
records having an unstructured or structured format, each of
the data records representing an original data record and
cach contained 1n files stored across multiple databases, at
least two databases of which have dissimilar structures, the
method comprising:

ingesting files containing the original data records from

the databases, and for each file,
deconstructing one or more of the original data records
contained 1n the file mto one or more sets of elemental
parts having the same structure, each of the one or more
sets of elemental parts representing encapsulated data
of the one or more 1ingested original data records, and

storing the one or more sets of elemental parts 1n a single
data store, wherein

the one or more sets of elemental parts are subject to

retrieval for reconstruction of the one or more original
data records at some later time upon a query to the
single data store, and

the one or more sets of stored elemental parts adapted to

be freely indexed and searchable irrespective of the
original unstructured or structured format of the one or
more sets of elemental parts’ corresponding original
data records, and 1rrespective of the database contain-
ing the file from which the one or more original data
records were mgested.

10. The method of claim 9, wherein the deconstructing of
the one or more original data records 1nto one or more sets
of elemental parts further includes separating each ingested
original data record into a plurality of tuples.

11. The method of claim 10, wherein the deconstructing
of the one or more original data records 1nto one or more sets
of elemental parts further includes splitting out a data part
and a ficldname part from each tuple.

12. The method of claim 11, wherein the deconstructing
of the one or more original data records into one or more sets
of elemental parts further includes creating a pointer by
combining the fieldname part, a record identifier of the data
record, and a database identifier of the storage location
where the data record was stored.

"y

10

15

20

25

30

35

22

13. The method of claim 12, wherein the deconstructing
ol the one or more original data records 1nto one or more sets
of elemental parts further includes appending the created
pointer to the data part to form a digital stem cell (DSC),
cach formed DSC having the same structure.

14. A computer system adapted to encapsulate digital data
records 1n multiple, differently structured and unstructured
formats accessible from multiple data storage locations,
cach of the digital data records representing an original data
record, comprising;:

an mngest client adapted to ingest a plurality of the original

data records from the multiple data storage locations,

a server node adapted to iterate object-based program-

ming functions therein that:

separate each ingested original data record into a plu-
rality of tuples,

split out a data part and a fieldname part from each
tuple,

create a pointer by combining the fieldname part, a
record 1dentifier of the data record, and a database
identifier of the storage location where the original
data record was stored,

append the created pointer to the data part to form a
pointer pair which represents encapsulated data of 1ts
corresponding 1ngested original data record, each
formed pointer pair having the same structure, and

store the formed pointer pairs in a single data store of
the server node, and

a response client adapted to, upon a user query to the

system, de-encapsulate selected pointer pairs 1n the
data store based on the query store, for display an

analysis by the user of the corresponding original
ingested data records associated with the pointer pairs.

15. The system of claam 14, wherein the stored pointer
pairs 1n the data store are adapted to be freely indexed and
searchable irrespective of the original unstructured or struc-
tured format of the pointer pair’s corresponding original data
record, and 1rrespective of the storage location from which
the corresponding original data record was ingested.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

