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use ol priority vectors to assign priorities to memory
requests helps to reduce the memory divergence problem
experienced by different work-items of a wavelront.
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MEMORY REQUEST PRIORITY
ASSIGNMENT TECHNIQUES FOR
PARALLEL PROCESSORS

BACKGROUND
Description of the Related Art

Modern parallel processors (e.g., graphics processing
units (GPUs)) include structures for executing multiple
threads 1n parallel. A thread can also be referred to herein as
a “work-item”. A group of work-1tems 1s also referred to
herein as a “warp” or “wavelront”. Wavelronts often stall at
wait count instructions waiting for any outstanding memory
requests to complete. Thus, the longest latency memory
requests associated with a given wait count will be on the
wavelront’s critical path. This 1s often referred to as a
memory divergence problem, with “memory divergence”
referring to the diflerence in arrival times for requests
pending during a wait count instruction. For example, the
memory requests for some threads within a wavetront hit in
the cache while other threads from the same wavefront miss
in the cache. When a wavelront executes a waitcnt( )
instruction, that wavefront gets blocked until the number of
memory instructions specified by that waitent( ) instruction
1s retired. Application performance can be significantly
allected by memory divergence.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description 1n conjunction with the accompa-
nying drawings, in which:

FIG. 1 1s a block diagram of one implementation of a
computing system.

FIG. 2 1s a block diagram of another implementation of a
computing system.

FIG. 3 illustrates diagrams of the average memory latency
for work-items of a wavelront for two diflerent benchmarks.

FIG. 4 1s a block diagram of one implementation of a
priority vector for use with a static priority assignment
scheme.

FI1G. 3 illustrates priority transition diagrams and priority
promotion vectors i accordance with one implementation.

FIG. 6 1s a block diagram of one implementation of a
priority predictor.

FIG. 7 1s a generalized flow diagram illustrating one
implementation of a method for dynamically applying pri-
ority promotion vectors to priority vectors based on a type
of event detected.

FIG. 8 1s a generalized flow diagram 1illustrating one
implementation of a method for using a priority predictor to
determine priorities for memory requests of lanes of a
wavelront.

FIG. 9 1s a generalized flow diagram illustrating one
implementation of a method 900 for assigning priorities to
memory requests.

DETAILED DESCRIPTION OF
IMPLEMENTATIONS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill 1in the art should recognize that the various
implementations may be practiced without these specific
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details. In some 1instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown 1n detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarnity of illustration, elements shown 1n the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

Various systems, apparatuses, and methods for imple-
menting memory request priority assignment techniques for
parallel processors are disclosed heremn. In one implemen-
tation, a system includes at least a processor coupled to a
memory subsystem, where the processor includes at least a
plurality of compute units for executing wavelronts in
lock-step. The processor assigns priorities to memory
requests of wavelronts on a per-lane basis by indexing into
a {irst priority vector, with the index generated based on
lane-specific information. If a given event 1s detected, a
second priority vector 1s generated by applying a given
priority promotion vector to the first priority vector. Then,
for subsequent wavelronts, memory requests are assigned
priorities by indexing into the second priority vector with
lane-specific information. The memory subsystem reorders
and/or allocates shared resources to requests generated by
the wavelronts according to priorities assigned to the
requests. The use of priority vectors to assign priorities to
memory requests helps to reduce the memory divergence
problem experienced by diflerent work-items of a wave-
front.

Referring now to FIG. 1, a block diagram of one 1imple-
mentation of a computing system 100 1s shown. In one
implementation, computing system 100 includes at least
processors 105A-N, mput/output (I/0) mterfaces 120, bus
125, memory controller(s) 130, network interface 135, and
memory device(s) 140. In other implementations, comput-
ing system 100 includes other components and/or comput-
ing system 100 1s arranged differently. Processors 105A-N
are representative of any number of processors which are
included in system 100.

In one 1mplementation, processor 105A 1s a general
purpose processor, such as a central processing unit (CPU).
In this implementation, processor 105N 1s a data parallel
processor with a highly parallel architecture. Data parallel
processors include graphics processing units (GPUs), digital
signal processors (DSPs), field programmable gate arrays
(FPGAs), application specific itegrated circuits (ASICs),
and so forth. In some 1implementations, processors 105A-N
include multiple data parallel processors.

Memory controller(s) 130 are representative of any num-
ber and type of memory controllers accessible by processors
105A-N and I/O devices (not shown) coupled to I/O 1nter-
faces 120. Memory controller(s) 130 are coupled
number and type of memory devices(s) 140. Memory
device(s) 140 are representative of any number and
memory devices. For example, the type of memory in
memory device(s) 140 includes Dynamic Random Access

Memory (DRAM), Static Random Access Memory
(SRAM), NAND Flash memory, NOR flash memory, Fer-
roelectric Random Access Memory (FeRAM), or others. It
1s noted that memory controller(s) 130 and memory
device(s) 140 can collectively be referred to heremn as a
“memory subsystem”.

I/O mterfaces 120 are representative of any number and
type of I/O mterfaces (e.g., peripheral component 1ntercon-
nect (PCI) bus, PCI-Extended (PCI-X), PCIE (PCI Express)
bus, gigabit Ethernet (GBE) bus, umiversal serial bus
(USB)). Various types of peripheral devices (not shown) are
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coupled to YO interfaces 120. Such peripheral devices
include (but are not limited to) displays, keyboards, mice,
printers, scanners, joysticks or other types of game control-
lers, media recording devices, external storage devices,
network interface cards, and so forth. Network intertace 135
1s used to receive and send network messages across a
network.

In various implementations, computing system 100 1s a
computer, laptop, mobile device, game console, server,
streaming device, wearable device, or any of various other
types of computing systems or devices. It 1s noted that the
number of components of computing system 100 varies
from i1mplementation to implementation. For example, 1n
other implementations, there are more or fewer of each
component than the number shown 1n FIG. 1. It 1s also noted
that 1n other implementations, computing system 100
includes other components not shown in FIG. 1. Addition-
ally, in other implementations, computing system 100 1is
structured 1n other ways than shown in FIG. 1.

Turning now to FIG. 2, a block diagram of another
implementation of a computing system 200 1s shown. In one
implementation, system 200 includes GPU 203, system
memory 2235, and local memory 230. System 200 also
includes other components which are not shown to avoid
obscuring the figure. GPU 203 includes at least command
processor(s) 235, control logic 240, dispatch unit 250,

compute units 255A-N, memory controller(s) 220, global
data share 270, shared level one (LL1) cache 265, and level

two (L2) cache(s) 260. It should be understood that the
components and connections shown for GPU 205 are merely
representative of one type of GPU. This example does not
preclude the use of other types of GPUs (or other types of
parallel processors) for implementing the techniques pre-
sented herein. In other implementations, GPU 205 includes
other components, omits one or more of the illustrated
components, has multiple instances of a component even 1f
only one 1nstance 1s shown 1n FIG. 2, and/or 1s organized 1n
other suitable manners. Also, each connection shown i1n FIG.
2 1s representative of any number of connections between
components. Additionally, other connections can exist
between components even 1f these connections are not
explicitly shown 1n FIG. 2.

In various implementations, computing system 200
executes any of various types of software applications. As
part of executing a given software application, a host CPU
(not shown) of computing system 200 launches kernels to be
performed on GPU 205. Command processor(s) 235 receive
kernels from the host CPU and use dispatch unit 250 to
dispatch wavelronts of these kernels to compute units 255A-
N. Control logic 240 includes logic for determining the
priority that should be assigned to memory requests of
threads of the dispatched waveironts. Control logic 240 also
includes logic for updating the priority determination
mechanism 1n response to detecting one or more events.
Threads within kernels executing on compute units 255A-N
read and write data to corresponding local LO caches 257 A-

N, global data share 270, shared L1 cache 265, and L2
cache(s) 260 within GPU 205. It 1s noted that each local LO
cache 257A-N and/or shared L1 cache 265 can include
separate structures for data and 1nstruction caches. While the
implementation shown in system 200 has a 3-level cache
hierarchy, 1t should be understood that this 1s merely one
example of multi-level cache hierarchy that can be used. In
other implementations, other types of cache hierarchies with
other numbers of cache levels can be employed.

It 1s noted that LO caches 257A-N, global data share 270,

shared L1 cache 263, L2 cache(s) 260, memory controller
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220, system memory 225, and local memory 230 can
collectively be referred to herein as a “memory subsystem”.
This memory subsystem 1s able to receive memory requests
and associated priorities. The memory requests are pro-
cessed by the memory subsystem according to the priorities.
The memory subsystem services higher priority memory
access requests prior to servicing lower priority memory
access requests. Prioritizing memory access requests can
lead to higher prionity requests having a decreased latency
and an overall improvement of the performance of system
200. In some implementations, one or more components
within the memory subsystem include multiple memory
request queues that have associated priornity levels. These
components of memory subsystem can place or store the
memory request 1n an appropriate mput queue based on the
determined level of priority. Other mechanisms for difler-
entiating memory requests based on their assigned priorities
are possible and are contemplated.

Referring now to FIG. 3, diagrams of the average memory
latency for work-items of a wavelront for two different
benchmarks 300 and 305 are shown. Simulations have
revealed that application performance can be significantly
aflected by memory divergence, with divergent behavior
manifesting 1tself differently across different hardware lanes
of a processor executing corresponding work-items of a
wavelront. The diagrams 1n FIG. 3 demonstrate this obser-
vation. Diagram 300 displays the average memory latency
per lane ID when executing the XSbench benchmark. For
this example, each lane represents a hardware lane executing
an 1ndividual work-item of a wavelront. The XSbench
benchmark 1s an application modeling a computationally
intensive part of a Monte Carlo transport algorithm. Dha-
gram 305 displays the average memory latency per lane ID
when executing the double precision general matrix multi-
plication (DGEMM) benchmark. The DGEMM benchmark
1s a multi-threaded, dense matrix multiplication application
designed to measure the sustained floating-point computa-
tional rate of a processor.

For XSbench benchmark 300, every lane tends to have a
different latency value, with lanes 0-31 typically incurring
more latency. For double-precision general matrix multipli-
cation (DGEMM) benchmark 303, work-1tems executing on
hardware lanes 0-35, 30-37, and 62-63 typically observe
longer latencies compared to other lanes. Such diflerences
across applications occur due to many reasons including
imbalanced load assignment, coalescing behavior (e.g.,
XSBench has poor coalescing behavior, leading to each lane
incurring different latency values), cache hits/misses,
memory address mapping, and so on. The methods and
mechanisms presented herein aim to prioritize memory
requests that are on the critical path by exploiting the unique
divergent behavior for a particular workload.

Turning now to FIG. 4, a diagram of one implementation
of a priority vector 400 for use with a static priority
assignment scheme 1s shown. In the example shown, a
priority associated with each of four hardware lanes 1s
1llustrated for ease of discussion. However, a given process-
ing device may have any number of hardware lanes depend-
ing on the implementation. In one implementation, a static
priority assignment scheme uses priority vector 400 to store
different priority levels. The number of values 1n a priority
vector can vary according to the implementation. Priority
vector 400 1s used to determine the priority of a request
corresponding to that lane. For example, 1n one implemen-
tation, control logic indexes into priority vector 400 using
information (e.g., program counter, opcode) specific to the
instruction that generated the memory request, a wavetront
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identifier (ID), and/or a lane ID. A waveiront ID 1s defined
as the ID (e.g., number) assigned to each waveiront. The
wavelront ID 1s used to differentiate between different
wavelronts that are executed by the processor. The priority
1s retrieved from the corresponding entry and assigned to the
request. In one i1mplementation, priority vector 400 1s
indexed exclusively by lane ID. It 1s noted that 1n alternative
implementations, priority vector 400 could be indexed based
on other combinations of previously described information.
For example, in another implementation, neighboring lanes
are grouped together to access the same index, since the
neighboring lanes are likely to exhibit similar behavior.

As shown 1 FIG. 4, priority vector 400 includes four
entries with the leftmost entry corresponding to lane 1 of a
processing device and the rightmost entry corresponding to
lane 4 of the processing device. As shown 1n the example,
lane 1 1s associated with a priority of “3” and lane 4 1s
associated with a priority of “1” where the higher number
indicates a higher priority 1n this example. In one i1mple-
mentation, a hardware lane ID on which the request 1s
executed 1s used to index into priority vector 400. For
example, 1n one 1mplementation, the lowest two bits of the
hardware lane ID are used to index 1nto priority vector 400.
In one mmplementation, in the static priority assignment
method, genetic or other algorithms are used to i1dentity the
priority vector values for different entries. As used herein,
the term “genetic algorithm™ 1s defined as an algorithm for
selecting and propagating the preferred priority vector val-
ues to the next generation. Also, some amount of random-
ization 1s added to successive generations. In each genera-
tion, a new set of priority vector values 1s created using a
portion of the preferred priority vector values from the
previous generation while also optionally introducing a
random value. Each generation’s priority vector 1s evaluated
with respect to a fitness function. After many generations,
the genetic algorithm tends to converge on an optimal
solution.

In one implementation, the process 1s started by assigning,

random values to each entry of prionity vector 400. The
random values can range from a LOW_THRESHOLD to a

HIGH_THRESHOLD, where HIGH_THRESHOLD—
LOW_THRESHOLD gives the number of prioritization
levels that the algorithm can assign. The number of priority
levels are configurable by changing the LOW_THRESH-
OLD and HIGH_THRESHOLD values. The different pri-
oritization vector samples are then generated by changing
the priority values at random lane locations or adjusting the
indexing function to use different bits of information (e.g.,
lane ID) or the same bits 1n diflerent ways. In other words,
adjusting the mdexing function changes how each request
maps 1nto priority vector 400. Then, a test suite 1s run and
the algorithm converges with preferred values for priority
vector 400 and the indexing function that are predicted to
yield a desired performance level based on a fitness function.
In one implementation, the test suite includes a predeter-
mined set of applications that represents the diverse class of
applications being targeted for optimization.

The fitness function 1n this case 1s the function that maps
the priority vector values to the parallel processor perfor-
mance and the optimization here i1s to choose the priority
vector values that result 1in the best performance. After
teeding the prioritization vector samples to the algorithm,
the algorithm then comes up with a priority vector and
indexing function optimized for performance. The same
algorithm can be used to optimize kernels for power or for
reducing the memory bandwidth consumption by changing
the fitness function. For example, when optimizing for
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power, the fitness function maps the priority vector values to
power consumption and comes up with the best priority
vector that reduces the average power consumption of the
entire testing suite.

Once the preferred priority vector and indexing function
are generated by the algorithm, this vector 1s used to assign
priorities to memory requests for actual applications. It 1s
noted that the preferred priority vector and indexing function
can be generated using any suitable combination of software
and/or hardware. In one implementation, the preferred pri-
ority vector and indexing function are generated using one
or more test kernels, and then the preferred priority vector
and indexing function are used with actual kernels 1n real-
world use cases. In another embodiment, multiple priority
vectors, each optimized for a different constraint (e.g.,
power, performance, energy), are generated so that the user
(or a system management unit) can dynamically select one
for a desired optimization. Alternatively, multiple priority
vectors can be used for a single program to address phase
behaviors. In one implementation, each application (or a
class of applications with similar characteristics) has 1ts own
priority vector that 1s predicted to yield the best perfor-
mance. Before starting an application, the hardware uses the
application’s priority vector for assigning priorities to the
memory requests. In one implementation, a specific priority
vector 1s generated by tuning the genetic, or other, algorithm
with a test suite that shares the same characteristics of the
targeted application. In another implementation, a specific
priority vector 1s generated by tuning the algorithm with a
real-world application. In this implementation, the specific
priority vector 1s continually updated as different applica-
tions are executed in real-time.

Referring now to FIG. 5, priority transition diagrams and
priority promotion vectors in accordance with one 1mple-
mentation are shown. In one mmplementation, a dynamic
priority assignment scheme 1s employed to dynamically
change a priority vector based on some event. The changed
priority vector 1s then used to assign priorities to requests
after the event. Priority transition diagram 3502 shows one
example for updating a priority vector 500 in response to the
occurrence of an event. Each node in priority transition
diagram 502 represents the priority level for a given lane 1n
the priority vector. The number inside the circle represents
the lane number, and the curved edges above the circles 1n
priority transition diagram 502 point to the next priority
level that lane will be assigned to in response to a certain
event being detected for that lane. Examples of events
include moving to a different set of program counters 1n a
kernel, completion of the last memory response for a specific
wavelront instruction, and others. For the other lanes which
do not trigger the event, these lanes will shift down 1n
priority as indicated by the horizontal arrows going right to
left between the circles of prionty transition diagram 502.

Without loss of generality, 1t 1s assumed for the purposes
of this discussion that priority transition diagram 502 shows
the prionity changes for the last memory response from a
wavelront instruction event. Accordingly, 1f the last response
was for a request which mapped to lane 2 (priority 2), then
that lane with priority 2 will transition to prionity 4. The
other lanes will be shifted down 1n priority, with lane 3 being
shifted down from priority 4 to priority 3, with lane 1 being
shifted down from priority 3 to prionty 2, and with lane 4
staying at priority 1 since lane 4 was already at the lowest
priority level. After this transition, priority transition dia-
gram 305 shows the updated transition of priority based on
the last memory response being for a request which mapped
to lane 2. After the event has happened and the priority
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transition 1s completed according to priority transition dia-
gram 505, the priority vector should be updated to reflect the
new priority assignment as shown in priority vector 310. The
next set of memory requests from a wavetront will use this
updated priority assignment. Each time a new event 1s
detected, the prionty transition diagram and priority vectors
will be updated based on the lane in which the new event
was detected. While the example of the new event being the
last response for a request was used for this particular
discussion, 1t should be understood that other events can be
used to trigger a priority vector update 1n other implemen-
tations.

It 1s noted that a priority transition diagram can be
represented with a priority promotion vector. For example,
the priority promotion vector for priority transition diagram
502 1s shown as priority promotion vector 515. Priority
promotion vector 515 shows the priorities to which the
current priority should be promoted to 1n response to an
event. Such a priority promotion vector can be generated by
the same priority vector generation mechanism that was
previously described in the discussion associated with FIG.
4 for the static priority assignment scheme. While the
dynamic priority assignment 1s described as being used 1n
response to detecting a single event, it can also be used in
response to the detection of multiple events. For example, in
one implementation, each event has 1ts own priority transi-
tion diagram. Also, in another implementation, a single
priority transition diagram i1s constructed with multiple
events and/or combinations of events.

Turning now to FIG. 6, a block diagram of one imple-
mentation of a priority predictor 600 1s shown. In one
implementation, the previously described priority vector 1s
replaced with a priority predictor. As the program executes,
the priority of each request 1s determined by performing a
lookup based on some function of information about the
request (e.g., program counter, wavelront 1D, lane ID) as
well as other available dynamic information (e.g., average
request latency, cache hit rate, bandwidth utilization, stall
counter values). In one i1mplementation, the predictor is
updated based on some optimization function, for example
to reduce wait time latency divergence by increasing the
priority of tail requests that delay completion of the wave-
front. In one 1implementation, the predictor stores a history
of information on executions of kernels. On subsequent
executions of a given kernel, the priority predictor 600
retrieves the stored optimal predictor state or indexing
function that was tuned by the optimization function. The
priority predictor 600 then assigns priorities to memory
requests of the work-1tems executing on corresponding lanes
of the processor based on the retrieved optimal predictor
state or optimal indexing function.

In one implementation, a training phase 1s used to deter-
mine the optimal predictor state or indexing function to be
preloaded for a given kernel or class of kemels. Similar to
the fitness function of genetic algorithms, this optimization
function targets power, performance, or any other optimi-
zations. The trained model 1s deployed when executing
actual end-user applications and the model predicts the
priority of each memory request dynamically based on the
dynamic state of the system. The model receives the
dynamic state and outputs the prioritization number for each
memory request.

Referring now to FIG. 7, one implementation of a method
700 for dynamically applying priority promotion vectors to
priority vectors based on a type of event detected 1s shown.
For purposes of discussion, the steps in this implementation
and those of FIG. 8-9 are shown in sequential order. How-
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ever, 1t 1s noted that m various implementations of the
described methods, one or more of the elements described
are performed concurrently, in a different order than shown,
or are omitted entirely. Other additional elements are also
performed as desired. Any of the various systems or appa-
ratuses described heremn are configured to 1mplement
method 700.

A processor assigns a priority to a memory request of each
lane of a first wavefront based on a first priority vector
(block 703). For example, in one implementation, the pro-
cessor indexes 1nto the first priority vector using information
(e.g., lane ID) associated with the lane. The processor then
retrieves a priority from the first priority vector at an entry
determined by the index. The processor monitors whether
any events have been detected during execution of the first
wavelront (block 710). The types of events which the
processor 1s trying to detect can vary according to the
implementation. If none of the various events have been
detected (conditional block 715, “no” leg), then the proces-
sor waits until execution has terminated for all lanes of the
first wavetront (block 720). Next, for subsequent work-
items, the processor assigns a priority to a memory request
of each lane based on the first priority vector (block 725). It
1s noted that the memory requests referred to i block 725
can be generated by work-1tems of the first wavetront or of
a second wavelront. After block 725, method 700 ends.

If a given event has been detected (conditional block 715,
“ves” leg), then the processor generates a priority promotion
vector for the given event (block 730). In one implementa-
tion, each different type of event has a separate priority
promotion vector. It 1s noted that each priority promotion
vector can be generated from a different corresponding
priority transition diagram. Next, the processor generates a
second priority vector by applying the priority promotion
vector to the first priority vector (block 735). Then, the
processor waits until execution has terminated for all lanes
of the first wavelront (block 740). Next, for subsequent
work-1tems, the processor assigns a priority to a memory
request of each lane based on the second priority vector
(block 745). It 1s noted that the subsequent work-i1tems can
come from the first wavelront or from a second waveiront.
After block 745, method 700 ends. By implementing method
700 for dynamically updating priorities, priorities are
assigned to memory requests in a more ntelligent fashion
which helps to reduce the amount of time spent waiting at a
waitcnt( ) nstruction.

Turning now to FIG. 8, one implementation of a method
800 for using a priority predictor to determine priorities for
memory requests of lanes of a wavelront 1s shown. A
training phase 1s performed to determine an optimization
function for a priority predictor for a given kernel or class of
kernels (block 805). Depending on the implementation, the
optimization function can target power, performance, or
another optimization. For example, 1n one implementation,
the optimization function attempts to minimize lane-level
divergence due to memory request processing times. In
another implementation, the optimization function tries to
maximize performance while executing the given kernel or
class of kernels. In a further implementation, the optimiza-
tion function attempts to mimmize power consumption
when executing the given kernel or class of kernels. In one
implementation, the traiming phase involves using a machine
learning model to train the optimization function based on a
training set that 1s similar to the given kernel or class of
kernels.

Next, the trained priority predictor with the tuned opti-
mization function 1s deployed 1n a production environment
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(block 810). During execution of a given wavelront, static
information (e.g., program counter, waveiront 1D, lane ID)
and dynamic system state information (e.g., average request
latency, cache hit rate, bandwidth utilization, stall counter
values) are provided to the trained priority predictor (block
815). Next, the trained prionty predictor performs a lookup
for each memory request based on the static information and
dynamic system state information to retrieve a priority
(block 820). Then, for each memory request, the trained
priority predictor assigns the retrieved priornity to the
memory request (block 825). After block 825, method 800
ends.

Referring now to FIG. 9, one implementation of a method
900 for assigning priorities to memory requests 1s shown.
Control logic assigns a priority to each lane of a plurality of
lanes of a compute unmit based on a first mapping of priorities
to lanes (block 905). In one implementation, the first map-
ping of priorities to lanes 1s determined by a first priority
vector. In one implementation, the first priority vector
assigns a higher priority to work-items on a critical path.
Also, the control logic assigns a priority to a memory request
of each work-1tem of a first wavelront based on a priority of
a corresponding lane (block 910). Next, the compute unit
executes work-items of the first wavetront (block 9135). The
control logic applies an update to the first mapping to
generate a second mapping of priorities to lanes responsive
to detecting a first event during execution of the first
wavelront (block 920). In one implementation, the update 1s
a {irst priority promotion vector which 1s applied to the first
priority vector to generate a second priority vector. In one
implementation, the first event 1s a completion of a last
memory request for a specific instruction of the first wave-
front. In other implementations, the first event can be based
on any of various other types ol events.

Subsequent to the first event, the control logic assigns a
priority to each lane based on the second mapping of
priorities to lanes (block 925). Also, for subsequent work-
items, the control logic assigns a priority to a memory
request of each work-item based on a priority of a corre-
sponding lane (block 930). It 1s noted that the work-1tems
referred to 1n block 930 can come from the first wavetront
or from a second wavelront different from the first wave-
front. A memory subsystem processes each memory request
according to a corresponding priority (block 935). After
block 935, method 900 ends.

In various implementations, program instructions of a
soltware application are used to implement the methods
and/or mechamsms described herein. For example, program
instructions executable by a general or special purpose
processor are contemplated. In various implementations,
such program instructions are represented by a high level
programming language. In other implementations, the pro-
gram 1nstructions are compiled from a high level program-
ming language to a binary, itermediate, or other form.
Alternatively, program instructions are written that describe
the behavior or design of hardware. Such program instruc-
tions are represented by a high-level programming language,
such as C. Alternatively, a hardware design language (HDL)
such as Verilog 1s used. In various implementations, the
program 1nstructions are stored on any of a varniety of
non-transitory computer readable storage mediums. The
storage medium 1s accessible by a computing system during
use to provide the program instructions to the computing
system for program execution. Generally speaking, such a
computing system includes at least one or more memories
and one or more processors configured to execute program
instructions.
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It should be emphasized that the above-described imple-
mentations are only non-limiting examples of implementa-
tions. Numerous variations and modifications will become
apparent to those skilled 1n the art once the above disclosure
1s fully appreciated. It 1s intended that the following claims
be mterpreted to embrace all such vanations and modifica-
tions.

What 1s claimed 1s:

1. A processor comprising:

a compute unit comprising a plurality of lanes configured

to execute work-items ol a wavetront in parallel; and
control logic configured to:
assign a {irst priority to each lane of a plurality of lanes
of the compute unit based on a mapping of priorities
to lanes:
assign a priority to a memory request of each work-
item ol the wavelront based on a prionity of a
corresponding lane;
execute work-items of the wavetront; and
responsive to detecting a first event, wherein the first
event 1s completion of a last memory request of the
wavelront:
assign a second priority to each lane of the plurality
of lanes; and
assign a priority to a memory request of each work-
item based on a priority of a corresponding lane.

2. The processor as recited 1in claim 1, wherein the control
logic 1s further configured to

generate a first mapping of priorities and assign the first

priority to each lane based on the first mapping;
apply an update to the first mapping to generate a second

mapping ol priorities to lanes responsive to detecting

the first event during execution of the wavetront; and
assign the second priority based on the second mapping.

3. The processor as recited in claim 1, wherein the control
logic 1s further configured to:

perform a lookup for each memory request based on static

information and dynamic system state information to
retrieve a priority; and

for each memory request, assign the retrieved priority to

the memory request.

4. The processor as recited in claim 1, wherein each
separate type of event has a corresponding update to apply
to a mapping of priorities to lanes which 1s diflerent from
updates of other types of events.

5. The processor as recited in claim 4, wherein the control
logic 1s further configured to apply an update to a mapping
of priorities to lanes so as to minimize a memory divergence
between different work-items of the wavelront.

6. The processor as recited i claim 4, wherein each
application executed by the processor has a separate map-
ping of priorities to lanes assigned to the application.

7. A method comprising;

assigning a first priority to each lane of a plurality of lanes

of a compute unit based on a mapping of priorities to
lanes;

assigning a priority to a memory request of each work-

item of a wavelront based on a priority of a corre-
sponding lane;

executing work-1tems of a wavelront;

processing, by a memory subsystem, each memory

request according to a corresponding priority;
responsive to detecting a first event, wherein the first
event 1s completion of a last memory request of the
wavelront:
assigning a second priority to each lane of the plurality
of lanes: and
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assigning a priority to a memory request of each
work-1tem based on a priority of a corresponding
lane.
8. The method as recited 1n claim 7, further comprising;:
generating a first mapping of priorities and assigning the
first priority to each lane based on the first mapping;
applying an update to the first mapping to generate a
second mapping of priorities to lanes responsive to
detecting the first event during execution of the wave-
front and assigming the second priority based on the
second mapping.
9. The method as recited 1n claim 7, further comprising:
performing a lookup for each memory request based on
static information and dynamic system state informa-
tion to retrieve a priority; and
for each memory request, assigning the retrieved priority
to the memory request.
10. The method as recited in claim 7, wherein each

separate type of event has a corresponding update to apply
to a mapping of priorities to lanes which 1s diflerent from
priority promotion vectors of other types of events.

11. The method as recited 1in claim 10, further comprising
applying an update to a mapping of priorities to lanes so as
to mimimize a memory divergence between diflerent work-
items of the wavelront.

12. The method as recited in claim 10, wherein each
application has a separate mapping of priorities to lanes
assigned to the application.

13. A system comprising:

a processor coupled to a memory subsystem, wherein the

processor 1s configured to:

execute work-1tems of a wavelront 1n parallel, wherein
cach work-1tem executes on a corresponding lane of
a plurality of lanes of a compute unait;

assign a first priority to each lane of the plurality of
lanes of the compute unit;

assign a priority to a memory request ol each work-
item ol the wavelront based on a prionity of a
corresponding lane;

assign a second priority to each lane of the plurality of
lanes, responsive to detecting a first event during
execution of the wavefront;

subsequent to the first event:
assign a second priority to each lane such that at least

one lane has a changed priority;
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assign a priority to a memory request of each work-
item based on a priority of a corresponding lane;
and
apply an update to a previously generated first mapping
to generate a second mapping of priorities to lanes
responsive to detecting the first event during execu-
tion of the waveliront.

14. The system as recited in claim 13, wherein the first
event 1s completion of a last memory request for a given
instruction of the wavetiront.

15. The system as recited in claim 13, wherein the
processor 1s further configured to:

perform a lookup for each memory request based on static

information and dynamic system state information to
retrieve a priority; and

for each memory request, assign the retrieved priority to

the memory request.

16. The system as recited imn claim 13, wherein each
separate type of event has a corresponding update to apply
to a mapping of priorities to lanes which 1s diflerent from
updates of other types of events.

17. The system as recited in claim 16, wherein the
processor 1s further configured to apply an update to a
mapping of priorities to lanes so as to minimize a memory
divergence between different work-i1tems of the wavefront.

18. A system comprising;:

a processor coupled to a memory subsystem, wherein the

processor 1s configured to:

execute work-1tems of a wavelront 1n parallel, wherein
cach work-1tem executes on a corresponding lane of
a plurality of lanes of a compute unait;

assign a first priority to each lane of the plurality of
lanes of the compute unait;

assign a priority to a memory request ol each work-
item of the wavelront based on a priority of a
corresponding lane;

assign a second priority to each lane of the plurality of
lanes, responsive to detecting a first event during
execution of the wavetront, wherein the first event 1s
completion of a last memory request for a given
instruction of the wavetront,

subsequent to the first event:
assign a second priority to each lane such that at least

one lane has a changed priority; and

assign a priority to a memory request of each work-

item based on a priority of a corresponding lane.
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