12 United States Patent

Cosentino et al.

US011500938B2

US 11,500,938 B2
Nov. 135, 2022

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR
COLLECTING DIGITAL FORENSIC

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

EVIDENCE

Applicant: Magnet Forensics Investco Inc.,
Waterloo (CA)

Inventors:
Water]
Water]
Water]

Nicholas Bruce Alexander Cosentino,

00 (CA); Christine McGarry,
00 (CA); Matthew Moody,
00 (CA); Christopher Sippel,

Water.

Assignee:

00 (CA)

Waterloo (CA)

Notice:

Magnet Forensics Investco Inc.,

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 29 days.

Appl. No.:

Filed:

15/487,168

Apr. 13, 2017

Prior Publication Data

US 2017/0300594 Al

Oct. 19, 2017

Related U.S. Application Data
Provisional application No. 62/321,869, filed on Apr.

13, 2016.

Int. CIL.

GO6F 16/903
GO6Q 50/26
G06Q 10/00
GO6F 16/9032

U.S. CL
CPC ...

(2019.01
(2012.01
(2012.01

(2019.01

LT N e ey

GO6F 16/90344 (2019.01); GO6F 16/9032

(2019.01); GO6Q 10/00 (2013.01); GO6Q

50/26 (2013.01)

(38) Field of Classification Search

CPC GO6F 16/90344
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,151,608 A * 11/2000 Abrams GOO6F 16/214
707/679
6,279,010 Bl 8/2001 Anderson
8,566,903 B2 10/2013 Kisin et al.
8,838,094 B2 9/2014 Thing
8,849,991 B2 9/2014 Levy et al.
9,081,838 B2 7/2015 Hoog
2003/0208689 Al 11/2003 De La Garza
2006/0064429 Al 3/2006 Yao
2007/0085711 Al* 4/2007 Bousquet G06Q) 10/10
341/50
2008/0065593 Al1* 3/2008 Minder GO6F 16/235
(Continued)

OTHER PUBLICATTIONS

Scalpel: A Frugal, High PerformanceFile Carver Golden G. Richard
III, Vassil Roussev presented by Muhammad Naseer (Year: 2013).*

(Continued)

Primary Examiner — Hau H Hoang

(74) Attorney, Agent, or Firm — Own Innovation; James
W. Hinton

(57) ABSTRACT

Methods and apparatus for acquiring and analyzing digital
forensic data using a computing device. Forensic data col-
lections are retrieved by a computing device, and artifacts
can be 1dentified according to a variety of display types and
presentation formats specified in an extensible format, to
facilitate review and reporting by a user.

16 Claims, 4 Drawing Sheets

f-’ 450
O ACQUIRE DATA
¥
U] L0AD ARTIFACT DEFINITION(S)
_______________________ | S
4%2&* SCAN DATA
¥
" PATTERN MATCHING &
s PROCESSING
4
45 o £, =" -
N GENERATE FRAGMENTS
T T oI Vo E
o DISPLAY N VIEWER ,
NE ABPLICATION s
L e o ot e o e e e e e e e e

US 11,500,938 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0161615 ALl* 6/2010 Lee ...ccoovvvvvviviinnnn, GOOF 21/80
707/741

2011/0231794 Al1* 9/2011 Gubanov GOOF 16/30
715/810

2014/0244582 Al 8/2014 Grier

2014/0294316 Al 10/2014 Allamsetty

2014/0325661 Al 10/2014 Hoog

2015/0121522 Al 4/2015 Guido

2018/0069881 Al* 3/2018 Gravesccceov., HO4L 43/028

OTHER PUBLICATIONS

Forensic analysis of the Firefox 3 internet history and recovery of
deleted SQLite records, written by Murilo Tito Pereira (hereafter
Pereira), Digital Investigation 5 (2009) 93-103, ScienceDirect 2009
(Year: 2009).*

Digital Evidence for Database Tamper Detection written by Shweta
Tripathi, Mar. 4, 2012 (Year: 2012).*

On metadata context in Database Forensics, Martin S. Olivier, Oct.
13, 2008 (Year: 2008).*

The International Search Report (ISR) and Written Opinion of the
International Searching Authority for International Application No.
PCT/CA2017/050456, Publication No. WQO/2017/177332, dated
Oct. 25, 2018.

The International Preliminary Report on Patentability for Applica-
tion No. PCT/CA2017/050456, Publication No. WO/2017/177332,
dated Oct. 25, 2018.

Garfinkel, Carving Contiguous and Fragmented Files with Object
Validation, DFRWS 2007 USA, Digital Investigation 4S (2007)
S2-S12, Sep. 2007.

Garfinkel et al., New XML-Based Files: Implications for Forensics,
IEEE Securnity & Privacy, vol. 7, Issue 2, Apr. 7, 2009 (Apr. 7,
2009).

Wagner et al., Database Forensic Analysis Through Internal Struc-
ture Carving, DEFRWS 2015 USA, Digital Investigation 14 (2015)
S106-S115, Aug. 2015.

European Patent Office, European Search Report from EP Patent
Application No. 17781685.7 dated Sep. 5, 2019.

* cited by examiner

U.S. Patent Nov. 15, 2022 Sheet 1 of 4 US 11,500,938 B2

ot
o
-
-
't
A ey
N
»
=
g N
\ﬂk wﬂ
e
o
-
=
&
L3
o2

130

131

o

% & =i

e

=N

= 04T

Y5l

y—(

—(

7

- JOV-RIT LN
IAIC LI0HYL

Qe 04%¢

092

= IOVAETINI

~ | SNE VHIHIINAd I0IA30 LNALNO
z L T 2 0%

N 097

S AHOWIN =L ANETIY

) S—— TULYIOANON WINOD VLY
- 3VAHaLN OAND ANOD VLS

2 JOVHOLS

= TYNHILXT

AHONIN
TLYIOA

Ui 1\

U.S. Patent

US 11,500,938 B2

Sheet 3 of 4

Nov. 15, 2022

U.S. Patent

U0
0% UPY

MAIA

AT TIVL3C
31404

MAA

FETENE
NOILYLONNY | |

- gge .
%) 028

AOVAAZINI HOXV IS

£ "Oid

AIIA NIVIA

¢ LNdNINOILLOATES

=L AREIN R EINIE

T4

U

co

4513

M3IA NOLLYDIAYN

L INGNENOCILDETES

Ut

¢

Gle

U.S. Patent Nov. 15, 2022 Sheet 4 of 4 US 11,500,938 B2

{‘ 400

MV ACQUIRE DATA

4 t LOAD ARTIFACT DEFINITION(S)

434 SCAN DATA

GENERATE FRAGMENTS

440 PATTERN MATCHING &
J PROCESSING

450
i M Ry whRA AR Aulshuh ks mmmmm ME
0| DISPLAY IN VIEWER ;
U APPLICATION z
b et e - i e e e e e e 3

FIG. 4

US 11,500,938 B2

1

SYSTEMS AND METHODS FOR
COLLECTING DIGITAL FORENSIC
EVIDENCE

RELATED APPLICATIONS

This application claims the benefit of U.S. provisional
patent application Ser. No. 62/321,869, filed Apr. 13, 2016,

the entire contents of which are hereby incorporated by
reference herein.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will now
be described in detail with reference to the drawings, in
which:

FIG. 1 1s a block diagram of a digital forensic data
ivestigation system 1n accordance with an example
embodiment;

FIG. 2 1s a sumplified block diagram of a computing
device 1n accordance with an example embodiment;

FIG. 3 1s a graphical user interface of a forensic data
investigation application i1n accordance with an example
embodiment; and

FIG. 4 1s an example refining process tlow in accordance
with some example embodiments.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Various systems or methods will be described below to
provide an example of an embodiment of the claimed
subject matter. No embodiment described below limits any
claimed subject matter and any claimed subject matter may
cover methods or systems that differ from those described
below. The claimed subject matter 1s not limited to systems
or methods having all of the features of any one system or
method described below or to features common to multiple
or all of the apparatuses or methods described below. It 1s
possible that a system or method described below 1s not an
embodiment that 1s recited in any claimed subject matter.
Any subject matter disclosed 1 a system or method
described below that 1s not claimed in this document may be
the subject matter of another protective instrument, for
example, a continuing patent application, and the applicants,
inventors or owners do not intend to abandon, disclaim or
dedicate to the public any such subject matter by its disclo-
sure 1in this document.

Furthermore, 1t will be appreciated that for simplicity and
clanity of illustration, where considered appropriate, refer-
ence numerals may be repeated among the figures to indicate
corresponding or analogous elements. In addition, numerous
specific details are set forth 1n order to provide a thorough
understanding of the embodiments described herein. How-
ever, 1t will be understood by those of ordinary skill in the
art that the embodiments described herein may be practiced
without these specific details. In other instances, well-known
methods, procedures and components have not been
described 1n detail so as not to obscure the embodiments
described herein. Also, the description 1s not to be consid-
ered as limiting the scope of the embodiments described
herein.

It should also be noted that the terms “coupled” or
“coupling” as used herein can have several diflerent mean-
ings depending 1n the context 1n which these terms are used.
For example, the terms coupled or coupling may be used to
indicate that an element or device can electrically, optically,

10

15

20

25

30

35

40

45

50

55

60

65

2

or wirelessly send data to another element or device as well
as recerve data from another element or device.

It should be noted that terms of degree such as “substan-
tially™, “about” and “approximately” as used herein mean a
reasonable amount of deviation of the modified term such
that the end result 1s not significantly changed. These terms
of degree may also be construed as including a deviation of
the modified term 11 this deviation would not negate the
meaning of the term 1t modifies.

The example embodiments of the systems and methods
described herein may be implemented as a combination of
hardware or software. In some cases, the example embodi-
ments described herein may be implemented, at least 1n part,
by using one or more computer programs, executing on one
or more programmable devices comprising at least one
processing element, and a data storage element (including
volatile memory, non-volatile memory, storage elements, or
any combination thereol). These devices may also have at
least one mput device (e.g. a keyboard, mouse, a touch-
screen, and the like), and at least one output device (e.g. a
display screen, a printer, a wireless radio, and the like)
depending on the nature of the device.

It should also be noted that there may be some elements
that are used to implement at least part of one of the
embodiments described herein that may be implemented via
soltware that 1s written 1 a high-level computer program-
ming language such as object oriented programming.
Accordingly, the program code may be written 1n C, C++,
Java or any other suitable programming language and may
comprise modules or classes, as 1s known to those skilled 1n
computer programming. Alternatively, or in addition thereto,
some ol these elements implemented via software may be
written 1n assembly language, machine language or firm-
ware as needed. In either case, the language may be a
compiled or interpreted language.

At least some of these software programs may be stored
on a storage media (e.g. a computer readable medium such
as, but not limited to, ROM, magnetic disk, optical disc) or
a device that 1s readable by a general or special purpose
programmable device. The software program code, when
read by the programmable device, configures the program-
mable device to operate 1n a new, specific and predefined
manner in order to perform at least one of the methods
described herein.

Furthermore, at least some of the programs associated
with the systems and methods of the embodiments described
herein may be capable of being distributed 1n a computer
program product comprising a computer readable medium
that bears computer usable instructions for one or more
processors. The medium may be provided 1n various forms,
including non-transitory forms such as, but not limited to,
one or more diskettes, compact disks, tapes, chips, and
magnetic and electronic storage.

Historically, forensic data investigation tools were limited
to exploring data items as recovered from a target device
filesystem. That 1s, only the files and folders present on the
target device could be examined forensically. In some cases,
raw data could also be examined. This created a significant
burden on investigators to both understand where files of
interest may be located on a filesystem, and also to examine
a large quantity of files for evidence of interest.

More recently, forensic data investigation tools have
included refining tools capable of 1dentifying and extracting
“artifacts” that may be of interest regardless of the under-
lying data location within a filesystem. In some cases, the
artifacts may comprise data extracted from within particular
files, or pulled from locations scattered across multiple files.

US 11,500,938 B2

3

The artifacts may be stored 1n a forensic database, as records
of the data fragments from which they are generated. Gen-
crally, these fragment records are composed ol metadata
about the underlying source data and an indication of where
the source data can be retrieved. However, 1n some cases, the
fragment records may contain some or all of the original
source data.

For example, an artifact can be created for an instant
messenger chat history. The history may subsist in multiple
files 1n a filesystem but, by using preconfigured refining
tools, a complete history artifact can be generated for
presentation to the investigator 1n a single view. This greatly
enhances efliciency, usability and comprehension.

Heretofore, refining tools within forensic data investiga-
tion tools have been pre-programmed 1n the forensic data
investigation software 1tself, and therefore their use has been
limited only to certain well-defined and widely-used types of
artifacts. Examples include, but are not limited to:

Uniform resource locators (URLs) 1n known formats,
which can be parsed from a variety of sources, such as
other documents, web browser histories, e-mails, chat
messages;

Web browser cookies, bookmarks, cache files, passwords
and autofill data, history data, search queries, down-
loaded web pages, for known web browser versions;

Instant messenger chat logs for known software;

Call logs for certain models of phone;

Cached network files (e.g., from popular cloud-based file
storage services);

Photos stores by popular photo catalog software;

E-mail messages and attachments from known e-mail
clients, which may be stored in monolithic database
files or obfuscated files specific to a particular e-mail
client software;

Peer-to-peer (P2P) file sharing history of popular P2P
software:

Media files (including media files that were embedded in
other file types);

Documents, such as word processor, spreadsheet, presen-
tation and other documents by known software;

Operating system configuration files, such as user account
information, peripheral information, system cache files,
network interface data, installed software data, and still
more, all of which may be stored 1n registry databases
or other bmnary or text extensible markup language
(XML) files.

However, even with a wide variety of known artifacts,
new artifacts are constantly being developed and 1dentified.
For example, a refining module capable of identifying web
browser histories generated by one web browser (Microsoft
Internet Explorer™) generally 1s not capable of 1dentifying
web browser histories generated by a different web browser
(e.g., Mozilla Firefox™). In other instances, a module that
works with one version of a browser (e.g., Internet
Explorer™ 6) may cease to identily histories generated by
a new version ol the same web browser (e.g., Internet
Explorer™ 9). Or a new web browser may be introduced,
which uses a different format.

In other cases, investigators may wish to specity a type of
artifact particular to a current investigation. For example, an
investigator tasked with a corporate espionage investigation
may wish to i1dentity files generated by a proprietary soft-
ware application that 1s not widely used or known. In still
other cases, investigators may be unable to share the speci-
fication for a desired artifact with the forensic investigation
software developer, due to secrecy or security concerns.

10

15

20

25

30

35

40

45

50

55

60

65

4

The described embodiments generally enable a user of
forensic data investigation tools to create and apply custom
artifact definitions when analyzing forensic data, thereby
allowing for extensibility of the forensic data investigation
tools without the need for a new version of the forensic data
investigation tool, or even the involvement of the forensic
data investigation tool developer.

Referring now to FIG. 1, there 1s provided 1s a block
diagram of a digital forensic data mnvestigation system 1n
accordance with an example embodiment.

Data investigation system 100 generally comprises a
computing device 110, which 1s coupled to a data storage
device 130, and which optionally may be coupled to one or
more target devices, such as a desktop computer 121, mobile
device 122 and data storage device 123. Coupling may be
achieved using a physical connection, such as a Umversal
Serial Bus (USB) connector or cable, an IEEE 802.3 (Eth-
ernet) network interface, or other suitable coupling interface
or adapter. Target devices may also be any type of data
storage media, such as magnetic and solid state disk drives,
optical media, or network file shares.

Computing device 110 has one or more software appli-
cation as described herein. As used herein, the term “soft-
ware application” or “application” refers to computer-ex-
ecutable 1instructions, particularly computer-executable
instructions stored in a non-transitory medium, such as a
non-volatile memory, and executed by a computer processor.
The computer processor, when executing the instructions,
may receive mputs and transmit outputs to any of a variety
of mnput or output devices to which it 1s coupled.

In particular, computing device 110 1s provided with a
forensic data mnvestigation soltware application, to acquire
data from one or more target device. For example, the
forensic data investigation software application may do a
low-level block-based copy from a target device storage
media, to retrieve all data on the device, regardless of
whether attempts have been made to delete the data. In other
cases, the forensic data mvestigation software application
may simply copy files and folders using operating system-
level file copy facilities. Specific techniques for forensic data
retrieval from a target device will be known.

The forensic data imnvestigation software application may
analyze the retrieved data to identily data items of interest,
as described further herein. Generally, data items can rep-
resent any data that can be retrieved from target device
storage media, such as files, databases, folders, block data or
byte ranges, volume information, file 1mages, and the like.

On their own, data 1tems generally can be viewed using a
text preview, which converts the raw data into a text
representation (e.g., using ASCII or UTF encoding), or in a
binary or hexadecimal representation. However, reviewing,
large amounts of data 1items 1n this format 1s time-consuming
and dificult. Therefore, computing device 110 may generate
a plurality of data artifacts.

Data artifacts are a type of data item that represents one
or more other data 1tems 1n a structured way.

A simple form of data artifact can be created or “refined”
based on the filename extension of a data item retrieved from
the target device. For example, the computing device may
generate a data artifact of type “documents” for a data 1tem
with a file extension of .DOCX.

However, more advanced data artifacts can also be gen-
erated through the use of one or more refining modules. For
example, the computing device may search for data patterns
indicative of particular file types, such as media files, to
generate media data artifacts or text data artifacts, respec-
tively. Such generation of data artifacts can occur regardless

US 11,500,938 B2

S

of whether attempts have been made to obfuscate the nature
ol a particular file, for example, by changing a file extension
or even deleting a file (where the underlying raw data can be
recovered from unused space on the target device storage
media).

Refining modules can be provided or defined for a wide
variety ol data artifacts. Some refining modules can be
pre-programmed or pre-configured with the forensic data
investigation software application. However, the described
embodiments provide for one or more refining modules that
are extensible, for example, by an end-user.

Some types of data items may be used to generate more
than one data artifact. For example, an e-mail database may
be used to generate a large number of data artifacts corre-
sponding to individual e-mail messages.

Data 1tems, including data artifacts, may be stored 1n a
data collection once generated. The data collection can be an
clectronic database file stored in a data storage device 130.
The electronic database file may be a relational database,
such as Microsoft SQL Server™ or a non-relational data-
base, such as a key-value database, NoSQL database, or the
like. In some cases, a data collection may contain data 1tems
retrieved from more than one target device and, because data
artifacts are a type of data item, the data collection may also
contain data artifacts generated by the computing device.
Each data item 1n the data collection may be tagged with
information to identity the target device that 1s the source of
the data item. In some cases, a data collection may contain
only records of data artifacts or data items, along with
indications of where the source data can be retrieved (e.g.,
on the target device).

Data storage device 130 1s a non-volatile data store
coupled to computing device 110. For example, data storage
device 130 may be an external storage device coupled to
computing device 110 locally, an internal device such as a
hard drive. In some cases, computing device 110 may be
coupled to a networked storage device 131 via a data
communication network 150. Data communication network
can be a private data communication network, such as a
local area network or wide area network, or may also be a
public data communication network, such as the Internet.
When computing device 110 1s configured to access data
storage device 130 over a public network, or even over a
private network, encryption (e.g., Transport Layer Security)
can be used to safeguard data.

In some cases, computing device 110 can be provided
with a forensic data investigation application. In operation,
the forensic data investigation application can be used to
retrieve the data collection, e.g., from data storage device
130, and to generate a user interface to facilitate forensic
investigation of the data collection.

Referring now to FIG. 2, there 1s shown a stmplified block
diagram of a computing device in accordance with an
example embodiment. Computing device 210 1s one
example of a computing device 110 as described 1n FIG. 1.

Computing device 210 has a processor 205, which 1s
coupled to a volatile memory 220, a non-volatile memory
225, a peripheral bus interface 230, a data communications
interface 240, an output device 250. The peripheral bus
interface 230 may further couple processor 205 to an exter-
nal storage interface 260, a user input device 260 and a target
device interface 270. It will be appreciated that FIG. 2 15 a
simplified diagram of but one example embodiment, and
that various other arrangements and computer system archi-
tectures may be used. For example, 1n some embodiments,
data commumnications interface 240 may be coupled to
processor 205 via peripheral bus interface 230.

10

15

20

25

30

35

40

45

50

55

60

65

6

Processor 205 1s a computer processor, such as a general
purpose microprocessor. In some other cases, processor 205
may be a field programmable gate array, application specific
integrated circuit, microcontroller, or other suitable com-
puter processor.

Processor 205 1s coupled, via a computer data bus, to
volatile memory 220 and non-volatile memory 225. Non-
volatile memory 225 stores computer programs consisting of
computer-executable mstructions, which may be loaded into
volatile memory 220 for execution by processor 205 as
needed. It will be understood by those skilled 1n the art that
references herein to a computing device as carrying out a
function or acting 1n a particular way imply that a processor
(e.g., processor 205 of computing device 210) 1s executing,
instructions (e.g., a software program) stored 1n a memory
and possibly transmitting or receiving inputs and outputs via
one or more interface. Volatile memory 220 may also store
data input to, or output from, processor 205 1n the course of
executing the computer-executable instructions. In some
cases, non-volatile memory 225 may store a data collection.

Processor 205 1s also coupled to an output device 2350,
such as a computer display, which outputs information and
data as needed by various computer programs. In particular,
output device 250 may display a graphical user interface
(GUI) generated by computing device 210.

Processor 205 1s coupled to data communication interface
240, which 1s one or more data network interface, such as an
IFEE 802.3 or IEEE 802.11 interface, for communication
over a network.

Processor 205 may be coupled to a peripheral bus inter-
face 230 via a data bus. In other embodiments, peripheral
bus 1nterface 230 may be omitted and processor 205 may be
coupled to devices such as external storage interface 260
directly via a data bus.

In the example embodiment, peripheral bus interface 230
1s coupled to an external storage interface 260, for example,
to mterface with external storage device 130.

Peripheral bus interface 230 1s also coupled to one or
more user mput device 260, such as a keyboard or pointing
device.

Finally, peripheral bus interface 230 can be coupled to a
target device interface 270, for interfacing with and retriev-
ing data from one or more target devices, such as target
device 121 of FIG. 1.

In some embodiments, computing device 210 1s a desktop
or portable laptop computer 130. In other embodiments,
computing device 210 may be a mobile device such as a
smartphone or tablet computer.

Referring now to FIG. 3, there 1s shown a graphical user
interface of an example forensic data investigation applica-
tion, which can be used to view a data collection once
generated by the forensic data mvestigation tool.

Graphical user interface 300 may be generated by a
computing device, such as computing device 110 or com-
puting device 210, and displayed on a display such as output
device 250 of computing device 210.

In particular, graphical user interface 300 may be gener-
ated and displayed to allow a user of the computing device
to review and examine data items within a data collection,
as generated by a forensic data investigation software appli-
cation.

In the example embodiment, graphical user intertace 300
has a navigation view area 310, a selection input 315, a main
view area 320, a selection mput 325, an annotation view area
330, a detail view area 340, a filter intertace 350 and a search
interface 355. Fach of the areas or elements of graphical user
interface 300 (e.g., navigation view 310, main view 320,

US 11,500,938 B2

7

annotation view 330, detail view 340 and preview 370) may
be repositioned, resized, detached and displayed 1n a sepa-
rate window or hidden from view, while remaining synchro-
nized with the other elements. In some cases, additional
clements may be displayed. In still other embodiments,
various elements may be combined. For example, a preview
may be displayed within a detail view 340.

Navigation view 310 may be used to display organiza-
tional data relating to data items. For example, while 1n an
artifact view display type, navigation view 310 may be
formatted to display one or more categories or subcategories
of data artifacts, or both. A user of the computing device may
select such categories or subcategories, to cause the com-
puting device to search within a current data collection and
generate a display of data artifacts within the selected
categories or subcategories 1n a main view 320. Selection of
a category or subcategory in navigation view 310 can be
used as a type of mmplicit filter, 1n addition to explicit or
contextual filters as described elsewhere herein.

Selection input 315 may be used to change the display
type of navigation view 310. For example, selection input
315 may be a button or group of buttons or a drop-down
dialog box, which allows the user to select one of a plurality
of display types. One display type 1s the artifact view display
type. However, examples of other display types are a file-
system display type, a database display type, a registry view
display type, and generic display types.

In general, operation of the selection 1nput 315 serves to
change the display type of navigation view 310. In some
cases, this change 1n display type may cause the presentation
format of main view 320 to be changed accordingly. In such
cases, computing device may attempt to retain the previ-
ously selected data 1tems within main view 320 to the extent
possible.

In a filesystem display type, navigation view 310 may be
formatted to display a filesystem hierarchy corresponding to
that of the target device or target devices used to generate the
current data collection. For example, 11 a target device 1s a
laptop computer, the displayed filesystem hierarchy may
correspond to that of the target laptop computer’s mass
storage device (e.g., solid state disk). The navigation view
310 may allow the user to navigate within the filesystem
hierarchy and select directories, the contents of which (1.e.,
data 1tems originally found in the selected directory) can be
displayed 1n main view 320. The navigation view 310 may
allow for filesystem hierarchies to be expanded and col-
lapsed, for example, by use of a disclosure triangle control.

In some cases, the filesystem display type may also
display data 1tems relating to filesystem components such as
disk partitions, unallocated space, logical volumes, deleted
files, and other objects associated with a filesystem.

In a registry view display type, navigation view 310 may
be formatted to display a system registry hierarchy, such as
the Microsoft Windows™ registry. For other operating sys-
tems, the registry view display type may be adapted to
display system configuration files and information. For
example, for the Mac OS X™ operating system, the registry
view display type may display XML files and key-value data
corresponding to system configuration settings. The naviga-
tion view 310 may allow the user to select certain registry
parameters, and data items associated with the selected
registry parameters can be displayed 1in main view 320. For
example, the navigation view may display a registry tree, the
registry tree having selectable registry tree elements that can
be used to filter the displayed data 1tems 1n main view 320
according to a selected registry tree element.

10

15

20

25

30

35

40

45

50

55

60

65

8

In a database display type, navigation view 310 may be
formatted 1n similar fashion to filesystem display type, to
display a filesystem hierarchy containing a database file or
files, such as the file containing a SQL database. The
navigation view 310 may allow the user to identily a
database to examine, and data items associated with the
selected database can be displayed in main view 320 in a
database presentation format.

Main view 320 generally 1s used for the display of data
items. Data items may be displayed in one or more presen-
tation formats. Examples of presentation formats include,
but are not limited to, column detail, row detail, chat thread,
thumbnail, timeline, map, filesystem and registry. A selec-
tion mput 325, such as a drop-down dialog, can be used to
change between presentation formats.

In general, operation of the selection mput 325 serves to
change the presentation format of main view 320. Comput-
ing device may attempt to retain the previously selected data
items within main view 320 to the extent possible for the
presentation format.

Many of the described presentation formats allow for the
display of data items in a heterogeneous list, that 1s, dis-
playing more than one type of data item contemporaneously
in main view 320. For example, a main view 320 1n a row
detail presentation format may display data artifacts of the
media category, data artifacts of the chat category, data
artifacts of the web browser category, data items of the file
type, and still others 1n a single list. Other presentation
formats can also display data 1items ol multiple categories.
For example, a column detail presentation format can simi-
larly display data items of multiple categories 1n main view
320, in some cases displaying additional columns for attri-
butes specific to each type of displayed data item.

When a particular data item 1s selected in main view 320,
attributes of the data item also can be displayed in detail
view 340 1n a detailed summary format. Detail view 340
may be scrollable or resizable, or both, to allow a user to
view all attributes relating to the selected data item. In some
cases, detail view may also include a preview of the data
item. In other cases, the preview may have a separate view.

Generally, detail view 340 can provide a summary of the
attributes for a selected data item, where those attributes
may also be displayed in columns of a column detail
presentation format.

In some cases, multiple data 1tem may be selected 1n main
view 320, in which case detaill view 340 may display
aggregate information relating to, or common to, all selected
data items.

A preview area 370 may also be provided 1n some cases.
As the name implies, the preview area may display a
preview of a selected data item. For example, for a media
data artifact, preview area 370 may display a resized image
or an 1mage thumbnail of a video. In another example, for a
document data artifact, preview area 370 may display a
rendering of the document contents. In some cases, where
the selected 1tem 1s not a data artifact, preview area 470 may
contain a text view which displays text strings extracted
from the selected data 1item, or a hex view, which displays
data 1n raw hexadecimal format for the selected data item.
Various other types of previews for different types of data
artifacts may also be displayed using a suitable renderer.

Annotation view 330 can be used to allow a user to tag
data 1items with labels or annotations. Tags can be applied to
any type of data item described herein, whether or not they
are also data artifacts (e.g., files, folders, chat artifacts, etc.).
Annotation view 330 may include predefined tags or labels,
which can be selected 1n the graphical user interface 300. In

US 11,500,938 B2

9

some cases, annotation view 330 may allow the user to
define additional tags or labels, comments and profiles,
which can be applied to selected data 1tems. Once defined,
tags or labels, comments and profiles can be used as search
or filter criteria.

Profile view 360 can be used to allow a user to assign a
profile identifier to a data item. The profile 1identifier may be
generated by the computing device when a new profile 1s
created, and may optionally be given a friendly name by the
computing device or the user. Generally, when the user
assigns a profile identifier to a data item, computing device
can parse the data item—which may be a data artifact—to
determine whether the data item contains a unique user
identifier, such as an e-mail address, chat service username,
phone number, address or the like. The computing device
may then analyze other data items within the data collection
to 1dentily instances of the unique user 1dentifier, and assign
the same profile identifier to those data items. The profile
identifier can then be used to filter data items, for example
using filter interface 350, allowing the user to quickly and
casily i1dentily data items that relate to a particular profile,
which may itself relate to a particular person of interest. In
some embodiments, profile identifiers may only be assigned
to data artifacts.

Filter interface 350 can be used to filter the data i1tems
displayed 1n main view 320 or also navigation view 310. In
general, filter interface 350 can be used to filter on any
attribute of a data item, including but not limited to, type or
category, dates and times, and tags. Filters can also be
combined, for example by applying multiple filters succes-
sively. In some cases, Boolean operators, such as AND, OR
or NOT may be applied to combine filters. In some embodi-
ments, filter interface 350 may allow for pattern matching,
¢.g., with regular expressions, to be used to define {filters.

When a filter 1s selected or applied, an active filter
indication may be provided, to indicate that the filter 1s 1n
ellect and thereby limiting the data items displayed. In some
cases, the active filter indication 1s a shading of the filter
dialog, for example with a color. The active filter indication
can be removed when all filters are deselected.

Similarly, search interface 355 can be used to enter
freeform text and search for specific attributes, such as
names, types, dates, and the like. An advanced search
interface can also be provided, to allow a user to craft
specific searches.

Referring now to FIG. 4, there 1s shown a retrieval or
refining process tlow i1n accordance with some example
embodiments. Method 400 may be carried out, for example
using computing device 110 executing a forensic data
retrieval and investigation tool provided to the computing,
device and stored thereon.

Method 400 begins with acquisition of data from a target
device at 410. Data may be acquired, for example, by a
low-level block-based copy from a target device storage
media, to retrieve all data on the device, regardless of
whether attempts have been made to delete the data. In other
cases, data may be acquired by copving files and folders
using operating system-level file copy facilities. Other data
retrieval techniques may also be used, as will be known.

At 420, the computing device 110 may load at least one
artifact definition from a memory where the artifact defini-
tion 1s pre-stored. Each artifact definition may define one or
more artifact type to be scanned for 1n the data acquired from
the target device. Artifact definitions can be stored in the
memory 1n the form of a structured data definition, such as
an extensible markup language (XML) file, a Javascript
Object Notation (JSON) file, or other suitable format or file.

10

15

20

25

30

35

40

45

50

55

60

65

10

In particular, artifact definitions can be provided 1n the form
of user-editable files, which can be created and loaded
without the need to alter or re-compile the forensic data
investigation software.

Optionally, the forensic data investigation software may
provide an interface for allowing the user to load or specily
one or more artifact definition files. In some cases, artifact
definitions may be provided or edited by way of a graphical
user interface within the forensic data investigation software
and stored 1n a structured data format, or using a proprietary
data representation.

Each artifact definition may have a preamble or tag to
define metadata regarding the artifact to be generated, such
as a type, a name, a version and the like. An example artifact
definition preamble may be specified as follows:

<Artifact type=“Fragment” name="URL”

ston="1.0"">

Generally there may be at least two primary types of
artifact definitions: database-type artifact definitions and
fragment-type artifact defimtions. Fach artifact definition
defines at least one pattern to be matched in the acquired
data to identily candidate artifacts. Database-type artifact
definitions may be created to search within existing data-
bases and, as such, may contain primarily parsing patterns as
described herein. In contrast, fragment-type artifact defini-
tions may be created to search any type of data, whether
structured or unstructured and, as such, generally contain
carving patterns as described herein. Both types of artifact
definition can contain a source definition.

A source definition can be specified in the artifact defi-
nition as a pattern to be matched in i1dentifying a possible
source of data. In some cases, the source definition can be a
filename (e.g., outlook.pst) or partial filename (e.g., .docx).
In some cases, the source definition can include, or be, a
regular expression. One example source definition may be:

<Source type="“Filename”>user.dat</Source>

Another source definition may be:

VCr-

<Source type="“Regex’>[0-9]{4 }-[A-Za-z0-9]{ 5 }-[A-Za-z0-
91{4}.sqlite</Source>

Source definitions can be useful for narrowing the search
for data of interest. For example, a source definition as above
may be used to i1dentity only those files that are likely to
contain data of interest, such as registry databases, e-mail
databases, and other files or databases, thereby lowering the
processing burden and false positives that may result from a
broader search. Accordingly, artifact definitions may contain
at least one source definition, to aid in the refining process.
In some embodiments, only one source definition 1s permit-
ted. However, 1n some other embodiments, multiple source
definitions may be permitted, which can be combined using
logical operands (e.g., AND, OR). Some artifact definitions,
such as a fragment-type artifact definition, may omit a
source definition altogether.

Another type of pattern which may be used 1n an artifact
definition 1s a parsing pattern. Parsing patterns are those that
rely on existing filesystem or database structures, or opera-
tional application programming interfaces 1n order to extract
data. For example, one type of parsing pattern 1s an SQL
query. As such, parsing patterns are generally used 1n
database-type artifact definitions, and usually in conjunction
with at least one source definition.

When searching for data within a database, a database-
type artifact definition can contain at least one parsing
definition. One type of parsing definition may specily a

US 11,500,938 B2

11

database table name definition with a table name to be
searched for the data, as follows:

<Table name="Users”/>

As an alternative to the table name definition, the parsing
definition may include a database query definition, contain-
ing for example a SQL query, to be used within the database
to retrieve the data subset of interest. For example, when
searching for a particular subset of data 1n a database, one
example parsing definition may be:

<Query>SELECT Album.[Cover] as Cover, Album.[Title] as
Title, Artist.[Name]| as Artist
FROM Album
INNER JOIN Artist
ON Album.[Artistld] = Artist.[ArtistId]
WHERE Album.[Cover] IS NOT null</Query>

A database query can be constructed using a program-
matic or query language. In some cases, the computing
device may provide a graphical user interface to assist 1n
generating a query.

As noted above, another type of pattern to be matched 1s
a carving definition. Data carving is the process of extracting
some data from a larger data set. As compared with parsing,
data carving does not rely on existing file or database
structures, or application programming interfaces. For
example, data carving may be used during a digital inves-
tigation when corrupted files or unallocated file system
space 1s analyzed to extract data. Generally, data can be
“carved” from source data using specific header and footer
values. As such, carving patterns are generally used in
fragment-type artifact definitions.

When searching for a fragment-type artifact, an artifact
definition contains a carving definition to i1dentify a data
subset 1 the acquired data. A carving definition generally
contains one or more sub-definitions, used to specily more
detailed characteristics of the data subset that 1s to be
retrieved 1n order to generate a desired artifact.

When working with other types of data (e.g., other than
data that can be parsed using a parsing definition), a carving
definition can include a data pattern referred to as a “header”

interest. In some embodiments, the header data pattern may
be a requirement for a fragment-type artifact definition. The
header data pattern may be an array or sequence of bytes, or
multiple arrays of bytes, that are indicative of a desired file
type. The header data pattern may also be 1n the form of a
regular expression. Some header data patterns may be:

<Header value="0x11, 0x19, 0x1B, 0x2F, 0x2F” type="Hex”/>
<Header value="example” type="Text” offset="-16" />
<Header value=“[0-9]{4}-[A-Za-z0-9]{5}” type="Regex”/>

In some cases, the header data pattern may specity data
that 1s embedded within a file of interest, not necessarily at
the start of a file. Therefore, the header data pattern may
turther 1include a byte offset that can be used to indicate a
number of bytes to traverse forward or backward when
generating a desired artifact. For example, the header data
pattern may 1dentily a pattern of bytes that always occurs 30
bytes after the start of a desired file type, therefore, the byte
oflset can indicate to the computing device that 1t should
construct the artifact by retrieving data beginming at 30 bytes
prior to the location of the header data pattern. Likewise, the
byte oflset can be used to retrieve only data that comes after
the header data pattern occurs 1n the data.

that can idicate the presence of a particular data subset of

10

15

20

25

30

35

40

45

50

55

60

65

12

In some cases, the carving definition may include a footer
data pattern. Similar to the header data pattern, the footer
data pattern can be a byte array or arrays, or a regular
expression that indicates the end of an artifact of interest:

<Footer value="0x10,0x20,0x30,0x40” type="Hex/>
<Footer value="end phrase” type=""Text”/>
<Footer value="{zzz|ZZZ}” type="Regex”/>

In some cases, the carving definition may include a length
definition, either 1n lieu of, or 1n addition to, the footer data
pattern. In at least one embodiment, a length defimition 1s
required when a parsing defimition 1s not present in the
artifact defimition. The length definition can include a mini-
mum length of the artifact. Particularly in cases where a
footer data pattern 1s not provided, the minimum length can
be used to generate an artifact of a desired size. The length
definition can also include a maximum length of the artifact,
for example, to prevent generating artifacts over a predeter-
mined size. An example length definition may be:

<Length

minimums="8"
maximum="1048576"

offset="32"
endianness="“1ittle”

type=uint32 />

The length defimition may also include an indication of the
data endianness and a data type. Data type may indicate, for
example, a string or numerical format (e.g., nt32, uintl6,
sbyte, etc.).

In some embodiments, the length definition can provide
for dynamic length definition. To determine the length of an
artifact with dynamic length, typically the oflset, endianness
and type attributes should be provided. Based on the offset,
endianness and type attributes, the computing device can
compute a dynamic length of the payload for each artifact
that 1s generated.

In some embodiments, each artifact definition may con-
tain more than one source, parsing or carving definition,
which can be combined using logical operators. In some
embodiments, the logical operators can be specified 1n the
artifact definition. In some cases, the source, parsing or
carving definitions may be cumulative, such that all defini-
tions must be matched to generate one artifact. However, 1n
some other cases, the source, parsing or carving definitions
may be additive, such that each successive definition 1s used
to 1dentify discrete elements of a particular artifact. For
example, for a web browser history artifact, one carving
definition may be used to locate a URL 1n the web browser
history, while another parsing or carving definition may be
used to locate cached images; the resulting artifact can
combine both data subsets into a single artifact.

Artifacts, once generated, are generally stored 1n a foren-
sic database. Therefore, to provide a common structure for
artifacts, the data subset retrieved according to the parsing or
carving definition may be mapped to an artifact database
using a mapping definition.

For example, for an artifact whose source 1s database data,
the mapping definition can include a source database column
name (1.e., column in which the source data was retrieved),
a forensic database column name (i.e., that will contain the
fragment record of the artifact). The mapping definition can
also include a data type, such as integer, tloating point
number, text string, date/time, binary long object (BLOB) or

US 11,500,938 B2

13

the like. For example, the mapping definition may be as
follows for a music catalog artifact generated using the
example SQL query described above:

<Fragments>
<Fragment
source="Cover’
alias="Album Cover”

datatype="Attachment”
category=""None”/>
<Fragment
source=""Title”
alias="Album Title”
datatype="String”
category="None”/>
<Fragment
source="Artist”
alias="Artist Name”
datatype="String”
category="None”/>
</Fragments>

In some embodiments, the mapping definition may also
include one or more category, for categorization of the
artifact by a forensic data viewer application as described
with reference to FIG. 3.

For an artifact that originates from generic data, the
mapping definition similarly may include a forensic data-
base (1.e., output database) column name, a data type and a
category. In some embodiments, more than one category

may be specified. One example mapping defimition for a
URL-type artifact may be:

<Fragments>
<Fragment source="Fragment” datatype="String”
category="Url” />
</Fragments™>

In some cases, an artifact definition may contain multiple
mapping definitions, e.g., for mapping data from a database
source to a single artifact.

Once the artifact defimition 1s loaded and parsed at 420,
the computing device may scan data acquired from the target
device 430. The computing device may scan for multiple
artifacts in one pass, or the computing device may scan for
particular artifacts after the data has been acquired. In some
alternative embodiments, the acquired data can be scanned
on demand as artifact definitions are created or loaded.

At 440, data subsets that match patterns defined 1n artifact
definitions can be extracted from the acquired data. In some
cases, extraction may 1nvolve simply identifying the
memory location or locations of the data subset in the
acquired data, rather than copying of the data subset to a
separate memory location.

At 450, artifacts are generated and stored 1n the forensic
database as fragment records, using the associated mapping
definitions. The resulting artifacts can be viewed using a
suitable viewer application at 470.

Based on the described embodiments, a wide variety of
artifact definitions can be created by the user. Some specific
examples are provided herein to aid understanding.

In one example, a database-type artifact definition can be
created to search within multiple databases with filenames
that match a regular expression and containing a table
named “Customer”, to extract name and address informa-
tion. Such a database-type artifact definition may be speci-
fied as follows:

10

15

20

25

30

35

40

45

50

55

60

65

14
<7xml version="1.0" encoding="UTF-8"7>
<Artifacts
version="1.0"">
<Artifact

type="Sqlite Artifact”
name=""Chinook Customer Table”
version="1.0"">
<Source type="“Regex’>[0-9]{4 }-[A-Za-z0-9]{ 5 }-[A-Za-z0-
91{4}.sqlite</Source>
<Table name="Customer” />
<Fragments>
<Fragment
source="F1rstName”
alias="First Name”
datatype="String”
category=""None™/>
<Fragment
source=""LastName”
alias="Last Name”
datatype="String”
category=""None”/>
<Fragment
source="Company”
alias="“Company Name”
datatype="String”
category=""None”/>
<Fragment
source="Address”
alias=""Street Address”
datatype="String”
category=""None”/>
<Fragment
source="City”
alias="City™
datatype="String”
category=""None™/>
<Fragment
source="Country”
alias="Country”
datatype="String”
category=""None”/>
<Fragment
source="Email”
alias="Customer Email Address”
datatype="String”
category=""Personldentifier”/>
</Fragments>
</Artifact>
</Artifacts>

In another example, a database-type artifact definition can
be created to search within a database using a SQL query to
extract media information. Notably, the query may contain
information used to aid mapping, by using the SQL “as”
keyword to define an SQL alias for each data value (e.g.,
Album. [Cover] as Cover). Such a database-type artifact
definition may be specified as follows:

<?xml version="1.0" encoding="UTF-8"7>
<Artifacts
version="1.0"">
<Artifact
type="“Sqlite Artifact”
name="Chimook Album Query with attachments”
version="1.0">
<Source type="TFileName”>Chinook_Sqlite.sqlite</Source>
<Query>SELECT Album.[Cover] as Cover, Album.[Title]
as Title, Artist.[Name] as Artist
FROM Album
INNER JOIN Artist
ON Album.[Artistld] = Artist.[ArtistId]
WHERE Album.[Cover| IS NOT null</Query>
<Fragments>
<Fragment
source="Cover”
alias="Album Cover”
datatype="Attachment”

US 11,500,938 B2

15

-continued

category=""None”’/>
<Fragment
source=""Title”

alias="Album Title”

datatype="String”

category=""None”/>
<Fragment

source=""Artist”
alias=""Artist Name”
datatype="String”
category=""None”/>
</Fragments=>
</Artifact>
</Artifacts™>

In another example, a fragment-type artifact definition
can be created to search within a SQLite database of
business contacts to i1dentity the names and job titles of
known contacts. Although the source data 1s a database file,
the file may be corrupted or altered, rendering 1t dithcult or
impossible to use database facilities to retrieve data. In such
case, the SQLite database nevertheless may contain specific
byte patterns that characterize the start (header) and end
(footer) of a record. Therefore, a fragment-type artifact
definition may be specified to carve data as follows:

<?7xml version="1.0" encoding="UTEF-877>
<Artifacts
version="1.0">
<Artifact
type="Tragmented Artifact”
name="Contacts Name + Job Title Finder”
version=""1.0"">
<\ource
type="TFileName>Contacts_sqlite.sqlite</Source>
<Headers>
<Header value="0x11, 0x19, 0x1B, Ox2F, 0x2F”
type="“"Hex"/>
</Headers>
<Footers>
<Footer value="0x30, 0x30, O0x3A, 0x30, 0x30,
0x3A, 0x30” type="Hex”/>
</Footers>
<Length maximum="64" minimum="8"/>
<Fragments>
<Fragment
source="Fragment”
datatype="String”™
category=""None”’/>
</Fragments>
</Artifact>
</Artifacts>

In another example, a fragment-type artifact definition
can be created to search across all acquired data, to match
any URL. Such a fragment-type artifact definition may be

specified as follows:

<?xml version="1.0" encoding="UTF-8"7>
<Artifacts
version="1.0"">
<Artifact
type="Tragmented Artifact”
name="HTML Link Finder”

version="1.0">

<Headers>
<Header value="&lt;a href=" type=""Text”/>
</Headers>
<Footers>
<Footer value="&gt;” type="Text”/>
</Footers>

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

<Length maximum="1024" minimum="2"/>
<Fragments>
<Fragment

source="Fragment”
datatype="String”
category="Url” />

</Fragments>

</Artifact>
</Artifacts>

The present invention has been described here by way of
example only, while numerous specific details are set forth
herein 1n order to provide a thorough understanding of the

exemplary embodiments described herein. However, 1t will
be understood by those of ordinary skill in the art that these

embodiments may, 1n some cases, be practiced without these
specific details. In other instances, well-known methods,
procedures and components have not been described in
detail so as not to obscure the description of the embodi-
ments. Various modification and variations may be made to
these exemplary embodiments without departing from the
spirit and scope of the invention, which 1s limited only by the
appended claims.

We claim:

1. A method of retrieving digital forensic data from at
least one target device using a computing device comprising
a memory and a processor, the method comprising:

recerving an artifact definition and a mapping definition,

the artifact definition comprising a database-type arti-
fact definition defining at least a first pattern to be
matched and a fragment-type artifact definition defin-
ing at least a second pattern to be matched, wherein the
first pattern comprises comprising at least one database
parsing definition comprising a database query and the
second pattern comprises at least one carving defini-
tion;

adding the artifact definition to a plurality of artifact

definitions 1n the memory;

acquiring data from the at least one target device, the data

stored on a data storage device of the at least one target
device, the data comprising file metadata and file
contents;

loading the artifact definition from the memory;

scanning the data first based upon the fragment-type

artifact definition, and subsequently based upon the
database-type artifact definition to 1dentify a data sub-
set that matches the first and second patterns;

when the first and second patterns are i1dentified, extract-

ing the data subset from the data based on the at least
one carving definition and the at least one database
parsing definition, the data subset selected from the
group consisting of a database artifact that matches the
database-type artifact definition, a fragment artifact that
matches the fragment-type artifact definition, and both
the database artifact and the fragment artifact; and
according to the mapping definition, generating a data
fragment record 1 a forensic database based on the
data subset, wherein the mapping definition maps ele-
ments of the data subset, as extracted based on the at
least one carving definition and the at least one data-
base parsing definition, to the data fragment record.

2. The method of claim 1, wherein the plurality of patterns
comprises a source definition.

3. The method of claim 2, wherein the source definition
comprises a filename.

US 11,500,938 B2

17

4. The method of claim 2, wherein the source definition
comprises a partial filename.

5. The method of claim 2, wherein the source definition
comprises a regular expression.

6. The method of claim 1, wherein the at least one
database parsing definition comprises a database table name.

7. The method of claim 1, wherein the at least one carving,
definition comprises a header data pattern.

8. The method of claim 7, wherein the header data pattern
1s a byte array.

9. The method of claim 7, wherein the header data pattern
1s a regular expression.

10. The method of claim 7, wherein the header data
pattern further comprises a byte ofiset.

11. The method of claim 7, wherein the at least one
carving definition comprises at least one of a footer data
pattern and a length expression.

12. The method of claim 1, wherein the mapping defini-
tion comprises at least one of a source database column
name, a forensic database column name, a data type and a
category.

13. The method of claim 1, wherein the artifact definition
1s stored in a file.

14. The method of claim 13, wherein the file 1s editable by
a user of the computing device.

15. A non-transitory computer-readable medium storing
computer-executable instructions, the instructions when
executed by a computer processor for causing the computer
processor to carry out the method of claim 1.

16. A computing device comprising a memory and a
processor, the processor configured to carry out the method
of claim 1.

10

15

20

25

30

18

	Front Page
	Drawings
	Specification
	Claims

