United States Patent

US011500644B2

(12) (10) Patent No.: US 11,500,644 B2
Sun 45) Date of Patent: Nov. 15, 2022
(54) CUSTOM INSTRUCTION IMPLEMENTED 7,155,602 B2* 12/2006 Poznanovic GOG6F 9/3897
FINITE STATE MACHINE ENGINES FOR C 8007 By 115013 Kim of ol 712/E9.067
.] 1m <1 al.
EXTENSIBLE PROCESSORS 8.966.223 B2* 22015 Knowles GO6F 9/3885
712/15
(71) Applicant: Alibaba Group Holding Limited, 9,170,812 B2* 10/2015 Vorbach GO6F 12/0875
Grand Cayman (KY) 2003/0018597 Al 1/2003 Shetty
2005/0216700 A1* 9/2005 Honary GO6F 15/17393
. : 712/15
(72) Inventor: Fei Sun, Hangzhou (CN) 2007/0198621 Al 8/2007 Lumsdaine et al.
_ _ _ o 2014/0279727 Al 9/2014 Baraniuk et al.
(73) Assignee: Alibaba Group Holding Limited, 2016/0309105 Al 10/2016 Dierickx et al.
Grand Cayman (KY) 2016/0358075 Al 12/2016 Zhang et al.
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OTHER PURI ICATIONS
U.S.C. 154(b) by 0 days.
AFPGA TP Completes Wireless-Backhaul Method, CM/SIGDA
(21) Appl. No.: 16/875,845 E-Newsletter, Sep. 1, 2008, vol. 38, No. 17, pp. 4-6.

(22)

(65)

(1)

(52)

(58)

(56)

Filed: May 15, 2020

Prior Publication Data

US 2021/0357232 Al Nov. 18, 2021

Int. CI.

GoOol 9/30 (2018.01)

GoOol 9/38 (2018.01)

U.S. CL

CPC e, Gool’ 93867 (2013.01)
Field of Classification Search

P e, GO6F 9/3867

See application file for complete search history.

(Continued)

Primary Examiner — Cheng Yuan Tseng

(57) ABSTRACT

An extensible processor can include an execution pipeline,
one or more extensible control engines and architectural
visible control states. The extensible processor can be con-
figured to determine a control state of the one or more
extensible control engines from the architectural visible
control states. The extensible processor can be further con-
figured to mnitiate execution of a given one of the extensible
control engines when a control state 1n the architectural
visible control states corresponding to the given one of the
extensible control engines 1s enabled, wherein the given one
of the extensible control engines comprises control input and

References Cited control outputs based on one or more control transitions of
U S PATENT DOCUMENTS an instruction. The extensible processor can also bi& turther
configured to output a result of execution of the given one
6,477,683 B1* 11/2002 Killian ..oovvvvvevenn GO6F 8/41 ol the extensible control engines to the architectural visible
716/106 control states.
7,010,558 B2* 3/2006 Morrisc......... GO6F 9/30036
708/409 21 Claims, 9 Drawing Sheets
: . " s
Cotmputing Device ’
u T
P Extensible
[Processor
b o220 Ty
; Exgouticn .-
Pipetine Extensible:Contral Engine
{Definable Function Block)
" | f t [Jata Path
23 !
...................... ESQ

- &J st

Bxtengible Control Fogine
- {Definable Functlen Blocky

.se

N

245

=rrSywririy—rie

Data Path

US 11,500,644 B2
Page 2

(56)

2016/0378442
2017/0357889
2018/0046895
2018/0157969
2018/0174028
2018/0309451
2018/0345650
2018/0349764
2019/0065150
2019/0095787
2019/0108436
2019/0146497
2019/0156206
2019/0158097
2019/0278600
2019/0347536
2019/0362809
2020/0051203
2020/0082254
2020/0151571

U.S. PATENT DOCUM

AN A ANAAAAAAN A AN A A A A

References Cited

12/201
12/201
2/201
6/201
6/201
10/201
12/201
12/201
2/201
3/201
4/201
5/201
5/201
5/201
9/201
11/201
11/201
2/2020
3/2020
5/2020

O NDND N N ND N ND ND 00 00 00 00 00 00 -1 O

Rong et al.
Zhang et al.
Xie et al.
Xie et al.
Lin et al.
[u et al.
Chisena et al.
Zhang et al.
Heddes

Kung et al.
David et al.
Urtasun et al.
Graham et al.
[u et al.
Frumkin et al.
David et al.
Okimoto et al.

Nurvitadhi et al.

Dally et al.
Wu

EINTTS

OTHER PUBLICATIONS

Pittman, Richard et al., eMIPS, A Dynamically Extensible Proces-
sor, Technical Report MSR-TR-2006-0143, Oct. 2006, pp. 1-28.
Getman, Larry, Creating the Xilinx ZYNQ-7000 Extensible Pro-
cessing Platform, EE Times, Oct. 17, 2011, pp. 1-3.

XTENSA LX7 Processor, High-Performance, Configurable and
Extensible Controllers and DSPs, Cadence, Tensilica Datasheet,
2016, pp. 1-13.

Moyer, Bryon, How Does Scatter/Gather Work? Promises of Single-
Cycle Access Are True, But . . ., EE Journal, Feb. 9, 2017, pp. 1-7.
He, Bingsheng et al., Efficient Gather Scatter Operations on Graph-

ics Processors, SCO7 Nov. 10-16, 2007, pp. 1-12.

Lukarski, Dimitar, Sparse Matrix-Vector Multiplication and Matrix
Formats, Uppsala Universitet, Apr. 11, 2013, pp. 1-57.

He, Guixia et al., A Novel CSR-Based Sparse Matrix-Vector Mul-
tiplication on GPUs, Hindawi Publishing Corporation, vol. 2016,
Mar. 27, 2016, pp. 1-13.

* cited by examiner

U.S. Patent Nov. 15, 2022 Sheet 1 of 9 US 11,500,644 B2

—
=

Hxtensible
110 Processor

Standard Block(s}
£40 160
190) Optional Function

Contigurable Block(s)
Uption{s)

<%
Ji

h]

Foxcternal Dehined

Unit(s)}

150 S

Configurable Definable
Block({s} Function Block{s)

FlG. 1

{Conventional Art}

US 11,500,644 B2

Sheet 2 of 9

Nov. 15, 2022

U.S. Patent

lllllllllllllllllllllllllllllllll

i8g v

i Frltop iy apble el o ol g M
. -

{yo01g vopoUr
SUITUL JOLUO 3 D ISUBIKY

e g oo

iz

(yporg BonAUR J JqRsYaC)

ﬁmwﬁ.mﬁﬁmﬁiﬁgﬁﬁ

JOSSAO0E
PPSUMINTY

H O AT

D

sona] Funndwo)

UM D[R AC])

¢ Dld

LR R

ourpadig
BOBROIXH

U.S. Patent

Configure a Defingble I

an Extensthle Processor Based on the

Extensible Control Engine

Nov. 15, 2022 Sheet 3 of 9

gy g g

Design & Funetion Bloek Including Data
Path and Control Transition of an
nstruction

Generate an Extensible Control f”ﬂ%;ma?
with States as Control Tnput Juiputs

Based on the Designed Data Path and-

Control Transitions of the Instruction

330)
agetion Eia@*k of

FIG. 3

3o

R o R

US 11,500,644 B2

340

i

CGenerate Extensible Control Engine-

Verification Toals

US 11,500,644 B2

Sheet 4 of 9

Nov. 15, 2022

U.S. Patent

]
o
]
s

1) wed

we(] Supnjouy
H01E] QUBMPIRH

SEW ed

nyeq] Bupnioug

ARO[SIEMPIRY

‘otaag) Aundwo)

S

D07

7 Old

{3o01g vonouny
TqBUIaC)
surdusy [OHU00y

(poolg vonoung
SGRULACT)
awmdugy Pauo)
o[QISuIINY

” owpedig
L HOennaxy
BTF

JOBSIDOIH
J[qrsuNyy

U.S. Patent Nov. 15, 2022 Sheet 5 of 9 US 11,500,644 B2

ooy g g g oyl i el gl ool g g g e g i g

3107
Destgn 8 Fuapetion Blook Including Data |

Path and Control Transitions of an.
Instruction

Generate an Extensible Control Engine Generate a Hardware Block Based on the
with Mates as Control Inprt/Outputs - Designed Data Path of the Tostruction.

Rased on the Designed Control
Transiions of the Instruction

-‘? 1

a L I

P T T e T
“y

Configure a Definable Function Block of Generate Extensible Control Engine

an Extensible Processor Based on the Verification Tools
Extensibie Countrol Engine

FIG. S

U.S. Patent Nov. 15, 2022 Sheet 6 of 9 US 11,500,644 B2

Execute Extensible Conirol Engine When BExeccute State 15 Enabled

Output Result of Extensible Control Engine

FIG. 6

U.S. Patent Nov. 15, 2022 Sheet 7 of 9 US 11,500,644 B2

;_.?_.@.; } _ ey ‘5 }
& f { N o o J‘#{a
. t;l.
-'l .
2

Clear Result State of Extensible Control Engine

FIG. 7

US 11,500,644 B2

Sheet 8 of 9

Nov. 15, 2022

U.S. Patent

¥ Dld

III

.

LR R

" _ suadLg
| aea HOUNoaN]
| BB T

MOSSD0L]
JGISUMNT
(0%

US 11,500,644 B2

Sheet 9 of 9

Nov. 15, 2022

U.S. Patent

RO Wid

ya0i¢] Wed
BID(] J0aULjuON;

£50

ﬁﬂm
e g vigcl
CHERN XIEN

B AL s e s o i n

[7%

e YA o1

ool yied

ERGYWA T

018 e

RIBC] SEUUON

FAOLE] (ORI
TN XENBIN

¥ UPD

JOOTH JOHUAT

”.. IR

6 DId

suBury [onuey
MGISUMRY
~ SIOMIDN TRABON

JOSEIMIY
SYGISUSTX

11111

L TR R

Ly

auyfadig
UONNIIRY

US 11,500,644 B2

1

CUSTOM INSTRUCTION IMPLEMENTED
FINITE STATE MACHINE ENGINES FOR
EXTENSIBLE PROCESSORS

BACKGROUND OF THE INVENTION

Processors can include fixed: istruction set architecture
(ISA) processors, application-specific mstruction set proces-
sors (ASIPs), and extensible processors. Fixed ISA proces-
sors mnclude x86-class processors, reduced instruction set
computer (RISC) processors, advanced RISC machine
(ARM) processors microprocessor without interlocked pipe-
line stages (MIPS), PowerPC processors and the like. The
fixed ISA processors are general purpose processors that try
to 1nclude instructions necessary to cover the largest space
ol potential applications 1n view of size, cost, power and
other similar factors. However, a general-purpose fixed ISA
processor 1s typically ineflicient and underutilized because
most applications do not use the large set of capabilities.

ASIPs are typically characterized by application-oriented
structural parameters and specialized instruction sets for
optimized performance for a particular application. ASIPs
have been used 1n audio and video application to achieve
power consumption reductions by a factor of three or more.
ASIPs can therefore advantageously be utilized 1n battery
powered devices and the like. However, the structural hard-
ware parameters and specialized mstructions are generally
designed specifically for a given ASIP. The design of ASIP,
including assemblers, linkers, compilers, mstruction set
simulators and the like can be very time consuming and
costly. ASIP can also have a limited market, as compared to
general-purpose fixed ISA processors, because they are
designed and optimized for a particular application.

Extensible processors are typically characterized by con-
figuring and extending a base instruction set architecture
with a set of structural parameters drawn from a configura-
tion space, and with a set of mstruction extensions based on
an extension space. A portion of the instruction set archi-
tecture, including specialized 1nstructions, can be described
in a processor description language, such as an architectural
description language (ADL). The ADL can be utilized to
create the hardware and software representations utilizing a
set of custom tools such as assemblers, compilers, disas-
semblers and debuggers, and tool chain, with defined exten-
sion mechanisms that can link 1 dynamically complied
libraries that reflect the syntax, and semantics of the set of
instruction extensions produced by an ADL compiler. Exten-
sible processors can provide for configuration of the number
and kinds of local and system memory interfaces, the
inclusion or exclusion of certain arithmetic logic units
(ALUs), bit width customization, configuration of the sizes
of register files, diagnostic and tracing capabilities, use of
very long instruction word style multi-operation instruc-
tions, interrupt and exception handling, direct builer inter-
taces, multiple load-store, pipeline sizing, and/or the like.
ADLs can also be used to define specialized extension
instructions tuned to specific applications and code require-
ments. Configurations can range from none, just a few or
many hundreds of instructions, including complex multi-
cycle 1nstructions designed to speed up computations for
particular algorithms while reducing power consumption
through precise timing of instruction characteristics of the
specific source code. Extensible processors combine the
benelit of a general-purpose multi-user fixed ISA processor
and ASIPs. Extensible processors can be configured for
numerous specific applications. Furthermore, extensible
processor can evolve with changes 1n a target market.

10

15

20

25

30

35

40

45

50

55

60

65

2

Retferring to FIG. 1, an exemplary extensible processor
according to the conventional art i1s shown. The extensible
processor 100 can include one or more standard function
blocks 110 with one or more configurable options 120, one
or more configurable function blocks 130, one or more
optional function blocks 140, one or more definable function
blocks 150 and one or more communication interfaces 160.
The one or more standard function blocks 110 can include,
but are not limited to, processor controls, exception support
units, exception handling registers, instruction fetch/decode
unit, base ISA execution pipeline, and base arithmetic logic
units. The configurable options 120 for the standard unction
blocks 120 can include, but are not limited to, watch
registers, times, 1mterrupt controls, and extension pipelines.
The configurable blocks 130 can include, but are not limited
to, 1nstruction memory management and error protection
units, data memory management and error protection units,
external communication interface units, and data load/store
units. The optional function blocks 140 can include, but are
not limited to, digital signal processors (DSPs), and com-
munication interfaces. The definable function blocks 150
enable designers to add features to the extensible processor

100. One or more external defined function unit 170 can also
be coupled to the extensible processor 100 by one or more
communication interfaces 160. The definable function
blocks 150, and optionally the one or mor external defined
function units 170, can reduce processor cost, reduce pro-
cessor power consumption, increase application perfor-
mance and the like.

The definable function blocks 150, and optionally the one
or mor external defined function units 170, can be easily
added to an extensible processor 100. However, software
instruction streams are needed to initiate the definable
function blocks 150. For definable function blocks 150, and
optionally the one or mor external defined function units
170, implementing software instruction streams for initiat-
ing definable function blocks 150 and external function units
170 can be a sigmificant portion of the design process.
Accordingly, there 1s a continuing need for extensible func-
tion blocks 150, and optionally the one or mor external
defined function units 170, that do not require nitiation by
a software instruction stream.

SUMMARY OF THE INVENTION

The present technology may best be understood by refer-
ring to the following description and accompanying draw-
ings that are used to illustrate embodiments of the present
technology directed toward custom instruction implemented
control logic engines or finite state machine engines for
extensible processors.

In one embodiment, a method of configuring an exten-
sible processor can include designing a function block
including one or more data paths and ono or more control
transitions of an instruction. An extensible control engine
can be generated with control states as control mputs and
control outputs based on the one more data paths and the one
or more control transitions. A definable function block of the
extensible processor can be configured based on the exten-
sible control engine.

In another embodiment, an extensible control engine can
be generated with control states as control inputs and control
outputs based on the one or more control transitions. A
hardware block external to the extensible processor, and
coupled to the extensible control engine, can be generated
based on the one or more data paths.

US 11,500,644 B2

3

In another embodiment, operation of an extensible pro-
cessor can 1mclude determining a control state for an exten-

sible control engine. The extensible control engine can be
executed when the control state 1s enabled. The extensible
control engine can include control inputs and control output
based on or more control transitions of an instruction. The
extensible control engine can also include a data path of the
instruction. Alternatively, a hardware block external to the
extensible processor, and coupled to the extensible control
engine can include the data path of the instruction.

This Summary 1s provided to mtroduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

Embodiments of the present technology are illustrated by
way of example and not by way of limitation, in the figures
of the accompanying drawings and in which like reference
numerals refer to similar elements and 1n which:

FIG. 1 shows an exemplary extensible processor accord-
ing to the conventional art.

FIG. 2 shows a computing device including an extensible
processor, 1 accordance with aspects of the present tech-
nology.

FIG. 3 shows a method of configuring an extensible
processor, 1n accordance with aspects of the present tech-
nology.

FIG. 4 shows a computing device including an extensible
processor, 1n accordance with aspects of the present tech-
nology.

FIG. 5 shows a method of configuring an extensible
processor, 1n accordance with aspects of the present tech-
nology.

FIG. 6 shows a method of operation of an extensible
processor, 1 accordance with aspects of the present tech-
nology.

FIG. 7 shows a method of operation of an extensible
processor, 1n accordance with aspects of the present tech-
nology.

FIG. 8 shows an exemplary configured extensible proces-
sor, 1n accordance with aspects of the present technology.

FIG. 9 shows an exemplary configured extensible proces-
sor, 1n accordance with aspects of the present technology.

Reference will now be made in detail to the embodiments
of the present technology, examples of which are 1llustrated
in the accompanying drawings. While the present technol-
ogy will be described 1n conjunction with these embodi-
ments, 1t will be understood that they are not mtended to
limit the technology to these embodiments. On the contrary,
the 1nvention 1s intended to cover alternatives, modifications
and equivalents, which may be included within the scope of
the 1nvention as defined by the appended claims. Further-
more, 1n the following detailed description of the present
technology, numerous specific details are set forth 1n order
to provide a thorough understanding of the present technol-
ogy. However, it 1s understood that the present technology
may be practiced without these specific details. In other,
instances, well-known methods, procedures, components,
and circuits have not been described 1n detaill as not to
unnecessarily obscure aspects of the present technology.

Some embodiments of the present technology which
follow are presented 1n terms of routines, modules, logic
blocks, and other symbolic representations of operations on

5

10

15

20

25

30

35

40

45

50

55

60

65

4

data within one or more electronic devices. The descriptions
and representations are the means used by those skilled 1n
the art to most eflectively convey the substance of their work
to others skilled in the art. A routine, module, logic block
and/or the like, 1s herein, and generally, conceived to be a
self-consistent sequence of processes or instructions leading
to a desired result. The processes are those including physi-
cal manipulations of physical quantities. Usually, though not
necessarily, these physical manipulations take the form of
clectric or magnetic signals capable of being stored, trans-
terred, compared and otherwise manipulated 1n an electronic
device. For reasons of convenience, and with reference to
common usage, these signals are referred to as data, bits,
values, elements, symbols, characters, terms, numbers,
strings, and/or the like with reference to embodiments of the
present technology.

It should be borne 1n mind, however, that these terms are
to be iterpreted as referencing physical manipulations and
quantities and are merely convenient labels and are to be
interpreted further 1n view of terms commonly used 1n the
art. Unless specifically stated otherwise as apparent from the
following discussion, 1t 1s understood that through discus-
sions of the present technology, discussions utilizing the
terms such as “receiving,” and/or the like, refer to the actions
and processes of an electronic device such as an electronic
computing device that manipulates and transforms data. The
data 1s represented as physical (e.g., electronic) quantities
within the electronic device’s logic circuits, registers,
memories and/or the like, and 1s transformed 1nto other data
similarly represented as physical quantities within the elec-
tronic device.

In this application, the use of the disjunctive 1s intended
to iclude the conjunctive. The use of definite or indefinite
articles 1s not mtended to indicate cardinality. In particular,
a reference to “the” object or “a” object 1s intended to denote
also one of a possible plurality of such objects. The use of
the terms “‘comprises,”‘comprising,” “includes,” “includ-
ing”” and the like specily the presence of stated elements, but
do not preclude the presence or addition of one or more other
clements and or groups thereof. It 1s also to be understood
that although the terms first, second, etc. may be used herein
to describe various elements, such elements should not be
limited by these terms. These terms are used herein to
distinguish one element from another. For example, a first
clement could be termed a second element, and similarly a
second element could be termed a first element, without
departing from the scope of embodiments. It 1s also to be
understood that when an element 1s referred to as being
“coupled” to another element, 1t may be directly or indirectly
connected to the other element, or an intervening element
may be present. In contrast, when an element 1s referred to
as being “directly connected” to another element, there are
not intervening elements present. It 1s also to be understood
that the term “and or” includes any and all combinations of
one or more ol the associated elements. It 1s also to be
understood that the phraseology and terminology used
herein 1s for the purpose of description and should not be
regarded as limiting.

Referring now to FIG. 2, a computing device including an
extensible processor, in accordance with aspects of the
present technology, 1s shown. The computing device 200 can
be, but 1s not limited to, cloud computing platforms, edge
computing devices, servers, workstations, personal comput-
ers (PCs). The extensible processor 210 can include one or
more standard function blocks with one or more configur-
able options, one or more configurable function blocks, one
or more optional function blocks, one or more definable

US 11,500,644 B2

S

function blocks and one or more communication interfaces,
as described above with respect to FIG. 1. The extensible
processor 210 can implement a central processing unit
(CPU), graphics processing unit (GPU), general-purpose
computing on graphics processing unit (GPGPU), internet of
things (IOT) CPU, tensor processing unit (ITPU), digital
signal processor (DSP), or any other such processor.

The extensible processor 210 will now be further
described with reference to FIG. 3, which shows a method
of configuring the extensible processor 210 in accordance
with aspects of the present technology. The configuration
method may be implemented as computing device-execut-
able instructions (e.g., computer program) that are stored 1n
one or more computing device-readable media (e.g., com-
puter memory) and executed by one or more computing
devices (e.g., processors). In one implementation, the con-
figuration method can be implemented 1n an integrated
development environment (IDE) for the extensible proces-
sor 210.

Configuring the extensible processor 210 can include
designing one or more function blocks including data path
and control transitions of one or more 1nstructions, at 310. At
320, one or more extensible control engines 230, 240 with
states as control mputs and outputs can be generated based
on the designed data path and control transitions of the one
or more instructions. In one implementation, the control
states of the one or more extensible control engines 230, 240
can be coupled to core states of the extensible processor 210.
The control state of extensible control engines 230, 240 can
be coupled to the same core state or different core states
depending upon the respective instruction. In one imple-
mentation, one 1nstruction can serve as one finite state
machine (FSM). In another implementation, a plurality of
istructions can serve as a FSM, with each 1nstruction
serving as a corresponding state in the FSM.

At 330, one or more definable function blocks of the
extensible processor 210 can be configured based on the one
or more generated extensible control engines 230, 240. In
such an implementation, the data path 235 of an 1nstruction
can be part of the extensible control engine 230 within the
extensible processor 210.

In one implementation, the control mput and outputs of
the extensible control engine 230 can be implemented as
architectural visible control states 250 of the extensible
processor 210. In one implementation, the architectural,
visible control states 250 can be specific to a given exten-
sible control engine 230. Architectural visible control states
250 can also be shared between extensible control engines
230, 240. In one implementation, data states can also be
passed between the extensible processor 210 and an exten-
sible control engine 230 by architectural visible control
states 250. 1n another implementation, data states can be
passed between multiple extensible control engines 230, 240
by architectural visible control states 250. 1n one 1implemen-
tation, an extensible control engine 230 1s tied to a specific
pipeline stage 226 of the extensible processor 210.

In one mmplementation, the extensible control engines
230, 240 can execute very cycle once enabled. In one
implementation, execution of a given extensible control
engine 230 can be enabled and disabled via one or more
architectural visible control states 250 of the extensible
processor 210. For example, a control state can include one
bit that indicates whether the extensible control engine 230
i1s enabled or disabled. In an optional implementation, a
specified state can indicate that an instruction result of the
respective extensible control engine 230 1s ready. When the
specified state indicates that the result 1s not ready, depen-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

dent instructions can be stalled. For example, one of the
control states 250 can include two-bits, one hit can indicate
whether the given extensible control engine 230 1s enabled
or disabled, and a second hit can indicate whether a result of
the given extensible control engine 230 1s ready or not. In
one 1mplementation, the instruction of the extensible control
engine 230 does not appear 1n a software instruction steam
of the extensible processor 210. In one implementation, the
extensible control engine 230 can be clock gated, which can
reduce power consumption when the extensible control
engine 1s not enabled.

Optionally, extensible control engine verification tools
can be generated, at 340. In one implementation, extensible
processor generator software, such as an integrated devel-
opment environment (IDE) from the extensible processor
vendor, provides the verification tools, including but not
limited to, compiler, debugger, simulator, real time operating
system, synthesizable register transfer language, electronic
design automation, and test benches,

Referring now to FIGS. 4 and 5, a computing device
including an extensible processor and method of configuring
the extensible processor, 1n accordance with other aspects of
the present technology, 1s shown. The computing device 400
can be, but 1s not limited to, cloud computing platiorms,
edge computing devices, servers, workstations, personal
computers (PCs). The extensible processor 410 can imple-
ment a central processing unit (CPU), graphics processing
umt (GPU), general-purpose computing on graphics pro-
cessing unit (GPGPU), internet of things (10T) CPU, tensor
processing umt (TPU), digital signal processor (DSP), or
any other such processor. Again, the configuration method
may be implemented as computing device-executable
istructions (e.g., computer program) that are stored in one
or more computing device-readable media (e.g., computer
memory) and executed by one or more computing devices
(e.g., processors). In one implementation, the configuration
method can be implemented 1n an 1ntegrated development
environment (IDE) fir the extensible processor 410.

Configuring the extensible processor 410 can include
designing one or more function blocks including data path
and control transitions of one or more 1nstructions, at 510. At
520, one or more extensible control engines 430, 440 with
control states as control inputs and outputs can be generated
based on the control transitions of the one or more nstruc-
tions. In one implementation, the control states of the
extensible control engine 430, 440 can be coupled to core
states of the extensible processor 410. The control state of
extensible control engines 430, 440 can be coupled to the
same core state or diflerent core states depending upon the
respective istruction. In one implementation, one nstruc-
tion can serve as one finite state machine (FSM). In another
implementation, a plurality of instructions can serve as a

FSM, with each instruction serving as a corresponding state
in the FSM.

At 530, one or more hardware blocks 450, 460 can be
generated based on the data path for respective control
engines 430, 440. The hardware blocks can also be further
generated based on at least a portion of the control transi-
tions for respective control engines 430, 440. In one 1imple-
mentation, the data path of the hardware block 450, 460 can
be coupled to the respective extensible control engines 430,
440 of the extensible processor 400.

One or more extensible control engines with states as
controls input and outputs can also be generated as described
above with reference to FIGS. 2 and 3.

At 540, one or more definable function blocks of the
extensible processor 410 can be configured based on the one

US 11,500,644 B2

7

or more generated extensible control engines 430, 440. In
such an implementation, at least a portion of the control
transitions 1s part of the respective extensible control engine
430, 440 within the extensible processor 410, while the data
paths are implemented in the hardware blocks 450, 460
external to the extensible processor 410. Optionally, the
hardware blocks 450, 460 can also include a portion of the
control transitions.

In one implementation, the data path of the hardware
blocks 450, 410 can be coupled by one or more queues
470-476, bullets or the like to the respective extensible
control engines 430, 440. The queues, buflers or the like
enable execution of blocks out of lockstep with the execu-
tion pipeline stages. In another implementation, the data
path of the hardware block 450, 460 can be directly con-
nected (not shown) to the respective extensible control
engines 430, 440.

In one 1mplementation, the control mput and outputs of
the extensible control engine 430, 440 can be implemented
as architectural visible control states 480 of the extensible
processor 410. In one 1mplementation, the architectural
visible control states 480 can be specific to a given exten-
sible control engine 430. Architectural visible control states
480 can also be shared between extensible control engines
430, 440. In one 1mplementation, data states can also be
passed between the extensible processor 410 and an exten-
sible control engine 430 by architectural visible control
states 480. In another implementation, data states can be
passed between multiple extensible control engines 430, 440
by architectural visible control states 480. In one implemen-
tation, an extensible control engine 430 1s tied to a specific
pipeline stage 426 of the extensible processor 410.

In one 1implementation, the extensible control engine 430
can execute every cycle once enabled. In one implementa-
tion, execution of a given extensible control engine 430 can
be enabled and disabled via one or more architectural visible
control states 480 of the extensible processor 410. For
example, a control state can include one hit that indicates
whether the extensible control engine 430 i1s enabled or
disabled. In an optional implementation, a specified state can
indicate that an instruction result of the extensible control
engine 430 1s ready. When the specified state indicates that
the result 1s not ready, dependent 1nstructions can be stalled.
For example, a control state 480 can include two-bits, one bit
can indicate whether the given extensible control engine 430
1s enabled or disabled, and a second hit can indicate whether
a result of the given extensible control engine 430 1s ready
or not. In one implementation, the mnstruction of the exten-
sible control 430 does nut appear 1n a soltware 1nstruction
stecam of the extensible processor 410. In one 1implementa-
tion, the extensible control engine 430 can be clock gated,
which can reduce power consumption when the extensible
control engine 1s not enabled.

One or more definable function blocks of the extensible
processor 410 can also be configured based on one or more
extensible control engines as described above with reference
to FIGS. 2 and 3.

Optionally, extensible control engine verification tools
can be generated, at 350. In one implementation, extensible
processor generator soitware, such as an integrated devel-
opment environment (IDE) from the extensible processor
vendor, provides the verification tools, including but not
limited to, compiler, debugger, simulator, real time operating
system, synthesizable register transfer language, electronic
design automation, and test benches.

Operation of the extensible processor will be further
explained with reference to FIG. 6. Operation of the exten-

10

15

20

25

30

35

40

45

50

55

60

65

8

sible processor 210, 410 includes numerous conventional
aspects that are not germane to an understanding of aspects
of the present technology, and therefore are not described
herein. Instead, operation of the extensible processor 210,
410 as described herein will focus on the extensible control
engines 230, 240, 430, 440. At 610, an execution state for an
extensible control engine can be determined. In one 1mple-
mentation, the extensible control engine 230, 240, 430, 440
can be configured to read an architecturally visible control
state 250, 480 to determine 1 execution of the extensible
control engine 230, 240, 430 440 1s enabled or disabled. For
example, a control state 250, 480 can include one bit that
indicates whether the corresponding extensible control
engine 230, 240, 430, 440 1s enabled or disabled. If the
execution state for the extensible control engine 1s disabled,
the process of determining 1f the execution state for the
extensible control engine can be repeated at 620.

When the execution state 1s enabled, the extensible con-
trol engine can be executed, at 630. In one implementation,
the extensible control engines 230, 240, 430, 440 are con-
figured to perform single cycle repeated execution, which 1s
tied to a specific processor pipeline stage 226, 426. In one
implementation, execution of the extensible control engines
230, 240, 430, 440 are committed when enabled. In one
implementation, saving and restoring the extensible proces-
sor state can be used to stop and restart the extensible control
engines 230, 240, 430, 440 for context switching. At 640, a
result of execution of the extensible control engine can be
output. In one implementation the result can be passed from
the extensible control engine 230, 240, 430, 440 to a specific
execution pipeline stage 226, 426 through one or more
architecturally visible control states 250, 480 of the exten-
sible processor 210, 410. At 650, the process can be
repeated. In one implementation, the extensible control
engine 230, 240, 430, 440 can be reissued every cycle once
enabled. Accordingly, a software instruction stream 1s not
needed to initiate the instruction of the extensible control
engine 230, 240, 430, 440.

Optionally, operation of the extensible processor can
utilize blocking queue push/op interface for implementing
control transitions, which can have lower power require-
ments than other control techmques. Referring now to FIG.
7, operation of the extensible processor, 1n accordance with
other aspects of the present technology, 1s shown. Again,
operation of the extensible processor 210, 410 includes
numerous conventional aspects that are not germane to an
understanding of aspects of the present technology, and
therefore are not described herein. Instead, operation of the
extensible processor 210, 410 as described herein will focus
on the extensible control engines 230, 240, 430, 440.

Operation can include determining an execution state for
an extensible control engine, at 710. In one implementation,
the extensible control engine 230, 240, 430, 440 can be
configured to read an architecturally visible control state
250, 480 to determine 11 execution of the extensible control
engine 230, 240, 430, 440 1s enabled or disabled. For
example, a control state 250, 480 can include one bit that
indicates whether the, corresponding extensible control
engine 230, 240, 430, 440 i1s enabled, or disabled. IT the
execution state for the extensible control ermine 1s disabled,
the process of determining 1f the execution state for the
extensible control engine can be repeated at 720.

When the execution state 1s enabled, a result state of the
extensible control engine can be cleared, at 730. At, 740, the
extensible control engine can be executed. In one 1mple-
mentation, the extensible control engines 230, 240, 430, 440
are configured to perform single cycle repeated execution,

US 11,500,644 B2

9

which 1s tied to a specific processor pipeline stage 226, 426.
In one 1mplementation, execution of the extensible control
engines 230, 240, 430, 440 are commaitted when enabled. In
one implementation, saving and restoring the extensible
processor state can be used to stop and restart the extensible
control engines 230, 240, 430, 440 for context switching. At
750, a result of execution of the extensible control engine
can be output. At 760, the result state of the extensible
control engine can be set. For example, the control state 250,
480 can 1nclude a second bit that indicates whether a result
ol a corresponding extensible control engine 230, 240, 430,
440 1s ready or not. In one implementation the result can be
passed from the extensible control engine 230, 240, 430, 440
to a specific execution pipeline stage 226, 426 through one
or more architecturally visible control states 250, 480 of the
extensible processor 210, 410. The process can then be
repeated, at 770. In one implementation, the extensible
control engine 230, 240, 430, 440 can be reissued every
cycle once enabled. Accordingly, a software instruction
stream 1s not needed to 1nitiate the nstruction of the exten-
sible control engine 230, 240, 430, 440.

Referring now to FIG. 8, an exemplary configured, exten-
sible processor, 1n accordance with aspects of the present
technology, 1s shown. The exemplar configured extensible
processor 800 can include an extensible control engine 820
configured to implement a division function as shown 1in

Table 1
TABLE 1

state dividend 32
state divisor 32
state temp 32
state result 32
state counter 5
state start 1

state ready 1

operation div { } {in start, in dividend, in divisor, inout temp, inout result, inout

counter, out ready} {
wire first_ cycle = start == 1'bl;

10

15

20

25

10

ture states. The FSM div ready code can be used to indicate
that the result 1s ready. The result operation (e.g., operation
div_re) can provide the result as an output state.

Referring not to FIG. 9, an exemplary configured exten-
sible processor, 1n accordance with aspects of the present
technology, 1s shown. The exemplary configured extensible
processor 900 can include an extensible control engine 920
and a plurality of external hardware blocks 925-9355 config-
ured to implement a neural network engine. The extensible
control engine 920 can generate control state signals to
initiate execution at each cycle. Control states can also be
pass between the external hardware blocks 925-9535 utilizing
corresponding queues 960-965. The external hardware
blocks 925-955 can move data to .2 cache, from L2 cache
to L1 cache, execute matrix multiplication on the data, and
apply an activation function, such as a rectified linear
(ReLU) activation function, before outputting the result
back, to a specific execution pipeline state 916.

In accordance with aspects of the present technology,
defined function blocks can advantageously be automati-
cally generated. Designers do not need to consider compli-
cated control logic. Instead, designers can focus on the data
path and control transitions of the extensible control engine.
Control can advantageously be tightly coupled with core
states of the extensible processor. Software tools can be
automatically generated so that the extensible control engine
configured definable function blocks can be readily verified.

wire [4:0] remaimn_ num_ cycles = first _cycle ? (calculate the number of cycles) :

counter — 1;
assign counter = remain_ num_ cycles;
wire last cycle = remain_ num_ cycles == 0;
assign ready = last_ cycle 7 1'bl : 1'b0O;
// compute one stage of divide
)
FSM div ready // relates div with ready, processor stalls
// 1 ready 1s read but is low

operatian div__issue {in AR dividend data, in AR divisor data} {out start, out

dividend, out divisor} {
assign dividend = dividend__data;
assign divisor = divisor__ data;
assign start = 1'b1;

h

operation div_ res {out AR result_data} {in result, in ready} {
assign result data = result;
assign result_ data kill = !ready;

h

C code:

div__issue(dividend, divisor);

// other code

result = div__res();

The extensible control engine 820, with states as control
input and outputs can be configured based on the data path
and control transitions of the division function. The divide

operation (e.g., operation div) can utilize a first set of empty
braces to indicate that the instruction 1s not a software
instruction. It 1s noted that non-software instructions have
empty first braces. However, not all software instructions
have non-empty first braces. A second set of braces can be
utilized to specity control mnputs and outputs with architec-

60

65

The definable function blocks can advantageously be used to
implement non-pipelined custom instructions.
The foregoing descriptions of specific embodiments of the

present technology have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the present technology to the precise
forms disclosed, and obviously many modifications and
variations are possible 1n light of the above teaching. The
embodiments were chosen and described i1n order to best

US 11,500,644 B2

11

explain the principles of the present technology and its
practical application, to thereby enable others skilled 1n the
art to best utilize the present technology and wvarious
embodiments with various modifications as are suited to the

particular use contemplated. It 1s intended that the scope of 5

the invention be defined by the claims appended hereto and
their equivalents.

What 1s claimed 1s:

1. A computing device including an extensible processor
comprising;

an execution pipeline;

one or more extensible control engines;

architectural visible control states coupled between the

soltware execution pipeline and the one or more exten-
sible control engines;
wherein the extensible processor 1s configured to,
determine a control state of the one or more exten-
sible control engines from the architectural visible
control states,
imitiate execution of a given one of the extensible
control engines when a control state 1n the archi-
tectural visible control states corresponding to the
given one of the extensible control engines 1is
enabled, wherein the given one of the extensible
control engines comprises control input and con-
trol outputs based on one or more control transi-
tions of an instruction, and wherein the given one
of the extensible control engines 1s executed each
cycle when the control state in the architectural
visible control states corresponding to the given
one ol the extensible control engines 1s enabled,
and
output a result of execution of the given one of the
extensible control engines to the architectural vis-
ible control states.

2. The computing device including the extensible proces-
sor of claim 1, wherein the given one of extensible control
engines mcludes one or more data paths of the instruction.

3. The computing device including the extensible proces-
sor of claim 1, further comprising:

an external hardware block coupled to the given one of the

extensible control engines, wherein the external hard-
ware block includes one or more data paths of the
instruction.

4. The computing device including the extensible proces-
sor of claam 1, wherein the given one of the extensible
control engines 1s not initiated by a software instruction
stream.

5. One or more non-transitory computing device readable
media having mstructions stored thereon that when executed
by one or more processing units perform a method com-
prising:

designing a definable function block, of an extensible

processor, including one or more data paths and one or
more control transitions ol an instruction;

generating an extensible control engine, of the extensible

processor, with architectural visible control states as
control inputs and control outputs based on the one or
more control transitions and based on the one or more
data paths, whereimn the extensible control engine
executes every cycle based on a specific state of the
architectural visible control states; and

configuring the definable function block of the extensible

processor based on the extensible control engine.

6. The one or more non-transitory computing device
readable media having instructions stored thereon that when

10

15

20

25

30

35

40

45

50

55

60

65

12

executed by one or more processing units perform the
method of claim 5, further comprising:

generating a hardware block external to the extensible

processor based on the one or more data paths.

7. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 6, further comprising;:

generating a hardware block external to the extensible

processor further based on the one or more control
transitions.

8. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 6, wherein the hardware block 1s coupled
to the extensible control engine by one or more sets of
queues.

9. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 5, further comprising:

generating one or more extensible control engine verifi-

cation tools.
10. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 5, wherein the control states are coupled to
core states of the extensible processor.
11. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 5, wherein the control states include an
indication of whether the extensible control engine 1is
enabled or disabled.
12. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 5, wherein the control states include an
indication of whether a result of the extensible control
engine 1s ready.
13. A method of operation of an extensible processor
comprising:
determining a control state of an architecturally visible
control state for an extensible control engine;

executing the extensible control engine when the control
state 1s enabled, wherein the extensible control engine
comprises control mnputs and control output based on or
more control transitions of an instruction;

outputting a result of execution of the extensible control

engine; and

setting a result state of the extensible control engine when

outputting an execution result of the extensible control
engine.

14. The method according to claim 13, wherein the
extensible control engine includes one or more data paths of
the 1nstruction.

15. The method according to claim 13, further compris-
ng:

executing an external hardware block coupled to the

extensible control engine, wherein the external hard-
ware block includes one or more data paths of the
instruction.

16. The method according to claim 13, wherein the
extensible control engine 1s executed each cycle when the
control state 1s enabled.

US 11,500,644 B2

13

17. The method according to claim 16, wherein execution
ol the extensible control engine 1s committed for each cycle
when the control state 1s enabled.

18. The method according to claim 13, wherein the
istruction 1s not initiated by a software instruction stream.

19. The method according to claam 13, wherein the
extensible control engine 1s not iitiated by a software
instruction stream.

20. The method according to claim 13, wherein executing,
the extensible control engine 1s tied to specific processor
pipeline stage.

21. The one or more non-transitory computing device
readable media having instructions stored thereon that when
executed by one or more processing units perform the
method of claim 5, wherein the extensible control engine
executes every cycle based on a specific state of the archi-
tectural visible control states.

Gx e * % s

10

15

14

	Front Page
	Drawings
	Specification
	Claims

