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DOPPLER SPREAD ESTIMATION BASED
ON SUPERVISED LEARNING

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to and the benefit of U.S.
Provisional Patent Application No. 63/004,894, filed 1n the

United States Patent and Trademark Office on Apr. 3, 2020,
the entire disclosure of which 1s imncorporated by reference
herein.

FIELD

Aspects of embodiments of the present disclosure relate
wireless communications and Doppler spread estimation
based on supervised learning.

BACKGROUND

In the field of wireless communications, radio transceiv-
ers monitor the properties of the communication channels 1n
order to adapt to changing signal propagation conditions of
the electromagnetic environment. These properties are gen-
erally referred to as channel state information (CSI) and may
include eflects such as scattering, fading, power decay, and
Doppler spread. A channel estimation (CE) block of a radio
transceiver may be used to estimate the CSI of various
channels of a recerved radio signal in an operating frequency
range of the radio transceiver.

In the field of wireless communications, a radio receiver
may receive a Doppler shifted version of a transmitted signal
when the radio transmitter and the radio recerver are moving,
relative to one another. For example, 1n the case of a cellular
land mobile radio system, a base station (e.g., cellular tower)
1s generally fixed, while one or more mobile stations (e.g.,
smartphones) that are communicating with the base station
may be stationary or moving. Generally, the frequency of the
received signal will be shifted up (increased) when the
mobile station 1s moving toward the base station, and the
frequency of the received signal will be shifted down
(decreased) when the mobile station 1s moving away from
the base station. For example, the magnitude of the observed
Doppler shift 1, will generally be larger when the mobile
station 1s 1n a fast-moving car than when the mobile station
1s resting on a desk top 1n an oflice. The broadening of the
frequency spectrum of the transmitted signal due to the rate
of change in the Doppler shift i1s referred to as Doppler
spread D ..

Doppler spread 1s generally used for time interpolation in
the channel estimation block of a radio, as well as for some
soltware control, as part of the system for the radio to adapt
transmissions to current channel conditions 1n order to
achieve reliable communications.

SUMMARY

Aspects of embodiments of the present disclosure relate to
systems and methods for estimating Doppler spread based
on supervised machine learning.

According to one embodiment of the present disclosure,
a method for estimating Doppler spread of a wireless
channel includes: extracting, by a processing circuit of a
radio recerver, one or more features from a received signal,
the features including an estimated channel correlation 1n a
current slot, the estimated channel correlation indicating a
rate of change of the wireless channel over time; and
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2

computing, by the processing circuit, a Doppler spread of
the wireless channel by supplying the features to one or
more Doppler shift predictors trained on training data across
a training signal-to-noise ratio (SNR) range and across a
training Doppler shift range, each Doppler shift predictor
being trained on a portion of the traiming data corresponding
to a different portion of the training data.

The estimated channel correlation may include a single
infinite-itmpulse response-filtered channel correlation.

The features may include one or more estimated channel
correlations based on one or more reference signals 1n one
Or more previous slots.

The reference signal may be a tracking reference signal.

Each of the Doppler shiit predictors may be trained based
on a different sub-range of the traimning SNR range, each
sub-range having a lower bound and an upper bound, and
method may further include: determining a current SNR of
the received signal; and selecting a Doppler shift predictor
from among the Doppler shift predictors based on the
current SNR, the lower bound of the corresponding sub-
range of the selected Doppler shift predictor being higher
than the current SNR.

The lower bound of the corresponding sub-range of the
selected Doppler shift predictor may be closest to the current
SNR among the lower bounds of sub-ranges that are higher
than the current SNR.

Each of the Doppler shiit predictors may be trained based
on a different sub-range of the training Doppler shift range,
and the method may further include: computing, by the
processing circuit, one or more classification probabilities
by supplying the features to a Doppler shift classifier net-
work, each of the classification probabilities corresponding
to a different one of the Doppler shift predictors, the features
may be supplied to the Doppler shift predictors to compute
one or more predicted Doppler shifts, and the computing the
Doppler spread may include combining the predicted Dop-
pler shifts 1n accordance with the classification probabilities.

The combining the predicted Doppler shifts may include
summing one or more products of the predicted Doppler
shifts multiplied by corresponding ones of the classification
probabilities.

The combining the predicted Doppler shifts may include
outputting, from among the predicted Doppler shiits, a
highest probability predicted Doppler shift corresponding to
a highest classification probability of the classification prob-
abilities.

The training SNR range of the training data may be larger
than an operating SNR range of the radio receiver.

Each of the Doppler shift predictors may be trained to
compute a predicted Doppler shift based on a regression
model.

Each of the Doppler shift predictors may be trained to
classily the features by computing one or more probabilities
that the features correspond to each of one or more ranges
of Doppler shifts.

Each of the Doppler shiit predictors may be a multi-layer
perceptron (MLP).

According to one embodiment of the present disclosure,
a radio receiver includes a channel estimator processing
circuit, the channel estimator processing circuit including: a
feature extractor configured to extract one or more features
from a received signal, the features including an estimated
channel correlation 1n a current slot, the estimated channel
correlation indicating a rate of change of a wireless channel
over time; and a Doppler spread estimator configured to
estimate a Doppler spread of the wireless channel by sup-
plying the features to one or more Doppler shift predictors
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trained on training data across a training signal-to-noise ratio
(SNR) range and across a training Doppler shift range, each
Doppler shift predictor being trained on a portion of the
training data corresponding to a diflerent portion of the
training data.

The estimated channel correlation may include a single
infinite-impulse response-filtered channel correlation.

The features may 1nclude one or more estimated channel
correlations based on one or more reference signals 1n one
Oor more previous slots.

The reference signal may be a tracking reference signal.

Each of the Doppler shiit predictors may be trained based
on a different sub-range of the training SNR range, each
sub-range having a lower bound and an upper bound, and the
channel estimator processing circuit may further include: an
SNR extractor configured to extract a current SNR of the
received signal; and a predictor selector configured to select
a Doppler shift predictor from among the Doppler shiit
predictors based on the current SNR, the lower bound of the
corresponding sub-range the selected Doppler shift predictor
being higher than the current SNR.

The lower bound of the corresponding sub-range of the
selected Doppler shift predictor may be closest to the current
SNR among the lower bounds of sub-ranges that are higher
than the current SNR.

Each of the Doppler shift predictors may be trained based
on a different sub-range of the training Doppler shift range,
and the Doppler spread estimator may include a Doppler
shift classifier network configured to compute one or more
classification probabilities that the input features belong to
classes corresponding to the Doppler shift predictors, the
Doppler spread estimator may be configured to supply the
teatures to the Doppler shift predictors to compute one or
more predicted Doppler shifts, and the Doppler spread
estimator may be configured to compute the Doppler spread
by combining the predicted Doppler shiits in accordance
with the classification probabilities.

The Doppler spread estimator may be configured to
combine the predicted Doppler shifts by summing one or
more products of the predicted Doppler shifts multiplied by
corresponding ones of the classification probabilities.

The Doppler spread estimator may be configured to
combine the predicted Doppler shiits by outputting, from
among the predicted Doppler shifts, a highest probability
predicted Doppler shift corresponding to a highest classifi-
cation probability of the classification probabilities.

The traimning SNR range of the training data may be larger
than an operating SNR range of the radio receiver.

Each of the Doppler shift predictors may be trained to
compute a predicted Doppler shift based on a regression
model.

Each of the Doppler shift predictors may be trained to
classily the features by computing one or more probabilities
that the features correspond to each of one or more ranges
of Doppler shifts.

Each of the Doppler shift predictors may be a multi-layer
perceptron.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the specifi-
cation, illustrate exemplary embodiments of the present
disclosure, and, together with the description, serve to
explain the principles of the present disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 1s a schematic block diagram of a mobile station.
FIG. 2 1s a schematic block diagram of a wireless com-

munication system in which a base station transmits a signal
to a mobile station.

FIG. 3 1s a block diagram of a Doppler spread predictor
according to one embodiment of the present disclosure.

FIG. 4 1s a graph comparing a relationship between
channel correlations C(T) and Doppler shift f, when using a
Bessel function versus using a multi-layer perception (MLP)
according to embodiments of the present disclosure as a
mapping function.

FIG. 5 1s a block diagram of a Doppler shift estimator
according to one embodiment of the present disclosure.

FIG. 6 1s a flowchart depicting a method for estimating a
Doppler spread using one or more Doppler shift predictors
according to one embodiment of the present disclosure.

FIG. 7A 1s a flowchart depicting a method, according to
one embodiment of the present disclosure, for selecting
between two diflerent Doppler shift predictors.

FIG. 7B 1s a flowchart depicting a method, according to
one embodiment of the present disclosure, for selecting
between one or more different Doppler shift predictors.

FIG. 8 1s a block diagram of a Doppler shift estimator
according to one embodiment of the present disclosure
configured to estimate a Doppler shift by combining pre-
dictions from one or more Doppler shift predictors.

FIG. 9 1s a block diagram of a Doppler shift estimator
according to one embodiment of the present disclosure
configured to estimate a Doppler shiit by combining pre-
dictions from one or more Doppler shift predictors 1in
accordance with confidences 1n the Doppler shiit predictors.

FIG. 10 1s a schematic depiction of a Doppler shift
predictor according to one embodiment of the present dis-
closure using an infinite 1impulse response (I1IR) filter to
combine one or more channel correlations.

FIG. 11 1s a schematic depiction of a Doppler shift
predictor according to one embodiment of the present dis-
closure 1n which one or more channel correlations from a
window of tracking reference signal (TRS) slots are supplied
as mput to a multi-layer perceptron.

DETAILED DESCRIPTION

In the following detailed description, only certain exem-
plary embodiments of the present disclosure are shown and
described, by way of illustration. As those skilled in the art
would recognize, the disclosure may be embodied 1n many
different forms and should not be construed as being limited
to the embodiments set forth herein.

For the sake of clanty, aspects of embodiments of the
present disclosure will be described herein 1n the context of
a radio transceiver of a cellular modem. However, embodi-
ments of the present disclosure are not limited thereto, and
a person having ordinary skill in the art before the effective
filing date of the present application would understand that
embodiments of the present disclosure may also be applied
to estimate Doppler spread in other contexts.

In some radio transmission standards, such as the 5G New
Radio (NR) standard, a cellular radio transceiver may use a
tracking reference signal (1RS) recerved from a base station
to estimate the Doppler spread D_. For example, one tech-
nique calculates an estimated channel correlation between
channels corresponding to two tracking reference signals
and then supplies the estimated channel correlation to an
inverse Bessel function to obtain the Doppler spread D ..

However, this approach assumes that the relationship
between the channel correlations and the Doppler spread
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tollows the inverse Bessel function. In practice, channels do
not always exhibit an inverse Bessel function relationship
between the channel correlations and the Doppler spread. In
addition, when calculating the channel correlation, the noise
power needs to be removed from the channel power, and
therefore the accuracy of the estimation of the channel
correlation 1s sensitive to the estimation of the noise vari-
ance. Furthermore, in some circumstances, there may only
be one TRS slot (two TRS symbols) per TRS period, so only
one correlation value may be available for Doppler estima-
tion, thereby resulting in a low resolution of the Doppler
estimation. For example, under the 5G NR standard, when
operating at FR2 (Frequency Range 2, including frequency
bands 1n the millimeter wave range of 24 GHz to 100 GHz),
it 1s possible that only 1 TRS slot 1s transmitted per TRS
period.

Accordingly, aspects of embodiments of the present dis-
closure relate to estimating Doppler spread using supervised
machine learning. In more detail, some aspects of embodi-
ments of the present disclosure relate to using supervised
learning (e.g., using a machine learning model such as a
multi-layer perceptron (MLP) neural network or other neural
network) to learn a mapping function (or a “Doppler spread
predictor”) from the estimated channel correlation to the
Doppler spread, where the mapping function 1s trained on
collected experimental data relating channel correlations to
Doppler spread. During online prediction, the estimated
correlation 1s supplied to the learned mapping function (the
Doppler spread predictor) to generate the estimated Doppler
spread.

Mapping functions (or Doppler spread predictors) accord-
ing to embodiments of the present disclosure are trained
from the data collected from operational radio communica-
tions systems, and therefore match the actual behavior of
these working systems, rather than relying on particular
assumptions about the operating environment and the behav-
ior of those systems. In addition, given a sufliciently large
and diverse set of tramning data, trained Doppler spread
predictors according to embodiments of the present disclo-
sure are able to generalize and produce robust (e.g., accu-
rate) estimates of Doppler spread over a range of different
operating conditions, e.g., diflerent signal-to-noise ratios
(SNRs) spread over a training SNR range, thereby enabling
embodiments of the present disclosure to compensate for
noise variance. According to some aspects ol embodiments
of the present disclosure, the Doppler spread predictor also
utilizes one or more prior estimated channel correlations
(e.g., Irom prior TRS periods) to improve the estimate of the
Doppler spread at the current TRS period.

FIG. 1 1s a schematic block diagram of a mobile station.
As shown 1n FIG. 1, a mobile station 10 may include an
antenna 11 that 1s configured to receive an electromagnetic
signal 30 (e.g., transmitted by a base station). The received
signal may be supplied to a receive filter 12 (e.g., a band pass
filter), and the filtered signal may be supplied to a detector
14 and a channel estimator 16. The channel estimator 16
may generate channel state information (CSI) that 1s used to
control the detector 14, as well as to other components of the
mobile station 10, to adapt to changing conditions 1n the
environment, such as the movement of the mobile station 10
relative to the base station and/or changes in the environ-
ment through which the transmitted signal 30 propagates.
According to some embodiments of the present disclosure,
the channel estimator 16 communicates with or includes a
Doppler spread estimator 100. The output of the channel
estimator 16 (which may include the output of the Doppler
spread estimator 100 or may include information computed
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based on the output of the Doppler spread estimator) 1s
supplied to a detector 14 which uses the channel estimates
to perform symbol detection. The decoder 18 may be
configured to receive the detected symbols from the detector
14 and to decode the detected symbols 1into data 50, such as
a digital bitstream, to be supplied for consumption by
applications 1n the mobile station 10, such as voice calls,
data packets, and the like. In various embodiments of the
present disclosure, the components of the mobile station 10,
such as the filter 12, the detector 14, the channel estimator
16, the Doppler spread estimator 100, and the decoder 18
may be implemented 1n one or more processing Circuits
(e.g., a radio baseband processor (BP or BPP), a central
processing unit (CPU), a microcontroller, a digital signal
processor (DSP), a field programmable gate array (FPGA),
or an application specific integrated circuit (ASIC)) of a
digital radio, where various portions of various blocks may
be implemented 1n the same circuit (e.g., on the same die or
in a same package) or 1n diflerent circuits (e.g., on different
dies or in different packages, connected over a communi-
cation bus).

FIG. 2 1s a schematic block diagram of a communication
system 1n which a base station 20 transmaits a signal 30 to a
mobile station 10, where the mobile station 10 includes a
Doppler spread estimator 100. The magnitude of the Dop-
pler shift in the signal received by the mobile station 10 may
depend on the relative motion (e.g., velocity) of the mobile
station 10 with respect to the base station 20, and therefore
the Doppler spread 1n the received signal may also depend
on the relative motion of the mobile station 10 with respect
to the base station 20.

As noted above, some comparative systems compute a
Doppler spread from estimated channel correlations using an
inverse Bessel function based on an assumption that the
channel statistics follow 1n accordance with Jakes” model.
For example, based on Jakes’ model, the channel autocor-
relation function has the form of Equation 1:

R(t [ 2)=Jo(27f5T) (1)

where T denotes the time difference, and 1, denotes the
maximum Doppler shift, as defined below in Equation 2:

Jv (2)

C

Ja =

where ¢ denotes the speed of light, 1 denotes the frequency
of the transmitted signal 30, and v 1s the velocity of the
mobile station 10. Formally, the Doppler spread 1s defined as
D =t ~(-1,=21 . As used herein, the term Doppler spread
estimation 1s used interchangeably with maximum Doppler
shift estimation, both denoting the estimation of 1, above.
The J,(*) denotes the zeroth-order Bessel tunction of the first
kind as shown 1n Equation 3:

1 e
Jo(x): = —ﬁeﬁﬂm a6
TJo

Note that the channel autocorrelation function R(t, 1),
above, 1s dertved based on assuming Jakes’ channel model,
therefore, Jakes’ channel model 1s implicitly assumed when
an mverse Bessel function 1s used to describe the relation-
ship between the channel correlation and the Doppler shift
t .. This Jakes’ channel model assumption may be valid for
some types of channel models, such as an Extended Pedes-

(3)
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trian A model (EPA), an Extended Vehicular A model (EVA),
an Extended Typical Urban model (E'TU), and Tapped Delay
Line (TDL) models, but not valid for some other types of
channel models, for example, Clustered Delay Line (CDL)
models. In practice, an mverse Bessel function may not
accurately describe the relationship between an estimated
channel correlation and a Doppler spread due to, for
example, non-ideal estimation of the channel correlation.
For example, in practice, the number of reference signal
clements may not be large enough to compute an accurate
average for the channel correlation, or the noise variance
calculation may be too 1naccurate.

FIG. 3 1s a block diagram of a Doppler spread estimator
100 according to one embodiment of the present disclosure.
As shown 1 FIG. 3, according to one embodiment of the
present disclosure, a Doppler spread estimator 100 1s con-
figured to receive input estimated channels. A feature extrac-
tor 110 1s configured to extract features from the supplied
channels, where the features may include, for example,
estimated channel correlations. The extracted features are
supplied to a tramned Doppler shiit predictor 120, which 1s
configured to compute an estimated Doppler spread 300
value based on the extracted features. A trained Doppler shift
predictor 120 according to embodiments of the present
disclosure 1s constructed from traiming data collected from a
real, physical system or practical link level simulator, and

therefore can be trained to model the behavior of the system
more accurately than an inverse Bessel function.
According to some embodiments of the present disclo-
sure, a feature extractor 110 1s configured to extract features
from mput estimated channels. The particular features
include information decoded or computed from various
characteristics of the mput estimated channels. In some
embodiments of the present disclosure, the feature extractor
110 1s configured to extract channel correlations C(1) from
the input estimated channels. These channel correlations can
be computed based on the TRS signals of one or more TRS
slots 1n the received signals. Generally, a channel correlation
C(T) of an estimated channel h is given by Equation 4:

E{h + T, )k (1, k) (4)

C(T) =

| P 2 s 2
EE{‘}'@(I+ T, |+ k| } -y o?

where h(t, k) denotes the estimated channel at symbol time
t and subcarrier k, 0 denotes the noise variance which is
contained in the estimated channel, and y&[0, 1] 15 a
configurable parameter used to adjusted how much noise 1s
subtracted. T denotes the time difference between two TRS
symbols within a TRS slot or across two TRS slots. A
channel correlation can be computed between the pair of
TRS symbols within a given TRS slot or across two con-
secutive TRS slots 11 two TRS slots are allocated per TRS
period.

In practice, 1t may be diflicult to accurately estimate the
noise variance o-, and it may also be difficult to choose an
appropriate value for the noise subtraction parameter v.
According to some embodiments of the present disclosure,
v 15 set to 0 (zero) to eliminate the eflect of noise variance
estimation. In addition, 1n some circumstances 1t 1S more
practical to implement the expectation operation E{*} using
a sample average. Accordingly, 1n some embodiments of the
present disclosure, the channel correlation C(T) 1s 1mple-
mented 1n accordance with Equation 5:
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%Ef: A+ T, R @, k) )

C(T) 2

1 1 A )
E-Ezle{‘h(“f L, k)‘z + [, k)‘z}

where K 1s the number of subcarriers.

In addition to computing current channel correlations
based on the TRS symbols of the current TRS slot, the
feature extractor 110 may also compute additional features.
For example, in some embodiments of the present disclo-
sure, the feature extractor 110 further computes features
based on channel correlations estimated from previous TRS
periods (e.g., the feature extractor 110 may include a
memory that stores a window of channel correlations that
were previously computed for earlier TRS periods).

According to some embodiments of the present disclo-
sure, a Doppler spread predictor 1s trained based on actual
measured data from an operational wireless communication
system or from practical link level simulator. Accordingly, 1n
some embodiments of the present disclosure, the training
data may 1nclude data captured from transmissions between
a transmitter and a receiver with a variety of different
parameters, such as signal to noise ratio (SNR), channel
(e.g., EPA, EVA, TDL-A, TDL-D), digital ports configura-
tion (e.g., 1x2, 1x4, 1x8), analog antenna configuration
(e.g., 2, 4, 8), Doppler shift { , modulation coding scheme
(MCS), subcarrier spacing (SCS), and Fast Fourier Trans-
form (FFT) size. For each particular combination of those
parameters (e.g., for each particular set of transmission
settings), training data i1s recorded during the transmission.
Each sample 1n the training data includes an mput and an
output, where the input includes the features extracted by the
teature extractor 110, and the output includes the Doppler
shift 1, under which the transmission happens (e.g., a mea-
sured Doppler shiit 1 ; in the case of an operational system or
a configured Doppler shift 1, 1n the case of a simulator). The
final training data set contains a large amount of training
data collected from transmissions under various combina-
tions of different parameters.

The Doppler shift predictor 120 may include a neural
network (e.g., a multi-layer perceptron (MLP), a recurrent
neural network (RNN), a long short-term memory (LSTM)
network, or the like) or other form of machine learming
model. For the sake of illustration, embodiments of the
present disclosure will be described 1 more detail with
respect to the use of a multi-layer perceptron (MLP) as the
machine learming model, but embodiments of the present
disclosure are not limited thereto.

When applying supervised learning, a machine learning
model 1s generally trained by adjusting a plurality of param-
cters of the model (e.g., weights of connections between
neurons of a neural network) to minimize a cost function
between a value computed by a model based on the mputs
to the model (e.g., the features extracted by the feature
extractor 110 from the input estimated channels h) and the
ground truth values (e.g., the measured or configured Dop-
pler shift 1, associated with the channels h). In the case of a
neural network, the training process may include applying
the backpropagation algorithm with gradient descent to
iteratively update the parameters of the model to minimize
the cost function.

The collected training data contains many data samples 1n
pairs, where each pair contains some mput, e.g., C(T) (or
some other mput features), and an output, the ground truth
Doppler spread 1 ,. During the ofiline training of the Doppler
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shift predictor 120 (e.g., a multi-layer perceptron), the
Doppler shift predictor 120 1s trained to map the mput (e.g.,
channel correlations C(T) extracted from the signal by the
feature extractor 110) to the output (ground truth Doppler
spread 1 ). During online prediction (e.g., when the Doppler
shift predictor 120 1s deployed 1n a mobile station 10 for
computing channel state information), the current channel
correlations C(T) are calculated and input to the Doppler
shift predictor 120 to compute an estimated Doppler spread
f,.

In more detail, the Doppler spread estimation, when
considered within the learming framework, can be formu-
lated as a regression problem, at least because the estimated
Doppler spread 1, 1s a single, continuous value. Therefore,
when treating the training of the Doppler spread predictor as
a regression problem, the optimization process of training a
machine learning model based on a regression model can be
performed by minimizing sum-oi-squares error with respect
to the parameters 0 as shown 1n Equation 6:

I < (6)
min— > (Fo(gn) = fin)’
n=1

where the Doppler spread prediction function can be
denoted as F,, 0 represents the learned parameters of the
Doppler spread prediction function, the input features as g,
and the true Doppler spread as 1 ,. In the above, it 1s assumed
that the training data set contains N input/output pairs {g .
f, .5, =1, ..., N.

However, the Doppler spread can span a wide range,
possibly reaching thousands of hertz at FR2 (e.g., millimeter
wave frequencies). Theretfore, the estimated Doppler shift {
can also span a wide range, ¢.g., 1 &[0, 2000]. I1 the training
of the machine learning model 1s based on solving the above
sum-oi-squares error minimization function, then the train-
ing samples corresponding to small Doppler spread will be
de-emphasized, because the error (Fo(g,)-f,,,)* for small f,,
1s, 1n general, smaller than the error (Fg(g, )—1 dﬂﬂ)z for large
t,,. This will cause very inaccurate Doppler spread estima-
tions when the true Doppler spread 1s small.

Accordingly, 1n some embodiments of the present disclo-
sure, the process of training a machine learning model based
on a regression model may be performed by minimizing
normalized sum-of-squares error with respect to the param-
cters O as shown 1n Equation 7:

N (7)

1 Z(Fa(gn) —fd,n]z
6 N fd,n

n=1

By using the above normalized sum-of-squares error as
the cost function, the tramning samples corresponding to
large Doppler spread will be de-emphasized, since the error
(Fo(g, )—1 dﬁ)"2 1s divided by { dﬂﬂz, so the cost for large 1, 1s
made smaller (e.g., the cost function 1s normalized with
respect to £;,,).

In some embodiments of the present disclosure, Doppler
spread prediction 1s treated as a classification problem,
instead of a regression problem, by quantizing the Doppler
spread range into multiple small regions or ranges. Each
region of Doppler spread 1s regarded as one class, and
represented by a single Doppler spread (e.g., the median
Doppler spread of the region). The Doppler spread predictor
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1s then trained to map the mput features g to a probability or
confidence of each class (e.g., computing a plurality of
probabilities, where each probability represents a confidence
that the mput features map to a corresponding one of the
regions of Doppler spreads). In some embodiments, the final
Doppler spread estimation 1s then calculated by combining
the Doppler spread representing each class based on the
probability of each class, as discussed 1n more detail below.

Table 1, below, presents one example of the division of a
Doppler shift range mnto M diflerent classes. In more detail,
assuming the whole range of the Doppler shift of the training
data 1s 1 &[r,, 1,,, the full range can be divided into M
non-overlapping, contiguous regions, for a total of M
classes. For example, the m-th region corresponds to a
Doppler shift range [r_ _,, r,.). Each class 1s represented by
a corresponding Doppler shift £ for m=1, ..., M, where
f €[r, ,, r, ). When preparing the training data set, the
Doppler shift (e.g., 1,,) associated with each training data
sample 1s binned 1nto a corresponding one of the M regions
(e.g., find an m-th region such that f, &[r, _,, r,,)), such that

this training sample will be categorized as class m. During
training, the cross-entropy 1s used as the cost function.

TABLE 1
Class Range of Doppler Representative corresponding
index shift in each class Doppler shift
1 [*o, 1) f
2 1, 15) f
M [*ar- 15 Tarl iy

(Given an mput feature, a Doppler shift predictor trained
as a classifier will output an M dimensional vector
[c,,...,c,,]" satisfying = _ *c =1, where ¢ denotes the
probability (or confidence) that the mput feature belongs to
the class m. The cost function can be represented as below,
where the mapping function or Doppler shift predictor Fjg
characterized by coeflicients 0 maps the mput feature g, of
the n-th training data sample to a M dimentional vector [c,, |,
C,2s - - - » C, a7, the n-th training data belongs to the v, class
such that 1, E[r, ,, r, | as shown 1n Equation 8:

(8)

1 N
I?n_ﬁz_;lﬂg(cn,vn) s.1. Fﬁ(gﬂ) — [Cﬂ,la CH,ZE' LI | CH,M]T-;

fd,n = [rvﬂ—la Fv”]

When performing inferences or predictions, the Doppler
spread predictor, trained as a classifier, generates the pre-
dicted probability for each of the M classes ¢, . . .,
C,.. Given the representative Doppler spreads for each class
(f,, . .., f,,), the final Doppler spread estimation can be
obtained by either “mean combining,” computed based on
the sum of the products of each representative Doppler
spread multiplied by 1ts corresponding predicted probability
as shown in Equation 9:

)

s
Wi
I
1=
=y
=
k|
]

=
1
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or “max combining,” selecting the representative Doppler
spread corresponding to the highest predicted probability as
shown 1n Equation 10:

2

(10)

5
fa=) lcw=maxcr. ... ,cu))-f,
m=1

where I(*) denotes the indication function as shown in
Equation 11:

I(True)=1

I(False)=0 (11)

However, as noted above, 1n some embodiments of the
present disclosure, v 1s set to be 0 when the feature extractor
110 computes the estimated channel correlation C(T).
Theretfore, the estimated channel correlations C(T) com-
puted by the feature extractor 110 may be smaller than the
true channel correlations (because setting v to zero in
Equation 4 makes the denominator larger). The degree to
which the estimated channel correlations C(T) are smaller
than the true channel correlations 1s more pronounced at
lower SNR (e.g., at lower SNR there 15 a greater diflerence
between the estimated channel correlation and the true
channel correlation). This 1s because a lower SNR corre-
sponds to a larger noise variance o°, and therefore the lower
the SNR, the larger the increase 1n the denominator due to
setting the term —y-3° to zero (e.g., more noise variance 8~
should have been subtracted from the estimated channel
power in the denominator, but setting v=0 causes the
denominator to be even larger). As a result, 11 the operating
SNR during online prediction 1s diflerent from the SNR of
the training data set, the estimated channel correlation C(T)
during online prediction will be different from the C(1) for
the training set, even for the same true Doppler spread 1 .. In
other words, the mapping function learned based on the
offline training data may not be suitable for online predic-
tion, due to the mismatch between the SNR during operation
and the SNR of oflline training data set.

FIG. 4 1s a graph showing a relationship between channel
correlations C(T) and Doppler shiit 1, when using a Bessel
function or a multi-layer perception (MLP) according to
embodiments of the present disclosure as a mapping func-
tion. Referring to FIG. 4, assuming the MLP 1s learned from
a set of traiming data such that the channel correlation
corresponding to a Doppler shift of 1, 1s C'. Then, during
online estimation, 1f the operating SNR 1s higher than the
SNR range of training data set, the estimated channel
correlation, denoted as C,, will be larger than C'. As a resullt,
the estimated Doppler shift, denoted as f,, will be smaller
than the true Doppler shift £,. On the other hand, 1T the
operating SNR 1s lower than the SNR range of the training
data set, the estimated channel correlation, denoted as Czj
will be smaller than C', and the corresponding estimated
Doppler shift, denoted as f,, will be larger than the true
Doppler shift T,. As shown 1n FIG. 4, due to the mismatch
between the SNR of the training data set and the online
prediction, the estimated Doppler shift, e.g., f, and f,, can
deviate from the true 1, Accordingly, the prodlcted esti-
mated Doppler shift fd computed by the Doppler shiit
predictor 120 1s more accurate when the actual SNR 1s close
to the SNR of the data that was used to train the Doppler
shift predictor 120.

In practice, the operating SNR range of a wireless trans-
ceiver can be broad, and 1t may be dithicult to train a single
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Doppler shift predictor that can operate over the entire
operating SNR. Accordingly, 1n some embodiments of the
preset disclosure, the traiming data 1s divided into multiple
subsets (e.g., R subsets or sub-ranges), each subset corre-
sponding to a diflerent part of the entire SNR range of the
training data (or the training SNR range), and each subset or
sub-range of the traiming data 1s used to train a separate
Doppler shift predictor P, (e.g., in a manner substantially
similar to that discussed above) for that corresponding r-th
portion ol the operating SNR range (each Doppler shiit
predictor may have the same architecture or a diflerent
architecture).

In some embodiments of the present disclosure, each
subset 1s the same size or may otherwise be evenly spaced,
in linear scale or logarithmic scale, along the training SNR
range of the training data. In other embodiments of the
present disclosure, the subsets are of different sizes (e.g., not
evenly spaced along the training SNR range). For example,
the training data may be divided into subsets such that there
are more predictors trained to provide predicted Doppler
shifts for portions of the operating SNR range that are more
frequently observed in practice (e.g., so that the Doppler
shift estimator produces more accurate results more often).
As another example, the training data may be divided into
subsets such that there are more predictors 1n regions of the
operating SNR range that are more sensitive to 1tnaccuracy n
estimated Doppler shift or estimated Doppler spread.

FIG. 5 1s a block diagram of a Doppler spread estimator
100 according to one embodiment of the present disclosure.
The Doppler spread estimator 100 of FIG. 5 1s substantially
similar to the Doppler shift estimator shown 1n FIG. 3, but
further includes a signal-to-noise (SNR) extractor 130 and a
predictor selector 140. FIG. 6 1s a flowchart depicting a
method for estimating a Doppler spread using a plurality of
Doppler shift predictors according to one embodiment of the
present disclosure. Referring to FIG. 6, 1n operation 610, the
feature extractor 110 extracts features from the mmput esti-
mated channels El(t, k), as described above, and as described
in more detail below. In operation 630, the SNR extractor
130 extracts the SNR of the received signal, and supplies the
extracted SNR of the signal to the predictor selector 140,
which 1s configured to select a particular Doppler shiit
predictor P, from among the R trained Doppler shift predic-
tors P (e.g., Doppler shift predictors P,, P,, . . ., P,). For
example, the tramning SNR range for each Doppler shiit
predictor P can be set as 1n Table 2, below:

TABLE 2
Predictor Available SNR
index range for training
P, |snry, snrs |
P, |snr,, snry]
PR [SHIR: m]

Generally, more accurate channel state information (CSI)
results 1n higher performance of the radio receiver, as the
more accurate CIS allows the radio to tune its parameters to
match the actual conditions of the channel. Nevertheless,
channel estimators may over-estimate or under-estimate
various parameters of the CIS, including the Doppler spread,
due to various environmental conditions.

Based on experimental observations, over-estimation of
Doppler spread results 1n better block error rate (BLER)
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performance (e.g., lower error rates) than under-estimation
of Doppler spread. In some experiments, when the true
Doppler shift was 900 Hz, the BLER performance of setting
the estimated Doppler shift to be 25% higher (1.25%900
Hz=1,125 Hz) had slightly better performance than the true
f , whereas setting the estimated Doppler shift to be 25%

lower (0.75*%900 Hz=675 Hz) resulted in higher error rates.

In addition, as shown 1n FIG. 4, when the operating SNR
1s lower than the SNR range of the traiming data set (corre-
sponding to the estimated channel correlation éz), the esti-
mated Doppler spread fz will be larger than the true Doppler

spread 1. In other words, a Doppler spread predictor that 1s
trained on data having a higher SNR than the SNR of the

supplied input channels will result 1n an over-estimate of the
Doppler spread.

Therefore, 1n some embodiments of the present disclo-
sure, the predictor selector 140 of a Doppler spread estima-
tor 100 selects a Doppler shift predictor 122 that 1s biased
toward over-estimation of (or over-estimating) the Doppler
spread and away from under-estimation of (or under-esti-
mating) the Doppler spread 1n order to improve the BLER
performance of the radio. In some embodiments, the bias 1s
implemented by selecting a Doppler shuft predictor from
among the R Doppler shiit predictors that 1s trained on a
portion of the tramning data set with an SNR range that 1s
adjacent to and higher than the current operating SNR, as
determined by the SNR extractor 130 (e.g., the next SNR
range having a lower bound that i1s higher than the current
estimated SNR).

FIG. 7A 1s a flowchart depicting a method 650, according,
to one embodiment of the present disclosure, for selecting
between two different Doppler shift predictors. FIG. 7A
corresponds to a case where R=2, where a first Doppler shiit
predictor P,__ 1s trained on low SNR data (e.g., a portion of
the data that was collected with low SNR signals in a range
[snr, snr,]) and a second Doppler shift predictor P, , 1s
trained on high SNR data (e.g., a portion of the data that was
collected with high SNR signals in a range [snr,, snr,]). It 1s
assumed that the operating SNR range for the radio 1s less
than the lower end of the SNR range for the second Doppler
shift predictor P, , trained on the high SNR range (e.g.
snr, ). Accordingly, referring to FIG. 7A, 1n operation 651,
the predictor selector 140 determines 11 the current estimated

SNR (m ) 1s less than a threshold SNR (SNR,, ). Based
on the example ranges given above, in some embodiments

SNR , =snr,, 1n other words, the threshold SNR 1s the lower
end of the SNR range of the predictor trained with low SNR

signals. When the current estimated SNR (SVR ) is less than
a threshold SNR (SNR, ), then, in operation 632, the
predictor selector 140 selects the first Doppler shift predictor
P, . that 1s trained on the low SNR data (because this 1s the
predictor trained on data that i1s the closest to the current
estimated SNR while also being trained on data with SNR
higher than the current estimated SNR). When the current

estimated SNR (SNVR) is not less than the threshold SNR
(SNR , ) (e.g., greater than or equal to the threshold SNR
SNR , ), then, in operation 653, the predictor selector 140
selects the second Doppler shift predictor Py, trained on
high SNR.

FIG. 7B 1s a flowchart depicting a method 650, according,
to one embodiment of the present disclosure, for selecting
between a plurality of different Doppler shift predictors
(e.g., R different Doppler shift predictors). As noted above,
it 1s assumed that the operating SNR range of the system
(e.g., the radio receiver) 1s from snr, to snry, and that the full
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operating SNR range 1s divided into R regions. In operation
654, the predictor selector 140 determines whether the
current estimated SNR (SNR) 1s within a first SNR range

(|snr,,, snr,) or whether snrﬂﬂm <snr,). If so, then, 1n
operation 655, the predictor selector 140 selects the first

predictor P,, which was trained based on tramning data from
a second SNR range [snr,, snr,) adjacent to and higher than
the first SNR range [snr,, snr, ). If the current estimated SNR

(LS:NTii ) 1s not within the first SNR range ([snr,, snr, ), then,
in operation 656, the predictor selector 140 determines

whether the current estimated SNR (m ) falls within the

second SNR range [snr,, sar,). If so, then, 1n operation 6357,
the predictor selector 140 selects the second predictor P,
which was trained based on training data from a third SNR
range [snr,, snr,) adjacent to and higher than the second
SNR range [snr,, snr,). To summarize, 1f the current esti-

mated SNR (m ) 1s not within the first SNR range ([snr,,
snr, ), then the predictor selector 140 proceeds, 1n a similar

manner, by comparing the current estimated SNR (SNR)
against each of the remaining ones of the R regions of the
operating SNR range to select a corresponding one of the
predictors, the last SNR range being [snr,_,, snry) 1n opera-
tion 638, and the last Doppler shift predictor P, (trained
based on training data from the last SNR range [snr,, snr,))
being selected 1n operation 659. As noted above, 1t 1s
assumed that the operating range 1s from snr,, to snr,, and
therefore a SNR greater than snr, will not be observed or
will be out of operating specification.

Referring back to FIGS. 5 and 6, after the predictor
selector 140 has selected a predictor in operation 6350, the
selected Doppler shift predictor P, 1s used, in operation 670,
to estimate a Doppler shift i operation 670 to compute an
estimated Doppler shift 1 .. As noted above, 1n some embodi-

ments, the estimated Doppler spread E 1s related to a
maximum estimated Doppler shift {, in accordance

with D;=2f,. Accordingly, aspects of embodiments of the
present disclosure relate to a Doppler spread estimator 100
capable of estimating Doppler shifts based on input features
extracted from input estimated channels h(t, k).

In some embodiments of the present disclosure, a single
estimated Doppler shift (or Doppler spread) i1s estimated by
combining the predictions made by a plurality of Doppler
shift predictors trained based on training data from a ditler-
ent part of the Doppler shift range (1n contrast to being
trained on different parts of the SNR range, as 1n the case of
the embodiments described above with respect to FIGS. 5§,
6, 7A, and 7B). For example, the training data, as descrlbed
above may be divided into R different subsets by dividing
the full Doppler shiit range imto R different subranges, where
cach subset of the training data includes data from a corre-
sponding one of the different subranges of the Doppler shift
range. For example, the training Doppler shift range for each
Doppler shift predictor P can be set as in Table 3, below:

TABLE 3
Predictor Available Doppler shift
index range for training Output
Py (11, 10] ')
P5 (12, 143] f'5
Pr [Tz, ] 'z
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As shown i1n Table 3, each of the R Doppler shiit
predictors 1s configured to compute a corresponding output
Doppler shift I based on the mput features. For example, an
r-th predictor P, computes a predicted Doppler shift ' from
within 1ts corresponding training Doppler shift range (e.g.,
where 1'€E[1,,, t,,,,,]). While Table 3 shows an embodi-
ment 1n which the Doppler shiit subranges are non-overlap-
ping, embodiments of the present disclosure are not limited
thereto. For example, 1n some embodiments, adjacent Dop-
pler shift subranges corresponding to adjacent predictors
have some overlap (e.g., predictor P, may be trained on data
from range [{, .1, ,] and predictor P, may be trained on
data from range [f ,, , 1 ,,,], where 1, <1 ).

FIG. 8 1s a block diagram of a Doppler shift estimator
according to one embodiment of the present disclosure
configured to estimate a Doppler shiit by combining pre-
dictions from a plurality of Doppler shift predictors trained
on different parts of the Doppler shift range. In the embodi-
ment shown in FIG. 8, the Doppler shift predictor 120
includes R trained Doppler shift predictors. The mput fea-
tures are supplied to each of the R trained Doppler shiit
predictors to compute R predicted Doppler shiits 1,°, . . . 1.
In addition, the mput features are supplied to a Doppler shiit
predictor classifier network (or Doppler shift classifier net-
work) P,, which 1s trained to compute probabilities that the
input features belong to each of the R classes (e.g., compute
the probabilities of the input features falling 1nto each of the
R subranges of the Doppler shiits or predict which of the R
Doppler shift predictors will predict the most accurate
Doppler shift for the given input features). The output of the
classification-based network P, 1s a R dimensional vector
[c,, ..., Cr], where each value ¢, denotes a probability or
confidence that the input features correspond to the r-th class
(e.g. correspond to the r-th Doppler shift predictor). The
outputs of the R Doppler shiit predictors are then combined
by the combiner 810 using, for example, mean combining,
computed based on the sum of the products of each predicted
Doppler shift I multiplied by 1ts corresponding predicted
probability as shown 1n Equation 12:

R (12)

or by using max combining, selecting the predicted Doppler
shift corresponding to the highest predicted probability as
shown 1n Equation 13:

o (13)
Fa= e, =maxter, .. . cgh- f;
=1

where I(*) denotes the indication function.

FIG. 9 1s a block diagram of a Doppler shift estimator
according to one embodiment of the present disclosure
configured to estimate a Doppler shiit by combining pre-
dictions from a plurality of Doppler shift predictors using
mean combining. As shown i FIG. 9, the R predicted
Doppler shifts 1,', 1.,', . . ., 1;' are multiplied by their
corresponding probabilities or confidences c,, c,, . . . , Cp,
and the products are summed to compute the estimated
Doppler shift T,

As noted above, the mput features extracted from the
input estimated channels may include current channel cor-
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relations C(T), as computed based on the channels h(t,k)
estimated from received TRS symbols.

As discussed above, 1n comparative systems for estimat-
ing a Doppler spread, an estimated channel correlation 1s
supplied to an mverse Bessel function to obtain the esti-
mated Doppler spread. In practice, to obtain a more stable
estimation of the channel correlation C(T), an infinite
impulse response (IIR) filter 1s applied over the channel
correlation estimated in each TRS period, leading to an
IIR -filtered channel correlation. Because the channel corre-
lation directly measures the change of the channel h, 1n some
embodiments of the present disclosure, the IIR filtered
channel correlation C, (T) is supplied as an input feature to
the Doppler shift predictor P (e.g., a currently selected one
of a plurality of Doppler shift predictors).

Similarly, an IIR filter can be applied to stabilize the
estimated channel correlation, so the final input feature to
the Doppler shift predictor 1s only one value—the IIR-
filtered estimated channel correlation. In some embodiments
of the present disclosure, the Doppler shift predictor 1s a
multi-layer perceptron (MLP). FIG. 10 1s a schematic depic-
tion of a Doppler shiit predictor according to one embodi-
ment ol the present disclosure using an infinite 1mpulse
response (IIR) filter to combine a plurality of channel
correlations. For example, as shown in FIG. 10, assume the
current TRS period 1s the n-th TRS period, then there are n
estimated channel correlations C,(T), C,(T), . .., C (T)
supplied as inputs to an infinite impulse response (1IR) filter
1010, then the IIR filtered channel correlation of these n
input channel correlations may be denoted as C _(T). In the
embodiment of FIG. 10, the Doppler shift predictor 1is
implemented as a multi-layer perceptron configured to per-
form regression, where the MLP has an input layer 123 with
a single node configured to receive the input IIR filtered
channel correlation C (T) and to supply the filtered channel
correlations to a hidden layer 125 having a plurality of nodes
in association with a plurality of weights (or parameters). At
each node, the input IIR filtered channel correlation C, (T) is
multiplied by the corresponding weight, and the product 1s
passed through an activation function (e.g., a sigmoid func-
tion or a rectified linear unit (ReLLU)). An output layer 127
having a single node configured to recetve and combine
inputs from the plurality of nodes of the hidden layer (e.g.,
multiply the outputs of the activation function of the nodes
of the hidden layer with weights, sum the results and pass
through an activation function to compute a predicted Dop-
pler shift £, ..

Because the IIR filter coeflicient 1s set to be a fixed value,
the way in which the feature extractor 110 combines the
previous estimated channel correlation and the current esti-
mated channel correlation 1s fixed at the time of designing
the feature extractor 110, and may not be able to adapt to
changing conditions or other factors. Furthermore, although
the channel correlation 1s estimated 1n each TRS period, 1n
this arrangement the final input to the Doppler shift predictor
1s only one IIR-filtered channel correlation, and therefore
some information which may be contained in the previous
estimated channel correlation 1s lost.

Accordingly, some aspects ol embodiments of the present
disclosure relate to supplying, as imput features to the
Doppler shift predictor, the current estimated channel cor-
relation C (1) as well as the channel correlations from a
window of a plurality of previous TRS periods.

FIG. 11 1s a schematic depiction of a Doppler shift
predictor according to one embodiment of the present dis-
closure 1n which a plurality of channel correlations from a
window of TRS periods (e.g., from a causal window of
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previous TRS periods) are supplied as mput to a multi-layer
perceptron. In the embodiment shown 1n FIG. 11, a plurality
of channel correlations from a causal window of prior TRS
pertods C,_.(T), . . ., C (1), C,_,(T) (where A 1s the
number of previous TRS periods or, equivalently, the size of
the window 1n umts of TRS period) 1s combined with the
channel correlation estimated 1n the current TRS period
C (1) for a total of A+1 channel correlations included
among the mput features supplied to an mput layer 124 of
the multi-layer perceptron, where the input layer 124
includes a separate node for each of the A+1 channel
correlations. Each of the channel correlations C(T) 1s sup-
plied from the nodes of the mput layer 124 to each of the
nodes of the hidden layer 125 multiplied by a corresponding,
weight (e.g., a weight learned during the training process).
At each node in the hidden layer 125, all the mmcoming
products (e.g., multiplications of channel correlations and
weights) are summed and pass through an activation func-
tion (e.g., a sigmoid function). Each of the nodes of the
hidden layer 125 supplies an output from the activation
function to the output layer 127, which combines the outputs
of the activation function of the hidden layer 125 to compute
a predicted Doppler shift £, , where the combining multi-
plying the outputs of the activation function of each of the
nodes of the hidden layer with their corresponding weights
(the weights being learned through the training process),
summing the weighted products and passing the sum
through an activation function (e.g., a sigmoid function or a
rectified linear unit (RelLU)).

By including estimated channel correlations of the pre-
vious A TRS periods, these embodiments of the present
disclosure provide more nformation to the Doppler shiit
predictor about how the channel changes over time. Fur-
thermore, the training process trains the Doppler shift pre-
dictor to combine these estimated channel correlations using
a learned set of parameters or coetlicients, rather than fixing
those coellicients according to an IIR filter. Because the
learned parameters are capable of computing the same result
as an IIR filter (e.g., 1t 1s possible that the learned coeflicients
will result 1n an IIR filter), the performance of a trained
Doppler shift predictor using a plurality of channel coetli-
cients from a causal window of previous TRS periods 1s
expected to be no worse than an IIR filter.

A person of skill 1n the art would understand that the
architectures shown in the embodiments of FIGS. 10 and 11
used to perform regression may be modified to perform
classification mto one of the M classes of ranges of Doppler
shifts, as discussed above, by using M nodes in the output
layer 127 and encoding the correct class of the training data
using one-hot encoding.

As noted above, some embodiments of the present dis-
closure relate to a Doppler shift predictor using a multi-layer
perceptron as a neural network for predicting a Doppler shift
based on the supplied input features, such as the current
channel correlation C (1) and channel correlations from a
window of a plurality of previous TRS periods
C A1), ...,C (1), C ,(T). However, embodiments of
the present disclosure are not limited thereto. For example,
in some embodiments of the present disclosure, the current
channel correlation C (1) and channel correlations from a
window of a plurality of previous TRS periods
C A(D),...,C (1), C, _,(T)are supplied as input features
to a recurrent neural network (RNN) or a long short-term
memory (LSTM) neural network.

Accordingly, aspects of embodiments of the present dis-
closure relate to systems and methods for computing an
estimated Doppler spread based on information from 1nput
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estimated channels, including channel correlations com-
puted based on reference signals. According to some
embodiments, the estimated Doppler spread i1s computed
based on one or more trained Doppler shiit predictors, where
the Doppler shift predictors are trained based on collected
measurements from actual physical radio receivers or from
a practical link level simulator. Some aspects of embodi-
ments ol the present disclosure relate to selecting a Doppler
shift predictor from a plurality of Doppler shift predictors
based on a current estimated SNR, where each of the
Doppler shift predictors 1s trained on a diflerent portion of
the training data, as grouped by portions of SNR range of the
training data. Some aspects of embodiments of the present
disclosure relate to combining the outputs of multiple Dop-
pler shift predictors based on computing one or more
probabilities that the input features correspond to each of the
Doppler shift predictors trained on data from different
portions ol the Doppler shift range 1n the training data.

The term “processing circuit” 1s used herein to mean any
combination of hardware, firmware, and soitware, employed
to process data or digital signals. Processing circuit hard-
ware may include, for example, radio baseband processors
(BPs or BBPs), application specific integrated circuits
(ASICs), general purpose or special purpose central pro-
cessing units (CPUs), digital signal processors (DSPs),
graphics processing units (GPUs), and programmable logic
devices such as field programmable gate arrays (FPGAs). In
a processing circuit, as used herein, each function is per-
formed either by hardware configured, 1.e., hard-wired, to
perform that function, or by more general-purpose hardware,
such as a CPU, configured to execute instructions stored 1n
a non-transitory storage medium. A processing circuit may
be fabricated on a single printed circuit board (PCB) or
distributed over several interconnected PCBs. A processing
circuit may contain other processing circuits; for example, a
processing circuit may include two processing circuits, an
FPGA and a CPU, interconnected on a PCB.

It will be understood that, although the terms *“first”,
“second”, “third”, etc., may be used herein to describe
various elements, components, regions, layers and/or sec-
tions, these elements, components, regions, layers and/or
sections should not be limited by these terms. These terms
are only used to distinguish one element, component, region,
layer or section from another element, component, region,
layer or section. Thus, a first element, component, region,
layer or section discussed herein could be termed a second
clement, component, region, layer or section, without
departing from the spirit and scope of the present disclosure.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the disclosure. As used herein, the terms “sub-
stantially,” “about,” and similar terms are used as terms of
approximation and not as terms of degree, and are intended
to account for the inherent deviations in measured or cal-
culated values that would be recognized by those of ordinary
skill 1n the art.

As used herein, the singular forms “a” and “an” are
intended to include the plural forms as well, unless the
context clearly indicates otherwise. It will be further under-
stood that the terms “comprises” and/or “comprising”’, when
used 1n this specification, specily the presence of stated
features, integers, steps, operations, elements, and/or com-
ponents, but do not preclude the presence or addition of one
or more other features, integers, steps, operations, elements,
components, and/or groups thereof. As used herein, the term
“and/or” includes any and all combinations of one or more
of the associated listed 1tems. Expressions such as “at least
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one of,” when preceding a list of elements, modily the entire
list of elements and do not modity the individual elements
of the list. Further, the use of “may” when describing
embodiments of the present disclosure refers to “one or
more embodiments of the present disclosure”. Also, the term
“exemplary” 1s 1mtended to refer to an example or 1llustra-
tion. As used herein, the terms “use,” “using,” and “used”
may be considered synonymous with the terms “utilize,”
“utilizing,” and “utilized,” respectively.

It will be understood that when an element or layer 1s

referred to as being “on”, “connected to”, “coupled t0”, or

“adjacent to” another element or layer, 1t may be directly on,
connected to, coupled to, or adjacent to the other element or
layer, or one or more intervening elements or layers may be
present. In contrast, when an element or layer 1s referred to
as being “directly on”, “directly connected to”, “directly
coupled to”, or “immediately adjacent to” another element
or layer, there are no intervening elements or layers present.

Any numerical range recited herein 1s intended to include
all sub-ranges of the same numerical precision subsumed
within the recited range. For example, a range of “1.0 to
10.0” 1s intended to include all subranges between (and
including) the recited minimum value of 1.0 and the recited
maximum value of 10.0, that 1s, having a minimum value
equal to or greater than 1.0 and a maximum value equal to
or less than 10.0, such as, for example, 2.4 to 7.6. Any
maximum numerical limitation recited herein 1s intended to
include all lower numerical limitations subsumed therein
and any minimum numerical limitation recited 1n this speci-
fication 1s intended to include all higher numerical limita-
tions subsumed therein.

While the present disclosure has been described 1n con-
nection with certain exemplary embodiments, it 1s to be
understood that the disclosure 1s not limited to the disclosed
embodiments, but, on the contrary, 1s intended to cover
various modifications and equivalent arrangements included
within the spirit and scope of the appended claims, and
equivalents thereof.

e B 4 4

What 1s claimed 1s:
1. A method for estimating Doppler spread of a wireless
channel comprising:
extracting, by a processing circuit of a radio receiver, one
or more features from a received signal, the features
comprising an estimated channel correlation, estimated
based on a reference signal in a current reference signal
slot, the estimated channel correlation indicating a rate
of change 1 a Doppler shift of the wireless channel
over time; and
computing, by the processing circuit, a Doppler spread of
the wireless channel by supplying the features to one or
more Doppler shift predictors trained on training data
across a tramning signal-to-noise ratio (SNR) range and
across a training Doppler shiit range,
wherein each Doppler shift predictor i1s tramned on a
portion of the training data corresponding to a different
portion of the training SNR range or a different portion
of the traiming Doppler shift range,
wherein the Doppler shift predictors are trained using
machine learning, and
wherein the training data comprises data collected from
operational radio communication systems relating
channel correlations to Doppler spread.
2. The method of claim 1, wherein the estimated channel
correlation comprises a single infinite-impulse response-
filtered channel correlation.
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3. The method of claim 1, wherein the features comprise
one or more estimated channel correlations based on one or
more relerence signals in one or more previous reference
signal slots.

4. The method of claim 1, wherein the reference signal 1s
a tracking reference signal.

5. The method of claim 1, wherein each of the Doppler
shift predictors 1s trained based on a diflerent sub-range of
the training SNR range, each sub-range having a lower
bound corresponding to a first SNR and an upper bound
corresponding to a second SNR, the first SNR being lower
than the second SNR, and

wherein the method further comprises:
determining a current SNR of the received signal; and
selecting a Doppler shift predictor from among the Dop-
pler shift predictors based on the current SNR, the
lower bound of the corresponding sub-range of the
selected Doppler shiit predictor being higher than the
current SNR.
6. The method of claim 5, wherein the lower bound of the
corresponding sub-range of the selected Doppler shift pre-
dictor 1s closest to the current SNR among the lower bounds
of sub-ranges that are higher than the current SNR.
7. The method of claim 1, wherein each of the Doppler
shift predictors 1s trained based on a diflerent sub-range of
the training Doppler shiit range, and
wherein the method further comprises:
computing, by the processing circuit, one or more clas-
sification probabilities by supplying the features to a
Doppler shift classifier network, each of the classifica-
tion probabilities corresponding to a different one of the
Doppler shiit predictors,

wherein the features are supplied to the Doppler shiit
predictors to compute one or more predicted Doppler
shifts, and

wherein the computing the Doppler spread comprises

combining the predicted Doppler shiits 1n accordance
with the classification probabilities.

8. The method of claim 7, wherein the combining the
predicted Doppler shifts comprises summing one or more
products of the predicted Doppler shifts multiplied by cor-
responding ones of the classification probabilities.

9. The method of claim 7, wherein the combining the
predicted Doppler shifts comprising outputting, {from among
the predicted Doppler shiits, a highest probability predicted
Doppler shift corresponding to a highest classification prob-
ability of the classification probabilities.

10. The method of claim 1, wherein the training SNR
range ol the tramning data 1s larger than an operating SNR
range of the radio receiver.

11. The method of claim 1, wherein each of the Doppler
shift predictors 1s tramned to compute a predicted Doppler
shift based on a regression model.

12. The method of claim 1, wherein each of the Doppler
shift predictors 1s trained to Clasmfy the features by com-
puting one or more probabilities that the features correspond
to each of one or more ranges of Doppler shifts.

13. The method of claim 1, wherein each of the Doppler
shift predictors 1s a multi-layer perceptron.

14. A radio recerver comprising a channel estimator
processing circuit, the channel estimator processing circuit
comprising;

a feature extractor configured to extract one or more

features from a recerved signal, the features comprising
an estimated channel correlation, estimated based on a
reference signal 1 a current reference signal slot, the
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estimated channel correlation indicating a rate of
change 1n a Doppler shift of a wireless channel over
time; and

a Doppler spread estimator configured to estimate a

Doppler spread of the wireless channel by supplying
the features to one or more Doppler shift predictors
trained on training data across a training signal-to-noise
ratio (SNR) range and across a training Doppler shift
range,

wherein each Doppler shift predictor 1s trained on a

portion of the training data corresponding to a diflerent
portion of the training SNR range or a diflerent portion
of the traiming Doppler shift range,

wherein the Doppler shift predictors are traimned using

machine learning, and

wherein the training data comprises data collected from

operational radio communication systems relating
channel correlations to Doppler spread.

15. The radio receiver of claim 14, wherein the estimated
channel correlation comprises a single infinite-impulse
response-liltered channel correlation.

16. The radio recerver of claim 14, wherein the features
comprise one or more estimated channel correlations based
on one or more reference signals 1 one or more previous
reference signal slots.

17. The radio receiver of claim 14, wherein the reference
signal 1s a tracking reference signal.

18. The radio receiver of claim 14, wherein each of the
Doppler shiit predictors 1s traimned based on a different
sub-range of the training SNR range, each sub-range having
a lower bound corresponding to a first SNR and an upper
bound corresponding to a second SNR, the first SNR being
lower than the second SNR, and

wherein the channel estimator processing circuit further

COmprises:

an SNR extractor configured to extract a current SNR of

the recerved signal; and

a predictor selector configured to select a Doppler shift

predictor from among the Doppler shift predictors
based on the current SNR, the lower bound of the
corresponding sub-range of the selected Doppler shift
predictor being higher than the current SNR.

19. The radio recerver of claam 18, wherein the lower
bound of the corresponding sub-range of the selected Dop-
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pler shift predictor 1s closest to the current SNR among the
lower bounds of sub-ranges that are higher than the current
SNR.

20. The radio receiver of claim 14, wherein each of the
Doppler shift predictors 1s trammed based on a difierent
sub-range of the traiming Doppler shift range, and

wherein the Doppler spread estimator comprises a Dop-

pler shiit classifier network configured to compute one
or more classification probabilities that the features
belong to classes corresponding to the Doppler shiit
predictors,

wherein the Doppler spread estimator 1s configured to

supply the one or more features to the Doppler shift
predictors to compute one or more predicted Doppler
shifts, and

wherein the Doppler spread estimator 1s configured to

compute the Doppler spread by combining the pre-
dicted Doppler shifts 1n accordance with the classifi-
cation probabilities.

21. The radio receiver of claim 20, wherein the Doppler
spread estimator 1s configured to combine the predicted
Doppler shifts by summing one or more products of the
predicted Doppler shifts multiplied by corresponding ones
of the classification probabilities.

22. The radio recerver of claim 20, wherein the Doppler
spread estimator 1s configured to combine the predicted
Doppler shifts by outputting, from among the predicted
Doppler shiits, a highest probability predicted Doppler shiit
corresponding to a highest classification probability of the
classification probabilities.

23. The radio receiver of claim 14, wherein the training
SNR range of the training data 1s larger than an operating
SNR range of the radio receiver.

24. The radio receiver of claim 14, wherein each of the
Doppler shift predictors 1s trained to compute a predicted
Doppler shift based on a regression model.

25. The radio receiver of claim 14, wherein each of the
Doppler shift predictors 1s trained to classily the features by
computing one or more probabilities that the features cor-
respond to each of one or more ranges of Doppler shiits.

26. The radio receiver of claim 14, wherein each of the
Doppler shift predictors 1s a multi-layer perceptron.
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