12 United States Patent

US011494591B2

(10) Patent No.: US 11,494,591 B2

Zhang et al. 45) Date of Patent: Nov. 8, 2022
(54) MARGIN BASED ADVERSARIAL (56) References Cited
COMPUTER PROGRAM
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines
Corporation Armonk. NY (US) 7,529,403 B2 5/2009 Ivanov
" " 10,521,718 B1* 12/2019 Szegedy GO6N 3/084
(72) Inventors: Yang Zhang, Mount Kisco, NY (US); 2016/0328644 Al 1172016 Lin et al.
Shiyu Chang, Elmsford, NY (US); Mo
Yu, White Plains, NY (US); David S. OTHER PUBLICATTONS
Kung, Chappaqua, NY (US) o |
Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explain-
(73) Assignee: INTERNATIONAL BUSINESS ing and harnessing adversarial examples.” arXiv preprint arXiv:1412.
MACHINES CORPORATION, 6572, 2014. (Year: 2015).%
Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this _ |
patent 1s extended or adjusted under 35 Primary Examiner — Andrew M Moyer
U.S.C. 154(b) by 973 days. (74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP
(21) Appl. No.: 16/245,489
(22) Filed: Jan. 11, 2019 (57) ABSTRACT
(65) Prior Publication Data Techniqugs regarding a zero-confidence adversarialiattack
are provided. For example, one or more embodiments
US 2020/0226425 Al Jul. 16, 2020 described herein can comprise a system, which can comprise
a memory that can store computer executable components.
(51) ??1(;61(12 15-? 00 5007 0 The system can also comprise a processor, operably coupled
COGK 9/62 (2 022' O:h) to the memory, and that can execute the computer executable
COGN 3/08 E2OO 6. O:; components stored 1n the memory. The computer executable
GOGV 10/98 (2022'02“) components can comprise an adversarial component that
(52) US. Cl o computes a perturbation that causes misclassification by a
S _ neural network classifier. The computer executable compo-
CPC (2 0 13 0?)(_)6(1;(021/\6;2‘5; 8(2(3(1)%0(1))1!) Gg,gf]f ;602/3‘; nents can also comprise a restoration component that deter-
I R (2022.01) mines a normal vector to a constraint contour developed by
(53) Field of Classification S h ' the neural network classifier. Further, the computer execut-
ield of Classification Searc

CPC GO6K 9/6262; GO6K 9/6267; GO6K 9/627;
GO6N 3/08; GO6N 7/005; GO6V 10/98;
GO6V 10/764; GO6V 10/82

See application file for complete search history.

LS s & bk bk = = = bk bk = o= o= b bk omow om bk bk komomw kb ks ow bk homom bk k Mamom bk howow b howowom kb homow bk hhow
nnnnnnnnnnnnnnnnnnnnnnnnnn
...

able components can comprise a projection component that
determines a tangential vector to the constraint contour.

20 Claims, 13 Drawing Sheets

asmEgge Normal Vecotor i

US 11,494,591 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal
Frossard. “Deepfool: a simple and accurate method to fool deep
neural networks.” Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016. (Year: 2016).*

Zhang, Yang, et al. “Margin Based Adversarial Attack.” ICLR 2019.
14 pages.

Cao, Xlaoyu, et al. “Mitigating Evasion Attacks to Deep Neural
Networks via Region-based Classification.” ACSAC 2017, 2017
Annual Computer Security Applications Conference, Dec. 2017. 10
pages.

Xie, Cihang, et al. “Improving Transferability of Adversanal Examples
with Input Diversity.” arXiv:1803.06978v2 [¢s.CV] Jun. 11, 2018.
19 pages.

He, Warren, et al. “Decision Boundary Analysis of Adversarial
Examples.” ICLR 2018 Conference. 15 pages.

Madry, Aleksander, et al. “Towards deep learning models resistant
to adversarial attacks.” arXiv:1706.06083v3 [stat. ML] Nov. 9, 2017.
27 pages.

Zheng, Stephan, et al. “Improving the robustness of deep neural
networks via stability training.” Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2016. 9 pages.
Rifai, Salah et al. ““The manifold tangent classifier.” Advances in
Neural Information Processing Systems. 2011. 9 pages.

Mell, Peter, et al. “The NIST Definition of Cloud Computing.”
National Institute of Standards and Technology. Sep. 2011. 7 pages.

* cited by examiner

U.S. Patent Nov. 8, 2022 Sheet 1 of 13 US 11,494,591 B2

100

L RECEPTION | | RESTORATION || PROJECTION |||
| COMPONENT 110 | | COMPONENT 112 | | COMPONENT 114 || |

SYSTEM BUS 118

___________ — con
FED

PROCESSOR

120

NETWORK(S) 1049

FIG. 1

| CLASSIFIER 106 111

US 11,494,591 B2

Sheet 2 of 13

Nov. 8, 2022

U.S. Patent

I I I
-
'.

P S N N NE NE N NE N N N N R N R

= e r*q-k-# ”

r r oy x b

N K X F RN

PEEEEFEEERLELEL

x,

™

" r o oaxoa

ooy ap oy b dp

SRR R R OR R R L e ke o

L
)

e]

&

ormal Vector

v
!

w kb rrrrrr-

T o gy gy i eyl dp i i ko

PR

X+ X F FFFFI 1IN R RO

-

-

.--l- =

L
A

T

a
-
o

B
L S C N

a»

R ECE

- A
EIC N
‘i *4l*l*b*b"l‘ sEEE

-

2006

FIG, 2

U.S. Patent Nov. 8, 2022 Sheet 3 of 13 US 11,494,591 B2

300} oy = 307

- Y, i o e g
. - * »
R * S LN v e « Jd o
[M '. . TEEALNEEE L R N N] l'l‘-;-‘-'-'-'j'-'j'-' N -‘-'_|'-'1'-'l'l . ‘-'q:-;‘;|:q- 4‘ :-""'*";‘;‘:-":- - p; '
: i . . - - M]
r - L L &+ L & [] L k
o . e s N Rttt M s I M ol atai M Ticaaial) . '
. .. TR] R - R M - A b . r ')
Ny | r AR T e L j ok » x 1
» - k L e e I R e DA) * .] \ -
* k S TN NN b e \ "y] " -
4 = ra ey bt =" * . L]] '
L £l = b B K F - ' - 4
» T.*I‘I*ibll_l L -I_] { i_ F-I ' _
- v e L IE AL I * o Il-l-:-'ll-ll-'l-l--lnll:-'lnll-'llnlnll-:-'lni'll--Il:--:-'ll-lnllnll-l-:-'-l-'ll-ll--:--:-'ll-!-l-!-!-lirll-'l---t- »
= rw e g K " L | * - L]] '
L] o F =" - L - - 4 -
Al - . . e i ..;a-:- e K * . . e '
i-.'.ib- 1.":'- . . -*4;4;4:'4‘_1 L] ») . -] ' R
LN ﬁ el e e e e e e e e e e P e e e e R e e e e e e e e L e o e * . '
L I et r - ! a .i-**'l-‘.l- p' * * '.| !
. 3) CEa e A . LA A - IR - I'l '
xr }_- . -] » et L) r '
ol i' | ¥ vt » x 1
. » b ' - X+ . L | -
. ’ h. '] » g - l-. . - '.| . :
J‘._-, .] f ? i » R R A A N N N R N R a R o i i M A A e K.
i - :1 “. - » * L - ,: .
Y, . . » - ¥
"W . " i ¥ . * o
L -] . . 4
g . PN i ¥ . . e -
. - I'*l‘ LN R) LN RN L L L NN R L N L L NN _""'*“"-I""""‘I L N L N L L "‘-I"‘-'F-I"‘-I‘-I""‘ LN L NN L L L NN N L R - ll_ F-I -Il_
:‘.ﬁ".h 2T Jg ' 1 ¥ k, ¥
. . - 1 " .
] ' L L | .
LT * h. -IlI ‘-IL L F-I -Il_
. k- {' [|.. p' * j'l ¥ F-I *
: . * A * iR TR AT AR AR AT R TR R TR TR TR TR AT TR R TR R TR R TR AT
. o * »_ 7, . " ¥
. .] * * k »
» F' -II L] F-I L]
L] * L L *
=y L]] 1 . L |
': 'l'* - - I" * L] F-I L
x N - L S SO AU NN N [S RS N SRS NP) LA N S AU S U A NN N RO R AU N [R T N N A O A R R R NUPU N NUPREE A)] »
1‘115 o B X 4_&4_4_#:4- BATATNT TATRTR RTINS AR AN TR AR AT AT AT AT AR AT T T . g ¥
-)) - . h'l " - rl L]
. . " ¥ . h: ¥
- o * SEREEREE IERERE R R R 'I'I'II'I'I'I'I'I'II'I'I'I'I' I E A ERENNENEENEEEREERRENNENERENNERNNEEREDRRNERNERENEREDENRERNNNNN
L | *] L
L L - 4 -
1 a »] »
_:"l B} : :1 » I': »
Talatat . " - " v
_'-u "J‘U L] F' " I‘l ¥
] 4 L]] [] .
¥ R R AR R R R AR RN R AR EE R ’ »
b :] P g M ¥
= a T N [P,
L] h. bl *-I_ EEEERELELEERED] _#_4_#_#_4_l_#_#_#_#_4_J_J‘J_#_#_4_#_#_4_1_#_4_# LIE
T L L b 4 -
. z a . b »
- 4 L J F L J
L]] .] .
. K : . " ¥
rkr ¥ * A . L) h. " »
- o . - " ! -]
: : : : : o Y :
h .""l L L L L N N N N N L L I"":"""""""'I L LN N N NN N NN N N LR L F“."""‘." -ﬂ d l'_ oy *' . I‘:] L] o » :
. - p: - a il Yl Y e Rl A A R |‘l‘l‘l‘l‘l‘l‘l‘l‘l‘l‘l:l‘l - ﬁi‘l-l"ﬁ*‘:‘; '.‘i‘i‘l‘l‘j‘i':..' ATAT AR R R A ‘l‘i‘l‘l‘l‘l‘l‘i‘ A A i T Tl S A i
- -
£ : :1 : . * ¥ 'l'fll:‘il#lr‘. .- I': ¥
- - o Y . - - "b‘*‘bﬂl‘l‘*l " .
, . . LEE BN N B P - .
» b - . 4= o
. o - ¥ 0] B S T ¥
b L | L] L] LI N BN E NG L
? [] k " - LI 4 st EEER R L I N RN L
. . - LI ML [b B =% bR - - -
] *] b . & g ¥ L | L] LA AL L N NC N B N I DO T N R 2
: . * B - [T LI e B - ek EE kg g o kR K ko oy E
*"_ L] F. L » .#__ ol 4d. ¥ 4"# *" LN N "‘ R) "-'- L] I'#i*i L '.i'll'I"'lIlil'
L L] k ' -1‘:"'}‘ . - E MM;M%.H*M‘H 4."---....ﬁ-'-u*q.“ﬂ-"‘
L L | L] L) T L) L L) =g LR |
b* r:h:b. O I-:" T b'l .u-: L] I-'I-: L I L] 'r:_l-:l
. ' r
r 'r.' L] "|.-IlJ J"_I 'I" . .' I'-I - 4‘._: ' L L]
: " e, Tl K TR, S] Wi FX

o L

KI1G.

U.S. Patent

inpnt ¢ A setot

{ut
bmniadere @0

garithe © MARGINA

Nov. 8, 2022 Sheet 4 of 13

-‘.q-‘-‘- '

A T SR N
gt Panclions inwr—1 LR L
an st feature g and s label 4

puis A solution & o BHg 1)

A R e,
gecordang o g (155

for & < member of teralions do

- o A ﬁ v e e a e R L % .'-r .""T"*:. Bl B e
iV & o mmsmber of toreed sraw derabions then
Ryt

£136

Pdo varget scan normal vector @3 in

Fa. {14):

eise
- Dloomeular pormal vector @3 in

"'-"_ LI I '!-f‘r..:f‘-'} 'ﬁ‘ e e ki) .‘1". l .-ﬁ; v
E:iﬁ% 8. 431 O {14)

i

EER R e e o F S T el i R
it & < fimedd Bniny deration then

E Do tangential vector 88 HI By
el

Yoy

I Skip tangential vector : a7 = 23V,

CRETh

R e .-F-:'. .
o= 2t

FIG. 4

FTadK Procsdurs

US 11,494,591 B2

US 11,494,591 B2

.-.L-_un_ h.h_

.....n_ﬂ_..-h ..“.._...u".". MMM"H Luw. ..-__..i.-..n- . ﬁ ' -.“.- = ...F._..iq e .-h.. e whs O
T : .._...rl-“ * o e .. -..-I.-_ .-.n.-l_.-. a B I_I.EI."... lLl."-r "“ .I..I.DT.P it “ w.l.,..... A “_" bnmimnl I. ..-. -
Fof Mk A iy W SRR

» I] (]] [
JCH - '- '- I_ o i A A A A A A A A A A A A A A
- [" - ' - - m . -] 1 ¥ .
«~ ¥ r r) » > - [
LN] .- ;- . . Sm »] J K .
" [] a . . ﬁ. »] 1 .
" F]
. &H "- "- "- . K - 2 . "- "_ ". .
o] .- o e . - - . J .
" n] " . . »] 1 .
O N " N . ey " . . ,
-,] .- ;o o . e » o J .
v .-.1.1 -l '- '- ' . b A 'I > '- o
« oy » o P " - B - o - - -
- l.....l. Il '- 'l ' r v . . —_I l__ I- L
Ll] x ;e - . - -]] .
W] - o T - . .]] .
LI] .- o r .] J .
o - o x g . . . o] .
LR] - ;o K -]] .
o % o . L r v i & a1 "
oA " N n . Y ’ ’ :
i”.quiuililvlilil-lililnu Rl -."-l-_. TFElEREER FEE O RERI -_."11-. .l-l-l-l-lnlililnlilil-lililv.nil. ”11-_1] "- "_ ". «
N . 5) .
o i ¥ o oo " " . - - "
- r [] [} [r o [] 1 | o
= el ¥, 'n 'y) b * -
. ' r w [] 1 1 L]
« ¥ - -
« W o o T - L ! 1 -
ow o -y o e .- o . . __l.._l.._l...l.._l.._l...l.-_l.._l...l.-_l.._l . A AT A A A A A A AT A AT AT A AT g ATAa" TaTa™i A .
o, - e n n e r .) r J .
R a = alaT. - - - . . » 1 g
« SO ¥ ¥ ¥ -) ¥ »
- M - 'I '- . r w w
o a e i] . r . s i) "1 v
- 3 P ¥ h ’ ¥) k * -
i Tan . . . »] 1 .
« N Fodp » " [) k] [
[J r o . [} [| | Il r L [[l [] L
- el Xow ¥ r r .)
' . S] m] " r v » | 1 v
- e R ¥ ' r) k * -
x 2 olxs a J n) a - B 's . 3 v
L] & = L] n m r "] 1 bl
- S - ¥ ¥ ¥ . ’ . u!
O]) n] ' r . ' .
- LM " o .“ . .. - R E)
B o ol e = Y _m Y X [L)
Pl d . r w » 1 w
- IR] k | L= L LB
. w.rl:..-........h '- '- ' or . :
< IR - n s S 'y b . :
1 B e AT AT AR AT AT A l.-_-.-. 4R l_l.-_l.-_l.-_l.-_l.-.l.-_- . a s —_I l__ -
. r . .
v] . . - .
[| | Il r o PR ' - o
. r ¥ -) ¥ » »
p .- I R s p " v
- - r [1 1 [
. ¥ ¥) * *
f . . g - - . -
. e ' - - " ¥ . -
. - o ot " - o P - . -
i]] ;e . . = e -_-_-i_-i___nr .] " .
- [] e e
i PN o t : g . __" . .-...-.___.__.-_-"_-“-_n.-_-...) _-" .
. et ¥ e ;i ¥ . ' e B b b b B bk B R Rk b B bk B b b b b k0 b b _k_kd B_E)
. T o LR, o g r " » -_:...._-..._i...-.-_-r-__-..w.. T .
et - Ve e " " . - » e 1 .
. e * Pl ¥ k b B - . [
. . I, . . ;N AL B
T : ., ol : - : . : ”
. DAL AN . L O » Yy . [_ . .__...._-_-.1.4' - a .
: A [i B e e e e e e e e e e e e e oo e e e e e e e e B - - a1
” ..__.-_-ltt..........“.n._. . _.............“.......-n N s - - o CeE [¥
ey - Bl [] . » \ 3 ! .
" & [
t - R aata . h] - . ol . SaTE e A . o .
. P R RN [- . [- . A e a .
w Bl e i i e [a dr dp dr & [} [. k [] [LI] |]
. iy i M s o B o » " w » . B L "
|||||||||||| e -t [L 0 R, o T T) SO » 1 P
« ' .-__-...:_....4....”.___..._-.-_- _-_-_.-_-_-.4....4.._..“.....4.-...1_-._--_-_-_--_-__--_t_-_t_--_-_-_-_-".-__- FEE FEE T v [-_" . v .
ﬂ' . ¥ S M e ' Tt r » k * - Tt R
R N A] T [\ . » Jm _...____] 1 P .
. Pl ol A r P, ¥ » k = » .
- e e e o aa -] - »] 1 el .
- F o -)
; Y N N A e] . e " . - :
. [s o e . . . " - e p
. [aalmw e et . - e * .] .
" B il & iroa . r X .. » k [] [] |]
n o N A L S] . »] 1 ¥ .
. ¥ B o BT * v [- .
S [AR R R XN N \ . » S \ 1 ! .
. ¥ ol A T B . » ¥ " - 1
- RGN M T P R] - »] 1 ’ .
. ¥ r P r P » ! * - [
u] X R u N \ . »] 1 ¥ .
. ¥ ' ata ek ¥ T . - r = » .
n] S N P P, AT,] . »] 1 ! .
. ¥ r B A Pl ») ¥ » » u . .
I 6 -" ." ._..-.”.-_”__.”...H...“._..“_...__“. . .”_...H...H....“n _-" . __" _-_" _-" "- . \
¥ ' Pl e e * 2 k - - [» + " w N
p ﬂm] x -_-.+|_...__.|.......__.“......_... "o o] . I N B R SR R Bk RS EE SRR R R R RS RN EE EE AR Rk R LRE SR Rl .rI||1-||_-_ N - - ‘g R
- " R e Caay] - vl] »] 1 ’ s . "
¥ . P Al w'w * x ! » - [oy *
; - - - T Trwn . . a gt ! » | 1 1y FE - roaw N N
. - . . M P Pl P R . - k * - [e X - e T
- n R e a0 . . B »] 1 ! P) . PP
. m. (o [Yy QUL L AT LN . - . . r [. . a sevy N N i B ru
. h E ’ ¥ e i h) T ol K > » [} " = th..-.lﬂn._
1 " 1 Ve Cal . - " »] 1 ¥ » o - " ®
. o e S)) i k " - [' b iy s
. » > - etetata, e - Ll - - .] W B A
. FERFEFERFFEFEFENEEF FEKI I-|-_. TR RN E FERN RN E -_.Iui. .|I|-|I|I|-:-.:-:-:-.:-:-u-_u-u-.-_|I|-|I|I|-|-_|I|- R -...._......4...._._.._.-_.- -l-_4.._.-_. FERF THRFENEFEF T . __- l_ |. __- rem s .PII
) - " n A N T G - N » \ 1 ¥ Temx !
. = Iy Iy iyl g ™ . . I » >] " . . omomor .
B o Y T o [] 1]] [] i 1.
. » r r L - i) Lo} L . A - ' '
p] . . LA LIl . anny e B
. o o N T, v “._-_. L AL - u J ; r w
) ' - » ST T e . B * ! 1 k R
” o . . 4 r, ..._..4H.... . ”._..”.4.._.1 - o " . o ” u §
. .
- 'l '- 'l - ..l.....l......;l 1.._1......; . -. s - - ‘a L 5
. L] i i a A 3 - ¥ . M "
1] ["
v Y = 5 . Ayt o o . o fa S
. ¥ ' r » ol . - - - "
p o x a o LN . -] o] " ., .
. - . . - ettt " w » - N k ll...
- I- '- 'l ! ' -l.....l..-.l........- - L] 1 1 ¥ » 5 .
. " o o > ettt - - . & " K ll-_ .
- [} | | [} 1 -44 .._... . o __- l_ |. [. r “-_-_ L RN Inm
L - 3 - - L
: . ; ; . SN T . : 2 : e T
L) B]] [* ol W oa " " l - l-_
- " -] Tt] ST : . = -
2 . » b 3 » .__l.l.l.}.“.h , ” * -m-. ’ T TETEE AR TR R r-‘lIl‘l‘lIl‘l‘l'l‘l‘l‘l‘l‘l‘l‘l'l‘l‘_ ‘lIl‘l'lIl‘l‘l‘l‘l‘l‘l‘l‘l‘l‘l‘l‘-l T N 'l A .1 Il'” l.-'
o L] r r - I dr & N o k [] [[] l-_ - wwor
. - '- '- I_ r._..-..._..-.tn o - =] . o . n . _ .
Moo s sp s B s B b ms S0 BEE Bl SRR AR BAIRES SRR RS EE R SRS S R R AR SRR RS RS B AR R R R SN - - o, g " ' “_.-_. "_.ﬂi T
& N .
- - '- '- l__..-..-.i -. e —_I I__ I- —_- ' ll-_- : .
) u] u \ w W . ' [] »] 1 ¥ ' . oW
. o " s . Wity FENE, . u! a - 'y A
- o ‘s Y] - ! Y ¥ . o "
. ¥ ' ¥ - ww o N k * - [)
n] n] ra= [R . »] 1 ! .
. [[Yy . e i " & & N 'y
. E r ¥ * raw i . - - - »
Y n] n] N - »] 1 ¥ .
. r o Y . et [" . . e
. "- "- "- "_ T”...“.. - " * . o ll-_ .
) - " n \ Pl - . . v " -
- " 'a b * L al) ol . W "
. [[Y . wa [. . a e
. [[[# w b » » -)
L] []]]] L r - - |] Il-_
. " o o . Py o » .] l-_.
. » o » > P - > - N "
|] | 1 & il - [] 1] 5
i " 'a b * " al " .4!..‘.1 » | 1 b
- o 'a b] Fal i : P ol . o
. [[[o N “l__u-. . [" . g
- " 'a " " ¥l e) * . W
. ¥ K ¥ » + [. . a
. . - .)) e | B » & a1
- - - [— A B O N N N R N G N N N N N O N O N N O O O
ol ol .“l. L" o -
o []
- 1l " - L
D " a r ki’ .__-._.-.J_.-. h.r
. - -
g T e g —m-
» . W . W N .] .
- o | - gy, * ._.-.- ‘ A,
.\El... . "l PR .l_-.tl.._. W _..b. o ..l_r...___._...__ ! .y
. L et -
I.# I: Ia I; * i m LK] roas *
. - - .
a F o don kodrow r ok dron A o 4
e ~ et ~ il o — il a
R 1 1 a . & 1 _ri.l. 1 i i
x e o o o ! " ' '
= o i Lo i o D RN N . '
T . E' nﬁ Wi - . .
Ml .._..-..a.lt_.l .._r.l..._.l...r

T

|-_|tl." .,-liﬁn_

-....

FIG. S

WL BRI, e

.|_ - - - - - Tl...

U.S. Patent

U.S. Patent Nov. 8, 2022 Sheet 6 of 13 US 11,494,591 B2

1 & F F F EFFFEFEEFEFEEN
rJ|-:l . I’a- . k‘ l: 'y h;l;i:_l;#:#:#: :4.:4.:q.:;T4.fq.f4._*4.*q.*4.*4-*;*;*4-*;*;.-*;.-*;.-:ﬂﬂ**ﬂﬂ**ﬂﬂ* T *n-*n.-:*:*:*:4:4:4:4;4;4:;;4;4: : :: :4-:'4‘_’{4?4‘_’4-?4?4*4-*4*4*4-*#*rr* .
*- v] BB R R E EE ¥ A RL Lo o s e a e d a ke RR R R R EE R EEF R EaTOR e e e e .
-] L S BRI ATETRTRTR R R N B R BN R Rk kB koo
il] X F 4. EO N R e g R) .
) o et PR M M R R .
] - F 0 N [} .
| l X X K M -)
] » A (] .
L | [} []
) |3] .
-I "I |‘| L
" . ™ .
.) -TK (] .
. v Tty ol .
| ol PN) ¥
".""'" r) Ty] .
|] [} P »
]] R i} .
i | 1 L L}
R .
- B - 171
:'I ':' W 4*:*:*: v ': - :
| [T B] .)
- - I.. L) -
. - u
r '| Pl .
.ﬂq . -| |:| .
1 .
:Jr] : A = o o W ENN NE NN NN NN NN NN NN NN N CETETE BTRTRET TeTRTR eTETRTRTRTRR R R R R R R R R R R R R R R R R Il-'l-'ll': :'ln'll-'ll- FETET eRTETR TRTET RTETRT TR TR :
. . — -
' u- o " [|'| .
X M "] .
.. [] L]
.
r L]
[}
o . .
| | [N []
L - .
r L]
- .
o : .:. .
H [N
T r! LS)
!‘41* .
- - 171
N -:' " x :
Pl i] »)
L R L) |] .
& % X .
- [N ™
R K -] L] I} .
L 1])
el 30 " " .
'q.*q.:} kN] .
-"4-*4 ' ' u
- et “nlay * .
BODRLE TR LR FEE O EEEE RS R EER LI IEEEE RS LN R R B R B Rl R R B R R R W R Rk R R LR R R R R R R R R R R LR R LR R wee e e el
4-:4:#: l: -_;4-:#._ :l l:l .
EN] L | I} .
X L I)])
’.*'ﬂn. o b o .
| | e |) .
CRE N L 3Lt])
EaE N o X - N I}
LI LR - [»
M *Jr ¥ v ‘Jr o l'l r. -)
.
URE N N)])
' x% b . . N
bl'*l'*l b 'rl'* l-" o .‘ '-' .
FoE)) | i} .
XX X X - [}])
Ll N DRl] N I} .
N P M | l L] L)
R S B R] | n .
L S) N ol L] L
e M R |] - o .
L - K ¥ | I
EaE L L] ,
Ll s S kE - | o
X - L3]]
4 1
ohLoht n ¥ -
. - RN e . L] .
I] R S " » .
b ¥ Ak L A o "
D el A"y e E R R E R AR I'I.:I"_JJ_-I U e] o el Sl I e R I) - R PR R O REE ERER FRw W
Ly i’- - I:I : L3 KX -]] "
§ . P A § XX . W [] ol
» Nt - | ¥ 4 R LM . . .
: S R o A "] .
Pt M WA " » .
¥ ka2 = RE]] "
E AL D W | ol
NN R e]) .
L0 M |)
L e R]] .
X R - K |] 1
LA 1:_4 X [> .
n r
I-:Jr:a 1:4-*1-4_' :'l ':' .
LR ST |] \
At " . -
S N R] L) .
e ' -
N N] L *
N . » .
r
R . >
St " - *
'r!*_l'*l*l'l" I. - L]
= 5 . ..-LE. N l-*]-"]-‘k* '| |'I .
ﬂ‘g . -t et " - .
r,! * = RN Y. YR A R YL RN R LN LY R LYY REE VRN LEY W
'-5 g - . ettt 1]] -
- PR]) .
A N » X X [] [}
I L L L} .
x B X b .
& B - - 3
* X K | Tl .
E o 3 0]] "
MMM o oy .
E ot |) - -
S - - i
N et n .
L]]

-

e

L

r,
|
=

I.I:g
ﬁ .
s

)
LI

E]

e -

W
*I
¥

_rl

e
\

612

o ol e e e

]
h“':"? @ e . . ;l
: . "
L] 'I '.
- . (n -7
u 1 [} .
- . " .
- 'I p. 11
; . " :
. . " .
; . " -
., "1 ‘' .
i ia N . b b "
‘jn i" ' Fl_E . - . L ': .
W WA . :fll . P T e TRTRR R ER D e ST el il S el el e el S e el S e N e) a [N) -'l-'ll-:* "
3 . (- = . 1 L] "
aﬁf o et .] " -
' b ! L) " .
. [|] T
: e , : :' :I N
: o : "

U.S. Patent

Sheet 7

Nov. 8, 2022

[l S e Sy e i

of 13

US 11,494,591 B2

I. R EEEER SRR RN L]
[] "= omomom o 3
s .-
e . o Y
r CRERCRENE N M N -
] (] RPN N NNt aE N
" . L) R R e e AL MM LA A MM MM AL IR -
" . LN Lt e M A A A M AL AL .
.] X a EC 0 a0 0 8l Sk S HL LR R n
.] ERE Rt Al MEE Nl LR
. . ML ML R -
® * -
N [] (]
. L]] .
. !]] X
.]] .
N [] [l
" |‘| _'
X [LS -
.
. - . .
..] I-I .
. [] (]
. !. |:| -
. .
L] -- | | Lt
) N] .
: b i] -
. " L) .
L - P -
L [
- A . T N Al ol
.] (] IR e aE kel
. ® = ST EIETE R R K K b ohow
. |] ST NN AR o
. LR N N At ol af il a n .
: . I DU N St Rt .
.] » S E 0 aF 8t AP AC I .
- » ' Pl N) T e . .
—— ey e el w e w o e wa wr . wwa e e e B e o . e e e
A" W SRR WRE T RS TR YRR YRRy e LB e e MM e R o R LT LT L e el L e e NN L L N L L LR L L R R
- - . R - et T T M B M -
. * . N e S .
n L) S N L SR
. | EL et aF A -
- v R e e LD] -
. - SN
., [] PR R R R on .
. L] CE Nt] .
. | TN R = -
. L) T NN]
. o | R XX R - » .
. N e o .
. . N e AR . .
" Il: :;u; :4-:1*1-'- |:| -
. - .
. L) CU N (]
. . R L e Ml - .
. 1 LR o e .
. W ok NN]
. UMM N IC L » .
. TR L 2 h » n
. Aatater o])
L] " .
. L R | » .
. r % & F N [l
. O e 1] .
. EI I b L]] .
. a X TE - |] -
. T F ¥ - '] (]
. LML o . -
. N A . » .
. CRE M |] -
. e L)] .
. vy - 1 \] .
r . - W] [l
. . e 1] .
A . s . .
i , " -'-I l'-'-'l '-'-'-I l'-'-'l I-'-'-I A& hE B E R R ERS I-'-'-. |'-'-'| -'-'-. '-'- -'-'-. '-'-'I -'-'-. '-'-'l I'-'-'-'-'-'-'-'-'- -'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'I -'-'-. '-'-'I l'-'-. L [
" : o v g
N '] (]
. L | = .
b - r) " - - v - g
) | X B E ok]
. ’ S ey 1 . -
. o il " n,
“a o Ir1-;J|- » & - . .
"] Pl L) .
.] X E1 1 .
L] '| - L] '.
. .
. g - - . -
. ¥ - .
. xx . .
. LN . .
‘u 'l '. ‘m
. A . .
“n o - 0
‘u 'l '. .
. I . .
. p . -
‘. - - .
. | L]
. w i] -
h - 0 -,
» : :l .
. L h
3 . ® | .
1 o FES FEIEPEELEEPEEEI RN RN EA RN R L RN RN REE RN EEE I -
1 3] L]
.] L) »
. ¥ o | .
) :]) -
.
X) L] .
. o - .
. A ., -
.
. :l Il: N
. |' '| B = n = = = = o= o= omoq ==y om=o=oqgo=o=o= - - D L T R A N L] .
[l - - = 7711777171171l LI R T T T R R I I DL L D T D R TR T T NC B B B ,
. . - e B A .
. K o .
. " 1 n
.
. L -
. .
\ LS L}
.
r L
. rEN
¥ Xy
: 1 x
[] 4 E]

b ol o ok

l'll""'ll"'ll'*

Lol il il Nl Nl o e e Y

r

L
1

-'l!l.'ﬁj- w

Ul Lo *_
e o,

-

'
3
L

o

e

\
=712

i~y -

N -'.""El* '*.:
= 1 r

R .

-

LY

T T e
ok i e B b] Wk
LI

- o E & S S

U.S. Patent Nov. 8, 2022 Sheet 8 of 13 US 11,494,591 B2

100

ADVERSARIAL € O\APO}‘MENT 105

- RECEPTON | RESTORATION || PROIECTION]|
 COMPONENT 110 § | COMPONENT 112 | | COMPONENT 114 { | |

| DEFENSE |
| COMPONENT 802 |

SYSTEM BUS 118

ME \fIO RY
PO

PROCESSOR

120

FIG. 8

| CLASSIFIER 106 111

U.S. Patent Nov. 8, 2022 Sheet 9 of 13 US 11,494,591 B2

00w

COMPUTING, BY A SYSTEM OPERATIVELY COUPLED TOA | s 907
PROCESSOR, A PERTURBATION NEEDED TO CAUSE
MISCLASSIFICATION BY A NEURAL NETWORK CLASSIFIER

DETERMINING, BY THE SYSTEM, A NORMAL VECTOR TO A o~ 904

CONSTRAINT CONTOUR DEVELOPED BY THE NEURAL u
NETWORK CLASSIFIER :

L 906

DETERMINING, BY THESYSTEM, A TANGENTIAL VECTOR TO
THE CONSTRAINT CONTQOUR

U.S. Patent Nov. 8, 2022 Sheet 10 of 13 US 11,494,591 B2

1000 s

COMPUTING, BY A SYSTEM OPERATIVELY COUPLED TOA | s 1002
PROCESSOR, A PERTURBATION THAT CAUSES
MISCLASSIFICATION BY A NEURAL NETWORK CLASSIFIER |

DETERMINING, BY THESYSTEM, A NORMAL VECTOR TO A o 1004

CONSTRAINT CONTOUR DEVELOPED BY THE NEURAL
NETWORK CLASSHIER :

1006

DETERMINING, BY THESYSTEM, A TANGENTIAL VECTOR TO
THE CONNTRAINT CONTOUR

TRAINING, BY THE SYSTEM, THE NEURAL NETWORK
CLASSIFIER USING THE PERTURBATION ése

U.S. Patent Nov. 8, 2022 Sheet 11 of 13 US 11,494,591 B2

FiG. 11

U.S. Patent Nov. 8, 2022 Sheet 12 of 13 US 11,494,591 B2

: } ._'r...‘w'i'!'I d A) o ,,n"f i r._~r.."r"EI _ : -
Y oas S 1oas 050 4 s A 1054 4 1056 S
lf:::"_f'} L9 “;;j "!T"; ; - o e | e ‘-_""’ i'_i";.

T
R

oy

* Gl
/,::: 4 C'l- / & i -}"h? .-,-.-"F “:/‘ _,-"'}
) 1) _1‘ LN ' -, e 4 I '
| ;i"m_ ﬁ - i;;- E’._ ;;.i—h i.'.;' ; '{_.,‘.-}"' & _

r,-hi"'

#1036 27128 0 1240 4 1242
-""'.J'.":lr /’fh # 2 E,o."')_t‘:" ""‘-‘) &
tﬁ!"-. o 1"-,%"‘;; __@l.zﬁ A th_.f"..
f_,.-'"" /f

'y

'y
"J'w‘w‘#‘#‘#‘w‘w‘w‘#}‘#‘#‘#‘#‘w‘#‘# F
3 1222

7 Yirfuahzsiion

1230 ‘ [P - S— ya
& : - s

o

1216 1218

: Aoty

R E i

1204 1206 1208

] - Fardwere and bolbrare
1202

U.S. Patent Nov. 8, 2022 Sheet 13 of 13 US 11,494,591 B2

1300 eme, § gvemeevvvssascevvencancves oot 3 328
T ' OPERATING SYSTEM

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

a
! -
F p
F & ad o I '2
i -
.- - 1]2
-l e

| PROCESSING 1] 1342
1 uNIT | -

CGUTPUT
DEVICE

] OUTPUT
| ADAPTER(S)

- SYS n M\
MEMORY

INTERFACE |q

PORT INPUT

DEVICE

LVOLATILE {130 [N 1318

N TEREALE 1 A 1 | NETWORK |

COMMUNICATION H_| | INTERFACE
CONNECTION H ?

B e
|

RFMUTT

| STORAGE
: (()MPLT% |

MEMORY
STORAGE e 1344

1346_45

FIG. 13

US 11,494,591 B2

1

MARGIN BASED ADVERSARIAL
COMPUTER PROGRAM

BACKGROUND

The subject disclosure relates to a margin based adver-
sarial computer program to analyze and/or train one or more
neural network classifiers, and more specifically, to one or
more zero-confidence adversarial attacks that can impose
input perturbations to cause a neural network classifier to
misclassity.

SUMMARY

The following presents a summary to provide a basic
understanding of one or more embodiments of the invention.
This summary 1s not intended to identity key or critical
clements, or delineate any scope of the particular embodi-
ments or any scope of the claims. Its sole purpose 1s to
present concepts 1n a simplified form as a prelude to the
more detailed description that 1s presented later. In one or
more embodiments described herein, systems, computer-
implemented methods, apparatuses and/or computer pro-
gram products that can facilitate a zero-confidence adver-
sarial attack on a neural classifier are described.

According to an embodiment, a system 1s provided. The
system can comprise a memory that can store computer
executable components. The system can also comprise a
processor, operably coupled to the memory, and that can
execute the computer executable components stored 1n the
memory. The computer executable components can com-
prise an adversarial component that computes a perturbation
that cause misclassification by a neural network classifier.
The computer executable components can also comprise a
restoration component that determines a normal vector to a
constraint contour developed by the neural network classi-
fier. Further, the computer executable components can com-
prise a projection component that determines a tangential
vector to the constraint contour.

According to an embodiment, a computer-implemented
method 1s provided. The computer-implemented method can
comprise computing, by a system operatively coupled to a
processor, a perturbation that causes misclassification by a
neural network classifier. The computer-implemented
method can also comprise determining, by the system, a
normal vector to a constraint contour developed by the
neural network classifier. Further, the computer- 1mple-
mented method can comprise determiming, by the system, a
tangential vector to the constraint contour.

According to an embodiment, a computer program prod-
uct for computing a perturbation that causes misclassifica-
tion by a neural network classifier 1s provided. The computer
program product can comprise a computer readable storage
medium having program instructions embodied therewith.
The program 1nstructions can be executable by a processor
to cause the processor to generate, by the processor, a
convergence pathway through a hyperplane from an 1nitial
input to a point on a constraint contour developed by the
neural network classifier. Also, the convergence pathway
can comprise a normal vector to the constraint contour and
a tangential vector to the constraint contour.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example, non-
limiting system that can perform a zero-confidence adver-

10

15

20

25

30

35

40

45

50

55

60

65

2

sarial attack on a neural network classifier 1n accordance
with one or more embodiments described herein.

FIG. 2 1llustrates a diagram of an example, non-limiting,
convergence pathway that can be generated by one or more
systems to facilitate a zero-confidence adversarial attack on
a neural network classifier 1n accordance with one or more
embodiments described herein.

FIG. 3 illustrates a diagram of example, non-limiting
graphs that can depict empirical convergence curves char-
acterizing a convergence pathway that can be generated by
one or more systems to facilitate a zero-confidence adver-
sarial attack on a neural network classifier in accordance
with one or more embodiments described herein.

FIG. 4 1llustrates a diagram of an example, non-limiting
algorithm that can be implemented by one or more systems
to facilitate a zero-confidence adversarial attack on a neural
classifier 1n accordance with one or more embodiments
described herein.

FIG. 5 illustrates a diagram of example, non-limiting
graphs that can depict the eflicacy of a zero-confidence
adversarial attack on a neural network classifier as compared
with one or more conventional adversarial attacks 1n accor-
dance with one or more embodiments described herein.

FIG. 6 illustrates a diagram of example, non-limiting
graphs that can depict the eflicacy of a zero-confidence
adversarial attack on a neural network classifier as compared
with one or more conventional adversarial attacks in accor-
dance with one or more embodiments described herein.

FIG. 7 illustrates a diagram of example, non-limiting
graphs that can depict the etflicacy of a zero-confidence
adversarial attack on a neural network classifier as compared
with one or more conventional adversarial attacks 1n accor-
dance with one or more embodiments described herein.

FIG. 8 illustrates a block diagram of an example, non-
limiting system that can train a neural network classifier
based on a zero-confidence adversarial attack on the neural
network classifier 1n accordance with one or more embodi-
ments described herein.

FIG. 9 illustrates a diagram of an example, non-limiting,
method that can facilitate performing a zero-confidence
adversarial attack on a neural network classifier in accor-
dance with one or more embodiments described herein.

FIG. 10 1llustrates a diagram of an example, non-limiting

method that can facilitate performing a zero-confidence
adversarial attack on a neural network classifier 1n accor-
dance with one or more embodiments described herein.

FIG. 11 depicts a cloud computing environment in accor-
dance with one or more embodiments described herein.

FIG. 12 depicts abstraction model layers in accordance
with one or more embodiments described herein

FIG. 13 1llustrates a block diagram of an example, non-
limiting operating environment in which one or more
embodiments described herein can be facilitated.

DETAILED DESCRIPTION

The following detailed description 1s merely 1llustrative
and 1s not 1intended to limit embodiments and/or application
or uses of embodiments. Furthermore, there 1s no intention
to be bound by any expressed or implied information
presented 1n the preceding Background or Summary sec-
tions, or 1n the Detailed Description section.

One or more embodiments are now described with refer-
ence to the drawings, wherein like referenced numerals are
used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a more thorough

US 11,494,591 B2

3

understanding of the one or more embodiments. It 1s evident,
however, 1n various cases, that the one or more embodiments
can be practiced without these specific details.

As used herein, the term “adversarial attack™ can refer to
the task of finding small and 1mperceptible input transior-
mations that can cause a neural network classifier to mis-
classily. One or more types of adversarial attacks can have
access to gradient information of the target neural network.
There are two major paradigms of adversarial attacks that
attempt to 1impose mput perturbations. The first paradigm,
called the fix-perturbation adversanal attack, tries to find
perturbations that are most likely to cause misclassification,
with the constraint that the norm of the perturbations cannot
exceed a given level. Since the perturbation level 1s fixed,
fix-perturbation attacks can fail to find any adversarial
samples for mputs that are far away from the decision
boundary developed by the neural network classifier. The
second paradigm, called the zero-confidence adversarial
attack, tries to find the smallest perturbations that are guar-
anteed to cause misclassification, regardless the size of the
perturbations. Since zero-confidence adversarial attacks aim
to mimmize the perturbation norm, zero-confidence adver-
sarial attacks can find adversarial samples positioned on
and/or near the decision boundaries. The resulting pertur-
bation norm 1s also known as the margin of an mput feature
to the decision boundary.

Both paradigms are essentially constrained optimization
problems. The fix-perturbation adversarial attack can exhibit
a simple convex constraint (e.g., perturbation norm), but a
non-convex target (e.g., classification loss or logit differ-
ences). In contrast, the zero-confidence adversarial attack
can exhibit a non-convex constraint (e.g., classification loss
or logit differences), but a simple convex target (e.g., per-
turbation norm). Despite their similarity as optimization
problems, the two paradigms difler significantly in terms of
dificulty. The fix-perturbation attack problem 1s easier.
While conventional fix-perturbation adversarial attack meth-
ods (e.g., projected gradient descent and/or distributional
adversarial attack) can achieve both high efliciency and a
high success rate; conventional zero-confidence adversarial
attack methods (e.g., the fast gradient sign method and/or the
limited-memory-Broyden-Fletcher-Goldfarb-Shanno algo-
rithm) are 1naccurate and/or time consuming.

Various embodiments of the present invention can be
directed to computer processing systems, computer-imple-
mented methods, apparatus and/or computer program prod-
ucts that facilitate the efficient, eflective, and autonomous
(e.g., without direct human guidance) execution of a zero-
confidence adversarial attack against one or more neural
network classifiers with 1mproved accuracy and/or efli-
ciency over conventional techniques. One or more embodi-
ments can regard a zero-confidence adversarial attack that
can iterate between a restoration vector and a projection
vector to generate a convergence pathway within a hyper-
plane. The restoration vector can linearize the constraint and
solves the simplified optimization problem. The projection
vector can explore even smaller perturbations without
changing the constraint values significantly. At least through
the determination of restoration and/or projection vectors,
the various systems, computer-implemented methods, and/
or computer program products described herein can compute
a smaller margin and/or run significantly faster than con-
ventional zero-confidence adversarial attacks.

The computer processing systems, computer-imple-
mented methods, apparatus and/or computer program prod-
ucts employ hardware and/or software to solve problems
that are highly technical 1n nature (e.g., execute one or more

10

15

20

25

30

35

40

45

50

55

60

65

4

zero-confidence adversarial attacks against one or more
neural network classifiers), that are not abstract and cannot
be performed as a set of mental acts by a human. For
example, an individual, or even a plurality of individuals,
cannot readily analyze the vast amount of gradient informa-
tion of a neural network with the efliciency necessary to
compute a mimimal perturbation that causes a classifier of
the neural network to misclassity.

FIG. 1 1llustrates a block diagram of an example, non-
limiting system 100 that can perform one or more zero-
confldence adversarial attacks. Repetitive description of like
clements employed 1n other embodiments described herein
1s omitted for sake of brevity. Aspects of systems (e.g.,
system 100 and the like), apparatuses or processes 1n various
embodiments of the present invention can constitute one or
more machine-executable components embodied within one
or more machines, e¢.g., embodied 1n one or more computer
readable mediums (or media) associated with one or more
machines. Such components, when executed by the one or
more machines, €.g., computers, computing devices, virtual
machines, etc. can cause the machines to perform the
operations described.

As shown 1n FIG. 1, the system 100 can comprise one or
more servers 102, one or more networks 104, and/or one or
more neural network classifiers 106. The server 102 can
comprise adversarial component 108. The adversarial com-
ponent 108 can further comprise reception component 110,
restoration component 112, and/or projection component
114. Also, the server 102 can comprise or otherwise be
associated with at least one memory 116. The server 102 can
further comprise a system bus 118 that can couple to various
components such as, but not limited to, the adversarial
component 108 and associated components, memory 116
and/or a processor 120. While a server 102 1s illustrated 1n
FIG. 1, in other embodiments, multiple devices of various
types can be associated with or comprise the features shown
in FIG. 1. Further, the server 102 can communicate with a
cloud computing environment via the one or more networks
104.

The one or more networks 104 can comprise wired and
wireless networks, mcluding, but not limited to, a cellular
network, a wide area network (WAN) (e.g., the Internet) or
a local area network (LAN). For example, the server 102 can
communicate with the one or more neural network classi-
fiers 106 (and vice versa) using virtually any desired wired
or wireless technology including for example, but not lim-
ited to: cellular, WAN, wireless fidelity (Wi-F1), Wi-Max,
WLAN, Bluetooth technology, a combination thereot, and/
or the like. Further, although 1n the embodiment shown the
adversarial component 108 can be provided on the one or
more servers 102, 1t should be appreciated that the archi-
tecture of system 100 1s not so limited. For example, the
adversarial component 108, or one or more components of
adversarial component 108, can be located at another com-
puter device, such as another server device, a client device,
etc.

The one or more neural network classifiers 106 can be one
or more neural networks used to perform one or more
classification functions. The one or more neural network
classifiers 106 can comprise a plurality of artificial neurons
arrange in multiple layers, which can convert an input vector
to an output. Each neuron can apply a function to a given
input vector and pass the output to another layer. Addition-
ally, weights can be applied to signals passing from one
neuron to another, wherein the weights can be tuned 1n one
or more traiming processes to adapt the one or more neural
network classifiers 106 to the subject classification problem.

US 11,494,591 B2

S

For example, the one or more neural network classifiers 106
can generate a hyperplane, wherein a collection of neurons
clustered 1n a one region of the hyperplane can correspond
to one or more features of one class, and a collection of
neurons clustered in another region of the hyperplane can
correspond to one or more features of another class. Further,
the one or more neural network classifies 106 can generate
a constraint contour within the hyperplane that corresponds
to a decision boundary separating a plurality of classes from
cach other; thereby defining the one or more classifications
made by the one or more neural network classifiers 106.

In various embodiments, the one or more neural network
classifiers 106 can have output logits donated as “l,(x),
1,(x), . .., 1. ;(X),” where “C” can represent the total
number of classes, for any data token “(x,, t)”, wherein “x,”
can be an n-dimensional nput feature vector and
t €40, ..., C-1} can be its label. The one or more neural
network classifiers 106 can send one or more outputs (e.g.,
the one or more output logits and/or gradient information
regarding the one or more neural network classifiers 106) to
the adversarial component 108 directly (e.g., via a direct
clectrical connection) and/or indirectly (e.g., via the one or
more networks 104).

The adversarial component 108 can receive the one or
more outputs of the one or more neural network classifiers
106 and can compute the minimal mput perturbation that
causes the one or more neural network classifiers 106 to
misclassity. For example, the adversarial component 108
can determine the nearest point “x*” along the constraint
contour generated by the one or more neural network
classifiers 106 from an 1nitial input vector “x_” to perform a
targeted adversarial attack in accordance with Equation 1
below.

(1)

x* = argmind(x — xp), s.t. c(x) <

Whereimn “c(x)” can represent the constraint function and

“d(x-x,)” can be a norm, such as ¢, and/or €_ norms.
Additionally, for non-targeted adversarial attacks, the con-
straint can be defined by Equation 2 below.

(2)

c(x) = Lix) — mflef (x)—c&

Wherein “e” can represent an oilset parameter, which can,
for example, be set to a small negative number to ensure that
the adversarial sample lies on the incorrect side of the
constraint contour (e.g., the decision boundary), and “1” can
represent the iteration number.

In one or more embodiments, the reception component
110 can receive the one or more outputs from the one or
more neural network classifiers 106. For example, the recep-
tion component 110 can be operably coupled (e.g., via the
one or more networks 104) to the one or more neural
network classifiers 106. Further, the reception component
110 can also be operably coupled (e.g., directly and/or via
the one or more networks 104) to the restoration component
112 and/or the projection component 114. Thus, the recep-
tion component 110 can {facilitate sharing one or more
outputs generated by the one or more neural network clas-
sifiers 106 with the restoration component 112 and/or the
projection component 114.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The adversarial component 108 can generate a conver-
gence pathway through the hyperplane generated by the one
or more neural network classifiers 106 from an 1nitial data
point “x“”” to a data point on the constraint contour “x*”
that 1s nearest an original input “x,” 1n accordance with
Equation 1 and/or 2. For example, the convergence pathway
can comprise one or more iterations of normal vectors
determined by the restoration component 112 and/or tan-
gential vectors determined by the projection component 114,
wherein “k” can denote the iteration number.

The restoration component 112 can determine one or
more normal vectors to the constraint contour at a given data
point “x*” on the hyperplane. The one or more normal
vectors can serve to build the convergence pathway towards
the constraint boundary (e.g., c¢(x)=0) with the shortest
distance. For example, the restoration component 112 can
determine the one or more normal vectors 1n accordance
with Equation 3 below.

%) = argmind(x —), s.t. V' c(x*)(x — x%9)) = —a® o(x14)) (3)

Wherein “T” can represent matrix/vector transpose, “z"”
can represent a transition point from a normal vector to a
tangential vector within a given iteration, and “o®” can
represent a step size (e.g., within [0,1]) of the given 1teration.
The left-hand side of the constraint in Equation 3 i1s the
first-order Taylor approximation of c¢(z*)-c(x®); thus, the
constraint can extend the convergence pathway closure to
the constraint contour (e.g., c(x)=0) by the 1teration step size
“a®”_ In other words, because of the Taylor approximation
the restoration component 112 can approximately reduce the
distance to ¢(x)=0 by a.. Further, it can be shown from the
dual-norm theory that the solution to Equation 3 can be
Equation 4 below.

(4)

w(k)c.(x(k))s(_x(k))

(k) _ (k)
L 0=X 0 —
VI e(xk)s(xic))

Wherein “s(x)” can be defined such that V'c(x)s(x)=d*(V’c
(X)), wherein “d*(*)” can be the norm of “d(*)”. For 1nstance,

the dual norm of the € ., norm can be the € (1- 1) ' thereby
leading to Equation 5 below.

: {Vc(x)/ll?c(x)llz 1t d(-) 1s thef> norm (3)
s(x) =

sign(Ve(x)) it d(-)i1s the f nrorm

Thereby, the restoration vector can extend the convergence
pathway from an initial data point towards the constraint
contour (e.g., the decision boundary). Further, the extension
of the convergence pathway by the restoration vector can be
optimized by a projection vector.

The projection component 114 can determine one or more
tangential vectors along a tangent plane to the constraint
contour 1n order to extend the convergence pathway towards
the original input “x,”, while ensuring that the convergence
pathway’s distance from the constraint contour “c(x)” does
not change drastically. Thus, the projection vector can
extend the convergence pathway from the intermediate point
“z2U reached by the normal vector of the subject iteration
to a second data point “x**Y that can serve as the initial
data point for the next iteration (e.g., the next extension of

US 11,494,591 B2

7

the convergence path by one or more normal vectors and/or
projection vectors). For example, the projection component
114 can determine the one or more tangential vectors 1n
accordance with Equation 6 below.

3ot D=7 006 00y g(200_x.)~ pEBp® 57

(6)

Wherein “B“” can represent the step size of the iteration
within [0,1]. Also, a® and/or b%® can be two scalars. The
second term of Equation 6 can reduce the distance the
original mput “x07”, while the third term can reduce the
constraint (e.g., at least because s(z*) and Vc(z%) can have
a positive mner product). Therefore, the tangential vector
can strike a balance between reduction 1n distance from the
original mput and reduction in constraint.

The scalars a® and b can have two designs. The first
design can ensure the constraint values are substantially the
same after the extension of the convergence pathway by the
tangential vector. The first design can be characterized by
Equation 7 below.

Viez®)(xFD—zn=((7)

Further, Equation 7 can have a solution characterized by
Equation 8 below.

a7 (2" NV d(z% — xp) (8)

pik) _
VT C(z(k))j(z(k))

A second design can ensure the perturbation norm reduces
roughly by B (eg., dx“V=xo)=~(1-p*)d(z"—x,).
Whereupon, by the Taylor approximation, Equation (9) can
be derived, as presented below.

VId(z0=x0) (5 D=2 =P 2P x,)

Further, Equation 9 can have a solution characterized by
Equation 10 below.

POV i) — xo)s(z2%) (10)

S _
VI d(zW — xg)Vd(z®) — xg)

While Equations 8 and 10 exemplily two specific choices
for scalars “a®®” and “b“”, in various embodiments the
adversarial component 108 can execute the zero-confidence
adversarial attack described herein with a convergence guar-
antee for a wide range of bounded scalars “a”” and “b"”
that can satisty some conditions. Advantageously, the one or
more features executed by adversarial component 108 can
provide a general and/or tlexible framework for zero-con-
fidence adversarial attack designs. For example, Equation 8

can be implemented for €, norms (e.g., the root mean
squared distance), while Equation 10 can be implemented

for € norms.

FIG. 2 1llustrates a diagram of an example, non-limiting,
convergence pathway 200 that can be generated by the
adversarial component 108 1n accordance with one or more
embodiments described herein. Repetitive description of
like elements employed in other embodiments described
herein 1s omitted for sake of brevity. As shown 1n FIG. 2, the
convergence pathway 200 can comprise one or more normal
vectors and tangential vectors determined in a series of
iterations by the adversarial component 108 (e.g., by the
restoration component 112 and/or the projection component

114).

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 2 can depict a hyperplane 1n which a constraint
contour line 202 separates a first region 204, comprising a
first class of features, from a second region 206, comprising
a second class of features. The hyperplane (e.g., including
the constraint contour line 202, the first region 204, and/or
the second region 206) can be generated by the one or more
neural network classifiers 106. The convergence pathway
200 depicted 1in FIG. 2 can be generated by the adversarial

component 108 using an €, norm in conjunction with
Equation 8. As described herein, “x,” can represent an
original mput and “x*” can represent a point on the con-
straint contour line 202 that 1s nearest the original mput.
During a first iteration “k” the restoration component 112

can determine one or more normal vectors (e.g., represented
by the double line arrows 1n FI1G. 2) with regards to an 1nitial
data point “x*”. As shown in FIG. 2, the one or more
normal vectors can extend from the initial data point “x“”
directly towards the constraint contour line 202 (e.g., the
decision boundary) by following the normal direction to the
constraint contour line 202. Thereby, the conveyance path-
way can extend from the initial data point “x“” to an
intermediate data point “z"”.

Also during the first iteration, the projection component
114 can determine one or more tangential vectors (e.g.,
represented by thick bold arrows 1n FI1G. 2) with regards the
intermediate data point “z*”. As shown in FIG. 2, the one
or more tangential vectors can extend from the intermediate
data point “z*” along the tangent plane of the constraint
contour line 202 to reduce the distance to the original input

“Xo” while keeping the constraint value “c(k)” the same, or
substantially the same. Thereby the conveyance pathway
can extend to a new data point “x%**'”’, which can serve as
the 1nitial data point for the next iteration of normal vectors
and/or tangential vectors. By computing one or more itera-
tions of normal vectors and/or tangential vectors, the adver-
sarial component 108 can generate a convergence pathway
200 that approaches the nearest data point on the constraint
contour line 202 “x*” to the original mput “x,”.

FIG. 3 illustrates a diagram of an example, non-limiting,
first graph 300 that can characterize an exemplary conver-
gence pathway 200 by an empirical convergence curve of
the perturbation norm. FIG. 3 can also depict an example,
non-limiting second graph 302 that can characterize the
same exemplary convergence pathway 200 by an empirical
convergence curve of the constramnt value. Repetitive
description of like elements employed 1n other embodiments
described herein 1s omitted for sake of brevity. The exem-
plary convergence pathway 200 characterized by the first
graph 300 and/or the second graph 302 can be generated by

the adversarial component 108 using an €, norm in con-
junction with Equation 8 on a randomly chosen CIFAR
dataset 1mage.

As shown 1n the first graph 300 and/or the second graph
302, each transition for a triangle to a circle can be associ-
ated with a normal vector, and/or each transition from a
circle to a triangle can be associated with a tangential vector.
Further, the first line 304 and/or the second line 306 can
represented a smoothed depiction of the transitions (e.g., a
smoothed version of the plurality of iterations). As shown 1n
the first graph 300 and/or the second graph 302, the one or
more normal vectors can reduce the constraint value while
slightly increasing the constraint norm, and the one or more
tangential vectors can reduce the perturbation norm while
slightly affecting the constraint value, wherein the first line
304 and the second line 306 can eventually converge.

US 11,494,591 B2

9

Further shown by the first graph 300 and/or the second
graph 302, the zero-confidence adversarial attack imple-

mented by the adversarial component 108 can converge
quickly (e.g., within 20 iterations 1n the example depicted 1n
FIG. 3). Therefore, the zero-confidence adversarial attack
implemented by the adversarial component 108 can be
accelerated. For instance, 11 margin accuracy 1s the priority
of a user of the system 100, the accuracy can be adjusted to
increase by increasing the set number of iterations (e.g., to
200). In another 1instance, if efliciency 1s the priority of a user
of the system 100, the number of iterations performed by the
adversarial component 108 can be set to a smaller number
(e.g., 30).

In various embodiments, the constraint function “c(x)” in
Equation 2 can be non-convex; thus, a convergence analysis
for the one or more zero-confidence adversarial attacks that
can be implemented by the adversarial component 108 can
be based on the vicinity of a unique local optimum. For
example, wherein “x*”” can be denoted as one local optimum
for Equation 1, and assuming Vc(x*) exists, matrices for the
one or more tangential vectors can be defined by the
projection component 114 1n accordance with Equation 11
below.

P=I=s(x*)(V"c(x*)s(x*)) 'V c(x*) (11)

Wherein “P” can represent the projection matrix, and “I”” can
represent matrix/vector transpose. Additionally, wherein the
adversarial component 108 considers the neighborhood,
B ={x: ||P[x-x*]|l,°<X, lc(x)I=C}, that can satisfy the fol-
lowing assumptions:

1. (Differentiability) Vx €18, Vc(x) exists, but can be
discontinuous (e.g., all the discontinuity points of the
gradient in [B can be jump discontinuities;

2. (Lipschitz Continuity at x*) Vx €B, [|s(x)-s(x*)
lo=Llls ()| =%

3. (Bounded Gradient Norm) Vx € B , O<mx=||Vc(x)||,=M;

4. (Bounded Gradient Difforonoe) 40>0, Vx, vy ER s.t.y-

x=1s(x) or some 1, V'c(y)s(x)=dV”c(x)s(x);

5. (Constraint Convomty) Fve(0,1), Vx €B, (@©VdV
(x=%0)+b®s(x))" P* P(x—%0)zy(x-X,)" P* P(x—xX,);

6. (Umque Optimality) x* 1s the only global optimum
within 1B ;

7. (Constant Bounded Normal Vector Size)

8.

p
(k + ko)¥”’

(Shrinking Tangential Vector Size) f%) <

where 0<v<l and p=Mgk,>m;; 1a®I<M,, b
9. (Presence 1n Nelghborhood) dK, X(K) Elnt[B](e.g., the

interior of Ik
Then the convergence guarantee of the adversarial attack
can be characterized as

lim ||x% = x*||, = 0.

f—oo

Whereimn “L” can represent the Lipchitz constant, “M” can
represent gradient norm upper bound, “v” can represent
tangential vector size decay rate, “v” can represent convexity
lower bound, and/or “K” can represent first presence 1n
Neighborhood.

The first assumption can allow jump discontinuities in

Vc(x) almost everywhere, which can be a practical assump-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion for deep neural networks. For example, most neural
network operations (e.g., rectified linear unit (“Rel.U™),
max-pooling, and/or operation of Equation 2) can introduce
nothing beyond jump discontinuities in gradient. The third
assumption can require the constraint gradient to be lower
bounded. However, the gradient boundedness assumption
can be imposed in only B, which can be near the decision
boundary. Additionally, the fifth assumption can stipulate
that ¢(x) 1s convex in ¥ so that the first order optimality
condition can readily imply a local minimum instead of a
local maximum.

In various embodiments, each dimension of the input
teatures comprised within the hyperplane can be bounded
(e.g., x €|x,.x_17). To impose a box constraint, the
restoration component 112 can modity Equation 3 1n accor-
dance with Equation 12 below.

9 =arg min

o)
X< [Xpmin Amax |

dix — ¥, (12)

S.tL. VTC(X(M)(_X _x(k)) — —wmc(xm)

Wherein a solution to Equation 12 can be characterized by
Equation 13 below.

= Proji, e 2} (13)
where

fﬂc(xfk>)+2v C(X(k)) (k) (k))
S0 _ (0 _ € $(x%

2, Vic(xt®)s; (xH)

1=l

Wherein “Proj(*)” can be an operator that projects the vector

in its argument onto the subset in its subscript, “ 1 can be

a set of indices with which the elements in Z* can satisfy the

box constraint, and “1 <> can be the compliment to 1.

Further, 1n various embodiments, the adversarial compo-
nent 108 can perform a target-specific normal vector
towards each class 1n the hyperplane and/or choose the
normal vector with the shortest distance to develop the
convergence pathway. For example, a set of target-specific
constraints (e.g., {¢,(x)=1, (x)-1(x)-¢}) can be introduced.
Thereby the one or more normal vectors can solve Equation
14 below.

kD) _) (14)

2% = argmind(z
e A

Wherein “z%"” can be the solution to Equations 3 or 12 with
c(x") replaced with c(x*), and thus can be equal to
Equations 4 or 13 with c¢(x*’) replaced with c,(x“).

Also, “A” can represent a set of candidate adversarial
classes, which can be all the incorrect classes 1f the number
of classes 1s small or can be a subset of the adversarial
classes with the highest logits otherwise. Equation 14 can be
implemented by the adversarial component 108 (e.g., via the
restoration component 112) during the first few iterations of
the convergence pathway, wherein the closest and highest
adversarial classes are likely to be distinct.

Additionally, 1n one or more embodiments the nitializa-
tion of the first initial data point “x'®”” can be generated by

US 11,494,591 B2

11

a deterministic input generation process or a random input
generation process in accordance with Equation 15 below.

xP=x, (Deterministic), X'V =xq+u, t~U{|-u, u|"}

(Random) (15)

Wherein “U{l-u, ul”}” can denote the uniform random
distribution 1n “0” can represent the

Gil

—u, ul”” (e.g., wherein “u
initialization perturbation). Also, multiple trials with random
initializations can be performed to find a local optimum.
Furthermore, 1n various embodiments, final iterations of the
convergence pathway can comprise normal vectors only to
ensure the adversarial attack is successtul (e.g., c(X)=¢g).

FIG. 4 1llustrates a diagram of an example, non-limiting,
algorithm 400 that can summarize the various features
described herein and/or delineate a zero-confidence adver-
sarial attack procedure in accordance with one or more
embodiments described herein. Repetitive description of
like elements employed in other embodiments described
herein 1s omitted for sake of brevity. As shown 1n FIG. 4,
cach 1teration of a normal vector and/or a tangential vector
can require only one backward propagation, and thus the
computational complexity of each move can be comparable
to one 1teration of most conventional attack algorithms.

FIG. 5 illustrates a diagram of example, non-limiting
graph 502 and/or graph 504, which can demonstrate the
cellicacy of the zero-confidence adversanial attack imple-
mented by the adversarial component 108 against a MNIST
neural network classifier 106, as compared to conventional
adversarial attack techmiques, in accordance with one or
more embodiments described herein. Repetitive description
of like elements employed 1n other embodiments described
herein 1s omitted for sake of brevity. The neural network
classifier 106 trained on MNIST can comprise a stack of two
Sx35 convolution layers with 32 and 64 filters respectively,
tollowed by two fully-connected layers with 1,024 hidden
units. Also, the range of each pixel can be [0,1].

Graph 302 can characterize an implementation of the
zero-confidence adversarial attack implemented by the

adversarial component 108 with a €, target and evaluation
norm. Graph 504 can characterize an implementation of the
zero-confidence adversanial attack implemented by the

adversarial component 108 with a € __ target and evaluation
norm. The first line 506 can represent the zero-confidence
adversarial attack implemented by the adversarial compo-
nent 108, wherein the number of iterations can be set to 200
with 10 random starts. The second line 508 can represent the
Carlim1 & Wagner (“CW?”) adversarial attack, wherein the
learning rate can be set to 0.05 and the number of binary
steps for multiplier search 1s 10. Further, the number of
iterations for CW can be set to 2,000. The third line 510 can
represent the DeepFool adversarial attack, wherein the num-
ber of 1terations can be set to 200. The fourth line 512 can
represent the FGSM adversarnal attack, wherein the step size
1s searched to achieve zero-confidence attack and/or the
number of iterations can be set to 200.

Graph 502 and/or graph 504 plots the cumulative density
function (“CDF”’) of the margins of the validation data,
which can also be interpreted as the percentage success rate
of the subject adversarial attacks as a function of perturba-
tion level. As shown 1n FIG. 5, the zero-confidence adver-
sarial attack implemented by the adversarial component 108
can outperform the conventional adversarial attacks (e.g.,
maintaining a 3% advantage over CW).

FIG. 6 illustrates a diagram of example, non-limiting
graph 602 and/or graph 604, which can demonstrate the
cellicacy of the zero-confidence adversarial attack imple-
mented by the adversarial component 108 against a CIFAR

10

15

20

25

30

35

40

45

50

55

60

65

12

neural network classifier 106, as compared to conventional
adversarial attack techniques, in accordance with one or
more embodiments described herein. Repetitive description
of like elements employed 1n other embodiments described
herein 1s omitted for sake of brevity. The neural network
classifier 106 evaluating the CFAR dataset can a pre-trained
ResNet32 classifier. Also, the range of each pixel can be
[0,255].

Graph 602 can characterize an implementation of the
zero-confidence adversarial attack implemented by the

adversarial component 108 with a £, target and evaluation
norm. Graph 604 can characterize an implementation of the
zero-confidence adversarial attack implemented by the

adversarial component 108 with a € __ target and evaluation
norm. The first line 606 can represent the zero-confidence
adversarial attack implemented by the adversarial compo-
nent 108, wherein the number of iterations can be set to 200
with 10 random starts. The second line 608 can represent the
CW adversarial attack, wherein the learning rate can be set
to 0.001 and the number of binary steps for multiplier search
1s 10. Further, the number of iterations for CW can be set to
2,000. The third line 610 can represent the DeepFool adver-
sarial attack, wherein the number of iterations can be set to
200. The fourth line 612 can represent the FGSM adversarial
attack, wherein the step size 1s searched to achieve zero-
confidence attack and/or the number of 1terations can be set

to 200.

Graph 602 and/or graph 604 plot the CDF of the margins
of the validation data, which can also be interpreted as the
percentage success rate of the subject adversarial attacks as
a function of perturbation level. As shown 1n FIG. 6, the
zero-confidence adversarial attack implemented by the
adversarial component 108 can outperform the conventional
adversarial attacks (e.g., maintaining a 1% advantage over
CW).

FIG. 7 illustrates a diagram of example, non-limiting
graph 702 and/or graph 704, which can demonstrate the
cllicacy of the zero-confidence adversarial attack imple-
mented by the adversarial component 108 against an Ima-
geNet neural network classifier 106, as compared to con-
ventional adversarial attack techniques, 1n accordance with
one or more embodiments described herein. Repetitive
description of like elements employed 1n other embodiments
described herein 1s omitted for sake of brevity. The neural
network classifier 106 evaluating the ImageNet dataset can
a pre-trained ResNet50 classifier, wherein evaluation can be
on a validation subset containing 10,000 images and/or the
range of each pixel can be [0,255].

Graph 702 can characterize an implementation of the
zero-confidence adversanial attack implemented by the

adversarial component 108 with a £, target and evaluation
norm. Graph 704 can characterize an implementation of the
zero-confidence adversanal attack implemented by the

adversarial component 108 with a € __ target and evaluation
norm. The first line 706 can represent the zero-confidence
adversarial attack implemented by the adversarial compo-
nent 108, wherein the number of 1terations can be set to 200
with 10 random starts. The second line 708 can represent the
CW adversarial attack, wherein the learning rate can be set
to 0.01 and the number of binary steps for multiplier search
1s 10. Further, the number of iterations for CW can be set to
2,000. The third line 710 can represent the DeepFool adver-
sarial attack, wherein the number of iterations can be set to
200. The fourth line 712 can represent the FGSM adversarial

attack, wherein the step size 1s searched to achieve zero-

US 11,494,591 B2

13

confidence attack and/or the number of iterations can be set
to 200. Graph 702 and/or graph 704 plot the CDF of the

margins of the validation data, which can also be 1nterpreted
as the percentage success rate of the subject adversanal
attacks as a function of perturbation level. As shown 1n FIG.
6, the zero-confidence adversarial attack implemented by the
adversarial component 108 can outperform the conventional
adversarial attacks.

Additionally, the eflicacy of the zero-confidence adver-
sarial attack implemented by the adversarial component 108
was compared to the conventional projected gradient
descent (“PGD”) adversarial attack, wherein the learning
rate 1s set to 0.01 for MNIST, 0.05 for CIFAR, and/or 0.1 for
ImageNet. Four perturbation levels for each attack scenario
were chosen to facilitate the comparison. The perturbation
levels were chosen to roughly follow the 0.2, 0.4, 0.6, and/or
0.8 quantiles of the zero-confidence adversarial attack
implemented by the adversarial component 108. Table 1
compares the success rates under the chosen quantiles

.

among attacks with the €_ target and evaluation norm.

TABLE 1

MNIST CIFAR ImageNet

ALGORITHM 0.06/0.08/0.10/0.12 0.2/0.4/0.6/1 0.05/0.1/0.2/0.4
FGSM 7.55/13.9/ 18.5/31.0/ 39.8/47.2/
24.9/35.4 41.1/54.7 60.1/75.3
PGD 17.1/42.2/ 18.9/38.9/ 40.4/49 .8/
73.7/91.8 59.1/84.1 68.8/90.6
Algorithm 400 18.1/43.0/ 21.1/42.2/ 41.5/51.3/
74.1/92.1 62.6/87.3 69.0/90.8

As shown in Table 1, the example algorithm 400
described herein can output perform the conventional attack
techniques with regards to each of the neural network
classifiers 106.

Furthermore, the eflicacy of the zero-confidence adver-
sarial attack implemented by the adversarial component 108
was evaluated on the MNIST Adversarial Examples Chal-
lenge, which 1s a challenge of attacking an MNIST model
adversarially trained using PGD with 0.3 perturbation level.
The zero-confidence adversarial attack implemented by the
adversarial component 108 was executed with 50 random
starts and/or the initialization perturbation range was 0.3.
Also, the number of 1terations was set to 500, the target norm

e

was €_, “b > was set to 5, and/or “a,” was set in accordance
with Equation 10.

Table 2 depicts the success rates of the different attacks
under 0.3 perturbation level. The baseline algorithms were
all fix-perturbation attacks. As shown in Table 2, the zero-
confidence adversarial attack implemented by the adver-
sarial component 108 performed competitively against the
conventional fix-perturbation attacks.

TABLE 2
Algorithm Success Rate (%)
Zheng et al. 11.21
Algorithm 400 11.16
I**-Order on Logit Diff 11.15
PGD on Cross-Entropy Loss 10.38
PGD on CW Loss 10.29

Moreover, to further access the efliciency of the zero-
confidence adversarial attack implemented by the adver-
sarial component 108, Table 3 compares the running time
(e.g., 1 seconds) of attacking one batch of images. The

10

15

20

25

30

35

40

45

50

55

60

65

14
batch size 1s 200 for MNIST and/or CIFAR, and/or 100 for

ImageNet. Only the €, target and evaluation norm is shown
in Table 3 because the other versions can exhibit stmilar run
times. As shown by Table 3, the running time of the
zero-confidence adversarial attack implemented by the
adversarial component 108 can be much shorter than CW
and/or can be comparable to DeepFool and/or PGD.

TABLE 3
Algorithm MNIST CIFAR ImageNet
CW 16.02 234.75 872.28
DeepFool 1.14 21.26 44.41
PGD 0.87 33.17 46.3
FSGM 0.11 0.95 10.05
Algorithm 400 3.01 51.03 248.82

FIG. 8 illustrates a diagram of the example, non-limiting
system 100 further comprising defense component 802 1n
accordance with one or more embodiments described herein.
Repetitive description of like elements employed in other
embodiments described herein 1s omitted for sake of brevity.
The defense component 802 can train the one or more neural
network classifiers 106 using one or more of the results of
the zero-confidence adversarial attack implemented by the
adversarial component 108.

As used herein, the term “adversarial training” can refer
to an 1terative training scheme for a neural network classifier
106 that can make the neural network classifier 106 more
robust against adversarial attacks. Each iteration of the
adversarial traiming can consist of two steps. The first step
can be to generate a set of adversarial samples that can attack
the subject neural network classifier 106. The second step
can be to update the neural network classifier 106 by
reducing the classification loss on these adversarial samples,
such that the updated neural network classifier 106 can
classily these adversarial samples more correctly.

To demonstrate the eflicacy of training the one or more
neural network classifiers 106 based on the zero-confidence
adversarial attack implemented by the adversarial compo-
nent 108, an adversarial training experiment was performed
using algorithm 400 on CIFAR as compared to FGSM
adversarial training under E perturbation norm. Unlike
FGSM, algorithm 400 can aim to find an adversarial
example whether or not 1t falls 1 the € perturbation norm.
In order to impose the € perturbation norm constraint,
adversarial training was performed on “p” percent of the
adversarial images that have the smallest perturbation norm

until the average perturbation norm of the lowest “p” percent

reached €. Additionally, the ¢_ norm was targeted.

The adversanal training experiment showed that adver-
sarial training with algorithm 400 can achieve a better
performance as compared to conventional techmques. For
example, the success rate of algorithm 400 under a pertur-
bation norm of 2.5 can reduce from 99.8% to 40.2%,
whereas that of FGSM can reduce from 73.2% to 35.4%.

FIG. 9 illustrates a flow diagram of an example, non-
limiting method 900 that can facilitate performing one or
more zero-confldence attack algorithms in accordance with
one or more embodiments described herein. Repetitive
description of like elements employed 1n other embodiments
described herein 1s omitted for sake of brevity.

At 902, the method 900 can comprise computing, by a
system 100 (e.g., via the adversarial component 108) opera-
tively coupled to a processor 120, a perturbation that causes
misclassification by one or more neural network classifiers

US 11,494,591 B2

15

106. For example, the computing at 902 can be performed 1n
accordance with algorithm 400 described heremn. For
instance, the computing at 902 can developing a zero-
confidence adversarial attack against the one or more neural
network classifiers 106.

At 904, the method 900 can comprise determining, by the
system 100 (e.g., via the restoration component 112), one or
more normal vectors to a constraint contour (€.g., constraint
contour lme 202) developed by the one or more neural
network classifiers 106. For example, the determining at 904
can be performed 1n accordance with Equations 3, 12, and 14
described herein. For instance, the constraint contour can be
comprised within a hyperplane developed by the one or
more neural network classifiers 106. Also, the constraint
contour can separate one or more input features from a first
class localized in one region of the hyperplane and one or
more input features from a second class localized 1n another
region of the hyperplane (e.g., as shown in FIG. 2). In one
or more embodiments, the one or more normal vectors can
extend along a direction normal to the constraint contour as
described with regards to and/or depicted by FIG. 2.

At 906, the method 900 can comprise determining, by the
system 100 (e.g., via the projection component 114), one or
more tangential vectors to the constraint contour (e.g.,
constraint contour line 202). For example, the determining at
904 can be performed in accordance with Equations 6
described herein. For instance, the one or more tangential
vectors can extend along a plane tangent to the constraint
contour as described with regards to and/or depicted by FIG.
2. In one or more embodiments, a normal vector and/or a
tangential vector in combination can be determine 1n a first
computing iteration to develop a portion of a convergence
pathway (e.g., exemplary convergence pathway 200), which
can facilitate in computing the perturbation. Further, the
convergence pathway can comprise a plurality of iterations,
wherein the determining at 904 and/or the determining at
906 can be reiterated between iterations.

FIG. 10 illustrates a flow diagram of an example, non-
limiting method 1000 that can facilitate performing one or
more zero-confidence attack algorithms 1n accordance with
one or more embodiments described herein. Repetitive
description of like elements employed in other embodiments
described herein 1s omitted for sake of brevity.

At 1002, the method 1000 can comprise computing, by a
system 100 (e.g., via the adversarial component 108) opera-
tively coupled to a processor 120, a perturbation that causes
misclassification by one or more neural network classifiers
106. For example, the computing at 1002 can be performed
in accordance with algorithm 400 described herein. For
instance, the computing at 1002 can developing a zero-
confidence adversarial attack against the one or more neural
network classifiers 106.

At 1004, the method 1000 can comprise determining, by
the system 100 (e.g., via the restoration component 112), one
or more normal vectors to a constraint contour (e.g., con-
straint contour line 202) developed by the one or more
neural network classifiers 106. For example, the determining
at 1004 can be performed 1n accordance with Equations 3,
12, and 14 described herein. For instance, the constraint
contour can be comprised within a hyperplane developed by
the one or more neural network classifiers 106. Also, the
constraint contour can separate one or more input features
from a first class localized 1n one region of the hyperplane
and one or more 1nput features from a second class localized
in another region of the hyperplane (e.g., as shown 1n FIG.
2). In one or more embodiments, the one or more normal

10

15

20

25

30

35

40

45

50

55

60

65

16

vectors can extend along a direction normal to the constraint
contour as described with regards to and/or depicted by FIG.
2.

At 1006, the method 1000 can comprise determining, by
the system 100 (e.g., via the projection component 114), one
or more tangential vectors to the constraint contour (e.g.,
constraint contour line 202). For example, the determining at
1006 can be performed in accordance with Equations 6
described herein. For instance, the one or more tangential
vectors can extend along a plane tangent to the constraint
contour as described with regards to and/or depicted by FIG.
2. In one or more embodiments, a normal vector and/or a
tangential vector in combination can be determine 1n a first
computing iteration to develop a portion of a convergence
pathway (e.g., exemplary convergence pathway 200), which
can facilitate in computing the perturbation. Further, the
convergence pathway can comprise a plurality of iterations,
wherein the determining at 1004 and/or the determining at
1006 can be reiterated between iterations.

At 1008, the method 1000 can further comprise training,
by the system 100 (e.g., via the defense component 802), the
one or more neural network classifiers 106 using the com-
puted perturbation. For example, the accuracy and/or robust-
ness of the one or more neural network classifiers 106 can
be enhanced training the one or more neural network clas-
sifiers 106 with an adversarial attack (e.g., algorithm 400)
capable of inducing errors from which the one or more
neural network classifiers 106 can learn.

It 1s to be understood that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable ol being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
ellort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand seli-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense of location independence i1n that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

US 11,494,591 B2

17

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud mfrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
inirastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or oil-premises.

Community cloud: the cloud infrastructure 1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modulanty, and
semantic interoperability. At the heart of cloud computing 1s
an 1nfrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 11, illustrative cloud computing
environment 1100 1s depicted. As shown, cloud computing
environment 1100 includes one or more cloud computing
nodes 1102 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 1104, desktop com-
puter 1106, laptop computer 1108, and/or automobile com-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

puter system 1110 may communicate. Nodes 1102 may
communicate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 1100 to offer infra-
structure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a
local computing device. It 1s understood that the types of
computing devices 1104-1110 shown in FIG. 11 are intended
to be illustrative only and that computing nodes 1102 and
cloud computing environment 1100 can communicate with
any type of computerized device over any type of network
and/or network addressable connection (e.g., using a web
browser).

Referring now to FIG. 12, a set of functional abstraction
layers provided by cloud computing environment 1100
(FIG. 11) 1s shown. Repetitive description of like elements
employed 1n other embodiments described herein 1s omitted
for sake of brevity. It should be understood 1n advance that
the components, layers, and functions shown in FIG. 12 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided.

Hardware and software layer 1202 includes hardware and
soltware components. Examples of hardware components
include: mainframes 1204; RISC (Reduced Instruction Set
Computer) architecture based servers 1206; servers 1208;
blade servers 1210; storage devices 1212; and networks and
networking components 1214. In some embodiments, soft-
ware components mclude network application server soft-
ware 1216 and database software 1218.

Virtualization layer 1220 provides an abstraction layer
from which the following examples of virtual entities may
be provided: wvirtual servers 1222; virtual storage 1224;
virtual networks 1226, including virtual private networks;
virtual applications and operating systems 1228; and virtual
clients 1230.

In one example, management layer 1232 may provide the
functions described below. Resource provisioning 1234 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 1236
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or 1nvoicing for
consumption ol these resources. In one example, these
resources may include application soitware licenses. Secu-
rity provides identity vernification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 1238 provides access to the cloud computing envi-
ronment for consumers and system admimstrators. Service
level management 1240 provides cloud computing resource
allocation and management such that required service levels
are met. Service Level Agreement (SLA) planning and
tulfillment 1242 provide pre-arrangement for, and procure-
ment of, cloud computing resources for which a future
requirement 1s anticipated in accordance with an SLA.

Workloads layer 1244 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 1246;
soltware development and lifecycle management 1248; vir-
tual classroom education delivery 1250; data analytics pro-
cessing 1252; transaction processing 12354; and zero-contfi-
dence adversarial attack computing 1256. Various
embodiments of the present invention can utilize the cloud
computing environment described with reference to FIGS.

US 11,494,591 B2

19

11 and 12 to execute one or more features of the zero-
confldence adversarial attack described herein (e.g., algo-
rithm 400).

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but 1s not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be

10

15

20

25

30

35

40

45

50

55

60

65

20

made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the blocks may occur out of the order
noted i the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

In order to provide a context for the various aspects of the
disclosed subject matter, FIG. 13 as well as the following
discussion are intended to provide a general description of a

US 11,494,591 B2

21

suitable environment in which the various aspects of the
disclosed subject matter can be implemented. FIG. 13 1llus-
trates a block diagram of an example, non-limiting operating,
environment in which one or more embodiments described
herein can be facilitated. Repetitive description of like
clements employed 1n other embodiments described herein
1s omitted for sake of brevity. With reference to FIG. 13, a
suitable operating environment 1300 for implementing vari-
ous aspects of this disclosure can include a computer 1312.
The computer 1312 can also include a processing unit 1314,
a system memory 1316, and a system bus 1318. The system
bus 1318 can operably couple system components including,
but not limited to, the system memory 1316 to the process-
ing unit 1314. The processing unit 1314 can be any of
various available processors. Dual microprocessors and
other multiprocessor architectures also can be employed as
the processing unit 1314. The system bus 1318 can be any
of several types of bus structures including the memory bus
or memory controller, a peripheral bus or external bus,
and/or a local bus using any variety of available bus archi-
tectures including, but not limited to, Industrial Standard
Architecture (ISA), Micro-Channel Architecture (MSA),
Extended ISA (EISA), Intelligent Drive Electronics (IDE),
VESA Local Bus (VLB), Peripheral Component Intercon-
nect (PCI), Card Bus, Universal Serial Bus (USB),
Advanced Graphics Port (AGP), Firewire, and Small Com-
puter Systems Interface (SCSI). The system memory 1316
can also include volatile memory 1320 and nonvolatile
memory 1322. The basic input/output system (BIOS), con-
taining the basic routines to transfer mmformation between
clements within the computer 1312, such as during start-up,
can be stored in nonvolatile memory 1322. By way of
illustration, and not limitation, nonvolatile memory 1322

can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec-

trically erasable programmable ROM (EEPROM), flash
memory, or nonvolatile random access memory (RAM)
(e.g., ferroelectric RAM (FeRAM). Volatile memory 1320
can also include random access memory (RAM), which acts
as external cache memory. By way of illustration and not

limitation, RAM 1s available 1n many forms such as static
RAM (SRAM), dynamic RAM (DRAM), synchronous

DRAM (SDRAM), double data rate SDRAM (DDR
SDRAM), enhanced SDRAM (ESDRAM), Synchlink
DRAM (SLDRAM), direct Rambus RAM (DRRAM), direct
Rambus dynamic RAM (DRDRAM), and Rambus dynamic
RAM.

Computer 1312 can also include removable/non-remov-
able, volatile/non-volatile computer storage media. FIG. 13
illustrates, for example, a disk storage 1324. Disk storage
1324 can also include, but 1s not limited to, devices like a
magnetic disk drive, floppy disk drive, tape drive, Jaz drive,
Z1p drive, LS-100 drive, flash memory card, or memory
stick. The disk storage 1324 also can include storage media
separately or i combination with other storage media
including, but not limited to, an optical disk drive such as a

compact disk ROM device (CD-ROM), CD recordable drive
(CD-R Drive), CD rewritable drive (CD-RW Drive) or a
digital versatile disk ROM drive (DVD-ROM). To facilitate
connection of the disk storage 1324 to the system bus 1318,
a removable or non-removable interface can be used, such as
interface 1326. FI1G. 13 also depicts software that can act as
an intermediary between users and the basic computer
resources described in the suitable operating environment
1300. Such software can also include, for example, an
operating system 1328. Operating system 1328, which can
be stored on disk storage 1324, acts to control and allocate

5

10

15

20

25

30

35

40

45

50

55

60

65

22

resources of the computer 1312. System applications 1330
can take advantage of the management of resources by
operating system 1328 through program modules 1332 and
program data 1334, ¢.g., stored either 1n system memory
1316 or on disk storage 1324. It 1s to be appreciated that this
disclosure can be implemented with various operating sys-
tems or combinations ol operating systems. A user enters
commands or information into the computer 1312 through
one or more input devices 1336. Input devices 1336 can
include, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, and the
like. These and other mput devices can connect to the
processing unit 1314 through the system bus 1318 via one or
more 1nterface ports 1338. The one or more Interface ports
1338 can include, for example, a serial port, a parallel port,
a game port, and a umversal serial bus (USB). One or more
output devices 1340 can use some of the same type of ports
as mput device 1336. Thus, for example, a USB port can be
used to provide mput to computer 1312, and to output
information from computer 1312 to an output device 1340.
Output adapter 1342 can be provided to 1llustrate that there
are some output devices 1340 like monitors, speakers, and
printers, among other output devices 1340, which require
special adapters. The output adapters 1342 can include, by
way of 1llustration and not limitation, video and sound cards
that provide a means of connection between the output
device 1340 and the system bus 1318. It should be noted that
other devices and/or systems of devices provide both mput
and output capabilities such as one or more remote com-
puters 1344.

Computer 1312 can operate 1n a networked environment
using logical connections to one or more remote computers,
such as remote computer 1344. The remote computer 1344
can be a computer, a server, a router, a network PC, a
workstation, a microprocessor based appliance, a peer
device or other common network node and the like, and
typically can also include many or all of the elements
described relative to computer 1312. For purposes of brev-
ity, only a memory storage device 1346 1s illustrated with
remote computer 1344. Remote computer 1344 can be
logically connected to computer 1312 through a network
interface 1348 and then physically connected via commu-
nication connection 1350. Further, operation can be distrib-
uted across multiple (local and remote) systems. Network
interface 1348 can encompass wire and/or wireless commu-
nication networks such as local-area networks (LAN), wide-
area networks (WAN), cellular networks, etc. LAN tech-
nologies include Fiber Distributed Data Interface (FDDI),
Copper Distributed Data Interface (CDDI), Ethernet, Token
Ring and the like. WAN technologies include, but are not
limited to, point-to-point links, circuit switching networks
like Integrated Services Digital Networks (ISDN) and varia-
tions thereon, packet switching networks, and Digital Sub-
scriber Lines (DSL). One or more communication connec-
tions 1350 refers to the hardware/software employed to
connect the network interface 1348 to the system bus 1318.
While communication connection 1350 1s shown for 1llus-
trative clanty iside computer 1312, it can also be external
to computer 1312. The hardware/soltware for connection to
the network interface 1348 can also include, for exemplary
purposes only, internal and external technologies such as,
modems including regular telephone grade modems, cable
modems and DSL modems, ISDN adapters, and Ethernet
cards.

US 11,494,591 B2

23

Embodiments of the present invention can be a system, a
method, an apparatus and/or a computer program product at
any possible technical detail level of integration. The com-
puter program product can include a computer readable
storage medium (or media) having computer readable pro-
gram 1nstructions thereon for causing a processor to carry
out aspects of the present invention. The computer readable
storage medium can be a tangible device that can retain and
store 1nstructions for use by an 1nstruction execution device.
The computer readable storage medium can be, for example,
but 1s not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, or any
suitable combination of the foregoing. A non-exhaustive list
of more specific examples of the computer readable storage
medium can also include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only
memory (CD-ROM), a digital versatile disk (DVD), a
memory stick, a floppy disk, a mechanically encoded device
such as punch-cards or raised structures 1n a groove having
instructions recorded thereon, and any suitable combination
of the foregoing. A computer readable storage medium, as
used herein, 1s not to be construed as being transitory signals
per se, such as radio waves or other freely propagating
clectromagnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g., light
pulses passing through a fiber-optic cable), or electrical
signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network can include
copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.
Computer readable program instructions for carrying out
operations of various aspects of the present invention can be
assembler 1nstructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, configuration data for integrated circuitry, or either
source code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++, or the
like, and procedural programming languages, such as the
“C” programming language or similar programming lan-
guages. The computer readable program instructions can
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soiftware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer can be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection can
be made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,

10

15

20

25

30

35

40

45

50

55

60

65

24

programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) can
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to customize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions. These
computer readable program instructions can be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the tlowchart and/or
block diagram block or blocks. These computer readable
program 1nstructions can also be stored in a computer
readable storage medium that can direct a computer, a
programmable data processing apparatus, and/or other
devices to function in a particular manner, such that the
computer readable storage medium having instructions
stored therein includes an article of manufacture including
instructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks. The computer readable program instructions can
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational acts to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified 1n the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams can represent a module, segment, or
portion of mstructions, which includes one or more execut-
able istructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the blocks can occur out of the order noted in
the Figures. For example, two blocks shown 1n succession
can, 1n fact, be executed substantially concurrently, or the
blocks can sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

While the subject matter has been described above 1n the
general context of computer-executable instructions of a
computer program product that runs on a computer and/or
computers, those skilled 1n the art will recognmize that this
disclosure also can or can be implemented in combination
with other program modules. Generally, program modules
include routines, programs, components, data structures, etc.
that perform particular tasks and/or implement particular

US 11,494,591 B2

25

abstract data types. Moreover, those skilled 1n the art will
appreciate that the inventive computer-implemented meth-
ods can be practiced with other computer system configu-
rations, including single-processor or multiprocessor com-
puter systems, mini-computing devices, mainirame
computers, as well as computers, hand-held computing
devices (e.g., PDA, phone), microprocessor-based or pro-
grammable consumer or industrial electronics, and the like.
The 1illustrated aspects can also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. However, some, 1f not all aspects of
this disclosure can be practiced on stand-alone computers. In
a distributed computing environment, program modules can
be located 1n both local and remote memory storage devices.

As used 1n this application, the terms “component,”
“system,” “platform,” “interface,” and the like, can refer to
and/or can include a computer-related entity or an enfity
related to an operational machine with one or more specific
tunctionalities. The entities disclosed herein can be either
hardware, a combination of hardware and software, soft-
ware, or soitware 1n execution. For example, a component
can be, but 1s not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of
execution, a program, and/or a computer. By way of 1llus-
tration, both an application running on a server and the
server can be a component. One or more components can
reside within a process and/or thread of execution and a
component can be localized on one computer and/or dis-
tributed between two or more computers. In another
example, respective components can execute from various
computer readable media having various data structures
stored thereon. The components can communicate via local
and/or remote processes such as 1n accordance with a signal
having one or more data packets (e.g., data from one
component interacting with another component 1n a local
system, distributed system, and/or across a network such as
the Internet with other systems via the signal). As another
example, a component can be an apparatus with specific
functionality provided by mechanical parts operated by
clectric or electronic circuitry, which 1s operated by a
soltware or firmware application executed by a processor. In
such a case, the processor can be internal or external to the
apparatus and can execute at least a part of the software or
firmware application. As yet another example, a component
can be an apparatus that provides specific functionality
through electronic components without mechanical parts,
wherein the electronic components can include a processor
or other means to execute software or firmware that confers
at least 1 part the functionality of the electronic compo-
nents. In an aspect, a component can emulate an electronic
component via a virtual machine, e.g., within a cloud
computing system.

In addition, the term “or” 1s intended to mean an inclusive
“or” rather than an exclusive “or.” That 1s, unless specified
otherwise, or clear from context, “X employs A or B” 1s
intended to mean any of the natural inclusive permutations.
That 1s, 1f X employs A; X employs B; or X employs both
A and B, then “X employs A or B” 1s satisfied under any of
the foregoing instances. Moreover, articles “a” and “an” as
used in the subject specification and annexed drawings
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form. As used herein, the terms “example” and/or
“exemplary” are utilized to mean serving as an example,
instance, or illustration. For the avoidance of doubt, the
subject matter disclosed herein 1s not limited by such

10

15

20

25

30

35

40

45

50

55

60

65

26

examples. In addition, any aspect or design described herein
as an “example” and/or “exemplary” 1s not necessarily to be
construed as preferred or advantageous over other aspects or
designs, nor 1s 1t meant to preclude equivalent exemplary
structures and techniques known to those of ordinary skill 1n
the art.

As 1t 1s employed 1n the subject specification, the term
“processor”’ can refer to substantially any computing pro-
cessing unit or device including, but not limited to, single-
core processors; single-processors with software multithread
execution capability; multi-core processors; multi-core pro-
cessors with software multithread execution capability;
multi-core processors with hardware multithread technol-
ogy; parallel platforms; and parallel platforms with distrib-
uted shared memory. Additionally, a processor can refer to
an integrated circuit, an application specific integrated cir-
cuit (ASIC), a digital signal processor (DSP), a field pro-
grammable gate array (FPGA), a programmable logic con-
troller (PLC), a complex programmable logic device
(CPLD), a discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to per-
form the functions described herein. Further, processors can
exploit nano-scale architectures such as, but not limited to,
molecular and quantum-dot based transistors, switches and
gates, 1n order to optimize space usage or enhance perfor-
mance of user equipment. A processor can also be 1mple-
mented as a combination of computing processing units. In
this disclosure, terms such as “store,” “storage,” “data
store,” data storage,” “database,” and substantially any other
information storage component relevant to operation and
functionality of a component are utilized to refer to
“memory components,” entities embodied 1n a “memory,” or
components including a memory. It 1s to be appreciated that
memory and/or memory components described herein can
be either volatile memory or nonvolatile memory, or can
include both volatile and nonvolatile memory. By way of
illustration, and not limitation, nonvolatile memory can
include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec-
trically erasable ROM (EEPROM), flash memory, or non-
volatile random access memory (RAM) (e.g., ferroelectric
RAM (FeRAM). Volatile memory can include RAM, which
can act as external cache memory, for example. By way of

illustration and not limitation, RAM 1s available 1n many
forms such as synchronous RAM (SRAM), dynamic RAM

(DRAM), synchronous DRAM (SDRAM), double data rate
SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM),
Synchlink DRAM (SLDRAM), direct Rambus RAM (DR-
RAM), direct Rambus dynamic RAM (DRDRAM), and
Rambus dynamic RAM (RDRAM). Additionally, the dis-
closed memory components of systems or computer-imple-
mented methods herein are intended to include, without
being limited to including, these and any other suitable types
ol memory.

What has been described above include mere examples of
systems, computer program products and computer-imple-
mented methods. It 1s, of course, not possible to describe
every conceirvable combination of components, products
and/or computer-implemented methods for purposes of
describing this disclosure, but one of ordinary skill 1n the art
can recognize that many further combinations and permu-
tations of this disclosure are possible. Furthermore, to the
extent that the terms “includes,” “has,” “possesses,” and the
like are used 1n the detailed description, claims, appendices
and drawings such terms are intended to be inclusive 1n a
manner similar to the term “comprising” as “comprising” 1s
interpreted when employed as a transitional word 1n a claim.

US 11,494,591 B2

27

The descriptions of the various embodiments have been
presented for purposes of 1llustration, but are not intended to
be exhaustive or limited to the embodiments disclosed.
Many modifications and variations will be apparent to those
of ordinary skill 1n the art without departing from the scope
and spirit of the described embodiments. The terminology
used herein was chosen to best explain the principles of the
embodiments, the practical application or technical
improvement over technologies found 1n the marketplace, or
to enable others of ordinary skill 1n the art to understand the
embodiments disclosed herein.

What 1s claimed 1s:

1. A system, comprising:

a memory that stores computer executable components;

a processor, operably coupled to the memory, and that

executes the computer executable components stored 1n

the memory, wherein the computer executable compo-
nents comprise:

an adversarial component that computes a perturbation
that causes misclassification by a neural network
classifier;

a restoration component that determines a normal vec-
tor to a constraint contour developed by the neural
network classifier; and

a projection component that determines a tangential
vector to the constraint contour.

2. The system of claim 1, wherein the constraint contour
separates mput features from a first class and input features
from a second class within a hyperplane, and wherein the
adversarial component generates a convergence pathway
through the hyperplane from an initial mput to a nearest
point on the constraint contour from an original input.

3. The system of claim 2, wherein the adversarial com-
ponent generates the convergence pathway to solve an
optimization algorithm and compute the perturbation.

4. The system of claim 2, wherein the convergence
pathway comprises an iteration of the normal vector fol-
lowed by the tangential vector.

5. The system of claim 2, wherein the convergence
pathway comprises a plurality of iterations of the normal
vector followed by the tangential vector.

6. The system of claim 5, wherein the restoration com-
ponent re-determines the normal vector between iterations
from the plurality of iterations, and wherein the projection
component re-determines the tangential vector between the
iterations from the plurality of iterations.

7. The system of claim 2, wherein the adversarial com-
ponent incorporates a box constraint when generating the
convergence pathway such that the nearest point 1s an
invariant point on the normal vector.

8. The system of claim 7, wherein the imitial input 1s
generated by an initialization process selected from a group
consisting of a deterministic input generation process and a
random 1nput generation process.

9. The system of claim 1, wherein the computer execut-
able components turther comprise:

a defense component that trains the neural network clas-

sifier using the perturbation.

10. A computer-implemented method, comprising;

computing, by a system operatively coupled to a proces-

sor, a perturbation that causes misclassification by a

neural network classifier;

determining, by the system, a normal vector to a con-

straint contour developed by the neural network clas-

sifier; and

5

10

15

20

25

30

35

40

45

50

55

60

28

determiming, by the system, a tangential vector to the

constraint contour.

11. The computer-implemented method of claim 10, fur-
ther comprising:

generating, by the system, a convergence pathway

through a hyperplane from an 1nitial input to a nearest
point on the constraint contour from an original input,
wherein the constraint contour separates input features
from a first class and input features from a second class
within the hyperplane.

12. The computer-implemented method of claim 11,
wherein the convergence pathway comprises a plurality of
iterations ol the normal vector followed by the tangential
vector.

13. The computer-implemented method of claim 12, fur-
ther comprising:

re-determining, by the system, the normal vector between

iterations from the plurality of iterations; and
re-determining, by the system, the tangential vector
between the iterations from the plurality of iterations.

14. The computer-implemented method of claim 13,
wherein the generating the convergence pathway solves 1s
performed 1n accordance with an optimization algorithm to
tacilitate the computing the perturbation.

15. The computer-implemented method of claim 13, fur-
ther comprising:

training, by the system, the neural network classifier using

the perturbation.

16. A computer program product for computing a pertur-
bation that causes misclassification by a neural network
classifier, the computer program product comprising a coms-
puter readable storage medium having program instructions
embodied therewith, the program instructions executable by
a processor to cause the processor to:

generate, by the processor, a convergence pathway

through a hyperplane from an 1nitial input to a point on
a constraint contour, wherein the hyperplane 1s devel-
oped by the neural network classifier, and wherein the
convergence pathway comprises a normal vector to the
constraint contour and a tangential vector to the con-
straint contour.

17. The computer program product of claim 16, wherein
the normal vector extends from the 1mitial input towards the
constraint contour to an itermediate point, and wherein the
tangential vector extends from the intermediate point along
a tangent plane to the constraint contour and towards the
point, and wherein the point 1s a nearest point on the
constraint contour from an original mput.

18. The computer program product of claim 17, wherein
the program instructions cause the processor to:

generate, by the processor, the mnitial mput by an 1nitial-

1zation process selected from a group consisting of a

deterministic 1nput generation process and a random
input generation process.
19. The computer program product of claim 18, wherein
the program 1instructions cause the processor to:
train, by the processor, the neural network classifier using
the perturbation.
20. The computer program product of claim 19, wherein
generation of the convergence pathway 1s 1 a cloud com-
puting environment.

	Front Page
	Drawings
	Specification
	Claims

