US011468630B2

a2 United States Patent (10) Patent No.: US 11,468,630 B2

Kubisch et al. 45) Date of Patent: *Oct. 11, 2022
(54) RENDERING SCENES USING A (358) Field of Classification Search
COMBINATION OF RAYTRACING AND CPC e, GO6T 15/40; GO6T 15/06
RASTERIZATION See application file for complete search history.
(71) Applicant: Nvidia Corporation, Santa Clara, CA (56) References Cited
(US) U.S. PATENT DOCUMENTS
(72) Inventors: Christoph Kubisch, Santa Clara, CA 6.130.670 A 10/2000 Porter
(US); Zivad Hakura, Santa Clara, CA 6,259.452 Bl 7/2001 Coorg et al.
(US); Manuel Kraemer, Santa Clara, 6,476,806 Bl ~ 11/2002 Cunniff et al.
CA (US) 6,952,206 Bl ~ 10/2005 Craighead
7,289,119 B2 10/2007 Heirich et al.
(73) Assignee: NVIDIA Corporation, Santa Clara, CA g:ggﬁgg E% ggglé igﬁﬁ;iﬂi
(US) 8,717,355 B2 5/2014 Newton
9,424,685 B2 8/2016 Howson et al.
(*) Notice: Subject to any disclaimer, the term of this 9,460,546 B1* 10/2016 Stich GO6T 15/06
patent 15 extended or adjusted under 35 (Continued)

U.S.C. 154(b) by 13 days.

This patent 1s subject to a terminal dis- OTHER PUBLICATTONS

claimer.

Greene, et al.; “Hierarchical Z-Bufler Visibility”; Apple Computer;
1993 Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques; 7 pgs.

(21) Appl. No.: 17/108,346

(22) Filed: Dec. 1, 2020 (Continued)
(65) Prior Publication Data Primary Examiner — Maurice L. McDowell, Ir.
(57) ABSTRACT

US 2021/0082177 Al Mar. 18, 2021 _ _
The disclosure provides a cloud-based renderer and methods

of rendering a scene on a computing system using a com-

Related U.S. Application Data bination of raytracing and rasterization. In one example, a
(63) Continuation of application No. 16/420,996, filed on method of rendering a scene includes: (1) generating at least
Mav 23. 2019. now Pat. No. 10.853 99’4 ’ one raytracing acceleration structure from scene data of the
> j I scene, (2) selecting raytracing and rasterization algorithms
(51) Imt. CL for rendering the scene based on the scene data, and (3)
GO6T 15/40 (2011.01) rendering the scene utilizing a combination of the raytracing
GO6T 15/06 (2011.01) algorithms and the rasterization algorithms, wherein the
(52) U.S. Cl rasterization algorithms utilize primitive cluster data from
CPC ' GO6T 15/40 (2013.01); GO6T 15/06 the raytracing acceleration structures.
(2013.01) 20 Claims, 7 Drawing Sheets
100
'—*ﬁ-
Object Render command Render edered
- nehaere . .
Scene data analyzer buffer > processor || Viewing
’ 112 114 116] system
f | 120

Scene Renderer 110

US 11,468,630 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

9,607,426 Bl
10,049,489 B2
10,083,541 B2
10,853,994 BI1 *
2005/0116950 Al
2010/0079457 Al
2010/0231588 Al*™

2010/0289799 Al*
2010/0315423 Al
2011/0090222 Al
2014/0362074 Al

2015/0109292 Al*

2015/0262409 Al
2016/0116973 Al*

3/2017
8/2018
9/2018
12/2020
6/2005
4/2010
9/2010

11/2010

12/2010
4/2011
12/2014

4/2015

9/2015
4/2016

Peterson
DeCell et al.
Fursund et al.

Kubisch G06T 15/40

Hoppe

Tavenrath

Barczak G06T 15/405
345/422

Hanika G06T 17/20
345/421

Ahn et al.

Ibarz et al.

Karrasccocovvvvnnnn, G06T 15/06
345/419

[ee i, GO06T 15/06
345/421

Morgan et al.

[ee i, GO6F 1/3296
345/503

2017/0103567 Al 4/2017 Peterson
2017/0109935 Al* 4/2017 Lofllerc..c....t, GOo6F 3/011
2017/0249779 Al* 8/2017 Obertccovvvvvnnnns, GO6T 15/80
2018/0174353 Al* 6/2018 Shinooooevvvviiinnns, GO6T 15/06
2018/0342096 Al 11/2018 Peterson
2020/0327712 Al* 10/2020 Yoonccccvvvvvnnnns, GO6T 15/04

OTHER PUBLICATTONS

Zhang; “Effective Occlusion Culling for the Interactive Display of
Arbitrary Models”; The University of North Carolina at Chapel Hill;

1998; 109 pgs.

Hakura, et al.; “Techniques for Representing and Processing Geom-
etry within an Expanded Graphics Processing Pipeline”; U.S. Appl.
No. 15/881,566, filed Jan. 26, 2018.

Hakura, et al.; “Techniques for Representing and Processing Geom-

etry within a Graphics Processing Pipeline”; U.S. Appl. No. 15/881,564,
filed Jan. 26, 2018.

* cited by examiner

US 11,468,630 B2

Sheet 1 of 7

Oct. 119 2022

U.S. Patent

07T
LLIS1SAS

SUIMBIA

T susos
- paJapuay

L 'Ol

___________________ =
1055220.d
I9puay

JazAjeue

123[q0

Vit
lajng

e1ep auads

001

US 11,468,630 B2

Sheet 2 of 7

Oct. 11, 2022

U.S. Patent

19PUs4 aU3IS

Ve Dld

alepdn auadg

L
A

N N ..

e e s n s a s n n i n a T e ahera:
¢ﬁ..%.ﬂﬁﬁ.... \
T Ty

- .n."u..._"..."._.._"..._"._.."._.._"..._"._.."._.._"..._"..." ¥
R L OOt 'm e smee o e e e e
-”1”-”1-. J“"“-III Ill Ill II Il ll II Ill III III i
S ®m r m Fr m r = Fr = F = Fr mE °Fr =E F ®E °Fr ®E °r &= Fr .‘.-.‘-

lll Ill I"l l"l I“I I"l lll Ill Ill l"l IH.
. J

Ll
L)
L)
.__..__..4.__.“.__”.___”...“._._”...”...“...”.._”...
L R R)
L0 S M N) Ll
N M Ll
e N L "yt
ara N w a a e 1
L N N R N N EEEREREN -
T R R R R SR NN R L W
L a8 & % & & 4 & & &R &4 A &R KR LA EEEREERER
L0 0 30 C 3 aE 00 3 A0 B0 M 3C E 0 R0 E a0 3l A) tERERERERERERRERERRETR
R R R R R R RN) ErEEEEEEEERER
R C R R LR S B S R M M B 0 MM N ITREEERRRERERERRRER
L S 3 A Nl 3 R E Sl 3 sl) {EEEEEEEEREEER
L R R R S R A R R R R R R RN R R
R o N A N N N N M N NN - e r e r EEEEE R
L A0 0 B0 R A0 B0 A AU 3 B0 M M A0 0 MM A0 N ERERERERRRERERERRRER:
e e e A M A R NN N x e e r r E E E E E E RN
L 0 Rl N N M a0 N Al e ‘EERERRERERERREERRR
L M R N M M N N N NN e r FE R EEEE RN
L R R N R R S N A M R LE R R R R R R
o e N N W EEEFEEEEEEREERER:
e E 0 3 A0 0 M 3C E 0 B AC E A0S0 A a0 0 MR A) IEREERRERERRRERERE
~ R N R R S A R M N EEEEEFEEREEEFEREER
L 0 R R M N R N A MR N M ERREERRRERERERRREL
- R N N FEER
L e N R S SR R
L I R N R EEEREER
L 0 B0 0 3 A0 B0 M R AC BC B AC SC A0S A A0 0 MR A0 MM A X
L N R A N R R M N) 1)
L 0 0 3 A0 0 M N 0 BEAC 00 A 3E 0 SR M A]
L R R) .
R R B R A MR R R N N
L W)
L0 aE C 3 0 AC 0 3 20 B M 3E a0 0N aE a0 S Al a0)
L e R R)
L B N A MR N N
e A N A N R W U W)
L e S e e e el A
R A R R N N N
SRR A RC B3 A0 M N AC B A 0 A0 M M A0 MR A)
L e B
B 0 SR R S A S 0 S R 0 M M S A Al
L A R R A
L R R e R S B R R RN R
< e N N R W =
L0 C 0 3 30 0 B0 A C E 0 3 E 0 3 30 M ME aC E Mk
R R N R R M) i
~ B N N R N R N A N A M
L N N N Nl) E
S e S et s Sl N
o R R N) =
o R A MM M R A MM M R A M M M M R A MM .
L) E
* EREE
r lannn"l"n"n"l"n"n"l"n
LA n:"a"a"a"a"a"a"a"a"a"a"nn
EREREERRERERERERRETR
IEEEEEEEERERER
TRERERREERERRERERR
FErEEEEEEEEEER
CR R R R R R
EFEEEEEEEEEER
EERRERERERERRERERR
ErEEEEEEEERER
ERREERRRERERERRR
EEEEEEEEEEERTR
ERERERERRERERERERRR
EFEEEEEEEEERERTR
ERERERERRRERERERRRER"
ErEEEEEEEERER
EERREERRRERERR
:nala"a"alananala"a"a"n.
ER RN
EEER
R R}
EEER
™
EEN
X RR
E R R
LN
L

by

i
Pt
o S Sl e
o e Wy
HtH...HkH...HtH&H&#......
.........k...k...r.........r...*...k...k.... ¥
Jr o de dp o de dp de dp de dp de
R N
HrH.,_.HrH#HkaHrH#HerHkaHrHJ.
T A A 0y
e
T T T
P S i P i i P i Pitaiter
e
T
T A A e
e e e
F e N e P e
P S i P i i P i Pitaiter
e
T
T A A e
e e e
F e N e P e
P S i P i i P i Pitaiter
e
T
T A A e
e e e
F e N e P e
P S i P i i P i Pitaiter
e
T e N P P
T A A e
e e e
F e N e P e
P S i P i i P i Pitaiter
e
T
P N A N N N N
et P i Pt Pt it Pite it 1
F e N e P e
.r.....r.....r.-...r.....r.....r.-...r.....r.....r.-...r.-
. R N N R N N R NN]
" " : ..:..r”b.H.TH.'.”.TH.:.H.r”*H?H#”?H#H?”*H?H#”.TH&.H.T“
o N N]
I N e b e P i Pty i 3
W dr dr de & Cd R o d ke &k &k k& g el e e e
L A E E E E E ak a3k aE ks |
e P e g M W it i
a3 aE E Ul 3l 30 Uk 2 aE U aEal alal 3l ol I e d e e e e e i
o k) et e e o |
dpdp dr e ey el e iy dp e e ey e dr e e e dp e e i ek N e
Lk al 3 2 k3 Ul k2 al C ak aEal kol Xk kK x xx i
iy iy iy e b et dp b e el i b e at ke Ty e e ek
o CaE N
dpdr dr e e dr e e dp e e e e e e e e el e e e e i Eal e
S e e al aE a al ¥ rox xR
dr b dr e d d el d ek dk de kel k& ke ke k& d kg N
L kol) X ax il
dp iy dp e e iy il iy iy il e e e ey e e ey Sl e e ey e Ty e
o e e e
LA S 30 E A E al a0l al 30l 20 30 aE aE 0 aE Ll Al 3l 2l il
N []
dp iy dr e ey dr e e e dp e ey e e e dp e e e e i i B
L ek i aE E E E aE E ak aE Al Wl aE Mol al N
..4.4H.4”.__.”.4H.4H.__.”.4H.4”.__.”.4H.4”4”.4”.4”...”.4”.4”...”.4....44.......4... e
L
: ...an.q”....f....q.a...... LAL AL A

% & I
L)
L aC
S L AL O
I I A R
W
LR B S M B0 M
W g
L S S S SN
L
L C B S A A0 M
L R s
L E A S A0 M
L M N
L U S A SN
R N
L C B S A A0 M
B R
L E A S A0 M
L R
L B SR M N
L
L0 0 B0 0 M A0 B0 M N
R R N
L 0 0 M A0 0 M N
L)
L O MM N
)
L0 0 30 30 0 M0
)
L0
L)
PR M N
L4 88 a s
EaC
.
[y

Oc¢ D4

)

i

x X

X X
¥

US 11,468,630 B2

09¢

-

=
-i-'

-, b

FE e NN
.

ot

o i

Sheet 3 of 7

s X
e X K A M
L
o i i

» LAl x x TN

L A o rl
. A Rl npl M NN
[

o e RO N

2 Ok A o de W ! [l S S e el S R R I T "
N N, - . P I L I » s .
L e ar i a - ey g e e e A ! e
o e A e i e - P O I L T O] U
o e AL R o) et e Tata e,
oy e 2 P A N L B T T o s PN
O W ey unﬁ"ﬂh\nr . ;r;;t.-_.q.-.......r.........l”u-l""u i b AW
R iy . o C S A o L A - o TN
oy P M A e . e . - PO AL L N A N N R A .
N N . e Ll m M) Lol e Y -
e I JC A x x » nll? e e A I N
gty) P

LU o W e

. -

- e M

o -.._._l” ._.__-.nl e .._.....u.r.-.h.-

" Bk i & P N N

L o AL R B N
LN R R) waor
- L W) e | L '
' ' ..i il X IHHHIIIIHHHI = .-_i.......r.r.-.........l..-..-. - [H.IHIHH HI a . |1 .
1 FxxxXE xR Wk i A - r
L] lnl:aa__.x.-_ - i dr A i A i i i
' Fr o r a) L RN X
. "-_ lnxnxnxﬁ » _-.1“"" Ml lH""IHlH._._H.-. .1.
¥ n LN ..
i Ea N o
o . o i i .
¥ ! W i N i - .
Yt » u R PN . -,
ik) e
L) o ! i N
L) KA A v
X A % i .
g o A .-...r.r....._.}..” 1|.r.-..r-. - .I.IHIH i ! '
PR N] T

A R)

.....-...r.r.._.ri ill

2" a

y ok u
N

Oct. 11, 2022

M .__ukt“.q
N A
Py x

[

)

' ' N
e - r '] LE
L. I o ' ! 3 E Ilr.r.-q.
e ' . u_.... ._.__r... i oE s
l.l.l.l.l.llllllllll.lll.-.ll.l , , HIIHEBH L] IIIIIH l..-.l..__.;..-..
T tea - x5 .r-.._......_..__.__ ..-.._._._ . naalln + nnn auu L] i .._.....4.._.._...,.._.._...
- .._.r.r....-.._......._.._nn.r.__.-.... ' lllll_nv N ln L3-..._....- .-.-r..r.._..._.-_.-..__
w b b e b ke kL Hllll llllll i A L L L
- .-.n a .r.r.-_.r Lr........ Y ' ' - . -..-_l.-..-_) llﬂ Hx nu ll u i .-..-.'.-..._......-.I:..-..-_.-..._.............._. .
- ! . LR BRSO nau"l = l__.l__ﬁ.. » AL M NN
P b R N NN) Foig r N w e e R
2 4 & i Bk kb P . . L] XN E R o b b i b ko
LI A L__.__,..,_..___n.."._q.___.._...a,._u_..,___ . P ' ' A T Ta e AT
o T e R & k. ' | BBk ko
x a wea ox e o R e N | ' v P N N
i i i e - Bk X ok s o . x E L e
ooa MR N N i.__.l-..r.r.....-...__-.. [' " B dr dr odr B % dr b & s
) X w3 ' ' ' o L ERC N stk)
. o o e xR e o
] X E N NN NERENR t....._..ht.-..._..._..._- ' 1 [B LN & i b b ¥
X FE g a i i . ' ' dr dr i b 4 i kA a
¥ Ao N A e RN KM KEERE E | & & i i oy o e i & b
o PR e W M) ! o i i e
] L) ' . ' o
) _ L T
' ' ' .
luln.._..._..__......
4 ' ' lnn _-_._...4..........._.
L] [. ' —_ o . I.-.-_ » t.-..r.1
' ' -
* - . . Hlﬂlﬂllﬂﬂllllﬂl!.ﬂ.l l“l .' }.lll.ilh.il.}..!}..t‘ll....l I..'.‘.
- ' ' ' ' aaxaxnaan.ﬁllnln G e N
; ' ' A I] & dr & b dr b o= s -
I-. ' ' LA X XX RN A EERDE [] o o K. .. 1
. L A A A p o r b b b -
- __._f . . . P g P P R A R
L] " .) L X ax_..naw.a.. e M R AL N L A \
- Tl el .llb..._.._.r.._.r.__.._.._.
' o o ' B4 bk bk bk doa F I . '
' o B e b b dp Jr b ir & b & & b b 0 PN
' T T e ' i [e N R S U N
' ' ' L d kdp dp b b bk bk b a h
r P ra [b dr de Jrode b dr dr & b ok b & & K '

A A K N e i ey

o
ey A b b R F R F P B K .

[J
.__.._.._.-_.__.._.._.._

MR RN '
.II'.I.-_ 4 & M ik '

L IR B]
r

Ll
‘." "....r l..'.r “l.
. rr o F

U.S. Patent

US 11,468,630 B2

Sheet 4 of 7

Oct. 11, 2022

U.S. Patent

(9¢
sppeiqojo

uofjeday
PUO33S

09¢

s12algo |
108l)

jouonessy)

15414

31qISiA se padse}y s1elgo asn

ON

Ve Old

0L QN3

05¢ spelgo
JIYISIA BUtieUIR L JOPUY

ShE sisyng
PUBWIWOD 13pUsd piing

OVE spalgo
J{2 JO UOISN{330 158}

1

Gee
5132/d0 J3pN|{I20 Japuay

OFE siopng
PUBLULIOD JBpuUaJ piing

GIE dsaduey) Jofen

OTE eie(] DUDS DAY

0Z€ siapniano

pUt} 0] 3USDS BaeIIARY

STA

€0¢ LuVLS

= 10t

I8 Bld

T7€ ausas aesihey cee Apwoad asendey

US 11,468,630 B2

1€ uoneziundQ 109499

omm m{_wv:_uuo
ucr_ 2 JUDIS mum,_§mm

--

Sheet 5 of 7

gt Dld

Oct. 11, 2022

CTC SOINIINIIS UONRIBIBIIL 1% sainjonis

Uoileziiaises ping

U.S. Patent

uoijelajadoe Supenies pjing

0

4€ DI

6EE yidap
U0 paseq ajisoduwio)

7€€ daedsuanios

ut Ajisuap ajduets ydiy
YHm spafgo aoeihey

US 11,468,630 B2

ges
s102{q0 15430 aziiol5ey

) . ' ” | |) l@lllm.l[m .

I~ ~ voneziundo
f .
& _w.umw_m_m .
& ol
N eccecsssssssssssssssnsssssssssasnslesvesssmsnnoesnsnsonoonsn
Q9
P m wHEAERAN ...:4 wAdsARAN m m_._.._,:-_.......::..-_.:;.:. ...
7 m 0se swalgo SEE

L D|gISIA BujuieLS) JBPUBY ! $103{qOo Japnjado JBpuay i

I...\\' Rresexssuxamesanas mrEemEERE mEmoaEsRRE mwwsrRANY O PP } -
LO¢€ ~ 80¢ ~ -

~ ae vid
e
—
— 75 SpUBLIUOD
J J3aPuUl gleislal)
'
&
-

TEE syigo
8uil40s pue duiuuig

i.I_i lllllllllllllllllllll WA EIEREA AN AR LR WEFARARan W g

€€ siapng
PURLLILIOY Japual piing

. L]
o -
e aaswmysarannn T TR I Y A R L I 2 P LA SRR I ‘AR AN

U.S. Patent

~ $0¢

US 11,468,630 B2

Sheet 7 of 7

Oct. 11, 2022

U.S. Patent

48 "Old

e
$103/qOo 3jqisia duidde)

‘Allowioad Axouid aziialsey

Tpe plwelAd ziH piing

nn

OpE sieigo
lje JO UoISN{I20 353

"
= | |
. :
N
o b
- n
» N
TR A/K

US 11,468,630 B2

1

RENDERING SCENES USING A
COMBINATION OF RAYTRACING AND
RASTERIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 16/420,996, entitled “RENDERING SCENES
USING ACOMBINATION OF RAYTRACING AND RAS-
TERIZATION?, filed on May 23, 2019. The above-listed
application 1s commonly assigned with the present applica-
tion and 1s incorporated herein by reference as 11 reproduced
herein 1n its entirety.

TECHNICAL FIELD

This application 1s directed, in general, to a scene ren-
dering and, more specifically, to a scene rendering utilizing
both ray tracing and rasterization.

BACKGROUND

Rendering complex scenes with many objects can take a
significant amount of processing time. The complex scenes
can be from various software applications, such as computer
aided drawing applications, video/image editing software,
and games. Diflerent techniques, such as rasterization or
raytracing, can be applied for the rendering process. Using,
these techniques, developers often create functionally spe-
cific modules of code to interface with and control which
one of the different rendering algorithms that are used. In
addition, there are many libraries, video drivers, hardware
circuitry, and other related software and hardware combi-
nations from various vendors and developers that would
need to be supported by the selected rendering technique.

SUMMARY

In one aspect, the disclosure provides a method of ren-
dering a scene on a computing system. In one example, the
method includes: (1) generating at least one raytracing
acceleration structure from scene data of the scene, (2)
selecting raytracing and rasterization algorithms for render-
ing the scene based on the scene data, and (3) rendering the
scene utilizing a combination of the raytracing algorithms
and the rasterization algorithms, wherein the rasterization
algorithms utilize primitive cluster data from the raytracing
acceleration structures.

In another aspect, the disclosure provides a method of
rendering a scene on a computing system utilizing raytracing,
and rasterizing. In one example, this method of rendering
includes: (1) determining a {first occluder object set and a
second occluder object set from scene data of the scene,
wherein the first occluder object set 1s determined utilizing,
raytracing, (2) rendering first display objects utilizing the
first and second occluder object sets, (3) rendering second
display objects utilizing the first and second occluder object
sets and occlusion results based on a third object set,
wherein the rendering the first and the second display
objects utilizes a combination of raytracing and rasterizing,
and (4) rendering the scene utilizing the first and second
display objects.

In yet another aspect, a cloud-based renderer 1s disclosed.
In one example, the cloud-based renderer includes: (1) an
object analyzer configured to determine rendering tech-
niques for rendering a scene and generate at least one

10

15

20

25

30

35

40

45

50

55

60

65

2

raytracing acceleration structure based on scene data from
the scene, and (2) a render processor configured to render the
scene utilizing of raytracing and rasterization algorithms,
wherein the rasterizing algorithms fetch primitive cluster
data from the raytracing acceleration structures.

BRIEF DESCRIPTION

Reference 1s now made to the following descriptions
taken 1n conjunction with the accompanying drawings, in
which:

FIG. 1 1s an illustration of a block diagram of an example
scene rendering system;

FIG. 2A 1s an 1illustration of a diagram of an example
raytracing and rasterization rendering tlow;

FIG. 2B 1s an illustration of diagrams of examples of
raytraced, mesh, and meshlet segmented objects;

FIG. 2C 1s an 1llustration of a diagram of an example
raytrace acceleration structure;

FIG. 3A 1s an 1llustration of a flow diagram of an example
method utilizing a combined raytracing and rasterization
rendering process;

FIG. 3B i1s an 1llustration of a flow diagram of an example
method, building on FIG. 3A, to prepare a scene for ren-
dering;

FIG. 3C 1s an 1llustration of a flow diagram of an example
method, building on FIG. 3A, to raytrace a scene to find
occluders;

FIG. 3D 1s an illustration of a flow diagram of an example
method, building on FIG. 3A, to build information for render
command buflers:

FIG. 3E 1s an illustration of a flow diagram of an example
method, building on FIG. 3A, to render occluder objects;
and

FIG. 3F 1s an 1llustration of a flow diagram of an example
method, building on FIG. 3 A, to test occlusion of all objects.

DETAILED DESCRIPTION

Unlike a drawing or painting where at the location a brush
touches the canvas an individual dot of color 1s left behind,
computer generated scenes are created or defined using
objects that are combined together to form the scene. For
example, a scene can be defined by the objects of a car, a
tree, and a sign that are included 1n the scene. The car itself
can be further defined by objects such as doors, windows,
car handles, and tires. A computer can generate each of the
objects within the scene, using the lighting, shading, depth
s1zing, and other scene characteristics that are defined by the
user. As such, the car’s windows can be rendered using the
reflective properties of glass and the car’s tires can be
rendered using the dull coloration of black rubber.

A software application or computer program, such as a
video game, can store and manipulate the objects within the
scene for generating a two-dimensional view of the scene,
referred to as rendering, which can be displayed. Rendering
ol each object can take a significant amount of computer
time depending on the complexity of the scene. The com-
plexity can vary depending on, for example, the number of
objects that need to be rendered, the amount of detail needed
for each object, and the types of image eflects that are to be
applied, such as shadows, reflections, lighting, and smoke or
fog.

Rendering of a scene can use a technique called raster-
1zation, which uses vectors, 1.e., lines and curves, to define
the scene, rather than dots or pixels. Those vectors can be
converted to a format that can be displayed on a monaitor,

US 11,468,630 B2

3

printed, or output to other systems, such as using the
common 1industry image formats of BMP, JPG, and GIF.
Vectors are useful for describing a scene and can be easily
manipulated by a computing system applying various math-
ematical algorithms. For example, the scene can be zoomed
in or out by manipulating the vectors defining the scene
while still maimntaiming the visual quality of the scene.

Another rendering technique 1s raytracing, where rays are
drawn from surface points of an object to light sources of the
scene. Raytracing can be useful for lighting a scene by
correctly balancing how a light source brightens surfaces of
an object facing the light source and darkens surfaces that
are facing away from the light source. Raytracing can also
be utilized for creating reflections and other visual charac-
teristics. Raytracing can be slower than rasterization when
tracing primary rays emitted from the view perspective of
the scene, e.g., the camera perspective, but can provide a
simpler approach since the necessary global data, such as
shaders, geometries, and instances, are provided upiront by
the developers.

Raytracing can allow tracing from arbitrary points as
required for global illumination effects. Typically, additional
algorithms and computations may be needed when integrat-
ing raytraced objects with rasterized objects when those
rasterized objects use a depth butler. The depth buller stores
information about how far away each point 1s from the
camera perspective. It can also be used to determine 1f a
point or an object 1s blocked by another object. A blocked
object or point, since 1t cannot be seen, does not need to be
rendered, which can save processing time. For example, a
flower behind the tire of the car does not need to be rendered
since the tire blocks all of the view of the flower.

When rendering, certain applications need to maintain or
exceed a target render time of a scene. Failing to achieve a
target render time can result 1n the application being unus-
able for a user, or the application quality being significantly
reduced. For example, when a target render time 1s not
reached, a user using virtual reality (VR), augmented reality
(AR), or mixed reality (MR) applications can experience
visual artifacts, such as jumpiness in the scene or time delays
between scene displays, that make the application difficult to
use. Reducing the time to render a scene, however, can result
in a loss of detail and visual quality of the scene. Either way,
a user’s experience 1s unfavorable. Being able to render
these scenes quicker compared to current methods, while
also minmimizing the reduction of visual quality, would be
beneficial.

This disclosure presents a method where raytracing 1s
combined and balanced with rasterization to reduce the time
to render a scene while maintaining a targeted level of visual
quality. Raytracing can be executed first to create image data
called an acceleration structure. The rasterization can then
use iformation from the raytracing acceleration structure to
improve the operational efliciency of the rasterization.

Employing raytracing can improve the operational efli-
ciency ol rasterizing without the disadvantages of existing
methods and techniques that are sometimes employed for
rendering. For example, to maintain satisfactory iteration
times when rendering a scene, pre-processing can be used
but with a cost in terms of system resources needed. Another
method to maintain satisfactory iteration times 1s to reduce
the detail used but with a cost in terms of visual quality. For
rasterization pipelines, the use of occlusion culling can be
useful to accelerate rendering scenes. Occlusion culling,
however, can add significant complexity to the developer to
implement properly, notably in the context of dynamic
changes within the scene.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Current approaches to perform occlusion culling with
rasterization may involve tracking the history of scene
objects 1n previous rendered frames. Using this method,
objects are rendered 1f they were visible 1n the last rendered
frame, then testing 1s undertaken for the remaining objects
in the scene to ensure that the remaining objects are also
visible. History tracking can be a more cumbersome solution
to incorporate into various hardware and soitware solutions.

Culling objects based on finer granularity, and not just the
drawcalls, may rely on compute shaders, which involve
writing out culled triangle index buflers off chip. This
method can fail to take advantage of mesh or meshlet task
shaders which can allow for eflicient i-pipeline culling.
Meshlets are portions of an 1image for which mesh shading
1s applied. Meshlets can have potential optimizations 1n
compressing geometry or cluster-culling.

Additionally, there can also be a problem of supporting
proprietary technologies integrated in the renderer, such as
application programming interface (API) extensions or
libraries that protect optimization strategies from competi-
tors. In certain markets, for example, the professional CAD
market, long-term maintenance of the drivers and other
software components can be hindersome.

This disclosure provides that the scene can be rasterized
partially using the acceleration structures that exist for
raytracing, 1.€., raytracing acceleration structures, such that
segmented portions of the scene geometry are stored in the
raytracing acceleration structures. The segmented portions
of geometry can be primitive clusters, 1.€., a set ol bounding
shapes that can be a geometric proxy for the object or objects
considered for rendering. The primitive cluster can be ren-
dered significantly faster than the represented object, there-
fore, various analyzations, such as occlusion, can be con-
ducted significantly faster as well.

One or more of the objects can be occluded 1n which case
the rendering 1s skipped for the occluded object or a portion
of that occluded object. Via raytracing or volume intersec-
tion of the proxy representation, e.g., bounding shapes inside
the bounding volume hierarchy (BVH), a front to back
ordering of the batches, e.g., wave processing or iterations,
can be extracted. Each iteration can utilize an occluder
detection algorithm, a visibility test, or a visibility parameter
from the previously rendered frame. The use of one algo-
rithm 1n the iteration does not preclude the use of a different
algorithm 1n a subsequent 1teration.

The mput to the rasterization algorithm can be triangles or
other geometric shapes from conventional vertex-index bui-
fers, or the input can be retrieved from the raytracing
acceleration structures. The process to rasterize objects 1n
the scene can utilize the rasterization algorithm to select an
optimization process. One optimization option can be to
conventionally fetch individual primitives from the vertex-
index buflers. Another optimization option can be to fetch
primitive cluster data from raytracing acceleration structures
using compressed or uncompressed cluster data. For
example, raytracing acceleration structures can be utilized
during a first iteration to exploit the spatial sorting available
with that structure. During a second or subsequent 1teration,
geometry portions already stored 1n the raytracing accelera-
tion structures can be retrieved to leverage compression, to
utilize the mesh shader capabilities (1.e., mesh shader pipe-
line), to rasterize from primitive clusters, and other render-
ing advantages.

After rasterizing the series of segmented portions, a
global accessible hierarchical Z-bufler (Hi1Z) data structure,
1.€., a texture mipmap (mip) chain, can be updated. The HiZ
data structure can be used in later iterative drawings to

US 11,468,630 B2

S

discard the segmented portions on multiple levels, such as
alter applying pre-tests on the objects. The HiZ data struc-
ture can also be used to prevent further traversal of the
objects 1n later iterations. Within each 1teration, a subset of
the scene’s objects can be rendered generating display
objects. The rendering of the combined 1terations generates
the final scene or frame 1mage. An object can be skipped,
partially rendered, or fully rendered in an 1teration.

The processor used for the scene processing can cull
objects on multiple levels of primitives using the meshlet
task shader, such culling occurring per-drawcall or per-
group. The HiZ data structure can be asynchronously
updated with rendering to avoid waiting for the current
rendering step to be completed n full, e.g., a wait for i1dle
(WFI) condition. The disclosure herein combines the spatial
elliciency of raytracing, that does not require processing of
occluded surface points, with the data parallel efliciency of
rasterization. Rasterization can enable multiple primitives
and multiple pixels to be processed 1n parallel to 1mprove
overall performance. Occluded surface points can be part of
an occluded object that can be partially or fully occluded.

The methods presented herein can be incorporated within
a driver, a library, or other code locations in software or
hardware. An API can be employed that encapsulates the
functionality provided by the methods. For a graphics inter-
face, an API can be used that allows for a relaxed ordering
of drawcalls and primitives. An API can also be used that
encapsulates a method to provide scene description infor-
mation for a significant portion of the geometry of the scene.
Generally, the API can be implemented or encapsulated 1n a
video driver for a graphics processing unit (GPU) which can
provide an acceptable performance response to a render
request, though various general and specific processors can
be utilized to implement the solutions.

The methods and processes disclosed herein can be imple-
mented as a black-box solution wherein the decisions,
algorithms, and processes are hidden behind the API call.
This can ease the terms of use for developers as they do not
need to specily the optimizations to utilize. The black-box
nature of this solution also allows the gradual improvement
of the technology, such as balancing the shift between
raytracing or rasterization approaches, without requiring
changes or adjustments from other dependent software pro-
cesses or from developers. An example of the shift balancing
1s switching occlusion culling between raytracing and ras-
terization as determined by the method.

In addition, further enhancements can be implemented on
the use of rasterization via meshlets that allow geometry
compression. Hardware acceleration and spatial data struc-
tures can be utilized to enhance the performance without the
calling application specilying those specific features. The
performance benefit over native rasterization can be signifi-
cant for larger datasets, e.g., a performance improvement of
5x has been achieved with the meshlet approach. This
performance can be readily observed by a user and result in
time savings by the user.

Turning now to the figures, FIG. 1 1illustrates a block
diagram of an example scene rendering system 100. Scene
rendering system 100 includes a scene renderer 110 and a
viewing system 120. Scene renderer 110 includes an object
analyzer 112, a render command bufler 114, and a render
processor 116. Scene data, such as provided by an applica-
tion, for example, a CAD application, a game application, or
a video editing application, can be communicated to the
scene renderer 110 and received for processing. The scene
data, 1.e., scene information, can be received from an API of
the video driver used for video processing.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

The object analyzer 112 reviews and analyzes the
received scene data and can generate therefrom raytracing
acceleration structures and rasterization acceleration struc-
tures. An example of a raytracing acceleration structure 1s
provided 1n FIG. 2C. The rasterization acceleration struc-
tures can segment objects from the scene data having
multiple logical triangles into multiple drawcalls 1n order to
improve the optimization of occlusion testing. For the seg-
menting process, the object analyzer 112 can leverage ray-
tracing spatial clustering to determine the segmentation
points since the clusters can have a coarser granularity than
the raytracing leal nodes. Using the coarser granularity
cluster of an object, e.g., a simplified outline of an object 1n
one or more view perspectives, can result 1n faster compus-
tation time than 1f a detailed version of the object was
utilized. The detailed resolution version of the object can be
used for the scene rendering after the other computations,
such as occlusion, have been completed (see FIG. 2C for an
example raytrace spatial cluster).

After the object analyzer 112 performs the analyzation
process, objects can be flagged as visible or not visible, and
raytracing can be utilized to determine occluder objects, 1.¢.,
objects that occlude other objects. Processing within the
scene renderer 110 then proceeds to the render command
bufler 114. The render command butler 114 can sort objects,
generate specific render commands, and select appropriate
algorithms to utilize for each rendering step, such as the
shader algorithm. The render processor 116 receives the
objects so indicated by the render command bufler 114 an
renders the objects.

The render processor 116 can render the objects through
an 1terative process. Once a first iteration 1s completed, the
rendering process flows back to the render command bufler
114 to process one or more additional iterations, where each
iteration 1s building successive object layers. The object
layers can be ordered in various ways, such as to help
optimize the rendering process so that visible portions of
objects are rendered while occluded objects or portions
thereol are not rendered. When the one or more 1terations are
complete, the rendered scene can be output to a frame buller
and communicated to the viewing system 120. The viewing
system 120 provides the rendered scenes for viewing and
can be, for example, a display, a projector, a printer, a
storage device, or other types of devices capable of handling
the scene data.

In FIG. 1, the scene rendering system 100 1s described 1n
a logical view based on the functionality. Scene rendering
system 100 can be implemented on a computing system
using a general processor, such as a central processing unit
(CPU), a GPU, or other types of processor units. More than
one processor, and more than one processor type, can be
utilized, 1n various combinations, to implement the herein
described processes. The components of scene renderer 110
can be implemented together or separately, for example,
object analyzer 112 can be implemented in a datacenter,
while the render command bufler 114 and the render pro-
cessor 116 are implemented locally to the user. In addition,
the scene renderer 110 can be part of a computing system
with viewing system 120, be separate and proximate to the
other, or be separate and distant to the other. For example,
scene renderer 110 can be part of a data center, cloud
processing system, or server, and the viewing system can be
local to the user.

FIG. 2A illustrates a flow diagram of an example of a
method of raytracing and rasterization rendering 202. Ray-
tracing and rasterization rendering 202 includes scene setup
230, scene update 232, and scene render 234. In scene setup

US 11,468,630 B2

7

230, a group of objects are analyzed as a group, as opposed
to individually. There can be one or more groups of objects
analyzed depending on the complexity of the scene being
rendered. In scene update 232, the group of objects are
analyzed for various factors including visibility and occlu-
sion. The rendering commands can then be determined. In
scene render 234, the render commands are executed to
render the scene, or a portion of the scene. The raytracing
and rasterization rendering 202 can be repeated for addi-
tional 1terations. The raytracing and rasterization rendering,
202, or at least a portion thereof, can be performed by the
scene renderer 100.

FIG. 2B illustrates diagrams representing segmenting of
an example object 1n three different ways. Raytraced seg-
mented object 252, mesh segmented object 254, and meshlet
segmented object 256 are 1llustrated. The raytraced seg-
mented object 252 demonstrates raytracing using BVH. The
mesh segmented object 254 demonstrates segmenting using,
mesh defined triangles. Mesh segmented object 254, more
specifically, demonstrates a partitioned mesh figure where
the spatially split mesh 1s portioned into sub-meshes to
improve occlusion culling granularity. Meshlet segmented
object 256 demonstrates using meshlet segmentation. As
described in FIG. 1, for object analyzer 112, the meshlet
segmentation can utilize primitive, 1.€., coarse grained, clus-
ter objects when processing scene computations and a fine
grained, 1.e., high resolution, cluster objects for rendering by
a geometry pipeline during rasterization.

FIG. 2C 1s an 1illustration of a diagram of an example
raytracing acceleration structure 260. Raytracing accelera-
tion structure 260 1s demonstrated with the conventional leaf
node 262 and BVH leaf node 264. Leafl node 262 can be a
low-resolution object image and can be used to enhance the
performance of the rendering process. Leal node 264 can
include a full resolution object image and can utilize BVH
and bypass exact triangle testing of each object.

FIG. 3A 1s an illustration of a flow diagram of an example
combined raytracing and rasterization rendering method 301
carried out according to the principles of the disclosure. At
least a portion of the method 301 can be carried out by a
GPU. In some examples, the method 301 can be performed
by the scene renderer 100. Method 301 starts at a step 309
where the scene rendering process begins.

In a step 310, scene data 1s received. The scene data can
be received via an API call. The API call can be the same or
equivalent to, an API raytrace drawcall. The scene data can
include object data, such as location, distance from the view
perspective, and orientation for each object 1 or near the
scene, as well as scene characteristics, such as lighting
eflects, shadows, and other scene characteristics. In addition,
in some aspects, information regarding the previously ren-
dered frame of the scene can be provided, such as the extent
of object change within the scene, such as object orientation
or position change.

Proceeding to a decision step 315, an initial analyses 1s
conducted to determine if changes for the current scene has
significantly altered objects from the previously rendered
scene. If the resultant 1s “Yes’, then the method 301 proceeds
to a step 320. In the step 320, raytracing processes can be
applied to find a first occluder object set in the current scene.
Returning to decision step 315, 11 the resultant 1s ‘“No’, the
method 301 proceeds to a step 328. In the step 328, objects
that were tlagged as visible 1n the previously rendered scene
are continued to be flagged as visible 1n the current scene.

After steps 320 or 328 have completed, the method 301
proceeds to a step 330. In the step 330, render command
bufler information 1s generated. The render command bufler

10

15

20

25

30

35

40

45

50

55

60

65

8

information 1s generated utilizing the information gained 1n
steps 310, 320, and 328. In a step 335, a first occluder object
set 1s rendered at a lower resolution than a target resolution.
The target resolution, for example, can be that of a first set
of display objects. Rendering at a lower resolution can be
used to enhance the speed of the rendering process. In a step
340, occlusion of the objects currently rendered (a currently
rendered object set) 1s tested. Objects that are deemed not
visible via the testing are flagged as such. A visibility test can
be used to test for occlusion. Objects that are now flagged as
not visible can be removed from further processing. Addi-
tionally, a previously hidden object that 1s now visible can
be added to the rendering process.

In a step 343, a new set of render commands are gener-
ated. The new set of render commands can be stored 1n the
render command builers. The results of the occlusion testing
in step 340 can be used to generate the new set of render
commands. In a step 350, the remaining visible objects, such
as a second occluder object set, can be rendered at the target
resolution. Rendering the remaining visible objects gener-
ates a second set of display objects. In addition, any cor-
rection to the previously rendered objects can be made as
well. The method 301 proceeds to a step 370 and ends. The
output of the method 301 provides raster depth and color
depth scene data suitable for sending to a frame bufler for
display, to a picture or image {file, printer, or another device
capable of handling the scene data.

Decision step 315 and steps 320 to 335 can be grouped as
a {irst iteration 360 and steps 340 to 350 can be grouped as
a second 1teration 362. Additional object 1iterations can be
added with the method 301. For example, the first two
iterations can be used to generate low resolution objects,
¢.g., simplified objects, and a third 1teration can be used to
generate a high-resolution version of the objects. Addition-
ally, a third 1teration can be used when objects are grouped
and rendered using a depth bufler, 1.e., depth salting.

FIG. 3B 1s an 1llustration of a flow diagram of an example
method 302, building on FIG. 3A, to prepare a scene for
rendering. Method 302 expands on the step 310 of method
301. Proceeding from step 310, method 302 includes pre-
paring the scene 1n a step 311. Preparing the scene 1n step
311 can 1nitiate two additional processing steps. In step 312,
raytracing acceleration structures are generated. In some
examples, conventional techniques can be used to generate
the raytracing acceleration structures. In step 313, rasteriza-
tion acceleration structures are generated. The method 302
then proceeds to the decision step 315 of method 301.

In some aspects, steps 312 and 313 can be executed 1n
parallel. In other aspects, step 312 can be executed first and
the results used as input to step 313. Objects defined with
many triangles can be segmented mto multiple drawcalls
allowing the raytracing acceleration structures to be pro-
cessed 1n parallel, such as on a GPU. The multiple drawcalls
can improve the optimization for occlusion test granularity.
In aspects where the rasterization acceleration structures
leverage raytracing acceleration structures spatial clustering
as 1nput, the rasterization acceleration structures can utilize
coarser granularity for storing each object as compared to
the raytracing leatf nodes, which can improve computational
time when processing each object and the object’s interac-
tion with other objects, such as through occlusion and
reflections.

FIG. 3C 1s an 1llustration of a flow diagram of an example
method 303, building on FIG. 3A, to raytrace a scene to find
occluders, such as the first occluder object set. Method 303
expands on the step 320. Proceeding from step 320, an
optimization selection 1s made 1n a step 321. The optimiza-

US 11,468,630 B2

9

tion selection can determine good occluders, such as where
shading can be skipped and where low-resolution, e.g.,
simplified representation, rendering can be utilized to
enhance performance. The optimization selection of step
321 also selects the next step to execute. For example, one
or more algorithms can be selected to execute next. Two
such algorithms are demonstrated 1n method 303 as step 323
for raytracing geometry and step 324 for raytracing of the
scene. In the step 323, raytracing geometry can return the
closet objects and return the object 1dentifiers. Low resolu-
tion techniques can be utilized for this step. In the step 324,
raytracing ol the scene can be utilized up to the leaf node
level, bypassing the exact triangle test. This step can utilize
the BVH analysis. The method 303 then proceeds to the step
330 of method 301.

FIG. 3D 1s an illustration of a flow diagram of an example
method 304, building on FIG. 3A, to build information for
render command buflers. Step 330 proceeds to a step 331,
similarly, step 345 can proceed to a similar step 331, where
a binming and sorting process can group objects depending
on their respective state and criteria, such as using a depth
parameter or a visibility parameter.

In a step 332, render bufler commands can be generated
and stored in the render command bufler. For example, a
determination can be made on the type of shader to utilize
for this scene. In addition, determinations can be made on
which objects to be rendered 1n a first iteration, such as the
first occluder object set to generate the first display objects,
and which objects can be rendered 1n a second iteration, such
as the second occluder object set to generate the second
display objects. Determinations can also be made to balance
and combine the raytracing and rasterization processes to
optimize the overall rendering process. When rendering the
first display objects, diflerent (or partially the same) ray-
tracing and rasterization algorithms can be used than when
rendering the second display objects. The method 304 then
proceeds to the step 335 of method 301.

FIG. 3E 1s an 1llustration of a flow diagram of an example
method 306 and method 307, building on FIG. 3A, to render
occluder objects. Method 306 and 307 follow similar pro-
cessing steps but at different points in the process flow.
Method 306 proceeds from the step 335 to a decision step
336. Similarly, method 307 proceeds from the step 350 to the
decision step 336. These steps can be implemented as one
process, or separate processes can be created for each of
method 306 and method 307. In the decision step 336
optimization techmques can be balanced. The process can
determine whether raytracing or rasterization would be best
suited for the group of objects being processed. Based on the
resultant of the decision step 336, the method can proceed to
a step 337 or a step 338.

In the step 337 raytracing can be utilized for objects with
a high triangle density relative to the available screenspace,
1.¢., the resolution of the targeted output. The geometry
pipeline of the rasterizer can access raytracing acceleration
structures to fetch segmented portions of geometry, such as
triangle and vertex position data, to conserve memory.
Clusters of objects are determined by BVH from the ray-
tracing acceleration structures. Depth parameters and ftri-
angle clusters are avoided by using the BVH algorithm. In
the step 338 rasterization can be used to render the objects.
Conventional mesh or meshlet data structures can be used to
optimize the rendering for rasterization.

After step 337 or 338 have completed, the method pro-
ceeds to a step 339. In the step 339 composite object
information can be generated based on a depth parameter for
the objects. Composite 1mage information can be generated

10

15

20

25

30

35

40

45

50

55

60

65

10

based on the depth parameter of pixels for the objects. The
pixels and their depth information can be generated by either
rasterization or raytracing methods. For example, raytracing
can start at a point represented by the camera origin per-
spective and end at the rasterization depth bufler. If the
raytracer intersects with a surface of an object, the raytracer
can update the depth and color values of that pixel. The
raytracer process can operate first, subsequent to, or at the
same time as the rasterization process as long as the depth/
color bufler pairing 1s maintained consistently. The method
306 then proceeds to the step 340 of method 301 and method
307 then proceeds to the step 370 of method 301.

FIG. 3F 1s an 1llustration of a flow diagram of an example
method 308, building on FIG. 3A, to test occlusion of all
objects. Method 308 extends step 340. Proceeding from step
340, 1s a step 341. In the step 341, a HiZ pyramid can be
generated. In the step 342, proxy geometry can be rasterized
in object segmented portions or groups, and visible objects
can be tagged as such for further processing.

Step 342 can also evaluate the objects based on pre-tests,
¢.g. visibility tests. Rasterization can be bypassed for certain
objects 1f they do not pass the pre-tests during the geometry
stage, e.g., the visibility parameter can be set to false for
objects 1n an object set. Full rasterization can be skipped on
primitive objects when some of the pixels pass the depth
test. Rasterization for this step can be completed for a
simplified proxy object defined by a bounding shape, for
example, a bounding box, a bounding sphere, or another
defined shape. The geometry stage can be the geometric
processing of the proxy object 1n the rasterization pipeline.
The pre-tests can be used to determine 1f the proxy object 1s
visible. If the results of the pre-tests cannot determine
visibility, then the proxy object rasterization can be utilized
to determine visibility of the object.

The pre-tests, or visibility tests, can be evaluated per
bounding shape. The tests can include (1) testing 1f the
transformed bounding shape 1s in the frustum, 1.e., the
three-dimensional region which 1s visible on the screen (2)
testing 11 the transformed bounding shape 1s greater than the
minimum pixel size (3) testing if the closest transformed
bounding shape 1s further than the stored HiZ far mip (4)
testing 11 the object 1s within the camera nearplane volume
(35) testing 1 a few bounding shape points, that are close to
the camera origin perspective, are nearer than the stored HiZ
near mip value. Test 5 can be represented by pseudo code
Listing 1.

Listing 1: Example of a generalized pre-
test pseudo code for near HiZ mip values

projectedPoint = doProjection(boundingPoint);
trivialAccept = projectedPoint.z < textureLookup (HiZnear,
projectedPoint.xy);

Typically, a HiZ mip can contain the furthest, 1.e., far,
depth of the pixel area that a texel in the mip represents. A
nearest, 1.e., near, depth of the pixel area that a texel in the
mip represents can also be stored. The test 3 and test 5 can
quickly reject the proxy object if the object 1s further than
the furthest value 1n the mip or accept the proxy object if the
object 1s closer than the closest value 1 the mip. The
visibility parameter for each object can be set according to
the results of these tests. Rasterization can be skipped for
objects that are not visible. Further analysis and evaluation
can be needed for proxy objects falling at or between the

US 11,468,630 B2

11

turthest and nearest value in the mip. The method 308 then
proceeds to the step 345 of method 301.

A portion of the above-described apparatus, systems or
methods may be embodied 1 or performed by various
digital data processors or computers, wherein the computers
are programmed or store executable programs of sequences
ol software instructions to perform one or more of the steps
of the methods. The software instructions of such programs
may represent algorithms and be encoded in machine-
executable form on non-transitory digital data storage
media, e.g., magnetic or optical disks, random-access
memory (RAM), magnetic hard disks, flash memories, and/
or read-only memory (ROM), to enable various types of
digital data processors or computers to perform one, mul-
tiple or all of the steps of one or more of the above-described
methods, or functions, systems or apparatuses described
herein.

Portions of disclosed embodiments may relate to com-
puter storage products with a non-transitory computer-read-
able medium that have program code thereon for performing
various computer-implemented operations that embody a
part of an apparatus, device or carry out the steps of a
method set forth herein. Non-transitory used herein refers to
all computer-readable media except for transitory, propagat-
ing signals. Examples of non-transitory computer-readable
media include, but are not limited to: magnetic media such
as hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROM disks; magneto-optical media such as
floptical disks; and hardware devices that are specially
configured to store and execute program code, such as ROM
and RAM devices. Examples of program code include both
machine code, such as produced by a compiler, and {files
contaiming higher level code that may be executed by the
computer using an interpreter.

In mterpreting the disclosure, all terms should be inter-
preted 1n the broadest possible manner consistent with the
context. In particular, the terms “comprises” and “compris-
ing”” should be interpreted as referring to elements, compo-
nents, or steps 1n a non-exclusive manner, indicating that the
referenced elements, components, or steps may be present,
or utilized, or combined with other elements, components,
or steps that are not expressly referenced.

Those skilled 1n the art to which this application relates
will appreciate that other and further additions, deletions,
substitutions and modifications may be made to the
described embodiments. It 1s also to be understood that the
terminology used herein 1s for the purpose of describing
particular embodiments only, and 1s not intended to be
limiting, since the scope of the present disclosure will be
limited only by the claims. Unless defined otherwise, all
technical and scientific terms used herein have the same
meaning as commonly understood by one of ordinary skall
in the art to which this disclosure belongs. Although any
methods and materials similar or equivalent to those
described herein can also be used 1n the practice or testing
of the present disclosure, a limited number of the exemplary
methods and matenials are described herein.

What 1s claimed 1s:
1. A method of rendering a scene on a computing system,
comprising;

generating at least one raytracing acceleration structure
from scene data of said scene:

selecting raytracing and rasterization algorithms for ren-
dering said scene based on said scene data; and

rendering said scene utilizing a combination of said
raytracing algorithms and said rasterization algorithms,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

wherein said rasterization algorithms utilize primitive
cluster data from said raytracing acceleration struc-
tures.

2. The method as recited 1n claim 1, further comprising
generating a rasterization acceleration structure based on
said scene data.

3. The method as recited 1n claim 2, wherein said ren-
dering said scene further comprises testing occlusion of an
object set determined from said scene data, wheremn said

testing utilizes said rasterization acceleration structure.

4. The method as recited 1n claim 1, wherein said ren-
dering said scene further comprises determining occluder
object sets from said scene data, wherein at least one of said
occluder object sets 1s determined by raytracing.

5. The method as recited 1n claim 4, wherein said ren-
dering said scene utilizes rendered display objects based on
said occluder object sets and results from occlusion testing
utilizing said occluder object sets.

6. The method as recited 1n claim 1, wherein said ren-
dering said scene 1s an iterative process that builds succes-
sive object layers with each 1teration.

7. The method as recited in claim 6, wherein said object
layers are ordered to minimize rendering of occluded por-
tions 1n said scene.

8. A method of rendering a scene on a computing system
utilizing raytracing and rasterizing, comprising:

determiming a first occluder object set and a second

occluder object set from scene data of said scene,
wherein said first occluder object set 1s determined
utilizing raytracing;

rendering first display objects utilizing said first and

second occluder object sets;

rendering second display objects utilizing said first and

second occluder object sets and occlusion results based
on a third object set, wherein said rendering said {first
and said second display objects utilizes a combination
of raytracing and rasterizing; and
rendering said scene utilizing said first and second display
objects.

9. The method as recited 1n claim 8, wherein said ren-
dering said first display objects utilizes raytracing of objects
in said first and second occluder object sets having a high
triangle density relative to available screen space.

10. The method as recited 1n claim 8, wherein said
rendering said first display objects utilizes simplified repre-
sentations.

11. The method as recited in claim 8, wherein said
rendering said second display objects utilizes rasterizing of
geometry portions stored in raytracing acceleration struc-
tures generated from said scene data.

12. The method as recited 1n claim 8, wherein said
rendering said second display objects are repeated for more
than one iteration.

13. The method as recited in claim 8, wherein said second
occluder object set 1s flagged as visible 1n a previously
rendering of said scene.

14. The method as recited 1n claim 8, further comprising
testing occlusion of said third object set utilizing said first
and second occluder object sets to generate said occlusion
results.

15. A cloud-based renderer, comprising;:

one or more processing units to perform one or more

operations including;

determining rendering techniques for rendering a scene,

generating at least one raytracing acceleration structure

based on scene data from said scene, and

US 11,468,630 B2

13

rendering said scene utilizing raytracing and rasterization
algorithms, wherein said rasterization algorithms fetch
primitive cluster data from said at least one raytracing
acceleration structure.

16. The cloud-based renderer as recited 1in claim 15,
wherein said rendering utilizes a combination of said ray-
tracing and rasterization algorithms based on a balance of
rendering time and a targeted level of visual quality for said
rendered scene.

17. The cloud-based renderer as recited in claim 15,
wherein said one or more operations further include select-
ing said raytracing and rasterization algorithms based on an
analysis of said scene data from said object analyzer.

18. The cloud-based renderer as recited in claim 15,
wherein said one or more operations further include receiv-
ing said scene data from a source external to said cloud-
based renderer and transmitting said rendered scene to a
viewing system external to said cloud-based renderer.

19. The cloud-based render as recited in claim 15, wherein
said at least one raytracing acceleration structure segments
objects from said scene data having multiple logical tri-
angles into multiple drawcalls.

20. The cloud-based renderer as recited in claim 15,
wherein said render processor utilizes at least one graphics
processing unit (GPU).

¥ ¥ # ¥ ¥

10

15

20

25

14

	Front Page
	Drawings
	Specification
	Claims

