US011467972B2

a2 United States Patent (10) Patent No.: US 11,467,972 B2

Reed et al. 45) Date of Patent: Oct. 11, 2022
(54) L1D TO L2 EVICTION (38) Field of Classification Search
CPC .......... GO6F 12/0811; GO6F 12/0891; GO6F
(71) Applicant: CENTAUR TECHNOLOGY, INC., 9/30047, GO6F 9/30043; GO6F 12/0817;
Austin, TX (US) GO6F 12/0871; YO2D 10/00
USPC s 711/154, 143, 122
(72) Inventors: Douglas Raye Reed, Austin, TX (US); See application file for complete search history.
Colin Eddy, Austin, TX (US) (56) References Cited
(73) Assignee: CENTAUR TECHNOLOGY, INC., U.S. PATENT DOCUMENTS
Austin, TX (US)
5,924,121 A *  7/1999 Armmilli .............. GO6F 12/0804
(*) Notice:  Subject to any disclaimer, the term of this 711/143
patent is extended or adjusted under 35 2010/0228922 Al1* 9/2010 Limaye ................. GO6F 12/126
711/135
U.S.C. 154(b) by 8 days. 2014/0006716 Al* 1/2014 Steeley, Jt. ........... GOGF 15/167
711/130
(21)  Appl. No.: 17/108,499 2018/0004661 Al* 1/2018 Umehara ............ GO6F 12/0808
2019/0266101 Al* &/2019 Robinson ............ GO6F 12/0831
(22) Filed: Dec. 1, 2020 2020/0242049 Al1* 7/2020 Loh ..................... GO6F 12/0871

* cited by examiner
(65) Prior Publication Data

Primary Examiner — Hashem Farrokh
US 2022/0171712 Al Jun. 2, 2022

(74) Attorney, Agent, or Firm — McClure, Qualey &

(51) Int. CL Rodack, LLP
GO6F 12/0891 (2016.01) (57) ABSTRACT
GO6F 9/30 (2018.01) In one embodiment, a microprocessor, comprising: a first
GOoF 12/0811 (2016.01) data cache; and a second data cache configured to process
GO6F 12/0817 (2016.01) both a miss 1n the first data cache resulting from a first load
GO6F 12/0871 (2016.01) or store operation and an eviction from the first data cache
(52) U.S. Cl. to accommodate the first load or store operation, the second
CPC GO6F 12/0891 (2013.01); GO6F 9/30043 data cache configured to indicate to the first data cache that

(2013 01) GO6F 9/30047 (2013 01) GO6F the eviction 1s complete betore the eviction 1s ElCtUEllly
120811 (20513 01): GO6F 12/081 - (20513 01): complete based on a first state corresponding to the eviction.

GoolF 12/0871 (2013.01) 20 Claims, 4 Drawing Sheets
102 0 102 6 102 7 -
Slice0 Slice6 Slice7 o
W , 140 7
Other er _
Slice 140_0 Slice 160
Loqic l Logic Uncore Circuitry
( %;3 ) 130_0 ( :73 ) (S:iﬂse%éng l Other Uncore I
ISHIN S Slice ;
] 2@ (2) L.ogic 166
120 O P—————
_ Bus — Bus - Bu ) IntszZceﬁ 1
I{ Interface0 Interfacet Inerface/ < _Uncore ‘
= |
| 120_6- 120 77 162
e — 110 0 i = — Memory :
CoreQ l Core6 Core/ Controlier |
164
iy =] |
L1D || L1 116_0 L1D || L1 L1D || L1 |
4 | l
| | I
N 114_0 190 j
180

Off-chip
Memory




AJOWBN —‘ ) o _ H—

US 11,467,972 B2

)

dIyo-40
081 &

o 6L  Owbin

|

" 9wl —

_ ) L7 |l b 0 9Ll L7 |l L
A _ /. 0Ll _
= _ 9 cll
~ _ = R EAY ¢ |
.m | Ja[|0Jju09 9 0LL
7 " AIOWB\ 0 Okl

| I- G99l

alooun V— —
ovkll2]lu olkllalu
S S e o e e T | M (N TR
& B 0 02l
Uﬂ H | |
o 99] 921607
S 2J02UM Jeul0 0 ocl
AJ}IN2JID) 8Jodu(

= 091 - 0 ovl
m /. OvlL
A - i} i} | 099I|S
% /20| 9 20l 0 20l
-



U 20 L2]U]

~d ¢ Ol

0Cl

US 11,467,972 B2

1Sehbay

anany arvodidbe | }senbay yolajalduesns

dooug 1x3 q/vadidbe | yolalaidxog

oNan |4 1X
Ol >3 SaUull 2OB0 kle(d ¢ 1

0B 8)U| Yolaleld

H aoea)U| RenvEIeq 0€C bay peo

&

ﬂ. |[Eula)X 1sanbay PL /ML

m e 8/yedidOBLl  Rienpi)

OPIATIL T -
doygBury Jsenbay Opeol| |

< 17 ‘senan

M 1171 PLT O PEOTP L] soeLaUl 11

— dojsbury 1Senbay

- 117 P17 ‘'senand 0c¢

5

OAIBNPP LT
SHG PHIEAPL /L] OIOIAIP LT

e adi4be
= Aelybe | divVoEdbEL soBUaU| DL o1
- >TT 092
5 oyded ¢ 0lL¢
-



US 11,467,972 B2

Sheet 3 of 4

Oct. 11, 2022

U.S. Patent

00¢

¢ Ol

6 | ey A
3 | g
‘ b
|
[s80in0g
L w0 |||
/ Butpued |2 ,
ayle \ ) _
Bulpusd || _m | _\
, Bupuad |0 P | L
* 5TE Z/a | e (OliI4 spaeN Toe
JIA R
“ m& OTE DIPAZEIRA YT | | 561018 DL
VA
R _ .__
| 6 4 ” e
CLE seuljedid | _
8 N ON ON 0OIS |z 0.
/ | / (1P ON ON L OPT |} 69
_ ON ON 00P1 [0 ¢
S55IM0S auo(Q J0IAF 8uoQ peoT DIS/OPT
18410 90c OIId PLT
buipusd |7 >
eple
Buipusd ) m SIA _\
Buipusd (0 | 0
| Bupusd [0 o SN |
9elS | Ol SPeeN Ot |
506 _ PEOT P}
S0E DPeoTeled Z1
bl BRI ¢ | P17 (11) eyoeD eled 1]




U.S. Patent Oct. 11, 2022 Sheet 4 of 4 US 11,467,972 B2

400

402 PROCESS BY A SECOND DATA CACHE BOTH A MISS IN A FIRST
"™\  DATA CACHE RESULTING FROM A FIRST LOAD OR STORE
OPERATION AND AN EVICTION FROM THE FIRST DATA CACHE TO
ACCOMMODATE THE FIRST LOAD OR STORE OPERATION

404 l

\ FROM THE SECOND DATA CACHE, INDICATE TO THE FIRST DATA
CACHE THAT THE EVICTION IS COMPLETE BEFORE THE
EVICTION IS ACTUALLY COMPLETE BASED ON A FIRST STATE
CORRESPONDING TO THE EVICTION

FIG. 4



US 11,467,972 B2

1
L1D TO L2 EVICTION

TECHNICAL FIELD

The present invention relates in general to microproces-
sors, and more particularly, to cache memory systems 1n
MICroprocessors.

BACKGROUND

Most modern computer systems include a microprocessor
that performs the computations necessary to execute soft-
ware programs. Computer systems also include other
devices connected to (or internal to) the microprocessor,
such as memory. The memory stores the software program
instructions to be executed by the microprocessor. The
memory also stores data that the program instructions
manipulate to achieve the desired tunction of the program.

The devices 1n the computer system that are external to
the microprocessor (or external to a processor core), such as
the memory, are directly or indirectly connected to the
microprocessor (or core) by a processor bus. The processor
bus 1s a collection of signals that enable the microprocessor
to transier data in relatively large chunks. When the micro-
processor executes program instructions that perform com-
putations on the data stored 1n the memory, the micropro-
cessor fetches the data 1from memory 1nto the
microprocessor using the processor bus. Similarly, the
microprocessor writes results of the computations back to
the memory using the processor bus.

The time required to fetch data from memory or to write
data to memory 1s many times greater than the time required
by the microprocessor to perform the computation on the
data. Consequently, the microprocessor must inefliciently
wait 1dle for the data to be fetched from memory. To reduce
this problem, modern microprocessors include at least one
cache memory. The cache memory, or cache, 1s a memory
internal to the microprocessor (or processor core)—typically
much smaller than the system memory—that stores a subset
of the data 1n the system memory. When the microprocessor
executes an instruction that references data, the micropro-
cessor first checks to see 1f the data 1s present 1n the cache
and 1s valid. It so, the instruction can be executed more
quickly than 1f the data had to be retrieved from system
memory since the data 1s already present in the cache. That
1s, the microprocessor does not have to wait while the data
1s fetched from the memory into the cache using the pro-
cessor bus. The condition where the microprocessor detects

that the data 1s present 1n the cache and valid 1s commonly
referred to as a cache hit. The condition where the referenced
data 1s not present in the cache 1s commonly referred to as
a cache miss. When the referenced data 1s already in the
cache memory, significant time savings are realized, by
avoiding the extra clock cycles required to retrieve data from
external memory.

In some microprocessors, the cache 1s actually made up of
multiple caches. The multiple caches are arranged i a
hierarchy of multiple levels. For example, a microprocessor
may have two types of caches, referred to as a first-level or
levell (1) cache and a second-level or level2 (L2) cache.
The L1 cache 1s closer to the computation elements of the
microprocessor than the L2 cache. That 1s, the L1 cache 1s
capable of providing data to the computation elements faster
than the L.2 cache. The L2 cache 1s commonly larger than the
L1 cache, although not necessarily. There may even be

10

15

20

25

30

35

40

45

50

55

60

65

2

third-level (LL3) cache, which 1s even larger than the L1 and
L2 caches, after which access 1s ultimately (in the case of a
miss) to system memory.

In many microprocessor architectures, the L1 cache 1s
actually made up of two caches, an L1 istruction (L1I)
cache and an L1 data (L1D) cache. With particular emphasis
on the L.1D cache for purposes of this disclosure, it 1s desired
for the sake of speed and efliciency that load and store
istructions hit in the L1D cache. If there 1s a miss, then a
cache line needs to be brought in from elsewhere, and
preferably the L2 cache. However, a cache line may also
need to be evicted from the L.1D cache, such as to allocate
room for the new cache line. To handle these tasks, the [.2
cache accesses tag and data array pipelines, which are also
receiving requests from other sources (e.g., I-cache requests,
external snoops, evictions from the L2 cache to the L3
cache, etc.). Though it 1s desired from a performance stand-
point to satisly, say, a load request per single clock cycle out
of the L2 cache, attaiming this benchmark 1s complicated by
the fact that other sources of requests are seeking to access
the tag array and data array pipelines, which impedes the
ability of the L2 to process load requests. In fact, it has been
observed that evictions to the L2 cache are often delayed due
to the backlog of L1D cache evictions in the L2 cache,
primarily due to the mability to keep up with a steady stream
of simultaneous loads and evictions.

SUMMARY

In one embodiment, a microprocessor, comprising: a first
data cache; and a second data cache configured to process
both a miss in the first data cache resulting from a first load
or store operation and an eviction from the first data cache
to accommodate the first load or store operation, the second
data cache configured to indicate to the first data cache that
the eviction 1s complete before the eviction 1s actually
complete based on a first state corresponding to the eviction.

Other systems, methods, features, and advantages of the
present disclosure will be or become apparent to one with
skill in the art upon examination of the following drawings
and detailed description. It 1s intended that all such addi-
tional systems, methods, features, and advantages be
included within this description, be within the scope of the
present disclosure, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the disclosure can be better understood
with reference to the following drawings. The components
in the drawings are not necessarily to scale, with emphasis
instead being placed upon clearly illustrating the principles
of the present disclosure. Moreover, in the drawings, like
reference numerals designate corresponding parts through-
out the several views.

FIG. 1 1s a block diagram showing an example multi-core
processor implementing an embodiment of a cache data
eviction system.

FIG. 2 1s a block diagram showing certain features of a
cache memory, primarily utilized for communications with
other system components.

FIG. 3 1s a block diagram of an embodiment of a cache
data eviction system.

FIG. 4 15 a flow diagram of an embodiment of an example
cache data eviction method.

DETAILED DESCRIPTION

Certain embodiments of a cache data eviction system and
method are disclosed that mitigate a backlog of first-level



US 11,467,972 B2

3

(L1) data cache evictions 1n a second-level (L2) data cache,
especially in circumstances where there exists a steady
stream of simultaneous loads and evictions. In one embodi-
ment, the .2 data cache recognizes a state where the eviction
from the L1 data cache corresponds to evicted data (e.g.,
cache line) having a clean or unmodified state, and under
such conditions, immediately (e.g., within approximately
two clock cycles) indicates to the L1 data cache that the
eviction 1s complete before the eviction 1s actually complete
(e.g., via an update of the L2 cache directory). By doing so,
evictions reallocated to the same entry as the last eviction
may proceed to the L2 data cache without delay, hence
preventing the backlog of L1 data cache evictions for such
states.

Digressing briefly, existing cache memory systems often
experience a backlog of L1 data cache evictions because
access to the L2 tag and/or data array pipelines needed 1n
evictions are competing with other sources attempting to
access the tag and/or data arrays. Due to these plural
contentions for the pipeline resource, the lower priority
evictions are often delayed, leading to the backlog. That 1is,
while processing the evictions, the L1 data cache 1s awaiting,
an indication from the L2 data cache that the eviction is
complete, and until then, an entry i1n the L1 data cache for
enabling the processing of these evictions 1s unable to
process subsequent evictions from that same entry until
processing in the L2 data cache of that first eviction has
completed. In contrast, certain embodiments of a cache data
eviction system recognize when the data or cache line to be
evicted 1s clean (e.g., an exclusive or shared MESI state),
since evicting a clean cache line 1s not required for cache
coherency but merely updating a directory of the L2 data
cache, enabling the cache data eviction to indicate to the L1
data cache that the eviction 1s complete before 1t 1s actually
complete, preventing the backlog of L1 data cache evictions
for clean cache lines.

Having summarized certain features of a cache data
eviction system of the present disclosure, reference will now
be made 1n detail to the description of a cache data eviction
system as illustrated in the drawings. While a cache data
eviction system will be described 1n connection with these
drawings, there 1s no intent to limait 1t to the embodiment or
embodiments disclosed herein. That 1s, while the invention
1s susceptible to various modifications and alternative forms,
specific embodiments thereof are shown by way of example
in the drawings and will herein be described in detail
suilicient for an understanding of persons skilled 1n the art.
For instance, though examples are provided where load/
store allocations are to, and evictions from, the L1 data
cache to the L2 cache, it should be appreciated by one
having ordinary skill 1n the art that similar principles may be
applied to other cache hierarchies, including allocations and
evictions from, say, L2 cache to L3 cache 1n some embodi-
ments. Thus, 1t should be understood that the drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed. On the contrary,
the intention 1s to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims. As used
throughout this application, the word “may” 1s used in a
permissive sense (1.e., meaning having the potential to),
rather than the mandatory sense (1.¢., meaning must). Simi-
larly, the words “include”, “including”, and “includes™ mean
including, but not limited to.

Various units, modules, circuits, logic, or other compo-
nents may be described as “configured to” perform a task or
tasks. In such contexts, “configured to” 1s a broad recitation

10

15

20

25

30

35

40

45

50

55

60

65

4

ol structure generally meaming “having circuitry or another
physical structure that” performs, or 1s capable of perform-
ing, the task or tasks during operations. The circuitry may be
dedicated circuitry, or more general processing circuitry
operating under the control of coded instructions. That 1s,
terms like “unit”, “module”, “circuit”, “logic”, and “com-
ponent” may be used herein, 1n describing certain aspects or
features of various implementations of the invention. It will
be understood by persons skilled 1n the art that the corre-
sponding features are 1mplemented utilizing circuitry,
whether 1t be dedicated circuitry or more general purpose
circuitry operating under micro-coded 1nstruction control.

Further, the unit/module/circuit/logic/component can be
configured to perform the task even when the unit/module/
circuit/logic/component 1s not currently 1n operation. Recit-
ing a umt/module/circuit/logic/component that 1s configured

to perform one or more tasks 1s expressly imtended not to
ivoke 35 U.S.C. § 112(1) for that unit/module/circuit/logic/

component. In this regard, persons skilled in the art will
appreciate that the specific structure or iterconnections of
the circuit elements will typically be determined by a
compiler of a design automation tool, such as a register
transfer language (R1L) compiler. RTL compilers operate
upon scripts that closely resemble assembly language code,
to compile the script into a form that 1s used for the layout
or fabrication of the ultimate circuitry.

That 1s, mtegrated circuits (such as those of the present
invention) are designed using higher-level software tools to
model the desired functional operation of a circuit. As 1s well
known,

Electronic Design Automation” (or EDA) 1s a
category of software tools for designing electronic systems,
such as integrated circuits. EDA tools are also used for
programming design functionality into field-programmable
gate arrays (FPGAs). Hardware descriptor languages
(HDLs), like Verilog and very high-speed integrated circuit
hardware description language (VHDL) are used to create
high-level representations of a circuit, from which lower-
level representations and ultimately actual wiring can be
derived. Indeed, since a modern semiconductor chip can
have billions of components, EDA tools are recognized as
essential for their design. In practice, a circuit designer
specifles operational functions using a programming lan-
guage like C/C++. An EDA software tool converts that
specified functionality into RTL. Then, a hardware descrip-
tor language (e.g. Verilog) converts the RTL into a discrete
netlist of gates. This netlist defines the actual circuit that 1s
produced by, for example, a foundry. Indeed, these tools are
well known and understood for their role and use in the
facilitation of the design process of electronic and digital
systems, and therefore need not be described herein.

As will be described herein, the present invention 1s
directed to a cache data eviction system. Before describing
an example cache data eviction system, however, one exem-
plary architecture 1s described, in which the cache data
eviction system may be utilized. In this regard, reference 1s
now made to FIG. 1, which 1s a diagram illustrating a
multi-core processor 100 (also referred to herein as a micro-
processor 100). As will be appreciated by persons having
ordinary skill in the art from the description provided herein,
the present invention may be implemented 1n a variety of
various circuit configurations and architectures, and the
architecture 1illustrated 1in FIG. 1 1s merely one of many
suitable architectures. Specifically, in the embodiment 1llus-
trated 1n FI1G. 1, the processor 100 1s an eight-core processor,
wherein the cores are enumerated core0 110_0 through

core/ 110 7.




US 11,467,972 B2

S

In the illustrated embodiment, numerous circuit compo-
nents and details are omitted, which are not germane to an
understanding of the present invention. As will be appreci-
ated by persons skilled in the art, each processing core
(110_0 through 110_7) includes certain associated or com-
panion circuitry that 1s replicated throughout the processor
100. Each such related sub-circuit 1s denoted 1n the 1llus-
trated embodiment as a slice. With eight processing cores
110_0 through 110_7, there are correspondingly eight slices
102_0 through 102_7. Other circuitry that 1s not described
herein 1s merely denoted as “other slice logic” 140_0
through 140_7.

In the 1llustrated embodiment, a three-level cache system
1s employed, which includes a level one (LL1) cache, a level
two (L2) cache, and a level three (LL3) cache. The L1 cache
1s separated 1nto both a data cache and an 1nstruction cache,
respectively denoted as L1D and L1I. The L2 cache also
resides on core, meaning that both the level one cache and
the level two cache are in the same circuitry as the core of
each slice. That 1s, each core of each slice has its own
dedicated LL1D, L 11, and L.2 caches. Outside of the core, but

within each slice 1s an L3 cache. In the preferred embodi-
ment, the L3 cache 130_0 through 130_7 (also collectively
referred to herein as 130) 1s a distributed cache, meaning that
15 of the 1.3 cache resides 1n slice 0 102 0, 5 of the L3
cache resides i slice 1 102_1, etc. In the preferred embodi-
ment, each L1 cache 1s 32k 1n size, each 1.2 cache 1s 256k
in size, and each slice of the L3 cache 1s 2 megabytes 1n size.
Thus, the total size of the L3 cache 1s 16 megabytes.

Bus nterface logic 120_0 through 120_7 1s provided in
cach slice 1n order to manage communications from the
various circuit components among the different slices. As
illustrated 1n FIG. 1, a communication bus 1s 190 1s utilized
to allow communications among the various circuit slices, as
well as with uncore circuitry 160. The uncore circuitry 160
merely denotes additional circuitry that 1s on the processor
chip, but 1s not part of the core circuitry associated with each
slice. As with each illustrated slice, the uncore circuitry 160
includes a bus interface circuit 162. Also illustrated 1s a
memory controller 164 for interfacing with off-processor
memory 180. Finally, other uncore logic 166 i1s broadly
denoted by a block, which represents other circuitry that
may be included as a part of the uncore processor circuitry
(and again, which need not be described for an understand-
ing of the invention).

To better illustrate certain inter and intra communications
of some of the circuit components, the following example
will be presented. This example illustrates communications
associated with a hypothetical load miss 1n core6 cache. That
1s, this hypothetical assumes that the processing core 6
110_6 1s executing code that requests a load for data at
address hypothetical address 1000. When such a load
request 1s encountered, the system first performs a lookup in
[L1D 114 6 to see if that data exists in the LL1D cache.
Assuming that the data 1s not 1n the L1D cache, then a
lookup 1s performed 1n the L2 cache 112_6. Again, assuming
that the data 1s not 1n the L2 cache, then a lookup 1s
performed to see 1f the data exists 1 the L3 cache. As
mentioned above, the L3 cache 1s a distributed cache, so the
system {irst needs to determine which slice of the L3 cache
the data should reside 1n, 1f 1n fact 1t resides 1n the .3 cache.
As 1s known, this process can be performed using a hashing,
function, which 1s merely the exclusive ORing of bits, to get
a three bit address (suilicient to i1dentily which slice—slice
0 through slice 7—the data would be stored 1n).

In keeping with the example, assume this hashing func-
tion results 1 an indication that the data, 1f present in the L3

10

15

20

25

30

35

40

45

50

55

60

65

6

cache, would be present in that portion of the L3 cache
residing in slice 7. A communication 1s then made from the

L2 cache of slice 6 102_6 through bus interfaces 120_6 and
120_7 to the L3 slice present 1n slice 7 102_7. This com-
munication 1s denoted 1n the figure by the circled number 1.

If the data was present in the L3 cache, then 1t would be
communicated back from [.3 130 7 to the .2 cache 112 6.
However, and 1n this example, assume that the data 1s not 1n
the L3 cache either, resulting 1n a cache miss. Consequently,
a communication 1s made from the L3 cache 130_7 through
bus interface 7 120_7 through the uncore bus interface 162
to the off-chip memory 180, through the memory controller
164. This communication 1s denoted 1n the figure by the
circled number 2. A cache line that includes the data residing
at address 1000 1s then communicated from the off-chip
memory 180 back through memory controller 164 and
uncore bus interface 162 into the L3 cache 130 7, as

denoted by circled number 3. After that data 1s written into

the L3 cache, 1t 1s then communicated to the requesting core,
core 6 110_6 through the bus interfaces 120_7 and 120_6.

At this point, once the load request has been completed,
that data will reside 1n each of the caches 1.3, L2, and LL1D.
Certain embodiments of the present invention are directed to
a cache data eviction system that resides 1n a cache memory
system, and 1n the examples that follow, 1n the L1D and L2
caches. Belore describing details of the cache data eviction
system, reference 1s first made to FIG. 2, which 1s a block
diagram 1llustrating various circuit components ol each of
the L2 caches 112. Specifically, the components illustrated
in FI1G. 2 depict basic features of a structure that facilitates
the communications within the .2 cache 112 and with other
components in the system illustrated in FIG. 1. First, there
are four boxes 210, 220, 230, and 240, which illustrate an
L.1D interface 210, an L 11 interface 220, a prefetch interface
230, and an external interface 240. Collectively, these boxes

denote circuitry that queue and track transactions or requests
through the L2 cache 112. As illustrated in FIG. 1, in each

core, there 1s both an L1D and L11I cache, and a higher level
.2 cache. The L1D terface 210 and L1I interface 220
interface the L2 cache with the L1 caches. These interfaces
implement a load queue, an evict queue and a query queue,
for example, as mechanisms to facilitate this communica-
tion. The prefetch interface 230 1s circuitry that facilitates
communications associated with prefetching. In one
embodiment, the prefetcher implements both a bounding
box prefetch algorithm and a stream pretfetch algorithm, and
ultimately makes a prefetch determination as a result of the
combination of the results of those two algorithms. The
bounding box prefetch algorithm may be similar to that
described 1n U.S. Pat. No. 8,880,807, which 1s incorporated
herein by reference. There are numerous, known stream
prefetching algorithms, which may be utilized by the
prefetcher.

As will be appreciated by those skilled in the art, the
prefetching algorithms are performed 1n part by monitoring
load requests from a respective core to the associated L11
and L1D caches. Accordingly, these are illustrated as inputs
to the prefetch interface 230. The output of the prefetch
interface 230 1s in the form of a request to access tagpipe
250, whose relevant function, which 1s brietly described
heremn, will be appreciated by persons skilled in the art.
Finally, the external interface 240 provides the interface to
components outside the L2 cache and indeed outside the
processor core. As described in connection with FIG. 1, such
communications, particularly off-slice communications, are
routed through the bus interface 120.




US 11,467,972 B2

7

As 1llustrated 1n FIG. 2, each of the circuit blocks 210,
220, 230, and 240, have outputs that are denoted as tagpipe
(access) requests. Tagpipes 250 are provided as a central
point through which almost all L2 cache traflic travels. In the
illustrated embodiment, there are two tagpipes denoted as A
and B. Two such tagpipes are provided merely for load
balancing, and as such the tagpipe requests that are output
from circuits 210, 220, 230, and 240, the various interface
circuits, can be directed to either tagpipe A or tagpipe B,
again based on load balancing. In one embodiment, the
tagpipes are four stage pipes, with the stages denoted by
letters A, B, C, and D. Transactions to access the tag/data
arrays via the tagpipes, sometimes referred to herein as
“tagpipe requests,” advance through the stages of the tag-
pipe 250. During the A stage, a transaction requests access
into the tagpipe. During the B stage, the tag 1s sent to the
arrays (tag array 260 and data array 270). Durning the C
stage, MESI information and indication of whether the tag
hit or miss 1s received from the arrays and a determination
1s made on what action to take in view of the imformation
received from the array. During the D stage, the action
decision (complete/replay, push a FillQ, etc.) 1s staged back
to the requesting queues.

Finally, FIG. 2 1llustrates a tag array 260 and data array
270. The tag array 260 eflectively or essentially includes
metadata while the data array 1s the memory space that
includes the actual cache lines of data. The metadata 1n the
tag array 260 includes MESI state as well as the L1I and
[L1D valid bits. As 1s known, the MESI state defines whether
the data stored in the data array are in one of the modified
(“M™), exclusive (“E”), shared (*S™), or mnvalid (*I”) states.

A similar, but previous, version of this architecture 1s
described 1n U.S. 2016/0350215, which 1s hereby incorpo-
rated by reference. As an understanding of the specifics with
respect to the intra-circuit component communication 1s not
necessary for an understanding of the present invention, and
indeed 1s within the level of skill of persons of ordinary skill
in the art, 1t need not be described any further herein.

Having provided a description of an example overall
environment 1n which certain embodiments of a cache data
eviction system may be implemented, attention 1s now
directed to FIG. 3, which shows an embodiment of a cache
data eviction system 300. The cache data eviction system
300 comprises the L1 data (L1D) cache 114 and the L2
cache 112. The L1 data cache 114 comprises an LL1D load
queue (L1d LoadQ) 302, an L1D store queue (LL1d Store(Q))
304, and an L 1D fill queue (L1d FillQQ) 306. The L2 cache
comprises an L2 data load queue (L2 data loadQ)) 308, an .2
data evict queue (L2 data evictQQ) 310, and tag and data array
pipelines 312, for which the L2 data loadQ) 308 and the L2
data evictQ) 310 compete for access with other sources 314
(c.g., 314a, 314b). Note that the tag and array pipelines 312
may correspond to the components shown in FIG. 2 (e.g.,
250, 260, and 270).

Referring first to illustrated components of the L1 data
cache 114, the L1D load queue 302 comprises a queue of
load operations, some of which may need to access the L2
cache 112 and hence further providing an indication (e.g., bit
status) of whether an entry 1s to be allocated in the L1D fill
queue 306. To determine 11 the L1 data cache 114 has the
data for a given load operation, the L1D load queue 302
requests access to the tag array, and if there 1s a hit, accesses
the L1 data cache array and fulfills that request and makes
whatever changes to the MESI state are needed, as 1s
conventional. In the case the cache line requested 1s not
identified 1n the tag array (e.g., a miss), the L1D load queue
302 seeks to service the load operation via the L2 cache 112.

10

15

20

25

30

35

40

45

50

55

60

65

8

Accordingly, the L1D load queue 302 requests allocation of
an entry 1n the L1D fill queue 306 (e.g., to bring the cache
line 1n from the L2 cache 112, or possibly beyond). In one
embodiment, the L1D load queue 302 comprises seventy-
two (72) entries for respective load operations, though in
some embodiments, a different quantity of entries may be
used.

The L1D store queue 304 comprises a queue of store
operations, some of which may need to access the L2 cache
112 and hence further providing an indication (e.g., bit
status) of whether an entry 1s to be allocated 1n the L1D fill
queue 306 based on a similar process to that described above
for the load request handled by the L1D load queue 302, and
hence discussion of the same or similar 1s omitted here for
brevity. In one embodiment, the L1D store queue 304
comprises forty-four (44) entries for respective store opera-
tions, though 1 some embodiments, a different quantity of
entries may be used.

The L1D fill queue 306 comprises a queue of load and/or
store operations that need to access the L2 cache 112. Each
entry of the L 1D fill queue 306 corresponds to an LL1D load
queue entry, an L1D store queue entry, or a prefetch, or 1n
some embodiments, tablewalk requests (e.g., to traverse a
linear to physical mapping based on a miss 1n a translation
lookaside butler). The L1D fill queue 306 1s further config-
ured to allocate space for a new cache line (e.g., to evict data
from the L1 data cache 114) and to bring in a new cache line
into the L1 data cache 114 (e.g., mmto a location of the
previously evicted data). In one embodiment, the L1D fill
queue 306 comprises plural entries for the load or store
operation, where each entry tracks its corresponding allo-
cation and eviction. In one embodiment, there are ten (10)
entries, though 1n some embodiments, a different quantity of
entries may be used.

Referring now to the illustrated components of the L2
cache 112, the L2 data load queue 308 comprises a queue of
L.1D allocation requests, and an indication (e.g., state, such
as pending) for each entry of the status of the allocation
request at the L2 cache 112. In one embodiment, the L2 data
load queue 308 comprises ten (10) entries, though in some
embodiments, a different quantity of entries may be used. As
represented by the example arrow head lines 1n FIG. 3, each
entry of the L2 data load queue 308 1s one-to-one mapped
onto a respective entry of the L1D fill queue 306 (e.g., L1d
FillQ[O] always uses L2Datal.oadQ[0] for 1ts L1D load
allocation request).

The L2 data evict queue 310 comprises a queue of L1D
evictions, and an indication (e.g., state, such as pending) for
cach entry of the status of the eviction at the L2 cache 112.
In one embodiment, the .2 data evict queue 310 comprises
ten (10) entries, though 1n some embodiments, a diflerent
quantity of entries may be used. As represented by the
example arrow head lines 1n FI1G. 3, each entry of the L2 data
evict queue 310 1s one-to-one mapped onto a respective
entry of the L1D fill queue 306 (e.g., L1d FillQ[O] always
uses L2DataEvictQ[0] for its eviction). The L2 cache 112
further comprises a bus (e.g., multi-hot bus) from the L2
data evict queue 310 to the L1D fill queue 306 with a valid
bit for each entry of the L2 data evict queue 310 that
indicates, when asserted, that an eviction 1s still being
processed (e.g., EvQValid[0]=1 indicates to the correspond-
ing L.1D fill queue entry, L1dFi11Q[0], that an eviction 1s still
pending). Further, when an L1D fill queue entry (e.g.,
L1dFil1Q[n]) 1s allocated, 1t must wait for the corresponding
valid bit to be deasserted (e.g., EvQValid[n]=0) before
sending 1ts eviction, otherwise its eviction may overwrite a
previous eviction from the same entry (e.g., L1dF1llQ[n]).




US 11,467,972 B2

9

The L2 data load queue 308 and the 1.2 data evict queue
310 request access to the pipelines 312 to access the tag
array to determine i1 the L2 cache 112 possesses the L1-re-
quested cache line, and 1n the case of a hit, the data array 1s
accessed and the data (cache line) 1s returned to the L1 data
cache 114. In the case of a miss in the tag array, a diflerent
cache (e.g., L3 cache) may be accessed to obtain the
requested cache line. The L2 data evict queue 310 requests
access to, for instance, write dirty data into the L2 cache
array, update directory bits (of the L2 tag array) to retlect
that the L1 data cache 114 no longer possesses the cache line
being evicted. Note that the L2 cache 112 comprises a
directory (not shown), as 1s known, which enables the L2
cache 112 to record such information as the L2 cache MESI
state, whether a cache line 1s valid (using a valid bit) 1n the
.1 data cache 114 (and L11 cache). Though both the L.2 data
load queue 308 and the L2 data evict queue 310 potentially
need to access the tag and/or data array of the pipelines 312,
it 1s noted that the other sources 314 are likewise competing
for the pipeline resources. Other sources 314 may 1nclude
I-cache requests, external snoops, other processing demands
on the L2 cache 112 (e.g., data coming back from the L3
cache to be written into the data array and/or tag array).
Despite the competition for the pipeline resources, the L2
cache 112 should also maintain suitable performance. For
instance, one benchmark may be to handle one load request
every single clock cycle out of the L2 cache 112, which 1s
a challenge given all of these sources 314 that are trying to
request access to the pipelines 312.

In one example operation, a load or store operation 1s
queued 1n the L1D load queue 302 or the L1D store queue
304. When a load or store operation misses in the L1 data
cache 114, an entry 1s allocated 1n the L1D fill queue 306.
The L1D fill queue 306 1n turn sends a load request to the
[.2 cache 112, which is tracked in the L2 data load queue
308. The L1D f1ll queue 306 may also need to evict a cache
line to accommodate or make room for the new cache line,
and 1f an eviction 1s needed, 1t 1s tracked by the L2 data evict
queue 310. The L2 data evict queue 310 signals to the L1D
{11l queue 306 that the eviction 1s 1n progress using a valid
bit (e.g., EvQValid, as described above), where each bit
corresponds to a specific entry of the L2 data evict queue
310 (and thus the specific L1D fill queue entry).

Before describing an embodiment of the cache data
eviction system 300, a brief digression 1s helpful to under-
stand how there can be a backlog of evictions using con-
ventional cache eviction techniques. Each L2 data evict
queue entry tracks only one eviction for that entry at a time.
Accordingly, an L1D fill queue entry must wait for its
corresponding valid bit to deassert (assuming 1t 1s asserted)
for a previous eviction before the L1D fill queue 306 can
send a new eviction from that reallocated entry to the same
[.2 data evict queue entry. This behavior was implemented
to prevent an L1D fill queue entry from overwriting the
eviction from a previous incarnation of the L1D fill queue
entry (e.g., i1f that eviction has not been completed by the
time the L1D fill queue entry was reused). However, as
noted in the description above, 1t has been observed that 1t
1s common for L 1D fill queue entries, using past techniques,
to be unable to send their evictions to the L2 data evict queue
in a timely manner due to a backlog of L1 data evictions 1n
the L2 cache, due primarily to the 1mability of the L2 to keep
up with a steady stream of simultaneous loads and evictions.

The handling of cache line evictions in the cache data
eviction system 300 1s premised at least in part upon the
recognition that, in certain cases, the L2 cache 112 can safely
ignore certain evictions and allow a subsequent eviction

10

15

20

25

30

35

40

45

50

55

60

65

10

immediately without wviolating cache coherency, thus
enabling a subsequent L1D fill queue entry to send its
eviction (e.g., based on a deasserted valid bit) without
waiting for the prior eviction to complete. A further premise
in the handling of cache line evictions in the cache data
eviction system 300 i1s that performing an eviction 1s likely
the result of the need to bring 1n a cache line into the L1 data
cache 114, which implies the higher priority need to service
or process a load. In one embodiment, 11 the L1 data cache
114 1s evicting a dirty cache line (e.g., having a modified (M)
MESI state), the L2 cache 112 needs to process the eviction
to keep the caches coherent (and thus delay a subsequent
eviction from the same L1D fill queue entry). However, 1n
cases where the L1 data cache 114 1s evicting a clean cache
line (e.g., having a shared (S) or exclusive (E) MESI state),
the eviction 1s not actually required for cache coherency.
Rather, the eviction 1s merely used by the L2 cache 112 to
update 1ts directory (e.g., by clearing an L1 data cache valid
bit corresponding to the evicted cache line) to prevent a
potential unnecessary snoop request.

In an embodiment of the cache data eviction system 300,
the L2 data evict queue 310, upon receiving an eviction from
the L1D fill queue 306, asserts 1ts valid bit signal (Ev(QValid)
to the L2 cache 112, and then immediately (e.g., within
approximately two clock cycles) deasserts the valid bat
signal along the bus to the L1D fill queue 306 1i the state of
the cache line being evicted is clean (e.g., an S or E MESI
state). Note that 11 the cache line being evicted 1s dirty (e.g.,
an M MESI state), the standard eviction process proceeds
until completion before the valid bit 1s deasserted. For the
case ol a clean eviction, the L2 data evict queue 310
continues to process the eviction until an earlier of comple-
tion of the eviction or receipt of a subsequent eviction from
the same L1D fill queue entry (e.g., which overwrites the
older, clean eviction i1n the L2 data evict queue 310).
Accordingly, the early indication by the L2 data evict queue
310 to the L1D fill queue 306 that 1ts eviction has completed
(even before 1t has actually completed via an update to the
[.2 cache directory) enables the same entry in the L1D fill
queue 306 to immediately begin its eviction process once the
entry 1s reallocated for a later allocation.

Note that in some embodiments, each entry of the queues
shown 1n FIG. 3 comprises its own control logic or state
machine that operate in parallel, 1n addition to control logic
for overall or aggregate operations of the L1 data cache 114
and the L2 cache 112 as would be appreciated by one having
ordinary skill in the art.

Having described certain embodiments of a cache data
eviction system, one having ordinary skill will appreciate
that one embodiment of a data cache eviction method,
depicted i FIG. 4 and denoted as method 400, may be
implemented 1 a microprocessor, and 1n particular, in the
cache data eviction system 300 (FIG. 3). In one embodi-
ment, the method 400 comprises processing by a second data
cache both a miss 1n a first data cache resulting from a first
load or store operation and an eviction from the first data
cache to accommodate the first load or store operation (402);
and from the second data cache, indicating to the first data
cache that the eviction 1s complete before the eviction 1s
actually complete based on a first state corresponding to the
eviction (404).

Any process descriptions or blocks 1 flow diagrams
should be understood as representing modules, segments,
logic, or portions of code which include one or more
executable 1nstructions for implementing specific logical
functions or steps 1n the process, and alternate implemen-
tations are included within the scope of the embodiments in




US 11,467,972 B2

11

which functions may be executed out of order from that
shown or discussed, including substantially concurrently or
in different order, depending on the functionality mnvolved,
as would be understood by those reasonably skilled 1n the art
of the present disclosure.

While the mvention has been illustrated and described in
detail 1n the drawings and foregoing description, such 1llus-
tration and description are to be considered illustrative or
exemplary and not restrictive; the invention is not limited to
the disclosed embodiments. Other variations to the disclosed
embodiments can be understood and effected by those
skilled 1n the art 1n practicing the claimed imnvention, from a
study of the drawings, the disclosure, and the appended
claims.

Note that various combinations of the disclosed embodi-
ments may be used, and hence reference to an embodiment
or one embodiment 1s not meant to exclude features from
that embodiment from use with features from other embodi-
ments. In the claims, the word “comprising” does not
exclude other elements or steps, and the indefinite article “a”
or “an” does not exclude a plurality.

The 1invention claimed 1is:

1. A microprocessor, comprising:

a first data cache; and

a second data cache configured to process both a miss in

the first data cache resulting from a first load or store
operation and an eviction from the first data cache to
accommodate the first load or store operation, the
second data cache configured to indicate to the first data
cache that the eviction 1s complete before the eviction
1s actually complete based on a first state corresponding
to the eviction.

2. The microprocessor of claim 1, wherein the second data
cache confinues to process the eviction after sending the
indication to the first data cache until an earlier of the
eviction 1s actually complete by updating a directory 1n the
second data cache or the eviction 1s overwritten.

3. The microprocessor of claim 1, wherein the first state
corresponds to an evicted cache line that has not been
modified since 1ts allocation into the first data cache.

4. The microprocessor of claim 1, wherein the first state
corresponds to an evicted cache line comprising an exclu-
sive or shared MESI state.

5. The microprocessor of claim 1, wherein the second data
cache 1s further configured to process both a miss in the first
data cache resulting from a second load or store operation
and another eviction from the first data cache to accommo-
date the second load or store operation, the second data
cache configured to indicate to the first data cache that the
another eviction i1s pending until the another eviction 1is
actually complete based on a second state corresponding to
the another eviction.

6. The microprocessor of claim 5, wherein the second
state corresponds to an evicted cache line that has been
modified and 1s allocated to the first data cache.

7. The microprocessor of claim 5, wherein the second
state corresponds to an evicted cache line that includes a
modified MESI state.

8. A cache memory system, comprising:

an L1 data cache comprising an I.1 data load queue, an L1

data store queue, and an L1 data fill queue, the L1 data
{111 queue configured to allocate an entry, corresponding
to a first load or store operation 1n the L1 data store
queue or the L1 data store queue, respectively, in the L1
data fill queue based on a miss in the L1 data cache and
to evict first data from the L1 data cache to allocate
room for the first load or store operation; and

10

15

20

25

30

35

40

45

50

55

60

65

12

an L2 data cache comprising an L2 data load queue
configured to receive an L1 data cache allocation
request for the first load or store operation and an L2
data evict queue configured to recerve the first data, the
entry mapped to respective entries of the L2 data load
queue and the L2 data evict queue, the L2 data evict
queue configured to indicate to the L1 data fill queue
that the eviction of the first data 1s complete before the
eviction 1s actually complete based on a first state
corresponding to the first data.

9. The cache memory system of claim 8, wherein the 1.2
data cache further comprises tag array and data array pipe-
lines, wherein the L2 data evict queue 1s further configured
to request access to the pipelines after sending the indication
to the L1 data fill queue until an earlier of the eviction of the
first data 1s actually complete by updating a directory in the
[.2 data cache or the eviction i1s overwritten by reallocated
data to the same entry of the L1 data fill queue.

10. The cache memory system of claim 8, further com-
prising a bus comprising a bit value configured to commu-
nicate the indication, wherein the bit value 1s asserted upon
receiving the eviction and then immediately deasserted to
enable the L1 data fill queue to evict second data when the
entry 1s reallocated for another eviction for a second load or
store operation based on another miss 1n the L1 data cache.

11. The cache memory system of claim 8, wherein the first
state corresponding to the first data comprises an 1ndication
that the first data has not been modified and 1s allocated to
the L1 data cache.

12. The cache memory system of claim 8, wherein the first
state corresponding to the first data comprises an exclusive
or shared MESI state.

13. The cache memory system of claim 8, wherein the L1
data fill queue 1s further configured to allocate an entry,
corresponding to a third load or store operation in the L1
data store queue or the L1 data store queue, respectively,
based on a miss 1n the L1 data cache and to evict third data
from the L1 data cache to allocate room for the third load or
store operation, the L2 data load queue 1s further configured
to receive an L1 data cache allocation request for the third
load or store operation and the L2 data evict queue 1s further
configured to receive the third data, the entry corresponding
to the third load or store operation mapped to respective
entries of the L2 data load queue and the L2 data evict
queue, the L2 data evict queue configured to indicate to the
[L1 data fill queue that the eviction of the third data is
pending until the eviction i1s actually complete based on a
second state corresponding to the third data.

14. The cache memory system of claim 13, wherein the
second state corresponding to the third data comprises an
indication that the third data has been modified and 1is
allocated to the L1 data cache.

15. The cache memory system of claim 13, wherein the
second state corresponding to the third data includes a
modified MESI state.

16. A method implemented 1n a cache memory system of
a microprocessor, the method comprising:

processing by a second data cache both a miss 1n a first

data cache resulting from a first load or store operation
and an eviction from the first data cache to accommo-
date the first load or store operation; and

from the second data cache, indicating to the first data

cache that the eviction 1s complete before the eviction
1s actually complete based on a first state corresponding
to the eviction.

17. The method of claam 16, further comprising the
second data cache continuing to process the eviction after




US 11,467,972 B2

13

sending the indication to the first data cache until an earlier
of the eviction 1s actually complete by updating a directory
in the second data cache or the eviction 1s overwritten.

18. The method of claam 16, wherein the first state
corresponds to an evicted cache line that has not been
modified and 1s allocated to the first data cache.

19. The method of claim 16, further comprising the
second data cache:

processing both a miss in the first data cache resulting

from a second load or store operation and another
eviction from the first data cache to accommodate the
second load or store operation; and

indicating to the first data cache that the another eviction

1s pending until the another eviction 1s actually com-
plete based on a second state corresponding to the
another eviction.

20. The method of claim 19, wherein the second state
corresponds to an evicted cache line that has been modified
and 1s allocated to the first data cache.

G x e Gx o

10

15

20

14



	Front Page
	Drawings
	Specification
	Claims

