12 United States Patent

US011463314B2

(10) Patent No.: US 11,463,314 B2

Pieczul et al. 45) Date of Patent: Oct. 4, 2022
(54) AUTOMATICALLY INFERRING (56) References Cited
SOFTWARE-DEFINED NETWORK POLICIES
FROM THE OBSERVED WORKLOAD IN A U.S. PATENT DOCUMENTS
COMPUTING ENVIRONMENT 490140 Bl 49013 Tolrvekar of 4l
429, olayekar et al.
(71) Applicant: Oracle International Corporation, 11,102,076 Bl 8/2021 _Pleczm et al.
Redwood Shores, CA (US) (Continued)
(72) Inventors: Olgierd Stanislaw Pieczul, Dublin OTHER PURLICATIONS
(IE); Robert Clark, Clyde Hill, WA
(US); Nitin Srinivasa Rao Jami, “Tufin SecureCloud Solution”, tufin, the Security Policy company,
Mercer Island, WA (US) May 20, 2020, 2 pages.
_ (Continued)
(73) Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores, _ _ _
CA (US) ?n;nary Examiner — Lan Da1 T Trliong) ;
14) Attorney, Agent, or Firm — Kilpatrick Townsend &
(*) Notice: Subject to any disclaimer, the term of this Stockton LLP
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days. (57) ARSTRACT
(21) Appl. No.: 17/124,155 Techniques are disclosed for automatically mferring soft-
_ ware-defined network policies from the observed workload
(22) Filed: Dec. 16, 2020 in a computing environment. The disclosed techniques
_ o include monitoring network traflic flow originating from
(65) Prior Publication Data network interfaces corresponding to containers that execute
US 2022/0191099 Al Jun. 16, 2022 components of an application, recording details of a new
network connection or a change in the existing network
(51) Int. CIL connection, obtaining information concerning the compo-
GOoF 15/177 (2006.01) nents of the application, 1dentifying metadata for a compo-
HO4L 41/0893 (2022.01) nent involved i the new network connection or the change
(Continued) in an existing network connection based on a comparison of
(52) U.S. CL the details of the new network connection or a change 1n the
CPC HO04L 41/0893 (2013.01); HO4L 41/0266 existing network connection and the mnformation concerning
(2013.01); HO4L 41/0806 (2013.01); the components of the application, generating a network
(Continued) policy for the component using at least the metadata for the
(58) Field of Classification Search component, and integrating the network policy for the
CPC ..o HO4L 41/0893; HO4L 43/062; HO4L ~ component into a deployment package for the application.
43/0811; HO4L 41/0266
(Continued) 20 Claims, 14 Drawing Sheets
10Q Coarse-grained
7—“\% WOk s:*:;;;:rity nalicy
Application press-seeeeeeeeee $---§
104 { ol :Eﬂmpﬂﬂﬂﬂi--ﬂpﬂﬂiﬁﬁ rebwnrk e —— ;
o o vt secutity poficies : "‘Eﬁigig’;i"ﬁ L
Lise:‘qz{;};wue “;E;:c:}izft : Systom 11¢ o *ﬁ = 3
e T e 108 TR s S
ol —3on] fast bnvironment :
| ! - 142 *

5

- ~ E
Leptoymaend Deptoyaed 3
Owohesiratior e = ;E’i;};]iiﬂﬂtiﬁﬂ E
Sysiem 118 i
116 e A

A E

i i

¥ |

i i

- >

S

i

i

Networlk Policy
iala Siore

roduction Snviromment 120
i

US 11,463,314 B2
Page 2

(51) Int. CL
HO4L 41/0266 (2022.01)
HO4L 43/062 (2022.01)
HO4L 41/08 (2022.01)
HO4L 43/0811 (2022.01)
HO4L 41/0806 (2022.01)
(52) U.S. CL
CPC ... HO4L 41/0886 (2013.01); HO4L 43/062

(2013.01); HO4L 43/0811 (2013.01)

(58) Field of Classification Search

USPC ., 709/220, 223, 224
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0199213 Al* &§/2009 Websterocoveveninnnn. GO6F 9/54
719/320

2012/0093160 Al* 4/2012 Tonsing HO04I. 63/0245
370/392

2012/0109958 Al 5/2012 Thakur et al.

2012/0192246 Al 7/2012 Harrison

2013/0139228 Al 5/2013 Odaira

2018/0027006 Al 1/2018 Zimmermann et al.

2019/0208445 Al 7/2019 Klatsky et al.
2019/0289035 Al 9/2019 Ahua et al.
2020/0280576 Al 9/2020 Key et al.
2022/0191099 Al 6/2022 Pieczul et al.

OTHER PUBLICATTIONS

U.S. Appl. No. 17/124,162, filed Dec. 16, 2020 1n all of its entirety.
U.S. Appl. No. 17/167,591, Techniques for Network Policies Analy-
sis 1n Contaimner Frameworks filed Feb. 4, 2021, all pages.

U.S. Appl. No. 17/167,591, Notice of Allowance dated May 26,
2021, 8 pages.

U.S. Appl. No. 17/379,923, Non-Final Oflice Action dated Mar. 14,
2022, 9 pages.

U.S. Appl. No. 17/124,162 , “Notice of Allowance”, dated Aug. 15,
2022, 8 pages.

U.S. Appl. No. 17/187,631 , “Corrected Notice of Allowability”,
dated Aug. 15, 2022, 5 pages.

U.S. Appl. No. 17/187,631 , “Notice of Allowance”, dated Jul. 7,
2022, 12 pages.

U.S. Appl. No. 17/379,923 , “Corrected Notice of Allowability”,
dated Aug. 9, 2022, 2 pages.

U.S. Appl. No. 17/379,923 , “Notice of Allowance”, dated Jul. 21,
2022, 5 pages.

* cited by examiner

SIS BB
ADHO HIOMIBN

US 11,463,314 B2

Sbt
uoneoyady
naAcidan

Sheet 1 of 14

Oct. 4, 2022

il
BORYDE
uatioden

U.S. Patent

L DI

[
LOULIUOHALT UOIONDOIA

IOIBNSHUTIO
JUBLLADIAB0

FARN
JUSWUOLAUT 1881

Obi
S21010d AJUnoss
NIOMISU SHI0adS-JUsUOdLICT

iiiiiiiiiii

AOHOT ABINOSS MIOMISU
DoUIRIb-a8120)

S04
UBUOTLLIOD JO
UOISISA MBN

2

2

|

AGCT 1980

r-'.‘.‘
£

003

US 11,463,314 B2

Sheet 2 of 14

Oct. 4, 2022

U.S. Patent

anenh-abeseaw dde
GaM BUOZ

Bl B CEGE AGE LS EGE Gw Salw Fh MR M R PR PR PR PR R R . e iy TR Byt

anisnb-gbessauy

aseqeiep dde
2iep 18Uz

BoiAles~-iapi0 (dde
SEOIAIBS [HUOZ

aniaes-iasn dde
OIAIBS [BU0Z

20IA188-a0i0AL: (dde |
SOOIAIOS 1BU0Z

SIHALDS- IR

S W _______________ S wQN N e ettt -~

dae~gam dae .
oM QU7

ﬁmm B~0 DM

Aemaieb-de dde

- 1583 mwﬁGN
w07 L __JU0s elbe

Apsmsieb-de .
ALY

US 11,463,314 B2

Sheet 3 of 14

Oct. 4, 2022

80t

VTV YYE oL |
S3IAIRS-IOSN

LV vye UL
BIAIBS-13SN

mm.w,wwm.ww

& Ol

S0¢

AR TA!
muwﬁhmmiwmﬂ

maw.,wwwdw

443

wmwamw&mwmﬁ

[4

A 27!
onanb-aBessaty

wﬁw wwm 9\

&wmaﬁmgmmm@}ﬁm

L& vrd O
3DIALIGS- 138N

U.S. Patent

YO'0L0L Y SPON | | £°0°0L0) ‘£ BPON | | Z0°0L°0L 2 8PON | | L0010} ‘L BPON

Y20 0L E, SHOMIBN

U.S. Patent Oct. 4, 2022 Sheet 4 of 14 US 11,463,314 B2

US 11,463,314 B2

BUASDS-RDIOALU m%
SHUAIDS [BUDZ

Sheet 5 of 14

Oct. 4, 2022

U.S. Patent

i Mk Befe Cmfa et Swf e R K B BGE. M ML GEGE GEGE v BGEGE oler Myr gy Mess SeeE U, I gl B e

3sEGEIR @dmm
ejepn suoz

A0IAISS~IO5N %m
STVAIES 1BUGZ

A%l

23 AID G-

306

MO e i s e mon wen e wr s e vy i wmy wmh mml Rl W iai Mal Wil i e i evn v el

anonb-sbessaw dde

ﬂ@m& BIGL

o e e o e s o 7ZAS _
| aseqejep B / . \

Aereyeb-ide (dde
.EE% BUDT

Avmasieb-ige

ol ol

206

aones-19p10 (dde

m&u ??wmu Qﬂ@.m

BOAIBS-ISNIC

dde-gqam dde
_ qem 18Uz

00%

US 11,463,314 B2

Sheet 6 of 14

Oct. 4, 2022

U.S. Patent

w3 me mwm ﬁ

L]

s by il s ks ol s s ol ol il

il by s s oy s s ey ol s s ol s e s s ey e il s e s s

1018217
AHod

0y
s{ahinlon:

= m m P9
IOHUOWE et BURIT [OJIUOD
usuedwior | P ISUIBIUOT

nduy
JOBISGD

w.aw. mwmuﬂ

319
L L YPe UL
7y UBUCTILOD

{119
SV REGL i
(1 RUOGAUION

GL9
ueby
SLLOBUOWN

_w _________ _ T

iy ol why wlh wh ko gk gh gl .

sy

¥
wig Jiu gip sy sy ﬁ:ﬂ iy
¥

o n N

019
L L vPe O -d
o ILIBUOAUICT

_ iy
_______ wiehy
L Butionuop

A ran
ILISUIUOHAUD LOHONDOIA 10 1881

g

N

> 008

U.S. Patent Oct. 4, 2022 Sheet 7 of 14 US 11,463,314 B2

700 ‘-< Determine 3 coarse-grained policy for

Parform a policy test for the Ferform a functional test for the
' component component
06

1 Monitor the network
| traffic associated with the
| component

“Both policy test and
functional test passed?
b 714 -

. Yes

identify a setof one or

more network paths for ;

the component based No

or the monitoring
710

| Deploy 5
- component 1o |
- production |

—"Both policy test ~
<.and functional test failed? -~
~ 718

Yes

Report functional bug/test coverage
issue and dao not depioy component |
{28 :

U.S. Patent Oct. 4, 2022 Sheet 8 of 14 US 11,463,314 B2

800 .

s Monitor network traffic
si8]

Lelect new network or enange in

an existing network connection
81l

Record details concerning the new network connection

or the ¢hange in the existing network connection
812

Obtain information for components

of the application
820

- Identify metadata for a component involved in the new network connection
- or the change in the existing network conneclion based on a comparison

between the record details and the information of the components
84D

5 Generale a network policy for the
- component using at least the metadata

for the component
830

Generale a deployment package comprising the component

and the network poiicy associated with the component
832

Depioy the deployment package in the
production environment
840

=el

U.S. Patent Oct. 4, 2022 Sheet 9 of 14 US 11,463,314 B2

800

{dentify a component that
IS depioved as partof a
depioyed application
902

Uetermine a component
: identifier for the
component

904

- Determine a network

| policy for the component
- based on the component
5 identifier

9ue

| Apply the network policy
- for data flows {0 and
from the component

208

US 11,463,314 B2

Sheet 10 of 14

Oct. 4, 2022

U.S. Patent

eeenenbe 19 020 SIBUGNS B m
050 8l m
 eje(] sue|d eleq] m

0701
, (Shaugng

i e ©
|| (Shougng ddy | “-2v0)

e e L L L L L L

ll

F R A U E P A A il W RE R R R W R R R RS R R RA BE RE RS B B

e e B W M B R W W A Nl vl R i R R R A

ﬁ S
C:} B "
P &
P -
& oY _
| 5|8
2l w1 le
5 s
on
B
; &
1 -

E, S L8 L - A - -‘_

&

020} sjBuagng ddy

s i ke W ks, i ke ke s s s ok s s e ol

yz01 Jel ddy sueid oaueD

*‘f

1SQH
a.__awm

- 'y Yy oy oy ey ws we vy vy e vy wu-

JBUGNS
JSOH
2In09g

9001
NOA

cCt sivudng g1

rhﬁﬁhﬁﬁhﬁhhﬁﬁhﬁﬁi

....... $0Z01 1211 ZNQ SuBd JoRuo)

POTIN p—— 1t A S o L Y
OR0L ma_- ” ——~__ NOA —~
SOIABG 1Y \ H@c o/ o MQEEE 26T W I
. TN Ble | ﬂ SUBd WSF.@Q
: 3 & _ : __f *
m mmor-wo_awm_ 1 e
m m juslwisbeueyy elepeIop S s o 9501
m . T § T m SBOINIBS
”...........r.l......m,.f... e e e e em.....-._......f...:......:::...,..._..;..l;f...?v vﬁO"Q
(VS0 1BuE o

P w ow w W e m odm odw s s B e o owt ar hm m JE

Iang

5101 AJueua] aoiAleg

AQUBUS

B e e e i e e o e e e e T e e e e e e e i e e e e e i a ae i i Sl A i alei

ol gyl ol g e gl s gl g

¢
i
i
I
'
!
¥
i
¥
i
)
3
1
3
3
3
)
|
Y
1
1
L
L
i
(
i
i
¢
i
i
i
3
i
:
H
3
3
i
3
3
)
Y
1
L |
1
L
i
i
i

~2001
ﬁ siojesed(

Gm_amm

US 11,463,314 B2

Sheet 11 of 14

Oct. 4, 2022

U.S. Patent

I e i e o o e o e o e o o m

el e o o e e o o e o o o i o o i e i e ol e i e o o s ol s o s ol o i ol e i i s e i e sl i e e ol e ol o i s o o o s o i s sl e i o o e i ol s i ol o i s o o i s o i i e i i sl e i i e o s ol o o s ol o i sl o s i s e i e e i ol ol ol e ol s o s ol o i sl o o i sl e i s e e i e o i ol ol o sl ol o i sl o i i o ok i ol ke i i o

B R R R R R R R R R g e e ey
T P T N TigF Nigl Tigr Tigh Tigr Tigr Tigh Tigh Tigh Tigr Tigh Tigh Tigr Tl Tigh Tigr Tigr Tigh gk Tigr Tigr Tigh Digr Tigr Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigh g Tigh Tl Tigh Tigh Tigr Tigh Tigh Tigr Tigh Tigh Pigr Tigr Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigf

. W ET B

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

o 0SLL
S)BUgNG

g0

B

AR
BIB(] BUR|4 OO

AR S S Sy S S S Syt S Ay SO St SO Uy S St SO S SO SO S S SO S SO Nt SO SUe S St SO SO SO SOy SO S S SOy S S S g

9cit

ddy

)

(sheugng I
dy

- i nlle- e nlie- ol vl nlle nlle alle il e ol ol e ol alle ol ol i e e e vl nlle- e ol ol ol il ol e e ol ol nlie ol ol alle alle alle ol e e nlle- ol ol nlie alle ol alle- ol e e ol ol e ol ol ol ol ol e ol e nlie- ol ol ol ol ol alle ol e ol ol ol nle ol ol ol ol e e ol ol nle- ol ol ol sl ol alle- ol alie- olle- e ol nle ol alle alle- sl e e e ol nle ol ol ol ol ol e e e nlie- ol ol ol ol ol alle- ol e e ol ol nle ol ol ol ol e e e ol nle- ol ol ol ol

a— e e

mu_?_m

yCbl BIL

b ale e i e i e e o i o o i o o o m

pin_nlk i ol nin -

1BUgNRG
- HSS

e e e o e e L o o o o i e o i i o e i ol e i e e o e o o m

wuhhhhhﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

e

o:wl%

ok
NOA

bl By by Ay

" - T ddy suBjd 10880
Obl} Jon ddy [l N ___ddy aueid joguay
1oLy BuEld Bleq || m m
| ik A%
| | SiBUgng g7 AR]

ZNG PUE| [OIJUOD

»
H
i
L
L
!

_JPus)

TN

m |

m@ mm i %m%..mwm@#

b

9L L1l NOA
3UBld 100N

11

F = = = = "= ™ m m W “E FfFE FJE JE F: S5 1 Fu

- o

439 m.o?mmu jusiisheuR)y
EiEpeisiN

e, e, ke, ey ks s s s s e e ol o, s e,

i

v JeUIBIU Sl ¢

Wiy iy iy iy g, o R A R g B g A A g A A A

LY

N
——

5111 AQUBUS] 80IASBG

POb L
AdtRUB |
1804
aMN08G

201)
SHECE g
~ BOAES \b

g

rrrrrrrrrrrrrrrrrrrrr

US 11,463,314 B2

Sheet 12 of 14

Oct. 4, 2022

U.S. Patent

L

W - - W .WQNW.
ﬁ %m?\, # Aoueus |
(NJ2gZL Jeugng ﬂw__ w oy
SN E — TN\ 8IN08S
\mma&mw pzwm@ﬁ zo> . _@_@wﬁ (s)jouans g Y m _@hw
iy cvenrerrrerrd ||| A S S . 0ezi{sheugng g oo SRR o
”w m ” “ w 11} eugng Mmmmww%
m” “ m _m m_ _ 8zZ} 8111 ! - Bugng;
N m mm 4 2jeq) aueld |04U0D)] 1mmL 1S0H
[T 7T 11— e - T 6, |
H B = oa-| | 6d

11 Y “ 1 B g7z} {shpugng ddy E .
e ” NI SRt IR MHIRA 1Bt
ez (Do o e piUN ===1] I B gy dumig ooy ||| NORHSS| | [
N I |90zl — -teweet i - H 01T

w Bueua] sawomena | [L l{sheugng |} " _ gy

M_ A N o) 2o e (npszi gy i | m ; AT
R,) A AR nﬁm:ﬁ | ” (s vmmmsm g7 1 ..VESE%O
ey [A NoLIgnS am,.% DOISNIUN w rrrrrrrrrrrrrrrrrrr [” T LA .me.m.m : _/fmwmh.ﬂwm
= DINA L HIE L gpzl Jet) ddy guBld ﬁmm | " w ZING mcm_m_ 04UoD! it
||| sl uang ddyl m------------------------.”.--J.“..“.“.m__...mH.mmHmmm.h.--------” P) w

NN wmm:w%%wm.; | {(femoren Y Aemejeg) (femaieg 9170 NOA i
fense (gozsinonl | 4 L INLYN/NEHE FAGONOS e jonuog e
ALY mm&mm,h,%.%@u I gvch 9L Nsn gﬁ%m i ; w m
i Aaueua setioisnalll : m m 0
m;, H0iZ) LI 3871 wmmw GeTL™ \ : ” o
¥ bannes %E@E@ {Aemai2s) } { ABMBIES) Leg! : ” " -
| LN ata] / \8oeg “m m m |
N e — — — e fwsemes|
L N 2521 0iag JuailaBeUe BiepeiRi] i -

x 1BURIUOT mm [N w

X puaBe depy n . : %

3 %Nm\ 55&5 oﬁim_ AN

00¢ 1

llllllllllll
e e W L

US 11,463,314 B2

Sheet 13 of 14

Oct. 4, 2022

et W o e T e e by Ry P Ay g Sy iy i R e et e e W W e R Ny e g g g ey iy oy e e PN R e w w w Ne Mee e Ry g g g Sy e oy iy ey i et e e e ot Y W W T e B g g e vy iy ey i e PR

pOLt
AOUBLS] |

1SCH

{
i
t
1
}
i
!

BLEL NOA 8UEld Bleq | ——(H

P R R R R R R R R R R R R D R R R S R R R g g
g g g g g g g g g g g g g g T T T T g Ty Iy gy

e e e e e e e b e e e e e e e e e e e

IIIIIIII! [SO U S S

e

mho%go
NS

o T

A CIC TR

..._.._..._l.:l:l!l.

0.
E
s
3
j
ﬂ.g..a
a@rvvvmwwuuuﬂih

ey |

¥_diofang Jswosnd |

T L L

geet %m_\ o
>m§£mm mmgmﬁw ?gmwmw -

¥
¥
]

0GEL 491] BJR(] suBid BB 2IN0BS
i = m I — —
e e I ogel (Sheuansaa | || |l wigl -
" B B e —— m B E Lo 1L 1] yoUgNS i sUsl
@ 97¢1 1augng Q% il L;:) | | | B i m HaG mwmma
,,,,,,,,,,,, Nl mm 8z¢) JotL. ‘PIeq oueld mgmoom o
: N m _m 1] P e HISINIOY
i (2P0es | iy — : : A
lllllllllllll m 1 Ao%mv Rk o m 547
m / . m m Wﬁ _\w m “ “...”.p.....“_. d e s H , :
_.W';ruwm bi wamm : iE mmmm\ (s)ieugns ddy ” G0E L
iiiiiiiiiiii 2oL |1 paiSTL iE - . - NOA
__ NG x%%m &ﬁ pRISHANN i “ & . UL e
AR o ¥ “ ﬁmmw\ o ddy ncmﬁ JOHUOD) | HSS w
. @Wmm\f.\w@w._c Qﬂ«d_mmmm& mwmmw “ e) ” i

DR, e
@5 NOA 10CS1 $80IAISS

-"--;l-"l--'-i-'\-‘-‘-hj'-h-ﬁ-ﬂ-hﬂﬁﬂﬁﬁﬂ-'-f--ﬂ-'-'-F-"-i'h'*-'l--*-i-i'%ﬁ-ﬁﬁﬁﬁﬁ"-"-'

e i ol ol ol ol ol ol ol ol ol ol e ol o

AeMaleD) oo oy _
\ - N mmmﬁ_@m JEURIUNGD .

U.S. Patent

m_‘m_. Mummﬂ.‘“@._s mwmaww h h

N i Y P N T e

-

mmmw S0IAI8S
SUIBBRURI BIRDRIAN

INFULH9ES
‘n_mgﬁcoo

puaba depy o PEEL N
T T R OIS iGN §

l.‘-"’
o
P
w W W W W w " " "m fm fm g e MmN
A ot o o o W W W W W W m hw m hm m Pm Mm M

00E 1L

AL v e e M W PR R R ae R B

r'-l--ll-luﬂl.ﬂ'aﬂ-\.ﬂﬂﬂ*ﬂ‘ﬂlﬂ‘i-l-l-lﬁﬂﬂﬂ-lﬂﬂv‘ﬂlﬂ‘ili"

US 11,463,314 B2

Sheet 14 of 14

Oct. 4, 2022

U.S. Patent

vLold

NILSASENS FIOVHOLS
47
| SWVIHLS
| LN3AT

Cevi
ViGN ADOVH0LS
F1gVAVIH-H3 LNdNQD

mmMFiaaz.
CINIAT

DEvi
AUV A VIAAW
AOVHOLS
A19VAYVHd 2 LNdNOD

ALOWDIN WILSAS

A

NALSASENS

SNOILVYOINDINNGDO

govT LIND IN | ONISS3D0Ud |

NALSASENS O/ | |NOILYHITIOOY | | ONISSIOOU ENS
| | ONISS300ud . | P

AR
LINA ONISS3 00

US 11,463,314 B2

1

AUTOMATICALLY INFERRING
SOFTWARE-DEFINED NETWORK POLICIES
FROM THE OBSERVED WORKLOAD IN A
COMPUTING ENVIRONMENT

FIELD OF THE INVENTION

The present disclosure relates generally to network tratlic
control, and more particularly, to techniques for automati-
cally inferring software-defined network policies from the
observed workload 1n a computing environment.

BACKGROUND

Container orchestration tools provide a robust framework
for managing and deploying containerized applications
across a cluster of computing nodes 1n a computing envi-
ronment. Examples of these tools include, for instance,
Kubernetes, Open Shift, Docker Swarm and the like. The
usage of these tools has dramatically increased in the recent
years with the rising popularity of cloud-based services and
changes in the design of services/applications from large and
monolithic systems to highly distributed and micro-service
based systems. In the micro-service based model, an appli-
cation 1s built using a large number of small components
communicating over a network. Fach component can be
independently deployed, upgraded and scaled to a produc-
tion environment. Software-defined networks are an integral
part of the micro-service based model, allowing seamless
changes to imndividual components without disruption. Each
time the arrangement of a component within the system
changes, the underlying network 1s reconfigured automati-
cally. Components in such networks typically have dynami-
cally assigned Internet Protocol (IP) addresses that are not
stable for a particular component type.

Due to the dynamic nature of the network, existing
techniques (e.g., host or network based firewalls) used by
container orchestration frameworks for implementing net-
work traflic flow controls are oftentimes inadequate. Since
the network traflic leaving the host or traversing the network
1s often encapsulated, 1t 1s very challenging to distinguish
traflic at the level of mndividual components that reside on
the hosts (computing nodes). Even if additional logic 1s
introduced to de-encapsulate the packets traversing the
network, filtering the network traflic still poses a challenge
due to the dynamic nature of the source and destination
addresses of the components.

BRIEF SUMMARY

This disclosure relates generally to virtual networking
environments and network traflic control within those virtual
networking environments. More specifically, but not by way
of limitation, this disclosure describes techniques (e.g., a
method, a system, non-transitory computer-readable
medium storing code or instructions executable by one or
more processors) automatically inferring software-defined
network policies from the observed workload 1n a comput-
ing environment.

In various embodiments, a method 1s provided that com-
prises: monitoring, by a data processing system, network
traflic flow originating from network interfaces correspond-
ing to containers that execute components of an application;
detecting, by the data processing system, a new network
connection or a change 1n an existing network connection
within the network traflic based on the momitoring of the
network traflic flow; in response to detecting the new

10

15

20

25

30

35

40

45

50

55

60

65

2

network connection or the change in the existing network
connection, recording, by the data processing system, details
of the new network connection or the change 1n the existing
network connection, where the details include a network
address of a source component and a network address of a
destination component for the new network connection or
the change 1n the existing network connection; obtaining, by
the data processing system, information concerning the
components of the application, where the information
includes the network address and metadata associated with
cach of the components of the application; 1dentifying, by
the data processing system, metadata for the source com-
ponent and the destination component based on a compari-
son of at least the network address of the source component
and the network address of the destination component to the
network address associated with each of the components of
the application; generating, by the computer system, a
network policy for the source component or the destination
component using at least the metadata for the source com-
ponent and the destination component, where the network
policy comprises information representative of the new
network connection or the change in the existing network
connection; and integrating, by the computer system, the
network policy for the source component or the destination
component mto a deployment package for the application.

In some embodiments, the details further include a time
stamp for the new network connection or the change in the

existing network connection.

In some embodiments, the information further includes
any changes to arrangement of the components and time of
the changes, and the metadata comprises labels associated
with each of the components of the application.

In some embodiments, the network policy for the source
component or the destination component 1s generated using
at least the metadata for the source component and the
destination component, the time stamp for the new network
connection or the change 1n the existing network connection,
and the time of the changes associated with the arrangement
of the source component or the destination component.

In some embodiments, the method further comprises:
identifving, by the data processing system, a subset of
components of the components of the application that are
not involved 1n the new network connection or the change in
the existing network connection based on the comparison of
at least the network address of the source component and the
network address of the destination component to the net-
work address associated with each of the components of the
application, where the network policy for the source com-
ponent or the destination component 1s generated using at
least the metadata for the source component and the desti-
nation component and the subset of components of the
components of the application that are not involved in the
new network connection or the change in the existing
network connection.

In some embodiments, the network policy comprises
information 1ndicating that the network policy 1s applicable
to a defined version of the source component or the desti-
nation component.

In some embodiments, the method further comprises:
deploying, by the data processing system, the deployment
package to a computing node in a computing environment of
the data processing system.

In various embodiments, a system 1s provided that
includes one or more data processors and a non-transitory
computer readable storage medium containing instructions
which, when executed on the one or more data processors,

US 11,463,314 B2

3

cause the one or more data processors to perform part or all
of one or more methods disclosed herein.

In various embodiments, a computer-program product 1s
provided that 1s tangibly embodied in a non-transitory
machine-readable storage medium and that includes 1nstruc-
tions configured to cause one or more data processors to
perform part or all of one or more methods disclosed herein.

The techniques described above and below may be imple-
mented 1n a number of ways and 1 a number of contexts.
Several example implementations and contexts are provided
with reference to the following figures, as described below
in more detail. However, the following implementations and
contexts are but a few of many.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1 depicts an example of a distributed computing
environment for generating network policies for compo-
nents of an application deployed 1n the computing environ-
ment, according to various embodiments.

FIG. 2 depicts an example of an application deployed in
a containerized environment of the computing environment
shown 1n FIG. 1, according to various embodiments.

FIG. 3 depicts an example arrangement of components of
the application shown 1n FIG. 2 on a cluster of nodes 1n a
container-based framework, according to various embodi-
ments.

FIG. 4 depicts various examples ol network polices
defined by a container-based framework for a containerized
application deployed on a cluster of nodes 1n the container-
based framework, according to various embodiments.

FIG. 5 1s an example of the containerized application
shown 1 FIG. 2 depicting a change in the operation of one
of the components within the containenized application,
according to various embodiments.

FIG. 6 depicts additional details of the operations per-
formed by the systems shown in FIG. 1 for generating
network policies for components of an application deployed
in a computing environment, according to various embodi-
ments.

FIG. 7 1s an example of a process for generating a network
policy for a component of an application executing 1n a
containerized environment, according to various embodi-
ments.

FIG. 8 1s an example of a process for detecting network
connections, detecting components within a containerized
environment, and generating a network policy for a com-
ponent of an application executing in the containerized
environment, according to various embodiments.

FIG. 9 1s an example of a process of the manner 1n which
the network policy of a component may be utilized, accord-
ing to various embodiments.

FIG. 10 1s a block diagram illustrating one pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FIG. 11 1s a block diagram 1llustrating another pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FI1G. 12 1s a block diagram 1llustrating another pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

FIG. 13 1s a block diagram 1llustrating another pattern for
implementing a cloud infrastructure as a service system,
according to at least one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 14 1s a block diagram 1llustrating an example com-
puter system, according to at least one embodiment.

DETAILED DESCRIPTION

In the following description, for the purposes of expla-
nation, specific details are set forth in order to provide a
thorough understanding of certain embodiments. However,
it will be apparent that various embodiments may be prac-
ticed without these specific details. The figures and descrip-
tion are not intended to be restrictive. The word “exemplary™
1s used herein to mean “serving as an example, 1nstance, or
illustration.” Any embodiment or design described herein as
“exemplary” 1s not necessarily to be construed as preferred
or advantageous over other embodiments or designs.

In certain approaches, software defined networks, used 1n
container orchestration tools often by default, allow com-
munication between all the components within the system.
For example, in Kubernetes, Common Network Interface
plugins are required to assign an Internet Protocol (IP)
address to every component (or pod) 1n an application and
the plugins allow tratlic between every pod, regardless of the
underlying network used. One approach involves the use of
software-based tunneling protocols, such as VXLAN, to
provide a flat network that moves tratlic seamlessly within
and between hosts (physical machines or virtual machines)
that provide computing instances to the cluster. While, the
primary goal of such a network 1s to provide connectivity for
continuously changing workloads, 1t does not provide secu-
rity or 1solation of network tratlic between the components.

To compensate for the challenges faced by container
orchestration tools that use traditional network controls to
specily policy rules for communication between the com-
ponents of a containerized application, container orchestra-
tion frameworks may provide mechanisms to restrict the
tratlic within the cluster by specitying a network policy (e.g.,
a network security policy) configuration for the entire appli-
cation and providing 1t to the cluster’s control plane. The
policy indirectly addresses the components through meta-
data associated with these components. For example, 1n
Kubernetes, the policy specification may not use identifiers
of pods, but may instead use pod labels and namespaces
where multiple pods can share labels and namespaces. As
used herein, a pod may refer to a set of one or more
components of an application that may be processed by the
orchestration tool at a time.

In certain approaches, in container-based frameworks
such as Kubernetes and OpenShift, network policies are
distributed as a collection of independent objects. These
objects have their own lifecycle, can be changed indepen-
dently, but aflect each other and the system (1.e., the con-
taimnerized application) as a whole. For example, a policy
statement for one object can accidentally overshadow
another policy defined for another object. Furthermore,
clements that are used to specily the policy, such as com-
ponent labels, may change independently from the policy
itself. It 1s possible that routine reconfiguration of a com-
ponent will accidentally impact a policy. Additionally, when
tasks of the component and network policy management are
split between different teams within an organization, the
process of defining network policies for individual compo-
nents by container-based frameworks becomes even more
challenging.

Network policy management 1s particularly challenging
with a truly continuous delivery model. In this case, indi-
vidual components are delivered independently, typically
with one change to the system at a time. New components

US 11,463,314 B2

S

may be delivered very frequently, multiple times a day, and
cach time they may potentially require a different network
configuration. In addition, older and newer versions of the
same component are often runming 1n 1n parallel, to facilitate
non-disruptive transition during an upgrade, or to provide a
gradual change delivery model. In this model, system pro-
cessing (defined by a portion of processing, groups of users
or other means) 1s gradually directed to newer components.
Gradual rollout of changes allows monitoring changes 1n a
real-life environment and their operation under increased
load, without risking a full system disruption. Also, the
arrangement ol the components may be diflerent 1n different
environments, with different feature sets, regulatory com-
pliance requirements or customer needs.

In such an environment, defining precise network policies
1s a challenging task. The requirements for policies and
connection paths may change on daily basis and manual
creation of tight network policies 1s not feasible at this rate,
speed and degree of automation. There 1s no easy way to
infer network policies from the observed trathc. When the
traflic 1s recorded, the only information directly available 1s
low level (IP addresses, ports, protocols, etc.). This infor-
mation however cannot be used to construct the policies, and
are not stable or repeatable across clusters or even within
single cluster over time. Also, the elements that are used to
specily the policies, such as component labels, may change
independently from the policies themselves. It 1s possible
that routine reconfiguration of a component will accidentally
impact a policy. Tasks of component and network policy
management can be split between different parts of the team
which makes this problem even more likely. In practice,
many organizations resort to using a pre-defined set of
policies (also referred to herein as coarse-grained network
policies) such as the zone-based polices to reflect general
network traflic expectations of the system. While a coarse-
grained policy developed by users may be used to retlect
general network traflic expectations of the system, in con-
tainer frameworks it 1s not possible to use a coarse-grained
together with a fine-grained policy. This 1s due to the fact
that, if present, the coarse-grained policy would allow all the
tratlic within 1ts boundaries and overshadow its subset, that
1s, the fine-grained policy.

The present disclosure describes improved techniques for
automatically inferring software-defined network policies
from the observed workload 1n a computing environment.
The disclosed systems include capabilities for capturing the
traflic data in the cluster and simultaneously correlating the
source and destination addresses with the objects in the
cluster. This provides the data on communication between
the objects 1n the cluster. This data 1s subsequently aggre-
gated and used to create the network policies. In operation
cach component/node on a network 1s provisioned to include
an agent that monitors the outgoing trathic. The agent records
network tlow (e.g., TCP connections and UDP trathic) within
the cluster. Once a flow 1s recorded, the components corre-
sponding to the source of destination addresses are 1dentified
by the agent and recorded with the flow. Identification and
recording of components simultaneously with the traflic 1s
advantageous, as during the cluster lifecycle components
may be added or removed, addresses reused and so forth.
Along with the component, the agent records the component
metadata that 1s relevant for creating a policy such as
component labels. This data, including the specific network
flow between two cluster objects 1s recorded. Simultane-
ously, the agent records the status and changes to all of the
objects 1n the cluster. Understanding of all the objects 1s
advantageous as 1t allows to 1dentily the components that are

10

15

20

25

30

35

40

45

50

55

60

65

6

not involved 1n any trailic flows. By the end of the process,
all the cluster components, as well as their communication
1s recorded. This data 1s subsequently used to generate a
network policy.

Referring now to the drawings, FIG. 1 depicts an example
of a distributed computing environment 100 for generating
network policies such as network security policies for com-
ponents ol an application deployed 1n the computing envi-
ronment, according to certain embodiments. The computing
environment 100 may include a test environment 112 and a
production environment 122. The test environment 112 and
the production environment 122 may comprise one or more
computing systems that execute computer-readable instruc-
tions (e.g., code, program) to implement the test environ-
ment 112 and the production environment 122. As depicted
in FIG. 1, the test environment 112 includes a test system
108 and the production environment 122 includes a deploy-
ment orchestrator system 116. Portions of data or informa-
tion used by or generated 1n the test environment 112 and the
production environment 122 as part of its processing may be
stored 1n a persistent memory such as a network policy data
store 120. The systems depicted 1n FIG. 1 may be imple-
mented using software (e.g., code, instructions, program)
executed by one or more processing units (€.g., processors,
cores) ol a computing system, hardware, or combinations
thereof. The software may be stored on a non-transitory
storage medium (e.g., on a memory device).

The computing environment 100 depicted mn FIG. 1 1s
merely an example and 1s not intended to unduly limit the
scope of claimed embodiments. One of ordinary skill 1n the
art would recognize many possible variations, alternatives,
and modifications. For example, 1n some implementations,
the computing environment 100 can be implemented using
more or fewer systems than those shown in FIG. 1, may
combine two or more systems, or may have a different
confliguration or arrangement of systems and subsystems.

The computing environment 100 may be implemented 1n
various different configurations. In certain embodiments, the
computing environment 100 comprising the test system 108
and the deployment orchestrator system 116 may be imple-
mented 1n an enterprise servicing users of the enterprise. In
other embodiments, the systems 1n the computing environ-
ment 100 may be implemented on one or more servers of a
cloud provider and the network policy creation services of
the systems may be provided to subscribers of cloud services
on a subscription basis.

In certain embodiments, a user may interact with the test
system 108 using a user device 102 that 1s communicatively
coupled to the test system 108, possibly via one or more
communication networks. The user device 102 may be of
various types, including but not limited to, a mobile phone,
a tablet, a desktop computer, and the like. The user may
represent a user of an enterprise who subscribes to the
services provided by the systems of the computing environ-
ment 100 for automatically generating network policies for
components of an application to be deployed 1n the com-
puting environment. The user may interact with the test
system 108 using a browser executed by the user device 102.
For example, the user may use a user iterface (UI) (which
may be a graphical user interface (GUI)) of the browser
executed by the user device 102 to interact with the test
system 108.

In certain embodiments, a user may, via the Ul provide
an application 104 to be deployed in the computing envi-
ronment. The application 104 may represent a micro-service
based containerized application that may be deployed 1n the
production environment 122. In certain examples, the appli-

US 11,463,314 B2

7

cation 104 may comprise multiple components where mul-
tiple instances of each component can be executed as
containers on nodes within a cluster of nodes 1n a contain-
erized environment of the production environment 122. In
certain examples, the containerized environment may be
provided by a container orchestration platform such as
Kubernetes, OpenShiit, Docker Swarm and the like. An
example of an application deployed to a production envi-
ronment 122 1s shown in FIG. 2.

In certain examples, the application 104 (comprising a set
of one or more components) may be provided to the test
system 108 prior to 1ts deployment in the containerized
environment. As part of the testing phase, the test system
108 monitors the network traflic flow between the different
components of the application and generates component-
specific network policies 110 for the components based on
the discovered network paths/network trafhic. In certain
embodiments, for each network path identified for a com-
ponent, the test subsystem 108 performs additional process-
ing to check 1f the network path violates a pre-defined
network policy 117 (also referred to herein as a coarse-
grained network policy) defined for the test environment/
application. The set of pre-defined network polices 117 may
be defined, for example, by the user of the enterprise and
these policies reflect general network traflic expectations of
the flow of network traflic between the components of the
application 1n the test environment. Examples of coarse-
grained polices defined for an application are described 1n
FIG. 4. I1 1t 1s determined that the coarse-grained network
policy 1s not violated by any network path identified for the
component, the test system 108 generates a component-
specific network policy for the component.

In certain embodiments, as part of the application devel-
opment process, the test subsystem 108 may be configured
to receive (via the Ul) a new version of a component 106 of
the application 104 to be deployed as part of the application
deployed 1n the containerized environment. For instance, a
user of an enterprise may wish to update an earlier version
of a component of the application, for example, because the
operation performed by the component changed. In this
case, the user may provide an updated (or new) version of
the component for testing by the test system 108. The test
subsystem 108 receives the updated version of the compo-
nent 106 and generates a component-specific network policy
for the updated version of the component by i1dentifying
network paths/network traflic originating from the updated
version of the component to one or more other components
within the application. Additionally, the test subsystem 108
performs processing to determine if any of the identified
network paths violate the coarse-grained network policy
defined in the test environment.

In certain embodiments, as a result of the processing
performed by the test system 108, the test system 108,
generates a deployment package 114 that includes the com-
ponent(s) of the application 104 to be deployed and their
associated network polices. A deployment orchestrator sys-
tem 116 in the production environment 122 receives the
deployment package 114 and uses the deployment package
to deploy the component(s) of the application and their
associated network policies to different nodes 1n a cluster of
nodes in the containerized environment. In certain examples,
the deployment orchestrator system 116 stores information
identifying the network policies associated with the different
components 1n the network policy data store 120.

In certain situations, to facilitate non-disruptive transition
during an upgrade, or to provide a gradual change delivery
model during the application development process, both an

10

15

20

25

30

35

40

45

50

55

60

65

8

carlier version of the component and an updated (or new)
version of the component may need to co-exist and execute
in parallel the containerized environment for some time. In
certain embodiments, the test system 108 and the deploy-
ment orchestrator system 116 1include capabilities for
enabling different versions of a component of a container-

1zed application to co-exist on different computing nodes 1n
a cluster of nodes of the containerized environment at the
same time. The systems additionally include capabilities for
enabling different network policies to be generated for and
applied to the different versions of the component, where
cach component has potentially different network require-
ments. Additional details related to the processing per-
formed by the various systems of the computing environ-

ment 100 in FIG. 1 are described below 1n FIGS. 2-7.

FIG. 2 depicts an example of an application deployed 1n
a containerized environment of the computing environment
100 shown in FIG. 1, according to certain embodiments. In
the depicted example, the application comprises an order
processing application 200 that 1s deployed 1in a container-
based framework within the production environment 122 of
the computing environment 100. Multiple instances of each
component are executed as containers on nodes within a
cluster of nodes within the container-based framework. By
way ol example, the container-based framework may be
implemented using a container orchestration tool such as
Kubernetes, OpenShift, Docker Swarm and the like.

In certain examples, the order processing application 200
may include a set of components. These components may
include, but are not limited to:

a static web application front end component 202 provid-

ing user experience in the web browser;

an Application programing Interface (API) gateway com-
ponent 204 to the application, responsible for process-
ing API calls from the web application component 202
and forwarding them to respective services implement-
ing the business logic;

a collection of service components providing distinct
functions of the application such as processing orders,
invoices and user management. By way of example, the
collection of service components may include, but are
not limited to, an order-service component 206, a
user-service component 208 and an invoice-service
component 210; and

data middleware component for storing and processing
data, including a database component 212 and a mes-
sage queue component 214,

In certamn examples, for purposes of discussion, 1t 1s
assumed that the components 202-214 can communicate
directly with one another. In a certain implementation, each
component 1s denoted by 1ts name and a corresponding zone
label. By way of example, the web application front end
component 202 may be denoted by a name “web-app” and
a corresponding zone label “web.” Additional details of how
zone labels are generated for components of a containerized
application are described in FIG. 4. Further, 1n the depicted
example, the web application front end component 202 does
not communicate with the other components that make up
the application 200 but the API gateway component 204
communicates with the services 206, 208 and 210. Addi-
tionally, 1n this example, all the service components, 206,
208 and 210 commumnicate with each other (but not neces-
sarily each service reaches each other service), the services
communicate with the database service 212 and the order-
service 206 and invoice-service 210 access the message
queue 214.

US 11,463,314 B2

9

The different components of the order processing appli-
cation 200 depicted 1n FIG. 2 are merely an example and 1s
not intended to unduly limit the scope of claimed embodi-
ments. One of ordinary skill 1n the art would recognize many
possible vanations, alternatives, and modifications. For
example, 1n some implementations, the order processing
application 200 may comprise more or fewer components
than those shown in FIG. 1, may combine two or more
components, or may have a different configuration or
arrangement ol components.

FI1G. 3 depicts an example arrangement of components of
the application shown in FIG. 2 on a cluster of nodes 300 in
a container-based framework, according to certain embodi-
ments. Each node in the cluster of nodes 1s assigned an
Internet Protocol (IP) address. In the depicted example, the
cluster of nodes 300 consists of four nodes (node 1, node 2,
node 3 and node 4), each with an IP address within the range
of 1ts network, such as cloud Virtual Cloud Network (VCN)
or physical network. The containers, residing on each of the
nodes in the cluster use a diflerent IP address range. Trathic
between components on different nodes 1s typically tunneled
and container-to-container packages are encapsulated as
node-to-node packages. The depicted example illustrates a
specific arrangement of the components 1n a point 1 time
snapshot of the container-based framework. The framework
may re-arrange the components or move them between
nodes to distribute the load. Additionally, the specific con-
tainers may fail and new instances may get created, nodes
may be added or removed and so forth. In each such case,
since the IP addresses of the containers that change will also
likely change, any network filtering controls (e.g., network
security policies) that are based on i1dentifying components
using their IP addresses may be impractical or infeasible to
implement by the container-based framework.

As previously described, in order to compensate for these
challenges, container orchestration frameworks may include
capabilities for controlling the communication (1.e., network
traflic) between the components of the application by using,
a set ol one or more pre-defined (coarse-grained) network
policies. For example, 1n a container-based framework such
as Kubernetes or OpenShiit, the network policy may be
defined based on metadata of the specific components such
as “zone labels™ as shown 1n FIG. 4. Additional examples of
network policies defined by container-based frameworks for
controlling network tratfic between multiple components of
a containerized application are described i FIG. 4.

FIG. 4 depicts various examples ol network polices
defined by a container-based framework for a containerized
application deployed on a cluster of nodes in the container-
based framework, according to certain embodiments. For
purposes of discussion, the network policies 402, 404 and
406 are described 1n relation to the order processing appli-
cation 200 described 1 FIGS. 2 and 3. In one implementa-
tion, as shown 1n table 402, the set of policies may be defined
using a “zone label™ as a source label and a destination label
for the components of the containerized application (e.g.,
200). In a certain implementation, the set of policies may be
implemented using JavaScript Object Notation (JSON)
objects or as YAML objects. The zone-based network poli-
cies depicted 1n table 402 may permit some traflic that 1s not
part of the regular system operation, such as connectivity
from the user-service component 208 to the database com-
ponent 212. These zone-based policies will not require to be
updated when routine incremental changes occur to the
containerized application, such as when more services or
database middleware are added to the application. The
zone-based policies also continue to be operational 11 more

10

15

20

25

30

35

40

45

50

55

60

65

10

services begin to communicate with each other, such as, for
example, the order-service component 206 and the 1nvoice-
service component 210. Also, the zone-based policies
defined by the container-based framework typically allow
traflic between the components, unless a certain path 1s
specifically covered by the policy. For this reason, in order
to deny the internal traflic to certain components (such as
‘web’” or “front” zones), the zone-based polices may include
policy directives with an empty origin denoted with *-’.

In another approach, as shown 1n table 404, the set of
policies may be implemented using an “app label” as a
source label and a destination label where the “app label”
umquely 1dentifies the components of the container-based
application. In this implementation, the policy that most
precisely reflects the network traflic in the system will take
the form shown 1n table 404. Such a policy may disallow any
traflic not expected 1n the system but changes to the appli-
cation will require corresponding policy changes to be
applied to the components of the application.

In yet another implementation, the container-based frame-
work may implement a more balanced policy that takes
advantage of both of the “zone label” and the “app label”
used to uniquely 1dentify the components of the application.
For example, a security analysis of the application may
reveal that a key component of concern 1s the message queue
component 214. While 1t 1s acceptable to have general
zone-based rules between the api-gateway component 204
and the services 206, 208 and 210, the services themselves,
the database component 212 and the communication with
the message queue component 214 need to be strictly
restricted to the services that need the access. In such a case,
the set of policies may take a form shown 1n table 406. It 1s
to be appreciated that the terms, “zone label” and “app label”™
used in this disclosure are illustrations of one type of
grouping ol components that may be utilized 1n an applica-
tion for defining the flow of network traflic within the
application. For instance, a “zone label” may identify a first
group of components to which a first version of the com-
ponent can send traific and an *“app label” may i1dentily a
second group of components to which the first version of the
component can send traflic. The “zone label” may 1dentify a
larger group (e.g., a set) of components that the first version
of the component can send tratlic while the “app label” may
identify a specific set (e.g., a subset) of components within
the larger group that the first version of the component can
send traffic. In alternate embodiments, different label names,
different label groups or different layers of labels (e.g., a
zone cell, a four layer model for referencing the component
and the like) may be used to 1dentily and group components
ol an application.

As previously described, 1n certain situations, a user of an
enterprise may wish to add an updated version of an existing
component of the application when the operation performed
by an earlier/previous version of the component changes.
For instance, based on the example of the containerized
application 200 shown 1n FIG. 2, an updated version of the
user-service component 208 may be required to communi-
cate with the message queue component 214 instead of the
database component 212. FIG. 5 1s an example of the
containerized application shown in FIG. 2 depicting a
change 1n the operation of one of the components within the
containerized application, according to certain embodi-
ments. In the embodiment depicted 1n FIG. 5, a change 1n the
operation performed by the user-service component 208
results in the user-service component 208 communicating
with the message queue component 214 instead of the
database component 212. If the change in the operation has

US 11,463,314 B2

11

to be gradually enabled i the application, both the previous
version as well as the updated version of the user-service
component 208 have to co-exist and operate 1n the deployed
application for some time. In this situation, the deployed
application 200 will contain two versions of the user-service
component 208, a previous version that requires network
access to the database component 212, but not to the
message queue component 214, and another (updated) ver-
s10on that requires access to message queue component 214,
but not to the database component 212.

A coarse-grained policy, based on “zone labels” as
depicted 1n table 402 1n FIG. 4 may allow the containerized
application to operate/execute correctly with etther version
of the component and with both versions of the components
running together. However, such a coarse-grained policy
may not be considered sufliciently secure as 1t allows
communication that 1s not part of regular system operation.
At the same time, the user (e.g., a system administrator)
would prefer that any policy would be contained i1n the
boundaries defined by the coarse-grained policy.

A fine-grained policy, for example, based on “app labels”
as depicted in table 404, will result 1n a containernized
application that imitially allows traflic from the user-service
component 208 to the database component 212 only. This
policy will prevent the updated version of the user-service
component 208 to communicate with the message-queue
component 214 after the updated version 1s deployed. How-
ever, an updated policy that only allows communication
with the message-queue component 214 will disrupt the
previous version. Finally, a single policy which allows
communication with both versions of components 1n the
data zone may not be sufliciently precise either. Such a
policy will allow the previous version of the user-service
component to communicate with the message-queue com-
ponent 214 and the updated version of the user-service
component to communicate with the database component.
However, both those paths may be overly permissive.

To address these challenges, the disclosed system pro-
vides improved techniques for automatically inferring fine-
grained network policies (e.g., network security policies)
from the observed workload in the computing environment.
The system provides a mechanism to create precise, per-
component network policies, while respecting any coarse-
grained policies of the containerized application and/or prior
existing fine-grained network policies. In certain embodi-
ments, the system includes capabilities for aligning the
policy management with the lifecycle of corresponding
components of the containerized application. The system
builds network policies that are linked to particular deploy-
ment packages. The techniques for generating per-compo-
nent policies by the disclosed system 1s seamless and does
not require additional labelling by users of the enterprise.
Additional details of the operations performed by the sys-
tems shown in FIG. 1 for generating network policies for
different components are described in FIG. 6.

FIG. 6 depicts additional details of the operations per-
formed by the systems shown in FIG. 1 for generating
network policies for components of an application deployed
in a computing environment, according to certain embodi-
ments. The computing environment 600 may be imple-
mented by one or more computing systems that execute
computer-readable instructions (e.g., code, program) to
implement the computing environment. As depicted in FIG.
6, the computing environment 600 may include a test
environment 112 or a production environment 122 as
described with respect to FIG. 1. The test environment or
production environment 112/122 includes one or more

10

15

20

25

30

35

40

45

50

55

60

65

12

nodes 605 (a-r) that host one or more containerized com-
ponents 610 (a-n). The test environment or production
environment 112/122 assigns a specific IP address or port
range to the components 610 and provides an ability (e.g., an
application programming interface (API)) to discover the
components 610 through the IP address/port. A network
monitoring agent 615 1s provisioned to run on the nodes 603
and adapted to monitor traflic originating from the compo-
nents 610 through the IP address/port. Depending on the
container framework, and the network implementation, the
network monitoring may be implemented as part of every
component (container) or as a single nstance for the node.
The decision on the location may be based on the practical
reasons and availability of instrumentation mechanisms
within the specific container framework. In some configu-
rations, such as when the container network 1s used without
an overlay/tunneling, but 1nstead built on top of the lower-
level network, the component may be centrally located
within the network. In addition, existing cluster monitoring
tools, such as Prometheus for Kubernetes, could be used to
supply the data to the system.

The test environment or production environment 112/122
further 1includes a component lookup module 620, a com-
ponent monitor module 625, a policy creator 630, a con-
nections queue data store 635, and a traflic data store 640.
The component lookup module 620 1s adapted to 1dentify the
components 610 based on their IP address/port. The com-
ponent monitor module 625 1s adapted to actively monitor
the cluster of nodes 605 for new components 610 being
added to the nodes 605 or component 610 changes within the
nodes 605. The policy creator 630 1s adapted to create
network policies from the traflic data monitored by the
network monitoring agents 615. The connections queue data
store 635 15 a queue of traflic data supplied by the network
monitoring agents 6135 for processing by the component
lookup module 620, component monitor module 623, and
policy creator 630. The traflic data store 640 1s a set of
component-to-component tlow data that includes connec-
tions between components 610 monitored/identified by the
network monitoring agents 615, the component lookup
module 620, and the component monitor module 625. The
test environment or production environment 112/122 1s
adapted to allow for the specification of network policies
655 (via the policy creator 630) that are based on component
metadata for components 610 discovered/identified by the
component lookup module 620 and the component monitor
module 625. The test environment or production environ-
ment 112/122 may recerve commands and iput from a
container framework control plane 643 and/or an operator
650. Portions of data or information including the network
policies 655 used by or generated by systems of the com-
puting environment 600 as part of 1ts processing may be
stored 1n a persistent memory such as a network policy data
store 660).

The systems and subsystems depicted in FIG. 6 may be
implemented using software (e.g., code, instructions, pro-
gram) executed by one or more processing units (e.g.,
processors, cores) ol a computing system, hardware, or
combinations thereol. The soltware may be stored on a
non-transitory storage medium (e.g., on a memory device).
The computing environment 600 depicted in FIG. 6 1s
merely an example and 1s not mtended to unduly limit the
scope of claimed embodiments. One of ordinary skill 1n the
art would recognize many possible variations, alternatives,
and modifications. For example, 1n some implementations,
the computing environment 600 can be implemented using
more or fewer subsystems than those shown 1n FIG. 6, may

US 11,463,314 B2

13

combine two or more subsystems, or may have a different
configuration or arrangement of subsystems.

In certain embodiments, a user (e.g., via the Ul of a user
device 102) may provide a component 610 of an application
(e.g., 104) to the test environment or production environ-
ment 112/122 to be deployed as part of the application
deployed in the computing environment. For instance, as
part of the application development process, the user may
develop a new component for the application or may create
an updated version of an existing component of the appli-
cation for deployment in the computing environment. As
previously described, the application may represent a con-
tainerized application deployed 1n the production environ-
ment 122. In certain examples, the application may comprise
multiple components 610 where multiple instances of each
component may be executed as containers on nodes 6035
within a cluster ol nodes 1n the production environment 122.

In various embodiments, an acceptance test subsystem
within the test environment 112 receives the component 610
and tests 1t prior to its deployment in the containerized
environment. In certain embodiments, testing the compo-
nent may involve generating network policies regarding the
components, performing a policy compliance test, and per-
forming a functional acceptance test. The generating the
network policies and performing a policy compliance test
for the component, 1n certain examples, involves, obtaining,
by the acceptance test subsystem, imformation i1dentifying
the network connections (1.e., the network paths) originating
from the various components 610 on the nodes 605. In
certain embodiments, the network paths originating from the
component 610 may be discovered by the network moni-
toring agent 615 that 1s communicatively coupled to the
acceptance test subsystem via a communication network.
The network monitoring agent 615 monitors the traflic
originating from the network interfaces corresponding to the
containers that execute the application’s components 610.
Once a new network connection 1s detected (e.g., upon
integration of the new component being tested mto a node),
the network monitoring agent 615 records details of the new
network connection data (e.g., source and destination
address, ports, etc.) and the time of the connection (e.g., a
time stamp), which 1s sent to the connections queue data
store 635 for downstream processing.

While the network monitoring agent 615 records details
of the new network connection, the component monitor
module 625 observes the components 610 through the
framework’s control plane 645. The component monitor
module 6235 records any changes to component arrangement
(e.g., integration of the new component being tested into a
node), corresponding network addresses, and time of
changes, and stores the data 1n a cache or local data store 663
for lookup. Along with the corresponding network address
and time, the component monitor module 625 also obtains,
through the framework’s control plane 645, component
metadata (e.g., labels for the components 610) that 1s rel-
evant to the creation of network policies, and stores the
component metadata 1n association with the data (e.g.,
component arrangement, corresponding network addresses,
and time of changes) 1n the cache or local data store 663 for
lookup. The component lookup module 620 processes the
new network connection data from the connections queue
data store 635. For the new network connection data in the
connections queue data store 635, the component lookup
module 620 communicates with the component monitor
module 625 providing details of each new network connec-
tion data (e.g., source and destination address, ports, time
stamp, etc.), and receives the information about the compo-

10

15

20

25

30

35

40

45

50

55

60

65

14

nents 610 involved in the new network connection (e.g.,
component arrangement and network addresses) and their
metadata, matching corresponding network addresses and
time. The component lookup module 620 then stores the
processed imformation (component metadata for compo-
nents at both ends of new network connection, network
addresses, ports, time stamps, etc.) 1n the traflic data store
640. The traflic data store 640 has a form of a set, and any
duplicate mnformation will not be recorded.

In order to identily cluster components 610 from the
network connection data, the addresses for the trathic need to
be matched to the corresponding components. This may be
implemented in multiple ways. In some instances, this may
be implemented by actively querying the container frame-
work control plane 645 every time a connection 1s observed,
by the component monitor module 625. Such approach
results 1n simple implementation but increases the overhead
of the discovery process, and may not be feasible 1n con-
figurations with large amounts of network connections. The
network monitoring agent 615, located close to the source,
may already contain enough information about the source of
the network connection to provide that data. Then, only the
destination mformation requires a query. In other instances,
the component monitor module 625 caches the information
about IP/port to component mapping. This information may
be reused to reduce the number of queries. An extension of
this approach 1s to have the component monitor module 625
monitor the cluster changes and keep the current mapping
available for fast lookup. Finally, the component monitor
module 625 can retain entire history of the cluster compo-
nents along with their addresses and the time of any changes.
This way every connection can be mapped to the corre-
sponding component at a later stage. This may allow the
correlation operation to be done asynchronously, or even as
a batch operation after the data collection 1s completed. The
system may provide an 1nsight into the process by reporting
how many new commumnication or data paths are found. If no
new path 1s found and the system 1s known to operate with
tull set of features, this may indicate that suflicient data has
been gathered.

After obtaining the processed information 1dentifying the
network connections originating from the components 610,
as part of performing the policy compliance test for a given
component (e.g., the new or updated component), the accep-
tance test subsystem then determines 1f the network con-
nections that the component are attempting to use are in
compliance with the coarse-grained policy defined for the
application. As noted herein, a coarse-grained policy may be
developed by a user (e.g. a developer of the enterprise) of the
application. For instance, a coarse-grained policy for an
application (e.g., 114) shown 1 FIG. 2 may be developed
using “zone labels” as shown 1n table 404 of FIG. 4.

In certain embodiments, 1n addition to the policy compli-
ance test, the acceptance test subsystem may also perform
functional testing of the component to confirm that the
functionality of the component 1s behaving as expected. The
functional testing may be performed before, aiter, or 1n
parallel with generating policies and performing the policy
compliance test for the component. As a result of performing
the functional acceptance test and the policy compliance test
for the component, the acceptance test subsystem outputs a
test result. The test result outputs information mdicative of
the success or failure of the functional test and/or the policy
compliance test. For instance, 1f the component did not
successiully pass the functional test (in presence of the
coarse-grained network policy), the test result may output
information indicating that the functional test failed and that

US 11,463,314 B2

15

the component cannot not be deployed 1n the containerized
environment. The information that 1s output by the test result
in this case may also indicate that a functional bug exists 1n
the execution of the component. If the failure was a result of
a coarse-grained policy violation, the test result may output
information indicating that the component 1s attempting to
use a network path that 1s not allowed by the coarse-grained
policy. If the component passes the functional test, but a
coarse-grained policy violation was detected, the test result
may output information indicating that the component wall
not deployed due to a problem with test coverage.

If the component passes the functional test and no viola-
tion of the coarse-grained policy 1s detected, the test result
may indicate that the component can be successiully
deployed to production. In this case, the policy creator 630
accesses the trailic data store 640, retrieves the pertinent
processed imformation (component metadata for compo-
nents at both ends of new network connection, network
addresses, ports, time stamps, etc.), and creates a network
policy 655 (i.e., a fine-graimned component-specific network
policy) for the component. Various diflerent techniques may
be used to create a network policy. An example of one such
technique 1s described 1n U.S. patent application Ser. No.
17/124,162, entitled “Techniques For Generating Network
Security Policies For Application Components Deployed In
A Computing Environment,” and filed concurrently with the
present application. The entire contents of the aforemen-
tioned application 1s 1ncorporated herein by reference 1n its
entirety for all purposes. Depending on the nature of the
network policy 655 in the specific application framework,
the policy creator 630 may also contact the component
monitor module 625 to obtain a list of components in the
system to 1dentily ones that did not take part in any con-
nection. This may be required to explicitly block the trathic
to those components via the network policy 635. The policy
creator 630 may also take additional configuration input
from the system operator 650. The mput from the system
operator 650 may imnform how the network policy 635 1s to
be created, for example what properties of the components
should be used, whether some components should be
excluded from the network policy 655, and so forth. The
network policy 655 1s then created.

In some embodiments, creating the network policy 655
for the component involves, generating, by the policy cre-
ator 630, a component 1dentifier for the component and
associating the component with the component 1dentifier. In
certain examples, the component i1dentifier 1s a “version
label” that identifies the current version of the component.
The version label for a component may represent, for
instance, a current timestamp, a commit i1dentifier, or a
version 1dentifier for the component. The policy creator 630
uses the version label and the portion of the network trathic
(from the network paths discovered by the monitoring agent
615) originating from the currently processed component to
generate a fine-grained network policy 6535 for the compo-
nent. Examples of fine-grained policies generated by the
policy creator 630 are described in detail herein, using the
example of the order processing application depicted 1in FIG.
2. The component, fine-grained policy and other deployment
artifacts (such as deployment manifests) are packaged
together to create a deployment package for the component.

In certain examples, a deployment orchestrator system in
the production environment 122 receives the deployment
package and uses the deployment package to deploy the
component(s) of the application and their associated net-
work policies to diflerent nodes 1n a cluster of nodes within
a containerized environment of the production environment

5

10

15

20

25

30

35

40

45

50

55

60

65

16

122. The deployed application executes in the containerized
environment. In a specific implementation, the containerized
environment may be provided by a container orchestration
tool such as Kubernetes or OpenShiit. In certain examples,
the deployment orchestrator system may store the fine
grained network policies 610 associated with the
component(s) 1n the network policy data store 660.

In certain embodiments, the deployment orchestrator sys-
tem may be configured to align the lifecycle of a component
with 1ts corresponding fine-grained network policy. For
example, for a container-based orchestration platform such
as Kubernetes or OpenShift, the alignment of the lifecycle of
the component with its corresponding fine-grained network
policy can be implemented using an Operator pattern that
replaces the regular interfaces related to deployment of the
component and instead accepts a deployment package com-
prised of the component and its associated fine-grained
network policy. In other examples, an admission controller
may be used to capture any operations on the pod. Such a
controller may automatically add or remove a corresponding
network policy with a matching label when the component
1s added/removed from the cluster. A network policy and 1ts
component may also be packaged together 1n a higher-level
object such as a Helm chart that will automatically control
the deployment of multiple objects together.

In various embodiments, the operations performed by the
systems shown i1n the computerized environment 600
described above may be combined with a continuous inte-
gration/continuous deployment process within the produc-
tion environment 122. The process may cover the entire
lifecycle from building a component to integration/accep-
tance testing of the component and deployment of the
component in the cluster of nodes. In some embodiments,
the data capture (e.g., connection and component discovery)
may be done 1nitially in the production environment without
active policy or with course-grained active policies. After
suflicient data 1s gathered, the fine-grained network policies
may be created and enabled. As discussed with respect to the
testing environment 112, the network paths originating from
the components 610 may be discovered by the network
monitoring agent 615 during deployment. The network
monitoring agent 615 may continuously monitor the tratlic
originating from the network interfaces corresponding to the
containers that execute the application’s components 610.
Once a network connection 1s detected (e.g., upon integra-
tion of the new component being tested into a node) or a
change 1n a network connection 1s discovered, the network
monitoring agent 615 records details of the new or changed
network connection data (e.g., source and destination
address, ports, etc.) and the time of the connection (e.g., a
time stamp), which 1s sent to the connections queue data
store 635 for downstream processing.

While the network monitoring agent 615 records details
of the network connections 1 deployment, the component
monitor module 625 observes the components 610 through
the framework’s control plane 645. The component monitor
module 625 records any changes to component arrangement
(e.g., replacement of components that fail during deploy-
ment), corresponding network addresses, and time of
changes, and stores the data 1n a cache or local data store 665
for lookup. Along with the corresponding network address
and time, the component monitor module 623 also obtains,
through the framework’s control plane 645, component
metadata (e.g., labels for the components 610) that 1s rel-
evant to the creation of network policies, and stores the
component metadata 1 association with the data (e.g.,
component arrangement, corresponding network addresses,

US 11,463,314 B2

17

and time of changes) 1n the cache or local data store 665 for
lookup. The component lookup module 620 processes the
network connection data from the connections queue data
store 635. For the network connection data 1n the connec-
tions queue data store 635, the component lookup module
620 communicates with the component monitor module 625
providing details of each network connection data (e.g.,
source and destination address, ports, time stamp, etc.), and
receives the information about the components 610 involved
in the network connection (e.g., component arrangement and
network addresses) and their metadata, matching corre-
sponding network addresses and time. The component
lookup module 620 then stores the processed information
(component metadata for components at both ends of new
network connection, network addresses, ports, time stamps,
ctc.) 1n the trathic data store 640.

The policy creator 630 accesses the traflic data store 640,
retrieves the pertinent processed information (component
metadata for components at both ends of new network
connection, network addresses, ports, time stamps, etc.), and
dynamically creates network policies 655 (1.e., a fine-
grained component-specific network policy) for the compo-
nents based on changing conditions within the nodes and
component arrangements. Depending on the nature of the
network policy 655 in the specific application framework,
the policy creator 630 may also contact the component
monitor module 625 to obtain a list of components 1n the
system to 1dentily ones that did not take part in any con-
nection. This may be required to explicitly block the trathic
to those components via the network policy 655. The policy
creator 630 may also take additional configuration input
from the system operator 650. The mput from the system
operator 650 may inform how the network policy 6355 1s to
be created, for example what properties of the components
should be used, whether some components should be
excluded from the network policy 655, and so forth. The
network policy 655 1s then created as described with respect
to the test environment 112.

Additional details related to the operations performed by
the systems shown 1n the computerized environment 600 for
generating component specific network policies (1.e., fine-
grained network policies) for components of an application
deployed 1n a containerized environment are now described
using the order processing application 200 depicted in FIGS.
2 and 5. In a specific implementation, the containerized
environment 1s provided by a container orchestration plat-
form such as Kubernetes. The cluster of nodes 1s mitially
configured with a deny-all policy. Such a policy can be
created by matching a component (or a pod) with a label
(e.g., a zone label or an app label depicted 1n FIG. 4) while
specilying no network trathic. As previously described, a pod
may refer to a set of one or more components of an
application that may be processed by the orchestration tool
at a time.

A coarse-grained policy for the order processing applica-
tion 200 may be represented using “zone labels” as shown
in table 402. This may be used in the test environment of the
test system to perform a policy compliance test for the
component as described 1n FIG. 6. Now consider that the test
system receives an update to the user-service component
208 or a change occurs to the user-service component 203
during deployment. Before receiving the new version of the
user-service component 205 or replacing a user-service
component 208 1n deployment, the component-specific net-
work policy (1.e., the fine-grained network policy) related to

10

15

20

25

30

35

40

45

50

55

60

65

18

user-service component 208 may be depicted as shown
below:

{app: user-service, ZONe:
1582630603} —{app: database}

The fine-grained policy reflects a current, and at this point
in time, the only version of the user-service component 208
that 1s granted access to the database component 212. A user
ol the system prepares an updated version of the user-service
component 208 or the system itself i1dentifies a defective
user-service component 208 1 deployment and prepares
another version of the user-service component 208 to be
placed online. This version of the user-service component
208 no longer uses the database component 212 but uses the
message-queue component 214 instead. It 1s imntended that
the new or updated version of the user-service component
208 will co-exist with the previous version for some time to
allow a smooth transition 1n the operation of the application.
Using the zone labels and the app labels shown 1n FI1G. 4, the
user-service component 208 may be identified using the
following labels:

{app: user-service, zone: services }

When the updated version of the user-service component
208 1s received, the component 1s packaged 1n a container
and deployed 1nto the test or production environment. The
test or production environment 1s implemented as a Kuber-
netes workload and the user-service component 208 1s
deployed 1n the cluster. Component lookup module 620 and
component monitor module 625, policy creator 630 and data
stores 635; 640; 660; 665 may be located in a separate
namespace in test or production environment. In addition,
the monitoring agents 615 are deployed on every worker
nodes using for example a DeamonSet that will guarantee a
single instance runmng on every node. The momnitoring
agents 615 run as privileged containers and set up local
firewall (aiptables) rules to recerve the tratflic from the virtual
interfaces corresponding to the pods in the system. The
component monitor module 625 may be operating with a
service account that provides a read access to the Kubernetes
API server and sets up a webhook that makes API server to
send all the changes as they occur within the test or

production environment. The components are configured to
1gnore the network traflic corresponding to the system itsell,
such as ftraflic originating from monitoring agents 615.
During acceptance testing of the component or during
instantiation of the component in the production environ-
ment, a network path from the user-service component 208
to the message-queue component 214 1s discovered by the
monitoring agent 615.

For example, as the application runs 1t may be subjected
to the test automation, the trathic data 1s gathered by moni-
toring agent 615, which 1s recorded to the connections queue
635. For example, following the arrangement 1n FIG. 3, the
initial data captured may be as follows:

services, version:

10.244.1.3—10.244.1.5:443
10.244.2.8—10.244.2.12:443
10.244.1.3—10.244.2.9:443
10.44.1.4—10.244.1.6:443
10.44.1.4—10.244.4.22:443

Note, that for simpler presentation the source ports have
been omitted that are not relevant 1n this specific example.
The timestamps have also been omitted as, 1n the scope of
this example it 1s assumed that the arrangements of pods will
not change.

US 11,463,314 B2

19

In the meantime, the component monitor module 625,
builds a list of components 610 1n the system, retlecting the
arrangement 1n FIG. 3.

10.244.1.3—{name: invoice-service, labels: {zone: ser-
vices, app: invoice-service}}
10.244.2.8—={name: invoice-service, labels: {zone: ser-
vices, app: invoice-service}}
10.244.1.4—{name: order-service, labels: {zone: services,
app: order-service} }

10.244.1.6—{name: database, labels: {zone: data, app:
database} }
10.244.2.12—{name: database, labels: {zone: data, app:
database} }
10.244.2.9—{name: message-queue, labels: {zone: data,
app: message-queue} |
10.244.4.22—{name: message-queue, labels: {zone: data,
app: message-queue} }

The component lookup module 620 processes the network
connection information, that results 1n:

fname: invoice-service, labels: {zone: services, app:
invoice-service} }—{name: database, labels: {zone: data,
app:

database}, port: 443} {name: invoice-service, labels: {zone:
services, app: invoice-service}}—{name: message-queue,
labels: {zone: data, app:

message-queuet, port: 443} {name: order-service, labels:
{zone: services, app: order-service}}—{name: database,
labels: {zone: data, app:

database}, port: 443} {name: order-service, labels: {zone:
services, app: order-service}}—{name: message-queue,
labels: {zone: data, app:

message-queue}, port: 443}

e

Note, the tratlic captured 1n this example, covers the initial
connections from order and 1nvoice services to the database
and message queue. Even though the 5 connections are
analyzed, the captured tratlic information results 1n only 4
items, as the first and second connections are two diflerent
instances of the same 1nvoice service component and result
in the same tratlic data. The process continues through the
entire lifecycle of the test phase.

The test or production environment may include a coarse-
grained network policy which may be represented as shown
below:

{zone: services}—{zone: data}

This coarse-grained network policy allows general tratlic
between services and data zones. The acceptance test passes
successiully and there i1s no policy violation detected. The
policy creator 630 creates a ““version label” for the user-
service component 208 and associates a ““version label”
identifier with the component. As an example, the “version
label” 1dentifier may be set to 1582650739 (which, 1n this
example, represents a current timestamp). As a result, the
updated version of the user-service component 208 may be
identified using the labels shown below:

{app: user-service, zone: services, version: 1582650759}

The policy creator 630 then creates a fine-grained network
policy for the updated version of the user-service component
that reflects the discovered network paths from the user-
service component and includes all of the component labels.
An example of a fine-grained network policy created for the
user-service component 1s shown below:

{app: user-service, Zone: SErvices,
1582650759} —{app: message- queue, zone: data}

version:

10

15

20

25

30

35

40

45

50

55

60

65

20

In some instances, fine-grained network policy identifies
the components that did not receive any internal tratlic, such
as api-gateway and web-app shown in the network policy
406 of FIG. 4

The fine-graimned network policy 1s packaged with the
updated version of the user-service component mto a con-
tamner and deployed to a node or brought online within a
node 1n a cluster of nodes 1n the containerized environment.
When the new or updated version of the user-service com-
ponent 1s deployed, 1ts corresponding fine-grained network
policy 1s also added to the node.

As a result, the cluster of nodes now has two versions of
the user-service component, with the following labels:

Previous Version: {app: user-service, zone: services, ver-

sion: 1582630603 }

Updated Version: {app: user-service, zone: services, ver-

sion: 1582650759}

Also, the cluster of nodes has two separate fine-grained

network policies for the user-service component for the

previous and updated versions of the component as shown
below:

fapp: user-service, zone: Services, version:
1582630603 } —{app: database, zone: data}
fapp: user-service, zone: services, version:

1582650759} —{app: message-queue, zone: data}

Eventually, the previous version of the user-service com-
ponent 1s retired and removed from the cluster of nodes. As
a result, the corresponding network policy 1s also removed.
At that point, the cluster of nodes contains only a single
network policy for the user service component as shown
below:

{app: user-service, ZOne: SErvices,
1582650759} —{app: message- queue, zone: data}

FIG. 7 1s an example of a process for generating a network
policy for a component of an application executing 1n a
containerized environment, according to certain embodi-
ments. The processing depicted 1 FIG. 7 may be imple-
mented 1n software only (e.g., code, mstructions, program)
executed by one or more processing units (€.g., processors,
cores) ol the respective systems, hardware only, or combi-
nations thereof. The software may be stored on a non-
transitory storage medium (e.g., on a memory device). The
process 700 presented in FIG. 7 and described below 1s
intended to be illustrative and non-limiting. Although FIG.
7 depicts the various processing steps occurring 1n a par-
ticular sequence or order, this 1s not intended to be limiting.
In certain alternative embodiments, the steps may be per-
formed 1n some different order or some steps may also be
performed in parallel. In certain embodiments, such as in the
embodiment depicted 1n FIG. 6, the processing depicted 1n
FIG. 7 may be performed by a data processing system
comprising the acceptance test subsystem, the network
monitoring subsystem comprising the monitoring agents,
component lookup module, component monitor module, and
related data stores, and the network policy creation subsys-
tem comprising the policy creator, network policies, and
related data stores.

In the embodiment depicted in FIG. 7, processing 1s
initiated at block 702 when the acceptance test subsystem
determines/obtains a set of one or more pre-defined network
security policies (1.e., coarse-grammed network security
polices 117) defined for the test environment/application. As
previously described, the set of pre-defined network security
policies may be defined, for example, by a user of the
enterprise and these policies reflect general network traflic
expectations of the flow of network traflic between the
components of the application 1n the test environment. For

version:

US 11,463,314 B2

21

example, a coarse-grained policy for the order processing
application 200 (shown 1n FIG. 2) may be represented using
“zone labels” as shown 1n table 402 of FIG. 4.

At block 704, the acceptance test subsystem receives a
component to be deployed as part of a deployed application
in the computing environment. As previously described, the
component may be a new component of the application or an
updated version of an existing component of the application
for deployment 1n the computing environment.

At block 706, the acceptance test subsystem performs a
policy compliance test for the component. As part of per-
forming this test, 1n certain examples, the acceptance test
subsystem provides the component to the network monitor-
ing subsystem which monitors the network traflic flow to
and from the component at block 708. At block 710, the
network monitoring subsystem 606 identifies a set of one or
more network paths for the component based on the moni-
toring. In certain examples, a network path in the set of
network paths identifies a source component from which the
component receirves packets and/or a target component to
which the component sends packets. At block 712, for each
network path identified in block 712, the acceptance test
subsystem performs a policy compliance test to determine
that the network path does not violate any of the coarse-
grained policies determined in block 702 for the test envi-
ronment/application.

In certain embodiments, 1n addition to the policy compli-
ance test performed at block 706, the acceptance test sub-
system may also perform functional testing of the compo-
nent 106 at block 714 to confirm that the functionality of the
component 1s behaving as expected. The functional testing
may be performed belore, after, or 1n parallel with perform-
ing the policy compliance test for the component.

At block 716, the acceptance test subsystem 716 performs
a check to determine i the functional testing of the com-
ponent passed and that the coarse-grained network security
policies determined 1n block 702 are not violated by any
network path identified 1 block 710.

It the component passes the functional test and no viola-
tion of the coarse-grained policy 1s detected, the acceptance
test subsystem deploys the component to production at block
720. Additional details of the operations performed by the
acceptance test subsystem to deploy the component to
production are described below with respect to the process
depicted i FIG. 8 and its accompanying description. If the
component does not pass the functional test and/or a coarse-
grained policy violation 1s detected, the acceptance test
subsystem outputs mnformation at block 718 indicating that
the component should not be deployed to production.

FIG. 8 1s an example of a process for detecting network
connections, detecting components within a containerized
environment, and generating a network policy for a com-
ponent of an application executing in the containerized
environment, according to another embodiment. The pro-
cessing depicted 1n FIG. 8 describes additional details of the
operations performed in block 720 of FI1G. 7. The processing
depicted 1n FIG. 8 may be implemented in software only
(e.g., code, nstructions, program) executed by one or more
processing units (e.g., processors, cores) of the respective
systems, hardware only, or combinations thereof. The soft-
ware may be stored on a non-transitory storage medium
(c.g., on a memory device). The process 800 presented 1n
FIG. 8 and described below 1s intended to be illustrative and
non-limiting. Although FIG. 8 depicts the various process-
ing steps occurring in a particular sequence or order, this 1s
not intended to be limiting. In certain alternative embodi-
ments, the steps may be performed in some different order

5

10

15

20

25

30

35

40

45

50

55

60

65

22

or some steps may also be performed 1n parallel. In certain
embodiments, such as 1n the embodiment depicted 1n FIG. 6,
the processing depicted in FIG. 8 may be performed by a
data processing system comprising the network monitoring
subsystem comprising the monitoring agents, component
lookup module, component monitor module, and related
data stores, and the network policy creation subsystem
comprising the policy creator, network policies, and related
data stores.

In certain embodiments, the processing depicted in the
embodiment of FIG. 8 1s triggered when a component 1s to
be deployed as part of a deployed application (at block 704
of FIG. 7) or during use of the component in a production
environment (e.g., without an active policy or with only use
ol a course-grain policy). At block 805, the network moni-
toring subsystem monitors network traflic flow originating
from network interfaces corresponding to containers that
execute components ol an application. At block 810, the
network monitoring subsystem detects a new network con-
nection or a change 1n an existing network connection within
the network traflic based on the monitoring of the network
traflic flow. In response to detecting the new network
connection or the change 1n the existing network connection,
at block 815, the network momnitoring subsystem records
details of the new network connection or the change 1n the
existing network connection. The details include a network
address of a source component and a network address of a
destination component for the new network connection or
the change 1n the existing network connection. In some
instances, the details further include a time stamp for the
new network connection or the change in the existing
network connection.

At block 820, the network monitoring subsystem obtains
information concerning the components of the application.
The information includes the network address and metadata
associated with each of the components of the application.
In some instances, the information further includes any
changes to arrangement of the components and time of the
changes, and the metadata comprises labels associated with
cach of the components of the application.

At block 825, the network monitoring subsystem 1denti-
fies metadata for the source component and the destination
component based on a comparison of at least the network
address of the source component and the network address of
the destination component to the network address associated
with each of the components of the application. In some
instances, the metadata comprises labels associated with
cach of the components of the application. The labels may
be component identifiers comprising a version label that
unmiquely 1dentifies the component. The version label may
include, but 1s not limited to, timestamp, a commit 1dentifier,
or a version identifier for the component.

Optionally, the network monitoring subsystem identifies a
subset of components of the components of the application
that are not involved 1n the new network connection or the
change 1n the existing network connection based on the
comparison of at least the network address of the source
component and the network address of the destination
component to the network address associated with each of
the components of the application.

At block 830, the network security policy creation sub-
system generates a network policy (e.g., a fine-grained
network security policy (1.e., a component-specific network
security policy) for the source component or the destination
component using at least the metadata for the source com-
ponent and the destination component. The network policy
comprises information representative of the new network

US 11,463,314 B2

23

connection or the change 1n the existing network connection.
The network policy may further comprise mformation indi-
cating that the network policy 1s applicable to a defined
version ol the source component or the destination compo-
nent. In some instances, the network policy for the source
component or the destination component 1s generated using
the metadata for the source component and the destination
component, the time stamp for the new network connection
or the change 1n the existing network connection, the time of
the changes associated with the arrangement of the source
component or the destination component, the subset of
components of the components of the application that are
not involved in the new network connection or the change in
the existing network connection, or any combination
thereof.

At block 835, the network policy creation subsystem
generates a deployment package comprising the source
component or the destination component and the network
policy associated with the source component or the desti-
nation component. The generating deployment package
comprises integrating the network policy for the source
component or the destination component nto the deploy-
ment package for the application.

At block 840, the network policy creation subsystem
deploys the deployment package 1n the production environ-
ment. In certain examples, deploying the deployment pack-
age ncludes deploying the source component or the desti-
nation component and 1ts associated network policy to a
computing node 1n a cluster of nodes in a containerized
environment. As previously described, in certain examples,
the containerized environment may be provided by a con-
tainer orchestration platform such as Kubernetes, OpenShiit,
Docker Swarm and the like.

In certain embodiments, the disclosed systems include
capabilities for enabling different versions of a component
ol a containerized application to co-exist on diflerent com-
puting nodes in a cluster of nodes of the containerized
environment at the same time. The systems additionally
include capabilities for enabling different network policies
to be applied to the different versions of the component,
where each component has potentially different network
requirements. By way of example, a first computing node in
the cluster of nodes may deploy a first version of a compo-
nent. The first version of the component may, for instance,
be an updated version of a previous version (e.g., a second
version) of the component. In certain examples, the second
version ol the component may be deployed to second
computing node 1n the cluster of nodes. The first version of
the component may be associated with a first network
security policy where the first network security policy
comprises information indicating that the first network secu-
rity policy 1s applicable to first version of the component
identified by the component 1dentifier. As described above,
the first network security policy may additionally identify at
least one other component to which the first version of the
component sends and receives network traflic. In certain
examples, the first network security policy may also identity
a zone label and an application label.

The second version of the component may be associated
with a second network security policy where the second
network security policy comprises information indicating,
that the second network security policy 1s applicable to the
second version of the component 1dentified by a component
identifier that umiquely 1dentifies the second version of the
component. In certain embodiments, at least one network
path 1n the set of network paths for the first version of the
component may be different from a network path 1n a set of

10

15

20

25

30

35

40

45

50

55

60

65

24

network paths for the second version of the component. A
first deployment package comprising the first version of the
component and the first network security policy 1s deployed
to the first computing node and a second deployment pack-
age comprising the second version of the component and the
second network security policy 1s deployed to the second
computing node

FIG. 9 1s an example of a process of the manner 1n which
the network security policy of a component may be utilized,
according to certain embodiments. The processing depicted
in FIG. 9 may be implemented 1n software only (e.g., code,
instructions, program) executed by one or more processing
units (e.g., processors, cores) of the respective systems,
hardware only, or combinations thereof. The software may
be stored on a non-transitory storage medium (e.g., on a
memory device). The process 900 presented 1n FIG. 9 and
described below 1s intended to be illustrative and non-
limiting. Although FIG. 9 depicts the various processing
steps occurring 1n a particular sequence or order, this 1s not
intended to be limiting. In certain alternative embodiments,
the steps may be performed in some diflerent order or some
steps may also be performed 1n parallel. In certain embodi-
ments, such as 1 the embodiment depicted 1mn FIG. 6, the
processing depicted 1n FIG. 9 may be performed by the
deployment orchestrator system 116 1n the production envi-
ronment.

At block 902, the process mvolves 1dentifying a flow of
network traflic from a specific component (that 1s deployed
as part of a deployed application) to another component of
the application or the flow of network traflic from another
component to the specific component. At block 904, the
process involves determining a component identifier for the
component (e.g., within metadata associated with the com-
ponent). At block 906, the process mvolves determining a
network security policy for the component based on the
component identifier. At block 908, the process involves
either allowing or disallowing the flow of network traffic for
the component based on the identified network security
policy.

The present disclosure offers several advantages includ-
ing the ability to generate network security policies for
different versions of a component of an application deployed
in a computing environment where the different versions
have potentially different network requirements and the
different versions operate together at the same time in the
computing environment. The disclosed systems include
capabilities for enabling different versions of a component
ol a containerized application to co-exist at the same time on
different computing nodes 1n a cluster of nodes 1n a con-
tainerized environment that deploys and executes the appli-
cation. The disclosed systems additionally include capabili-
ties for enabling different network policies to be generated
for the different versions of the component, where each
component has potentially different network requirements.
The disclosed systems provide a mechanism to create pre-
cise, per-component network policies, while respecting the
overall coarse-grained policies of the containerized applica-
tion.

Example Architectures

As noted above, infrastructure as a service (IaaS) 1s one
particular type of cloud computing. IaaS can be configured
to provide virtualized computing resources over a public
network (e.g., the Internet). In an IaaS model, a cloud
computing provider can host the infrastructure components
(e.g., servers, storage devices, network nodes (e.g., hard-
ware), deployment software, platform virtualization (e.g., a
hypervisor layer), or the like). In some cases, an laaS

US 11,463,314 B2

25

provider may also supply a variety of services to accompany
those infrastructure components (e.g., billing, monitoring,
logging, security, load balancing and clustering, etc.). Thus,
as these services may be policy-driven, IaaS users may be
able to implement policies to drive load balancing to main-
tain application availability and performance.

In some 1nstances, IaaS customers may access resources
and services through a wide area network (WAN), such as
the Internet, and can use the cloud provider’s services to
install the remaining elements of an application stack. For
example, the user can log 1n to the IaaS platform to create
virtual machines (VMs), install operating systems (OSs) on
cach VM, deploy middleware such as databases, create
storage buckets for workloads and backups, and even 1nstall
enterprise software ito that VM. Customers can then use
the provider’s services to perform various functions, includ-
ing balancing network traflic, troubleshooting application
1ssues, monitoring performance, managing disaster recov-
ery, €lc.

In most cases, a cloud computing model will require the
participation of a cloud provider. The cloud provider may,
but need not be, a third-party service that specializes in
providing (e.g., oflering, renting, selling) IaaS. An entity
might also opt to deploy a private cloud, becoming 1ts own
provider of infrastructure services.

In some examples, IaaS deployment i1s the process of
putting a new application, or a new version of an application,
onto a prepared application server or the like. It may also
include the process of preparing the server (e.g., installing
libraries, daemons, etc.). This 1s often managed by the cloud
provider, below the hypervisor layer (e.g., the servers,
storage, network hardware, and virtualization). Thus, the
customer may be responsible for handling (OS), middle-
ware, and/or application deployment (e.g., on self-service
virtual machines (e.g., that can be spun up on demand) or the
like.

In some examples, IaaS provisioning may refer to acquir-
ing computers or virtual hosts for use, and even installing
needed libraries or services on them. In most cases, deploy-
ment does not include provisioming, and the provisioning
may need to be performed first.

In some cases, there are two different problems for IaaS
provisioming. First, there 1s the initial challenge of provi-
sioning the initial set of infrastructure before anything 1s
running. Second, there 1s the challenge of evolving the
existing infrastructure (e.g., adding new services, changing
services, removing services, etc.) once everything has been
provisioned. In some cases, these two challenges may be
addressed by enabling the configuration of the infrastructure
to be defined declaratively. In other words, the infrastructure
(e.g., what components are needed and how they interact)
can be defined by one or more configuration files. Thus, the
overall topology of the infrastructure (e.g., what resources
depend on which, and how they each work together) can be
described declaratively. In some instances, once the topol-
ogy 1s defined, a workflow can be generated that creates
and/or manages the different components described 1n the
configuration files.

In some examples, an infrastructure may have many
interconnected elements. For example, there may be one or
more virtual private clouds (VPCs) (e.g., a potentially on-
demand pool of configurable and/or shared computing
resources), also known as a core network. In some examples,
there may also be one or more security group rules provi-
sioned to define how the security of the network will be set
up and one or more virtual machines (VMs). Other infra-
structure elements may also be provisioned, such as a load

10

15

20

25

30

35

40

45

50

55

60

65

26

balancer, a database, or the like. As more and more inira-
structure elements are desired and/or added, the infrastruc-
ture may incrementally evolve.

In some instances, continuous deployment techniques
may be employed to enable deployment of infrastructure
code across various virtual computing environments. Addi-
tionally, the described techniques can enable infrastructure
management within these environments. In some examples,
service teams can write code that 1s desired to be deployed
to one or more, but often many, different production envi-
ronments (e.g., across various diflerent geographic loca-
tions, sometimes spanning the entire world). However, 1n
some examples, the infrastructure on which the code will be
deployed must first be set up. In some 1nstances, the provi-
sioning can be done manually, a provisioning tool may be
utilized to provision the resources, and/or deployment tools
may be utilized to deploy the code once the infrastructure 1s
provisioned.

FIG. 10 1s a block diagram 1000 illustrating an example
pattern ol an IaaS architecture, according to at least one
embodiment. Service operators 1002 can be communica-
tively coupled to a secure host tenancy 1004 that can include
a virtual cloud network (VCN) 1006 and a secure host
subnet 1008. In some examples, the service operators 1002
may be using one or more client computing devices, which
may be portable handheld devices (e.g., an iPhone®, cellular
telephone, an 1Pad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass®
head mounted display), running software such as Microsoit
Windows Mobile®, and/or a variety of mobile operating
systems such as 10S, Windows Phone, Android, BlackBerry
8, Palm OS, and the like, and being Internet, e-mail, short
message service (SMS), Blackberry®, or other communi-
cation protocol enabled. Alternatively, the client computing
devices can be general purpose personal computers includ-
ing, by way of example, personal computers and/or laptop
computers running various versions of Microsoft Win-
dows®, Apple Macintosh®, and/or Linux operating sys-
tems. The client computing devices can be workstation
computers running any of a variety of commercially-avail-
able UNIX® or UNIX-like operating systems, including
without limitation the variety of GNU/Linux operating sys-
tems, such as for example, Google Chrome OS. Alterna-
tively, or 1n addition, client computing devices may be any
other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsolt Xbox
gaming console with or without a Kinect® gesture input
device), and/or a personal messaging device, capable of
communicating over a network that can access the VCN
1006 and/or the Internet.

The VCN 1006 can include a local peering gateway
(LPG) 1010 that can be communicatively coupled to a
secure shell (SSH) VCN 1012 via an LPG 1010 contained 1n
the SSH VCN 1012. The SSH VCN 1012 can include an
SSH subnet 1014, and the SSH VCN 1012 can be commu-
nicatively coupled to a control plane VCN 1016 via the LPG
1010 contained in the control plane VCN 1016. Also, the
SSH VCN 1012 can be communicatively coupled to a data
plane VCN 1018 via an LPG 1010. The control plane VCN
1016 and the data plane VCN 1018 can be contained 1n a
service tenancy 1019 that can be owned and/or operated by
the IaaS provider.

The control plane VCN 1016 can include a control plane
demilitarized zone (DMZ) tier 1020 that acts as a perimeter
network (e.g., portions of a corporate network between the
corporate intranet and external networks). The DMZ-based
servers may have restricted responsibilities and help keep

US 11,463,314 B2

27

security breaches contained. Additionally, the DMZ tier
1020 can include one or more load balancer (LB) subnet(s)
1022, a control plane app tier 1024 that can include app
subnet(s) 1026, a control plane data tier 1028 that can
include database (DB) subnet(s) 1030 (e.g., frontend DB
subnet(s) and/or backend DB subnet(s)). The LB subnet(s)
1022 contained 1n the control plane DMZ tier 1020 can be
communicatively coupled to the app subnet(s) 1026 con-
tained 1n the control plane app tier 1024 and an Internet
gateway 1034 that can be contained i1n the control plane
VCN 1016, and the app subnet(s) 1026 can be communi-
catively coupled to the DB subnet(s) 1030 contained 1n the
control plane data tier 1028 and a service gateway 1036 and
a network address translation (NAT) gateway 1038. The
control plane VCN 1016 can include the service gateway
1036 and the NAT gateway 1038.

The control plane VCN 1016 can include a data plane
mirror app tier 1040 that can include app subnet(s) 1026.
The app subnet(s) 1026 contained in the data plane mirror
app tier 1040 can include a virtual network interface con-
troller (VNIC) 1042 that can execute a compute instance
1044. The compute nstance 1044 can communicatively
couple the app subnet(s) 1026 of the data plane mirror app
tier 1040 to app subnet(s) 1026 that can be contained in a
data plane app tier 1046.

The data plane VCN 1018 can include the data plane app
tier 1046, a data plane DMZ tier 1048, and a data plane data
tier 1050. The data plane DMZ tier 1048 can include LB
subnet(s) 1022 that can be communicatively coupled to the
app subnet(s) 1026 of the data plane app tier 1046 and the
Internet gateway 1034 of the data plane VCN 1018. The app
subnet(s) 1026 can be communicatively coupled to the
service gateway 1036 of the data plane VCN 1018 and the
NAT gateway 1038 of the data plane VCN 1018. The data
plane data tier 1050 can also 1include the DB subnet(s) 1030
that can be communicatively coupled to the app subnet(s)
1026 of the data plane app tier 1046.

The Internet gateway 1034 of the control plane VCN 1016
and of the data plane VCN 1018 can be communicatively
coupled to a metadata management service 1052 that can be
communicatively coupled to public Internet 1054. Public
Internet 1054 can be communicatively coupled to the NAT
gateway 1038 of the control plane VCN 1016 and of the data
plane VCN 1018. The service gateway 1036 of the control
plane VCN 1016 and of the data plane VCN 1018 can be
communicatively couple to cloud services 1056.

In some examples, the service gateway 1036 of the
control plane VCN 1016 or of the data plane VCN 1018 can
make application programming interface (API) calls to
cloud services 1056 without going through public Internet
1054. The API calls to cloud services 1056 from the service
gateway 1036 can be one-way: the service gateway 1036 can
make API calls to cloud services 1056, and cloud services
1056 can send requested data to the service gateway 1036.
But, cloud services 1056 may not initiate API calls to the
service gateway 1036.

In some examples, the secure host tenancy 1004 can be
directly connected to the service tenancy 1019, which may
be otherwise 1solated. The secure host subnet 1008 can
communicate with the SSH subnet 1014 through an LPG
1010 that may enable two-way communication over an

otherwise 1solated system. Connecting the secure host sub-
net 1008 to the SSH subnet 1014 may give the secure host
subnet 1008 access to other entities within the service
tenancy 1019.

The control plane VCN 1016 may allow users of the
service tenancy 1019 to set up or otherwise provision

10

15

20

25

30

35

40

45

50

55

60

65

28

desired resources. Desired resources provisioned in the
control plane VCN 1016 may be deployed or otherwise used
in the data plane VCN 1018. In some examples, the control
plane VCN 1016 can be 1solated from the data plane VCN
1018, and the data plane mirror app tier 1040 of the control
plane VCN 1016 can communicate with the data plane app
tier 1046 of the data plane VCN 1018 via VNICs 1042 that
can be contained 1n the data plane mirror app tier 1040 and
the data plane app tier 1046.

In some examples, users of the system, or customers, can
make requests, for example create, read, update, or delete
(CRUD) operations, through public Internet 1054 that can
communicate the requests to the metadata management
service 1052. The metadata management service 1052 can
communicate the request to the control plane VCN 1016
through the Internet gateway 1034. The request can be
received by the LB subnet(s) 1022 contained in the control
plane DMZ tier 1020. The LB subnet(s) 1022 may determine
that the request 1s valid, and 1n response to this determina-
tion, the LB subnet(s) 1022 can transmit the request to app
subnet(s) 1026 contained in the control plane app tier 1024.
It the request 1s validated and requires a call to public
Internet 1054, the call to public Internet 1054 may be
transmitted to the NAT gateway 1038 that can make the call
to public Internet 1054. Memory that may be desired to be
stored by the request can be stored 1n the DB subnet(s) 1030.

In some examples, the data plane mirror app tier 1040 can
facilitate direct communication between the control plane
VCN 1016 and the data plane VCN 1018. For example,
changes, updates, or other suitable modifications to configu-
ration may be desired to be applied to the resources con-
taimned 1n the data plane VCN 1018. Via a VNIC 1042, the
control plane VCN 1016 can directly communicate with, and
can thereby execute the changes, updates, or other suitable
modifications to configuration to, resources contained in the
data plane VCN 1018.

In some embodiments, the control plane VCN 1016 and
the data plane VCN 1018 can be contained in the service
tenancy 1019. In this case, the user, or the customer, of the
system may not own or operate either the control plane VCN
1016 or the data plane VCN 1018. Instead, the IaaS provider
may own or operate the control plane VCN 1016 and the
data plane VCN 1018, both of which may be contained 1n the
service tenancy 1019. This embodiment can enable 1solation
of networks that may prevent users or customers from
interacting with other users’, or other customers’, resources.
Also, this embodiment may allow users or customers of the
system to store databases privately without needing to rely
on public Internet 1054, which may not have a desired level
ol security, for storage.

In other embodiments, the LB subnet(s) 1022 contained 1n
the control plane VCN 1016 can be configured to receive a
signal from the service gateway 1036. In this embodiment,
the control plane VCN 1016 and the data plane VCN 1018
may be configured to be called by a customer of the IaaS
provider without calling public Internet 1054. Customers of
the IaaS provider may desire this embodiment since data-
base(s) that the customers use may be controlled by the IaaS
provider and may be stored on the service tenancy 1019,
which may be 1solated from public Internet 1054.

FIG. 11 1s a block diagram 1100 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1102 (e.g. service opera-
tors 1002 of FIG. 10) can be communicatively coupled to a

secure host tenancy 1104 (e.g. the secure host tenancy 1004
of FIG. 10) that can include a virtual cloud network (VCN)

1106 (e.g. the VCN 1006 of FIG. 10) and a secure host

US 11,463,314 B2

29

subnet 1108 (e.g. the secure host subnet 1008 of FIG. 10).
The VCN 1106 can include a local peering gateway (LPG)
1110 (e.g. the LPG 1010 of FIG. 10) that can be commu-
nicatively coupled to a secure shell (SSH) VCN 1112 (e.g.
the SSH VCN 1012 of FIG. 10) via an LPG 1010 contained
in the SSH VCN 1112. The SSH VCN 1112 can include an
SSH subnet 1114 (e.g. the SSH subnet 1014 of FIG. 10), and
the SSH VCN 1112 can be communicatively coupled to a
control plane VCN 1116 (e.g. the control plane VCN 1016
of FIG. 10) via an LPG 1110 contained 1n the control plane
VCN 1116. The control plane VCN 1116 can be contained in
a service tenancy 1119 (e.g. the service tenancy 1019 of FIG.
10), and the data plane VCN 1118 (e.g. the data plane VCN
1018 of FIG. 10) can be contained 1n a customer tenancy
1121 that may be owned or operated by users, or customers,
of the system.

The control plane VCN 1116 can include a control plane
DMZ tier 1120 (e.g. the control plane DMZ. tier 1020 of FIG.
10) that can include LB subnet(s) 1122 (e.g. LB subnet(s)
1022 of FIG. 10), a control plane app tier 1124 (e.g. the
control plane app tier 1024 of FIG. 10) that can include app
subnet(s) 1126 (e.g. app subnet(s) 1026 of FIG. 10), a
control plane data tier 1128 (e.g. the control plane data tier
1028 of FIG. 10) that can include database (DB) subnet(s)
1130 (e.g. stmilar to DB subnet(s) 1030 of FIG. 10). The LB
subnet(s) 1122 contained 1n the control plane DMZ tier 1120
can be communicatively coupled to the app subnet(s) 1126
contained 1n the control plane app tier 1124 and an Internet
gateway 1134 (e.g. the Internet gateway 1034 of FIG. 10)
that can be contained 1n the control plane VCN 1116, and the
app subnet(s) 1126 can be communicatively coupled to the
DB subnet(s) 1130 contained in the control plane data tier
1128 and a service gateway 1136 (e.g. the service gateway
of FIG. 10) and a network address translation (NAT) gate-
way 1138 (e.g. the NAT gateway 1038 of FIG. 10). The
control plane VCN 1116 can include the service gateway
1136 and the NAT gateway 1138.

The control plane VCN 1116 can include a data plane
mirror app tier 1140 (e.g. the data plane mirror app tier 1040
of FIG. 10) that can include app subnet(s) 1126. The app
subnet(s) 1126 contained in the data plane mirror app tier
1140 can include a virtual network interface controller
(VNIC) 1142 (e.g. the VNIC of 1042) that can execute a
compute nstance 1144 (e.g. similar to the compute instance
1044 of FIG. 10). The compute instance 1144 can facilitate
communication between the app subnet(s) 1126 of the data
plane mirror app tier 1140 and the app subnet(s) 1126 that
can be contained in a data plane app tier 1146 (e.g. the data
plane app tier 1046 of FIG. 10) via the VNIC 1142 contained
in the data plane mirror app tier 1140 and the VNIC 1142
contained 1n the data plane app tier 1146.

The Internet gateway 1134 contained 1n the control plane
VCN 1116 can be communicatively coupled to a metadata
management service 1152 (e.g. the metadata management
service 1052 of FIG. 10) that can be commumnicatively
coupled to public Internet 1154 (e.g. public Internet 1054 of
FIG. 10). Public Internet 1154 can be communicatively
coupled to the NAT gateway 1138 contained 1n the control
plane VCN 1116. The service gateway 1136 contained in the
control plane VCN 1116 can be communicatively couple to
cloud services 1156 (e.g. cloud services 1056 of FIG. 10).

In some examples, the data plane VCN 1118 can be
contained 1n the customer tenancy 1121. In this case, the
[aaS provider may provide the control plane VCN 1116 for
cach customer, and the IaaS provider may, for each cus-
tomer, set up a unique compute instance 1144 that 1s
contained 1 the service tenancy 1119. Each compute

10

15

20

25

30

35

40

45

50

55

60

65

30

instance 1144 may allow communication between the con-
trol plane VCN 1116, contained 1n the service tenancy 1119,
and the data plane VCN 1118 that i1s contained in the
customer tenancy 1121. The compute instance 1144 may
allow resources, that are provisioned in the control plane
VCN 1116 that 1s contained in the service tenancy 1119, to
be deployed or otherwise used 1n the data plane VCN 1118
that 1s contained in the customer tenancy 1121.

In other examples, the customer of the IaaS provider may
have databases that live 1n the customer tenancy 1121. In this
example, the control plane VCN 1116 can include the data
plane mirror app tier 1140 that can include app subnet(s)
1126. The data plane mirror app tier 1140 can reside in the
data plane VCN 1118, but the data plane mirror app tier 1140
may not live 1n the data plane VCN 1118. That 1s, the data
plane mirror app tier 1140 may have access to the customer
tenancy 1121, but the data plane mirror app tier 1140 may
not exist in the data plane VCN 1118 or be owned or
operated by the customer of the IaaS provider. The data
plane mirror app tier 1140 may be configured to make calls
to the data plane VCN 1118 but may not be configured to
make calls to any entity contained 1n the control plane VCN
1116. The customer may desire to deploy or otherwise use
resources 1n the data plane VCN 1118 that are provisioned
in the control plane VCN 1116, and the data plane mirror app
tier 1140 can facilitate the desired deployment, or other
usage ol resources, of the customer.

In some embodiments, the customer of the IaaS provider
can apply filters to the data plane VCN 1118. In this
embodiment, the customer can determine what the data
plane VCN 1118 can access, and the customer may restrict
access to public Internet 1154 from the data plane VCN
1118. The IaaS provider may not be able to apply filters or
otherwise control access of the data plane VCN 1118 to any
outside networks or databases. Applying filters and controls
by the customer onto the data plane VCN 1118, contained in
the customer tenancy 1121, can help 1solate the data plane
VCN 1118 from other customers and from public Internet
1154.

In some embodiments, cloud services 1156 can be called
by the service gateway 1136 to access services that may not
exist on public Internet 1154, on the control plane VCN
1116, or on the data plane VCN 1118. The connection
between cloud services 1156 and the control plane VCN
1116 or the data plane VCN 1118 may not be live or
continuous. Cloud services 1156 may exist on a different
network owned or operated by the IaaS provider. Cloud
services 1156 may be configured to receive calls from the
service gateway 1136 and may be configured to not receive
calls from public Internet 1154. Some cloud services 1156
may be 1solated from other cloud services 1156, and the
control plane VCN 1116 may be 1solated from cloud services
1156 that may not be in the same region as the control plane
VCN 1116. For example, the control plane VCN 1116 may
be located 1 “Region 1,” and cloud service “Deployment
10,” may be located 1n Region 1 and 1n “Region 2.” If a call
to Deployment 10 1s made by the service gateway 1136
contained 1n the control plane VCN 1116 located 1n Region
1, the call may be transmitted to Deployment 10 in Region
1. In this example, the control plane VCN 1116, or Deploy-
ment 10 1n Region 1, may not be communicatively coupled
to, or otherwise 1n communication with, Deployment 10 in
Region 2.

FIG. 12 1s a block diagram 1200 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1202 (e.g. service opera-
tors 1002 of FIG. 10) can be communicatively coupled to a

US 11,463,314 B2

31

secure host tenancy 1204 (e.g. the secure host tenancy 1004
of FIG. 10) that can include a virtual cloud network (VCN)

1206 (e.g. the VCN 1006 of FIG. 10) and a secure host
subnet 1208 (e.g. the secure host subnet 1008 of FIG. 10).
The VCN 1206 can include an LPG 1210 (e.g. the LPG 1010
of FIG. 10) that can be communicatively coupled to an SSH
VCN 1212 (e.g. the SSH VCN 1012 of FIG. 10) via an LPG
1210 contained 1n the SSH VCN 1212. The SSH VCN 1212
can include an SSH subnet 1214 (e.g. the SSH subnet 1014
of FIG. 10), and the SSH VCN 1212 can be communica-
tively coupled to a control plane VCN 1216 (e.g. the control
plane VCN 1016 of FIG. 10) via an LPG 1210 contained in
the control plane VCN 1216 and to a data plane VCN 1218
(c.g. the data plane 1018 of FIG. 10) via an LPG 1210
contained 1n the data plane VCN 1218. The control plane
VCN 1216 and the data plane VCN 1218 can be contained
in a service tenancy 1219 (e.g. the service tenancy 1019 of
FIG. 10).

The control plane VCN 1216 can include a control plane
DMZ tier 1220 (e.g. the control plane DMZ tier 1020 of FIG.
10) that can include load balancer (LB) subnet(s) 1222 (e.g.
LB subnet(s) 1022 of FIG. 10), a control plane app tier 1224
(c.g. the control plane app tier 1024 of FIG. 10) that can
include app subnet(s) 1226 (e.g. similar to app subnet(s)
1026 of FIG. 10), a control plane data tier 1228 (e.g. the
control plane data tier 1028 of FIG. 10) that can include DB
subnet(s) 1230. The LB subnet(s) 1222 contained in the
control plane DMZ tier 1220 can be communicatively
coupled to the app subnet(s) 1226 contained in the control
plane app tier 1224 and to an Internet gateway 1234 (e.g. the
Internet gateway 1034 of FIG. 10) that can be contained 1n
the control plane VCN 1216, and the app subnet(s) 1226 can
be communicatively coupled to the DB subnet(s) 1230
contained 1n the control plane data tier 1228 and to a service
gateway 1236 (e.g. the service gateway of FIG. 10) and a
network address translation (NAT) gateway 1238 (e.g. the
NAT gateway 1038 of FIG. 10). The control plane VCN
1216 can include the service gateway 1236 and the NAT
gateway 1238.

The data plane VCN 1218 can include a data plane app
tier 1246 (e.g. the data plane app tier 1046 of FIG. 10), a data
plane DMZ tier 1248 (e.g. the data plane DMZ tier 1048 of
FIG. 10), and a data plane data tier 1250 (e.g. the data plane
data tier 1050 of FIG. 10). The data plane DMZ tier 1248 can
include LB subnet(s) 1222 that can be communicatively
coupled to trusted app subnet(s) 1260 and untrusted app
subnet(s) 1262 of the data plane app tier 1246 and the
Internet gateway 1234 contained in the data plane VCN
1218. The trusted app subnet(s) 1260 can be communica-
tively coupled to the service gateway 1236 contained 1n the
data plane VCN 1218, the NAT gateway 1238 contained 1n
the data plane VCN 1218, and DB subnet(s) 1230 contained
in the data plane data tier 1250. The untrusted app subnet(s)
1262 can be commumnicatively coupled to the service gate-
way 1236 contained in the data plane VCN 1218 and DB
subnet(s) 1230 contained i1n the data plane data tier 1250.
The data plane data tier 1250 can include DB subnet(s) 1230
that can be communicatively coupled to the service gateway
1236 contained 1n the data plane VCN 1218.

The untrusted app subnet(s) 1262 can include one or more
primary VNICs 1264(1)-(N) that can be commumicatively
coupled to tenant virtual machines (VMs) 1266(1)-(N). Each
tenant VM 1266(1)-(N) can be communicatively coupled to
a respective app subnet 1267(1)-(N) that can be contained 1n
respective container egress VCNs 1268(1)-(N) that can be
contained 1n respective customer tenancies 1270(1)-(IN).
Respective secondary VNICs 1272(1)-(N) can facilitate

10

15

20

25

30

35

40

45

50

55

60

65

32

communication between the untrusted app subnet(s) 1262
contained in the data plane VCN 1218 and the app subnet
contained 1n the container egress VCNs 1268(1)-(N). Each
container egress VCNs 1268(1)-(N) can include a NAT
gateway 1238 that can be communicatively coupled to
public Internet 1254 (e.g. public Internet 1054 of FIG. 10).

The Internet gateway 1234 contained in the control plane
VCN 1216 and contained 1n the data plane VCN 1218 can
be communicatively coupled to a metadata management
service 12352 (e.g. the metadata management system 10352 of
FIG. 10) that can be communicatively coupled to public
Internet 1254. Public Internet 1254 can be communicatively
coupled to the NAT gateway 1238 contained 1n the control
plane VCN 1216 and contained in the data plane VCN 1218.
The service gateway 1236 contained 1n the control plane
VCN 1216 and contained in the data plane VCN 1218 can
be communicatively couple to cloud services 1256.

In some embodiments, the data plane VCN 1218 can be
integrated with customer tenancies 1270. This integration
can be useful or desirable for customers of the IaaS provider
in some cases such as a case that may desire support when
executing code. The customer may provide code to run that
may be destructive, may communicate with other customer
resources, or may otherwise cause undesirable effects. In
response to this, the IaaS provider may determine whether to
run code given to the laaS provider by the customer.

In some examples, the customer of the IaaS provider may
grant temporary network access to the IaaS provider and
request a function to be attached to the data plane tier app
1246. Code to run the function may be executed in the VMs
1266(1)-(N), and the code may not be configured to run
anywhere else on the data plane VCN 1218. Each VM
1266(1)-(N) may be connected to one customer tenancy
1270. Respective containers 1271(1)-(N) contained in the
VMs 1266(1)-(N) may be configured to run the code. In this
case, there can be a dual isolation (e.g., the containers
1271(1)-(N) running code, where the containers 1271(1)-(N)
may be contained in at least the VM 1266(1)-(IN) that are
contained 1n the untrusted app subnet(s) 1262), which may
help prevent incorrect or otherwise undesirable code from
damaging the network of the IaaS provider or from damag-
ing a network of a different customer. The containers 1271
(1)-(N) may be communicatively coupled to the customer
tenancy 1270 and may be configured to transmit or receive
data from the customer tenancy 1270. The containers 1271
(1)-(N) may not be configured to transmit or receive data
from any other entity 1n the data plane VCN 1218. Upon
completion of running the code, the IaaS provider may kill
or otherwise dispose of the containers 1271(1)-(N).

In some embodiments, the trusted app subnet(s) 1260 may
run code that may be owned or operated by the IaaS
provider. In this embodiment, the trusted app subnet(s) 1260
may be communicatively coupled to the DB subnet(s) 1230
and be configured to execute CRUD operations in the DB
subnet(s) 1230. The untrusted app subnet(s) 1262 may be
communicatively coupled to the DB subnet(s) 1230, but 1n
this embodiment, the untrusted app subnet(s) may be con-
figured to execute read operations 1n the DB subnet(s) 1230.
The containers 1271(1)-(N) that can be contained 1n the VM
1266(1)-(IN) of each customer and that may run code from
the customer may not be communicatively coupled with the
DB subnet(s) 1230.

In other embodiments, the control plane VCN 1216 and
the data plane VCN 1218 may not be directly communica-
tively coupled. In this embodiment, there may be no direct
communication between the control plane VCN 1216 and
the data plane VCN 1218. However, communication can

US 11,463,314 B2

33

occur indirectly through at least one method. An LPG 1210
may be established by the IaaS provider that can facilitate
communication between the control plane VCN 1216 and
the data plane VCN 1218. In another example, the control
plane VCN 1216 or the data plane VCN 1218 can make a
call to cloud services 1256 via the service gateway 1236. For
example, a call to cloud services 1256 from the control plane
VCN 1216 can include a request for a service that can
communicate with the data plane VCN 1218.

FIG. 13 1s a block diagram 1300 illustrating another
example pattern of an IaaS architecture, according to at least
one embodiment. Service operators 1302 (e.g. service opera-
tors 1002 of FIG. 10) can be communicatively coupled to a
secure host tenancy 1304 (e.g. the secure host tenancy 1004
of FIG. 10) that can include a virtual cloud network (VCN)
1306 (e.g. the VCN 1006 of FIG. 10) and a secure host
subnet 1308 (e.g. the secure host subnet 1008 of FIG. 10).
The VCN 1306 can include an LPG 1310 (e.g. the LPG 1010
of FIG. 10) that can be communicatively coupled to an SSH
VCN 1312 (e.g. the SSH VCN 1012 of FIG. 10) via an LPG
1310 contained 1n the SSH VCN 1312. The SSH VCN 1312
can include an SSH subnet 1314 (e.g. the SSH subnet 1014
of FIG. 10), and the SSH VCN 1312 can be communica-
tively coupled to a control plane VCN 1316 (e.g. the control
plane VCN 1016 of FIG. 10) via an LPG 1310 contained in
the control plane VCN 1316 and to a data plane VCN 1318
(c.g. the data plane 1018 of FIG. 10) via an LPG 1310
contained 1n the data plane VCN 1318. The control plane
VCN 1316 and the data plane VCN 1318 can be contained
in a service tenancy 1319 (e.g. the service tenancy 1019 of
FIG. 10).

The control plane VCN 1316 can include a control plane
DMZ tier 1320 (e.g. the control plane DMZ tier 1020 of FIG.
10) that can include LB subnet(s) 1322 (e.g. LB subnet(s)
1022 of FIG. 10), a control plane app tier 1324 (e.g. the
control plane app tier 1024 of FIG. 10) that can include app
subnet(s) 1326 (e.g. app subnet(s) 1026 of FIG. 10), a
control plane data tier 1328 (e.g. the control plane data tier
1028 of FIG. 10) that can include DB subnet(s) 1330 (e.g.
DB subnet(s) 1230 of FIG. 12). The LB subnet(s) 1322
contained in the control plane DMZ tier 1320 can be
communicatively coupled to the app subnet(s) 1326 con-
tained 1n the control plane app tier 1324 and to an Internet
gateway 1334 (e.g. the Internet gateway 1034 of FIG. 10)
that can be contained in the control plane VCN 1316, and the
app subnet(s) 1326 can be communicatively coupled to the
DB subnet(s) 1330 contained 1n the control plane data tier

1328 and to a service gateway 1336 (e.g. the service gateway
of FIG. 10) and a network address translation (NAT) gate-

way 1338 (e.g. the NAT gateway 1038 of FIG. 10). The
control plane VCN 1316 can include the service gateway
1336 and the NAT gateway 1338.

The data plane VCN 1318 can include a data plane app
tier 1346 (e.g. the data plane app tier 1046 of FIG. 10), a data
plane DMZ tier 1348 (e.g. the data plane DMZ tier 1048 of
FIG. 10), and a data plane data tier 1350 (e.g. the data plane
data tier 1050 of FIG. 10). The data plane DMZ tier 1348 can
include LB subnet(s) 1322 that can be communicatively
coupled to trusted app subnet(s) 1360 (c.g. trusted app
subnet(s) 1260 of FIG. 12) and untrusted app subnet(s) 1362
(e.g. untrusted app subnet(s) 1262 of FIG. 12) of the data

plane app tier 1346 and the Internet gateway 1334 contained
in the data plane VCN 1318. The trusted app subnet(s) 1360

can be communicatively coupled to the service gateway
1336 contained in the data plane VCN 1318, the NAT
gateway 1338 contained in the data plane VCN 1318, and
DB subnet(s) 1330 contained in the data plane data tier

10

15

20

25

30

35

40

45

50

55

60

65

34

1350. The untrusted app subnet(s) 1362 can be communi-
catively coupled to the service gateway 1336 contained 1n
the data plane VCN 1318 and DB subnet(s) 1330 contained
in the data plane data tier 1350. The data plane data tier 1350
can include DB subnet(s) 1330 that can be communicatively
coupled to the service gateway 1336 contained in the data
plane VCN 1318.

The untrusted app subnet(s) 1362 can include primary
VNICs 1364(1)-(N) that can be communicatively coupled to
tenant virtual machines (VMs) 1366(1)-(N) residing within
the untrusted app subnet(s) 1362. Each tenant VM 1366(1)-
(N) can run code 1n a respective container 1367(1)-(IN), and
be communicatively coupled to an app subnet 1326 that can
be contained i1n a data plane app tier 1346 that can be
contained 1 a container egress VCN 1368. Respective
secondary VNICs 1372(1)-(N) can facilitate communication
between the untrusted app subnet(s) 1362 contained 1n the
data plane VCN 1318 and the app subnet contained in the
container egress VCN 1368. The container egress VCN can
include a NAT gateway 1338 that can be communicatively
coupled to public Internet 1354 (e.g. public Internet 1054 of
FIG. 10).

The Internet gateway 1334 contained in the control plane
VCN 1316 and contained 1n the data plane VCN 1318 can
be communicatively coupled to a metadata management
service 1352 (e.g. the metadata management system 1052 of
FIG. 10) that can be communicatively coupled to public
Internet 1354. Public Internet 1354 can be communicatively
coupled to the NAT gateway 1338 contained 1n the control
plane VCN 1316 and contained in the data plane VCN 1318.
The service gateway 1336 contained in the control plane
VCN 1316 and contained 1n the data plane VCN 1318 can
be communicatively couple to cloud services 1356.

In some examples, the pattern illustrated by the architec-
ture of block diagram 1300 of FIG. 13 may be considered an
exception to the pattern illustrated by the architecture of
block diagram 1200 of FIG. 12 and may be desirable for a
customer of the IaaS provider 1f the IaaS provider cannot
directly communicate with the customer (e.g., a discon-
nected region). The respective containers 1367(1)-(N) that
are contained 1n the VMs 1366(1)-(IN) for each customer can
be accessed 1n real-time by the customer. The containers
1367(1)-(N) may be configured to make calls to respective
secondary VNICs 1372(1)-(N) contained 1n app subnet(s)
1326 of the data plane app tier 1346 that can be contained
in the container egress VCN 1368. The secondary VNICs
1372(1)-(IN) can transmit the calls to the NAT gateway 1338
that may transmit the calls to public Internet 1354. In this
example, the containers 1367(1)-(IN) that can be accessed 1n
real-time by the customer can be 1solated from the control
plane VCN 1316 and can be 1solated from other entities
contained in the data plane VCN 1318. The containers
136°7(1)-(IN) may also be 1solated from resources from other
customers.

In other examples, the customer can use the containers
1367(1)-(N) to call cloud services 1356. In this example, the
customer may run code in the containers 1367(1)-(N) that
requests a service from cloud services 1356. The containers
1367(1)-(N) can transmit this request to the secondary
VNICs 1372(1)-(N) that can transmit the request to the NAT
gateway that can transmit the request to public Internet
1354. Public Internet 1354 can transmit the request to LB
subnet(s) 1322 contained 1n the control plane VCN 1316 via
the Internet gateway 1334. In response to determining the
request 1s valid, the LB subnet(s) can transmit the request to
app subnet(s) 1326 that can transmit the request to cloud
services 1356 via the service gateway 1336.

US 11,463,314 B2

35

It should be appreciated that IaaS architectures 1000,
1100, 1200, 1300 depicted 1n the figures may have other

components than those depicted. Further, the embodiments
shown 1n the figures are only some examples of a cloud
infrastructure system that may incorporate an embodiment
of the disclosure. In some other embodiments, the IaaS
systems may have more or fewer components than shown 1n
the figures, may combine two or more components, or may
have a different configuration or arrangement of compo-
nents.

In certain embodiments, the IaaS systems described
herein may include a suite of applications, middleware, and
database service oflerings that are delivered to a customer 1n
a self-service, subscription-based, elastically scalable, reli-
able, highly available, and secure manner. An example of
such an IaaS system 1s the Oracle Cloud Infrastructure (OCI)
provided by the present assignee.

FI1G. 14 1llustrates an example computer system 1400, in
which various embodiments may be implemented. The
system 1400 may be used to implement any of the computer
systems described above. As shown 1n the figure, computer
system 1400 includes a processing unit 1404 that commu-
nicates with a number of peripheral subsystems via a bus
subsystem 1402. These peripheral subsystems may include
a processing acceleration unit 1406, an I/O subsystem 1408,
a storage subsystem 1418 and a communications subsystem
1424. Storage subsystem 1418 includes tangible computer-
readable storage media 1422 and a system memory 1410.

Bus subsystem 1402 provides a mechanism for letting the
vartous components and subsystems of computer system
1400 communicate with each other as intended. Although
bus subsystem 1402 1s shown schematically as a single bus,
alternative embodiments of the bus subsystem may utilize
multiple buses. Bus subsystem 1402 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. For example, such architectures

may include an Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA

(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus, which can be implemented as a Mezzanine bus
manufactured to the IEEE P1386.1 standard.

Processing unit 1404, which can be implemented as one
or more integrated circuits (e.g., a conventional micropro-
cessor or microcontroller), controls the operation of com-
puter system 1400. One or more processors may be included
in processing unit 1404. These processors may 1include
single core or multicore processors. In certain embodiments,
processing unit 1404 may be implemented as one or more
independent processing units 1432 and/or 1434 with single
or multicore processors included 1n each processing unit. In
other embodiments, processing unit 1404 may also be
implemented as a quad-core processing unit formed by
integrating two dual-core processors into a single chip.

In wvarious embodiments, processing unit 1404 can
execute a variety of programs in response to program code
and can maintain multiple concurrently executing programs
or processes. At any given time, some or all of the program
code to be executed can be resident 1n processor(s) 1404
and/or 1n storage subsystem 1418. Through suitable pro-
gramming, processor(s) 1404 can provide various function-
alities described above. Computer system 1400 may addi-
tionally include a processing acceleration unit 1406, which
can iclude a digital signal processor (DSP), a special-
purpose processor, and/or the like.

10

15

20

25

30

35

40

45

50

55

60

65

36

I/O subsystem 1408 may include user interface input
devices and user interface output devices. User interface
input devices may include a keyboard, pointing devices such
as a mouse or trackball, a touchpad or touch screen incor-
porated 1nto a display, a scroll wheel, a click wheel, a dial,
a button, a switch, a keypad, audio mput devices with voice
command recognition systems, microphones, and other
types of mput devices. User interface imput devices may
include, for example, motion sensing and/or gesture recog-
nition devices such as the Microsoit Kinect® motion sensor
that enables users to control and interact with an input
device, such as the Microsoit Xbox® 360 game controller,
through a natural user interface using gestures and spoken
commands. User interface mput devices may also include
eye gesture recognition devices such as the Google Glass®
blink detector that detects eye activity (e.g., ‘blinking” while
taking pictures and/or making a menu selection) from users
and transforms the eye gestures as mput nto an mput device
(e.g., Google Glass®). Additionally, user interface input
devices may include voice recognition sensing devices that
enable users to interact with voice recognition systems (e.g.,
S1r1® navigator), through voice commands.

User interface mput devices may also include, without
limitation, three dimensional (3D) mice, joysticks or point-
ing sticks, gamepads and graphic tablets, and audio/visual
devices such as speakers, digital cameras, digital camcord-
ers, portable media players, webcams, 1mage scanners, {in-
gerprint scanners, barcode reader 3D scanners, 3D printers,
laser rangefinders, and eye gaze tracking devices. Addition-
ally, user interface mput devices may include, for example,
medical imaging mput devices such as computed tomogra-
phy, magnetic resonance 1imaging, position emission tomog-
raphy, medical ultrasonography devices. User interface
iput devices may also include, for example, audio mput
devices such as MIDI keyboards, digital musical instru-
ments and the like.

User terface output devices may include a display
subsystem, indicator lights, or non-visual displays such as
audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that
using a liqud crystal display (LCD) or plasma display, a
projection device, a touch screen, and the like. In general,
use of the term “‘output device” 1s intended to include all
possible types of devices and mechanisms for outputting
information from computer system 1400 to a user or other
computer. For example, user interface output devices may
include, without limitation, a variety of display devices that
visually convey text, graphics and audio/video information
such as monitors, printers, speakers, headphones, automo-
tive navigation systems, plotters, voice output devices, and
modems.

Computer system 1400 may comprise a storage subsys-
tem 1418 that comprises software elements, shown as being
currently located within a system memory 1410. System
memory 1410 may store program instructions that are load-
able and executable on processing unit 1404, as well as data
generated during the execution of these programs.

Depending on the configuration and type ol computer
system 1400, system memory 1410 may be volatile (such as
random access memory (RAM)) and/or non-volatile (such as
read-only memory (ROM), flash memory, etc.) The RAM
typically contains data and/or program modules that are
immediately accessible to and/or presently being operated
and executed by processing unit 1404. In some implemen-
tations, system memory 1410 may include multiple different
types of memory, such as static random access memory
(SRAM) or dynamic random access memory (DRAM). In

US 11,463,314 B2

37

some 1mplementations, a basic iput/output system (BIOS),
containing the basic routines that help to transfer informa-
tion between elements within computer system 1400, such
as during start-up, may typically be stored in the ROM. By
way of example, and not limitation, system memory 1410
also 1illustrates application programs 1412, which may
include client applications, Web browsers, mid-tier applica-
tions, relational database management systems (RDBMS),
etc., program data 1414, and an operating system 1416. By
way of example, operating system 1416 may include various
versions of Microsoft Windows®, Apple Macintosh®, and/
or Linux operating systems, a variety of commercially-
available UNIX® or UNIX-like operating systems (includ-
ing without limitation the variety of GNU/Linux operating
systems, the Google Chrome® OS, and the like) and/or
mobile operating systems such as 10S, Windows® Phone,
Android® OS, BlackBerry® 14 OS, and Palm® OS oper-
ating systems.

Storage subsystem 1418 may also provide a tangible
computer-readable storage medium for storing the basic
programming and data constructs that provide the function-
ality of some embodiments. Software (programs, code mod-
ules, mstructions) that when executed by a processor pro-
vide the functionality described above may be stored in
storage subsystem 1418. These software modules or instruc-
tions may be executed by processing unit 1404. Storage
subsystem 1418 may also provide a repository for storing
data used 1n accordance with the present disclosure.

Storage subsystem 1400 may also include a computer-
readable storage media reader 1420 that can further be
connected to computer-readable storage media 1422.
Together and, optionally, 1n combination with system
memory 1410, computer-readable storage media 1422 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
1ly and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

Computer-readable storage media 1422 containing code,
or portions of code, can also include any appropriate media
known or used in the art, including storage media and
communication media, such as but not limited to, volatile
and non-volatile, removable and non-removable media
implemented 1n any method or technology for storage and/or
transmission of information. This can include tangible com-
puter-readable storage media such as RAM, ROM, elec-
tronically erasable programmable ROM (EEPROM), flash
memory or other memory technology, CD-ROM, digital
versatile disk (DVD), or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or other tangible computer read-
able media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or
any other medium which can be used to transmit the desired
information and which can be accessed by computing sys-
tem 1400.

By way of example, computer-readable storage media
1422 may include a hard disk drive that reads from or writes
to non-removable, nonvolatile magnetic media, a magnetic
disk drive that reads from or writes to a removable, non-
volatile magnetic disk, and an optical disk drive that reads
from or writes to a removable, nonvolatile optical disk such
as a CD ROM, DVD, and Blu-Ray® disk, or other optical
media. Computer-readable storage media 1422 may include,
but 1s not limited to, Zip® drives, flash memory cards,
universal serial bus (USB) flash drives, secure digital (SD)
cards, DVD disks, digital video tape, and the like. Com-
puter-readable storage media 1422 may also include, solid-

10

15

20

25

30

35

40

45

50

55

60

65

38

state drives (SSD) based on non-volatile memory such as
flash-memory based SSDs, enterprise flash drives, solid state
ROM, and the like, SSDs based on volatile memory such as
solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybnd
SSDs that use a combination of DRAM and flash memory
based SSDs. The disk drives and their associated computer-
readable media may provide non-volatile storage of com-
puter-readable instructions, data structures, program mod-
ules, and other data for computer system 1400.

Communications subsystem 1424 provides an interface to
other computer systems and networks. Communications
subsystem 1424 serves as an interface for receiving data
from and transmitting data to other systems from computer
system 1400. For example, communications subsystem
1424 may enable computer system 1400 to connect to one or
more devices via the Internet. In some embodiments com-
munications subsystem 1424 can include radio frequency
(RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technol-
ogy, advanced data network technology, such as 3G, 4G or
EDGE (enhanced data rates for global evolution), WiFi
(IEEE 802.11 family standards, or other mobile communi-
cation technologies, or any combination thereof), global
positioning system (GPS) recerver components, and/or other
components. In some embodiments communications sub-
system 1424 can provide wired network connectivity (e.g.,
Ethernet) in addition to or instead of a wireless interface.

In some embodiments, communications subsystem 1424
may also receive imput communication in the form of
structured and/or unstructured data feeds 1426, event
streams 1428, event updates 1430, and the like on behalf of
one or more users who may use computer system 1400.

By way of example, communications subsystem 1424
may be configured to receirve data feeds 1426 1n real-time
from users of social networks and/or other communication
services such as Twitter® feeds, Facebook® updates, web
feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information
sources.

Additionally, communications subsystem 1424 may also
be configured to receive data 1n the form of continuous data
streams, which may include event streams 1428 of real-time
events and/or event updates 1430, that may be continuous or
unbounded in nature with no explicit end. Examples of
applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network
performance measuring tools (e.g. network monitoring and
traflic management applications), clickstream analysis tools,
automobile traflic monitoring, and the like.

Communications subsystem 1424 may also be configured
to output the structured and/or unstructured data feeds 1426,
event streams 1428, event updates 1430, and the like to one
or more databases that may be in communication with one
or more streaming data source computers coupled to com-
puter system 1400.

Computer system 1400 can be one of various types,
including a handheld portable device (e.g., an 1Phone®
cellular phone, an 1Pad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted
display), a PC, a workstation, a mainframe, a kiosk, a server
rack, or any other data processing system.

Due to the ever-changing nature of computers and net-
works, the description of computer system 1400 depicted in
the figure 1s intended only as a specific example. Many other
configurations having more or fewer components than the
system depicted in the figure are possible. For example,

US 11,463,314 B2

39

customized hardware might also be used and/or particular
clements might be implemented in hardware, firmware,
software (including applets), or a combination. Further,
connection to other computing devices, such as network
input/output devices, may be employed. Based on the dis-
closure and teachings provided herein, a person of ordinary
skill 1n the art will appreciate other ways and/or methods to
implement the various embodiments.

Although specific embodiments have been described,
various modifications, alterations, alternative constructions,
and equivalents are also encompassed within the scope of
the disclosure. Embodiments are not restricted to operation
within certain specific data processing environments, but are
free to operate within a plurality of data processing envi-
ronments. Additionally, although embodiments have been
described using a particular series of transactions and steps,
it should be apparent to those skilled 1n the art that the scope
of the present disclosure 1s not limited to the described series
of transactions and steps. Various features and aspects of the
above-described embodiments may be used individually or
jointly.

Further, while embodiments have been described using a
particular combination of hardware and software, 1t should
be recognized that other combinations of hardware and
software are also within the scope of the present disclosure.
Embodiments may be implemented only in hardware, or
only 1 software, or using combinations thereof. The various
processes described herein can be implemented on the same
processor or different processors 1n any combination.
Accordingly, where components or modules are described as
being configured to perform certain operations, such con-
figuration can be accomplished, e¢.g., by designing electronic
circuits to perform the operation, by programming program-
mable electronic circuits (such as microprocessors) to per-
form the operation, or any combination thereof. Processes
can communicate using a variety of techmques including but
not limited to conventional techniques for inter process
communication, and different pairs of processes may use
different techniques, or the same pair of processes may use
different techniques at different times.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and
scope as set forth 1 the claims. Thus, although specific
disclosure embodiments have been described, these are not
intended to be limiting. Various modifications and equiva-
lents are within the scope of the following claims.

The use of the terms “a” and “an” and “the” and similar
referents 1n the context of describing the disclosed embodi-
ments (especially 1n the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including,”
and “containing’” are to be construed as open-ended terms
(1.e., meaning “including, but not limited to,”) unless oth-
erwise noted. The term “connected” 1s to be construed as
partly or wholly contained within, attached to, or joined
together, even 11 there 1s something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range, unless otherwise indicated
herein and each separate value 1s incorporated into the
specification as if it were individually recited herein. All
methods described herein can be performed 1n any suitable
order unless otherwise imdicated herein or otherwise clearly

10

15

20

25

30

35

40

45

50

55

60

65

40

contradicted by context. The use of any and all examples, or
exemplary language (e.g., “such as™) provided herein, is
intended merely to better 1lluminate embodiments and does
not pose a limitation on the scope of the disclosure unless
otherwise claimed. No language 1n the specification should
be construed as indicating any non-claimed element as
essential to the practice of the disclosure.

Disjunctive language such as the phrase “at least one of X,
Y, or Z,” unless specifically stated otherwise, 1s intended to
be understood within the context as used in general to
present that an 1tem, term, etc., may be either X, Y, or Z, or
any combination thereof (e.g., X, Y, and/or Z). Thus, such
disjunctive language 1s not generally intended to, and should
not, imply that certain embodiments require at least one of
X, at least one of Y, or at least one of Z to each be present.

Preferred embodiments of this disclosure are described
herein, mcluding the best mode known for carrying out the
disclosure. Vanations of those preferred embodiments may
become apparent to those of ordinary skill in the art upon
reading the foregoing description. Those of ordinary skaill
should be able to employ such variations as appropriate and
the disclosure may be practiced otherwise than as specifi-
cally described herein. Accordingly, this disclosure includes
all modifications and equivalents of the subject matter
recited 1n the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-
described elements 1n all possible vanations thereof 1is
encompassed by the disclosure unless otherwise indicated
herein.

All references, including publications, patent applica-
tions, and patents, cited herein are hereby 1ncorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth 1n 1ts entirety herein.

In the foregoing specification, aspects of the disclosure
are described with reference to specific embodiments
thereof, but those skilled 1n the art will recognize that the
disclosure 1s not limited thereto. Various features and aspects
of the above-described disclosure may be used individually
or jointly. Further, embodiments can be utilized in any
number of environments and applications beyond those
described herein without departing from the broader spirit
and scope of the specification. The specification and draw-
ings are, accordingly, to be regarded as illustrative rather
than restrictive.

What 1s claimed 1s:

1. A method comprising:

monitoring, by a data processing system, network traflic
flow originating from network interfaces corresponding
to containers that execute components of an applica-
tion;

detecting, by the data processing system, a new network
connection or a change 1n an existing network connec-
tion within the network traflic flow based on the moni-
toring of the network traflic tlow;

in response to detecting the new network connection or
the change 1n the existing network connection, record-
ing, by the data processing system, details of the new
network connection or the change in the existing net-
work connection, wherein the details include a network
address of a source component and a network address
of a destination component for the new network con-
nection or the change in the existing network connec-
tion;

obtaining, by the data processing system, information
concerning the components of the application, wherein

US 11,463,314 B2

41

the information includes the network address and meta-
data associated with each of the components of the
application;
identifying, by the data processing system, metadata for
the source component and the destination component
based on a comparison of at least the network address
of the source component and the network address of the
destination component to the network address associ-
ated with each of the components of the application;

generating, by the data processing system, a network
policy for the source component or the destination
component using at least the metadata for the source
component and the destination component, wherein the
network policy comprises information representative of
the new network connection or the change in the
existing network connection; and

integrating, by the data processing system, the network

policy for the source component or the destination
component mto a deployment package for the applica-
tion.

2. The method of claim 1, wherein the details further
include a time stamp for the new network connection or the
change 1n the existing network connection.

3. The method of claim 2, wherein the information further
includes any changes to arrangement of the components and
time of the changes, and the metadata comprises labels
associated with each of the components of the application.

4. The method of claim 3, wherein the network policy for
the source component or the destination component 1s
generated using at least the metadata for the source compo-
nent and the destination component, the time stamp for the
new network connection or the change in the existing
network connection, and the time of the changes associated
with the arrangement of the source component or the des-
tination component.

5. The method of claim 1, further comprising identifying,
by the data processing system, a subset of components of the
components of the application that are not involved 1n the
new network connection or the change in the existing
network connection based on the comparison of at least the
network address of the source component and the network
address of the destination component to the network address
associated with each of the components of the application,
wherein the network policy for the source component or the
destination component 1s generated using at least the meta-
data for the source component and the destination compo-
nent and the subset of components of the components of the
application that are not involved in the new network con-
nection or the change in the existing network connection.

6. The method of claim 1, wherein the network policy
comprises mformation indicating that the network policy 1s
applicable to a defined version of the source component or
the destination component.

7. The method of claim 1, turther comprising deploying,
by the data processing system, the deployment package to a
computing node 1 a computing environment of the data
processing system.

8. A system comprising:

a processor; and

a memory storing instructions that, when executed by the

processor, configure the system to:

monitor network traflic flow originating from network
interfaces corresponding to containers that execute
components of an application;

5

10

15

20

25

30

35

40

45

50

55

60

65

42

detect a new network connection or a change 1n an
existing network connection within the network trai-
fic flow based on the momtoring of the network

traflic flow;

in response to detecting the new network connection or
the change in the existing network connection,
record details of the new network connection or the
change 1n the existing network connection, wherein
the details include a network address of a source
component and a network address of a destination
component for the new network connection or the
change 1n the existing network connection;

obtain mformation concerming the components of the
application, wherein the information includes the
network address and metadata associated with each
of the components of the application;

identily metadata for the source component and the
destination component based on a comparison of at
least the network address of the source component
and the network address of the destination compo-
nent to the network address associated with each of
the components of the application;

generate a network policy for the source component or
the destination component using at least the metadata
for the source component and the destination com-
ponent, wherein the network policy comprises infor-
mation representative of the new network connection
or the change 1n the existing network connection;
and

integrate the network policy for the source component
or the destination component into a deployment
package for the application.

9. The system of claim 8, wherein the details further
include a time stamp for the new network connection or the
change 1n the existing network connection.

10. The system of claim 9, wherein the information
further includes any changes to arrangement of the compo-
nents and time of the changes, and the metadata comprises
labels associated with each of the components of the appli-
cation.

11. The system of claim 10, wherein the network policy
for the source component or the destination component 1s
generated using at least the metadata for the source compo-
nent and the destination component, the time stamp for the
new network connection or the change in the existing
network connection, and the time of the changes associated
with the arrangement of the source component or the des-
tination component.

12. The system of claim 8, wherein the system 1s further
configured to i1dentily a subset of components of the com-
ponents of the application that are not mvolved in the new
network connection or the change in the existing network
connection based on the comparison of at least the network
address of the source component and the network address of
the destination component to the network address associated
with each of the components of the application, wherein the
network policy for the source component or the destination
component 1s generated using at least the metadata for the
source component and the destination component and the
subset of components of the components of the application
that are not involved 1n the new network connection or the
change 1n the existing network connection.

13. The system of claim 8, wherein the network policy
comprises mnformation idicating that the network policy 1s
applicable to a defined version of the source component or
the destination component.

US 11,463,314 B2

43

14. The system of claim 8, wherein the system 1s further
configured to deploy the deployment package to a comput-
ing node 1n a computing environment of the system.

15. A non-transitory computer-readable medium having
program code that 1s stored thereon, the program code
executable by one or more processing devices for perform-
Ing operations comprising:

monitoring network traflic flow originating from network

interfaces corresponding to containers that execute
components of an application;

detecting a new network connection or a change in an

existing network connection within the network traflic
flow based on the momitoring of the network traflic
flow;

in response to detecting the new network connection or

the change 1n the existing network connection, record-
ing details of the new network connection or the change
in the existing network connection, wherein the details
include a network address of a source component and
a network address of a destination component for the
new network connection or the change in the existing
network connection:

obtaining information concerning the components of the

application, wherein the information includes the net-
work address and metadata associated with each of the
components of the application;
identifying metadata for the source component and the
destination component based on a comparison of at
least the network address of the source component and
the network address of the destination component to the
network address associated with each of the compo-
nents of the application;
generating a network policy for the source component or
the destination component using at least the metadata
for the source component and the destination compo-
nent, wherein the network policy comprises informa-
tion representative of the new network connection or
the change 1n the existing network connection; and

integrating the network policy for the source component
or the destination component mto a deployment pack-
age for the application.

10

15

20

25

30

35

40

44

16. The non-transitory computer-readable medium of
claim 15, wherein the details further include a time stamp for
the new network connection or the change in the existing
network connection.

17. The non-transitory computer-readable medmum of
claiam 16, wherein the mformation further includes any
changes to arrangement of the components and time of the
changes, and the metadata comprises labels associated with
cach of the components of the application.

18. The non-transitory computer-readable medium of
claiam 17, wherein the network policy for the source com-
ponent or the destination component 1s generated using at
least the metadata for the source component and the desti-
nation component, the time stamp for the new network
connection or the change 1n the existing network connection,
and the time of the changes associated with the arrangement
of the source component or the destination component.

19. The non-transitory computer-readable medium of
claim 15, wherein the operations further comprise 1dentify-
ing a subset of components of the components of the
application that are not mvolved in the new network con-
nection or the change in the existing network connection
based on the comparison of at least the network address of
the source component and the network address of the
destination component to the network address associated
with each of the components of the application, wherein the
network policy for the source component or the destination
component 1s generated using at least the metadata for the

source component and the destination component and the
subset of components of the components of the application
that are not involved 1n the new network connection or the
change 1n the existing network connection.

20. The non-transitory computer-readable medium of
claim 15, wherein the network policy comprises information
indicating that the network policy 1s applicable to a defined
version of the source component or the destination compo-
nent.

	Front Page
	Drawings
	Specification
	Claims

