United States Patent

US011461283B2

(12) (10) Patent No.: US 11,461,283 B2
Avati et al. 45) Date of Patent: Oct. 4, 2022
(54) MIGRATING FILE LOCKS IN DISTRIBUTED 5,608,900 A * 3/1997 Dockter GO6F 16/182
FILE SYSTEMS 707/999.102
5,764,972 A * 6/1998 Crouse GO6F 16/113
: : ; 707/999.202
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) 6,996,553 B2* 2/2006 Agrawal ... HO4L 47/20
: : 707/999.1
(72) Inventors: Anand Avati, Mountain View, CA 7243089 B2 7/2007 Becker-Szendy et al.
(US); Raghavendra Gowdappa, 7406473 Bl 7/2008 Brassow et al.
Karnataka (IN) 7,774,364 B2 8/2010 Anderson et al.
8,352,658 B2 1/2013 Tarta et al.
' : ; 2008/0243847 Al* 10/2008 Rasmussen 707/8
(73) ASSlgnee' Red Hat'«" Inc'f‘ Ralelghﬂ NC (US) 2009/’0119304 A % 5/2009 PI‘GS]&II et .‘:11. “““““““““ 707/10
(*) Notice: Subject to any disclaimer, the term of this 2010/0114545 Al 5/22:10 t.ngdSbury et al
patent 1s extended or adjusted under 35 (Continued)
U.S.L. 154(b) by 975 days. FOREIGN PATENT DOCUMENTS
22) Filed: Oct. 14, 2013
(22) - File : OTHER PUBLICATIONS
(65) Prior Publication Data Burns, Randal C. et al., “Consistency and Locking for Distributing
S 2015/0106411 Al Apr. 16, 2015 Updates to Web Servers Using a Filing System,” IBM Almaden
Research Center, 7 pages.
(51) Int. CL (Continued)
GO6F 17/00 (2019.01)
G061 7700 (2006'02") Primary Examiner — Pavan Mamillapalli
GO6F 16/182 (2019.01) , .
(52) U.S. CL (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
CPC e, GO6F 167182 (2019.01)
(58) TField of Classification Search (57) ABSTRACT
CPC e Srrereeseensesnecuatieiesietient et G O'6F 16/182 SyStemS and mEEthOdS fOI. migratillg ﬁle IOCkS in distributed
See application file for complete search history. file systems. An example method may comprise: receiving,
(56) References Cited by a file system server, over a first connection imtiated by a

U.S. PATENT DOCUMENTS

4,794,519 A * 12/1988 Koizumi HO4L 67/325
707/827

4,825,354 A * 4/1989 Agrawal GO6F 16/182
707/999.01

4,887,204 A * 12/1989 Johnson GO6F 16/172
709/219

(‘400

41Q Receive connection 1D
reguest

420 Send connecticn 1D to clisnt

430 Receive connection
Identifiers

440 Discard connection IDs not
issued by this server

450 Identlfy coresponding
connection

460 Transfer pwnership of file
locks

file system client, a connection 1dentifier comprising a file
identifier; identifving, 1n view of the connection i1dentifier, a
second connection initiated by the file system client, the
second connection associated with a file lock with respect to
a file identified by the file identifier; and associating the file
lock with the first connection.

20 Claims, 6 Drawing Sheets

- f’" 506G
510 Transmit first file open
request using old configuration

gragh

515 Issue file lock request

520 Recelve notification of
configuration change

525 Request configuration
information

530 Construct new configuration
graph

535 Transmit connection 1D
requests using old graph

540 Receive connection ID
respanses

545 Send connection [Ds to
sarvers using new graph

550 Transmit file open request
using new graph

b5 Discard old configuration
graph

US 11,461,283 B2
Page 2

(56)

U.S. PATENT DOCUM

2010/0114889 Al*

2012/0066399 Al*

2012/0185437 Al
2012/0284786 Al*

2014/0122718 Al*

2014/0325214 Al*

Ol

References Cited

5/2010
3/2012

7/2012
11/2012

Somani
5/2014

10/2014

Marquardt

Thoppai ..

Sadrolashrafi

iiiiiiiiiiiiiiiiii

iiiiiiiii

Pavlov et al.

ttttttttttttttt

tttttttttt

AER PUBLICATIONS

LI I]

tttttttttttttttt

GO6F 16/1824

707/737
HO4L 69/162

709/228

HO4L 63/0815

726/7
GO6F 17/30171

709/225
713/165

Patil, Swapnil et al., “Scale and Concurrency of GIGA+: File
System Directories with Millions of Files,” Carnegie Mellon Uni-

versity, 14 pages.

Eisler, Michael et al., “Data ONTAP GX: A Scalable Storage
Cluster,” Proceedings of FAST 07, a publication of USENIX, 2006,

14 pages.

Gansner, Emden R., “An Open Graph Visualization System and Its
Applications to Software Engineering,” AT&T Labs—Research,
Software—Practice and Experience, Apr. 13, 1999, 29 pages.

Gowdappa, Raghavendra, “[Gluster-devel] RFC on Posix Lock
Migration to New Graph After a Switch,” Oct. 15, 2012, 3 pages.

* cited by examiner

U.S. Patent Oct. 4, 2022 Sheet 1 of 6 US 11,461,283 B2

Server 140
. L - File locks <>
Application 190 | | Application 190 miaration
J 170
Client120 FS server -
daemon 142
Server 140
FS client daemon 185 Network F i{e Iogks < >
110 @ mng;:imn 170
FS server -
daemon 142 _
SEW&I’J&_Q <>
File locks 170
migration
1 44 V
FS server
daemon 142

FIG. 1

U.S. Patent Oct. 4, 2022 Sheet 2 of 6 US 11,461,283 B2

Application 190 | | Application 190

Client120

File locks migration 187

FS client daemon 185

@@ O @ o{{o

(=) (=) (=) @) =) (O e

h“wu““wuw“w“w““ww““““““w““wu“u“w“w“ww“““u“““u““““““““ww“wuw“d

) .
o € 9Ol4
off
L
2.-.._,,.
o
$ R ———
o
— Z{7l uowaep | J0GE (] UolI[UU0Y GBJ UOWsep Jusijd S
n% JOAIBS Q4 "
o _ g0SE I UonoBUUY
B |
Mﬂm_m__m | VOSE QI Uojosuuo) L8] UOREOL 00| 31
|
e © 09€ UOIPBULOY
-~
-
R
3
7 V0SE (] UOosUU0D
) VO¥| JoAIaS A VOEE u_wm_._.n.mb (11 UOROxUUOT)
g
S SOy — _ 0z 411D
< 07C UOND3UUOY) , —
N D05€ q q0e¢
m UOII33uu0) 0et 1senbai Q)
Jsanbal (] 10108ULOY)

uonosUU0Y

0¥ JOMDS OFl JOAIGS

U.S. Patent

U.S. Patent Oct. 4, 2022 Sheet 4 of 6 US 11,461,283 B2

(‘400

410 Receive connection ID
request

420 Send connection ID to client

430 Recelve connection
iIdentifiers

440 Discard connection IDs not
iIssued by this server

450 ldentify corresponding
connection

460 Transfer ownership of file
locks

FIG. 4

U.S. Patent

Oct. 4, 2022 Sheet S of 6

510 Transmit first file open
request using old configuration
graph

515 Issue file lock request

520 Receive notification of
configuration change

525 Request configuration
information

530 Construct new configuration
graph

535 Transmit connection ID
requests using old graph

540 Receive connection ID
responses

545 Send connection IDs to
servers using new graph

550 Transmit file open request
using new graph

55 Discard old configuration
graph

US 11,461,283 B2

(‘500

FIG. 5

U.S. Patent Oct. 4, 2022 Sheet 6 of 6 US 11,461,283 B2

1000
CPU 1002 ' ~

FS client daemon 185
FS server daemon 142

Video display unit 1010

RAM 1004

Instructions 104

FS client daemon 185
FS server daemon 142

Input device 1012

ROM 1006 Pointing device 1014

Audio output device 1020

Secondary memory

1016
Network interface

device 1022

Computer-readable
medium 1024

FS client daemon 185
FS server daemon 142

FIG. 6

US 11,461,283 B2

1

MIGRATING FILE LOCKS IN DISTRIBUTED
FILE SYSTEMS

TECHNICAL FIELD

The present disclosure 1s generally related to computer

systems, and 1s more specifically related to migrating file
locks 1n distributed file systems.

BACKGROUND

In a distributed computer system, data objects (such as
files) may be stored on a plurality of interconnected nodes 1n
accordance with a storage architecture defining the data
object placement and replication policies. The system ethi-
ciency and reliability may be significantly affected by the
principles and design choices governing the storage archi-
tecture.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure 1s 1llustrated by way of examples,
and not by way of limitation, and may be more fully
understood with references to the following detailed descrip-
tion when considered in connection with the figures, in
which:

FIG. 1 schematically depicts component diagrams of
example computer systems, 1n accordance with one or more
aspects of the present disclosure;

FIG. 2 schematically illustrates a distributed file system
configuration graph, in accordance with one or more aspects
of the present disclosure;

FIG. 3 schematically illustrates migrating file locks in
distributed file systems, in accordance with one or more
aspects of the present disclosure;

FIGS. 4-5 depict flow diagrams of example methods for
migrating file locks 1n distributed file systems, 1n accordance
with one or more aspects of the present disclosure; and

FIG. 6 depicts an illustrative computer system operating,
in accordance with one or more aspects of the present
disclosure.

DETAILED DESCRIPTION

Described herein are methods and systems for migrating
file locks 1n distributed file systems. In certain implemen-
tations, a distributed file system may be provided by a
network attached storage (NAS) system comprising one or
more server computer systems each coupled to one or more
persistent data storage devices, such as magnetic or optical
storage disks, solid-state drives (SSDs), etc. “Computer
system” herein shall refer to a system comprising one or
more processors, one or more memory devices, and one or
more input/output (I/0) interfaces.

A server computer system may execute a file system
server daemon to manage file input/output (I/0) requests
originated by the file system clients. One or more client
computer systems can execute a file system client daemon to
communicate with one or more servers.

A file system client may request the file system configu-
ration information from an external computer system (e.g.,
a file system server or a peer client). The file system
configuration information may comprise the system topol-
ogy 1nformation (e.g., the number of servers, the server
connection information, replica relationships between the
servers, etc.). Responsive to recerving the requested con-
figuration iformation, the file system client may construct

10

15

20

25

30

35

40

45

50

55

60

65

2

a configuration graph reflecting the distributed file system
configuration. In an illustrative example, the file system
configuration graph can be represented by a tree-like data
structure comprising a root node corresponding to the file
system mount point, two or more terminal (“leat”) nodes
corresponding to the file system servers, and two or more
intermediate nodes referred to as “translators.” The transla-
tors may process 1/0O requests and responses traversing the
graph, as described 1n more details herein below. Responsive
to constructing the configuration graph, the file system client
may create connections to the file system servers referenced
by the leat nodes of the graph.

The file system client may employ the file system con-
figuration graph to process file access requests 1ssued, e.g.,
by one or more applications executed by the client computer
system. Each file access request may traverse the graph from
the mount point to one or more leal nodes via one or more
translators. Responses corresponding to the file access
requests may traverse the graph following the reverse route.

The distributed file system may support file locking.
Responsive to opening a file, a file system client may 1ssue
a lock request with respect to at least a part of the file. “File
locking” herein shall refer to a mechanism that restricts
access to at least a part of the file to one or more processes
for the duration of the lock.

When the distributed file system configuration 1s changed
(e.g., a server 1s removed or a new server 1s added), a client
may be notified of the change by one or more servers.
Responsive to receiving a configuration change notification,
the client may request the updated configuration information
from a file system server and construct a new configuration
graph. The client may then switch over to the new configu-
ration graph by 1ssuing, using the new configuration graph,
file open requests with respect to the currently open files.
The client may complete the switch-over process by closing
the server connections that were opened using the old
configuration graph.

A file server should be able to migrate the locks that the
clients may have with respect to one or more files residing
on the file server, from the connections opened by a par-
ticular client using the old configuration graph to the new
connections opened by the same client using the new
configuration graph. However, the file server generally has
no means of correlating an mcoming file open and lock
request which 1s based on the new configuration file with an
existing client connection which currently owns the file
lock.

To address the above noted deficiency, the distributed file
system server may implement a lock migration method
described herein. In accordance with one or more aspects of
the present disclosure, responsive to recerving a configura-
tion change notification, a file system client may request,
using the old configuration graph, specially constructed
connection 1dentifiers with respect to the files that are
currently opened by the client from the servers on which the
open files reside.

Responsive to receiving a connection identifier request, a
file system server may issue a connection identifier com-
prising a unique identifier of the server, and 1dentifiers of one
or more files residing on the server and opened by the
requesting client through the same connection that was
employed to transport the connection i1dentifier request. In
certain 1mplementations, the connection i1dentifier may be
encrypted by a secret key maintained by the 1ssuing server.

The requesting client may collect connection identifiers
from the file system servers on which the files opened by the
client reside, and present the connection 1dentifiers to the file

US 11,461,283 B2

3

servers referenced by the new configuration graph. Respon-
sive to recerving the connection identifiers, a file system
server may discard the connection 1dentifiers which were not
issued by the receiving server itself (e.g., by filtering the
received connection 1dentifiers based on the server identifier
field, and/or the encryption key). With respect to each of the
remaining connection identifiers, the file system server may
identify the client which already has a connection and a lock
on the file identified by the connection 1dentifier, and transter
the ownership of the file lock to the new connection
requested by the same client.

Various aspects of the above referenced methods and
systems are described in details hereimn below by way of
examples, rather than by way of limitation.

FIG. 1 schematically depicts a high-level component
diagram of an example distributed file system 100 1n accor-
dance with one or more aspects of the present disclosure. In
certain 1mplementations, distributed file system 100 may
support data replication, load balancing, and other functions
related to providing file system services.

Distributed file system 100 may include one or more
servers 140 configured to individually and/or collectively
service file access request (such as requests to create, access
or modity a specified file). In an 1llustrative example of FIG.
1, each server 140 may include one or more data storage
devices 170. “Data storage device” herein shall refer to a
memory device, such as a disk, RAID array, EEPROM
device, or any other device capable of storing data.

One or more client computers 120 may be communica-
tively coupled, e.g., over a network 110, to servers 140.
Network 110 may be provided by one or more local area
networks, one or more wide area networks, or any combi-
nation thereof. Client computer 120 may be provided by a
computer system including a processor, a memory, and at
least one communication interface (the above noted com-
ponents of client computer 120 are omitted from FIG. 1).
Client computer 120 can execute one or more applications
190.

Server 140 may run a file system server daemon (or any
other component such as a module or program) 142 to export
a local file system to clients 120 as a volume accessible by
the clients. In certain implementations, file system server
daemon 142 may comprise a file locks migration module
144 operating 1n accordance with one or more aspects of the
present disclosure.

File system client daemon 185 running on client comput-
ers 120 may connect to servers via an application-level
protocol implemented over TCP/IP, InfiniBand or other
transports, and access multiple volumes exported by server
140 via one or more translators, as described 1n more details
herein below. In certain implementations, file system client
daemon 185 may comprise a file locks migration module
187 operating 1n accordance with one or more aspects of the
present disclosure.

In certain implementations, distributed file system 100
may implement a file locking as a mechanism for managing
access to shared files. Responsive to opening a file, a client
may 1ssue a lock request with respect to a least part of the
file. In certain 1implementations, a lock request may be
issued at the file, block, record, or byte level. In illustrative
examples, the whole file, one or more blocks of the file, one
or more records of the {file, or a part of the file identified by
the starting byte address and the size, may be locked. In a
turther illustrative example, an exclusive lock request may
be 1ssued to restrict access to at least a part of the file to only
one process for the duration of the lock.

10

15

20

25

30

35

40

45

50

55

60

65

4

To locally mount a distributed file system volume, a file
system client may request the file system configuration
information from an external computer system (e.g., a file
system server or a peer client). Responsive to receiving the
requested configuration information, the file system client
may construct a configuration graph retlecting the distrib-
uted file system configuration and the corresponding trans-
lator configuration.

As schematically illustrated by FIG. 2, a file system
configuration graph 200 can be represented by a hierarchical
data structure comprising a set of linked nodes. In certain
implementations, file system configuration graph 200 may
be represented by a tree comprising a root node 210 corre-
sponding to the file system mount point, two or more leaf
nodes 250 corresponding to the file system servers, and two
or more 1ntermediate nodes 220 also referred to as “trans-
lators.” The ftranslators may process 1/O requests and
responses traversing the graph, as described 1n more details
herein below. Responsive to constructing the configuration
graph, the file system client may create connections to the
file system servers 140 referenced by the leal nodes of the
graph, thus completing the file system mounting process.

The client may employ the configuration graph to process
file access requests 1ssued by applications executed by the
client computer system. Each file access request may tra-
verse the graph from the mount point to one or more leaf
nodes via one or more translators. Responses corresponding
to the file access requests may traverse the graph following
the reverse route.

In an 1llustrative example, a replicate translator 220R may
receive a write request from its parent node 220A and
perform corresponding write operations on two or more of
its child nodes 250A-250B. In another illustrative example,
a distribute translator 220D may receive a write request from
its parent node 220C and select, among its child nodes
250C-250E, a node to perform the corresponding write
operation. In a further illustrative example, a stripe translator
220S may receive a write request from its parent node 2208
and split the write request 1nto two or more write requests to
be processed by two or more child nodes 220E-220G.

The configuration of distributed file system 100 may be
changed by adding or removing servers, migrating files
and/or volumes, adding or migrating replicas of a file, etc. In
certain 1mplementations, clients may be nofified of file
system configuration changes, e.g., by a file system server.
Alternatively, the client may periodically or responsive to a
certain event request configuration updates from a file
system server and/or from a peer client.

Responsive to recerving a configuration change notifica-
tion or otherwise determining that the file system configu-
ration has been changed, the client may request the updated
configuration information from a file system server or from
a peer client. Based on the updated configuration informa-
tion reflecting the new file system configuration, the client
may construct a new configuration graph, and establish
connections with the servers referenced by the leaf nodes of
the new configuration graph. The connections established to
the servers referenced by the leal nodes of the previous
confliguration graph may be terminated by either the client or
the respective servers.

A plurality of files opened by the client may reside on one
or more servers of the distributed file system at the time of
the configuration change. The client may have locks on at
least some of the open files. With respect to any given server,
a connection to the server established by the client based on
the previous configuration graph 1s replaced, as a part of the
configuration update process, with a connection to the server

US 11,461,283 B2

S

established by the same client based on the new configura-
tion graph. As noted herein above, the server should be able
to correlate the two connections and to transier the owner-
ship of the file locks to the newly established connection.

In order to facilitate the file locks migration by the file
system server, the server may 1ssue connection identifiers
with respect to the open connections, as described herein
below with references to FIG. 3. File system client 120 may
transmit, over connections 320 opened using the old con-
figuration graph, connection identifier requests 330A-330C
to one or more file servers 140A-140C on which the files
reside that have been previously opened by the client.
Responsive to receiving a connection identifier request, each
server may 1ssue a connection identifier 350 comprising a
unique 1dentifier of the 1ssuing server, and i1dentifiers of one
or more {iles residing on the server and opened by the
requesting client through the same connection that was
employed to transport the connection 1dentifier request. The
server 1dentifier may be generated by the server and may be
represented, e.g., by a bit sequence generated by a random
number generator. In certain implementations, the server
identifier may be represented by a 128-bit Global Unique
Identifier (GUID).

In certain implementations, the connection identifier may
be encrypted using a secret encryption key maintained by
the 1ssuing server. The encryption key may be generated by
the server and may be represented, e.g., by a bit sequence
generated by a random number generator.

The requesting client may receive connection i1dentifiers
from the file system servers on which the files opened by the
client reside, and present the plurality of connection 1den-
tifiers to each file server referenced by the new configuration
graph.

Responsive to recerving the connection identifiers trans-
mitted by client 120 over a newly established connection
360, server 140A may discard the connection identifiers
which were not 1ssued by the receiving server 140A 1tself
(e.g., by filtering the received connection identifiers based
on the server identifier field, and/or the encryption key).
With respect to each of the remaining one or more connec-
tion identifiers, server 140A may identily the corresponding,
previously established connection 320 as the connection
over which the respective connection 1dentifiers have been
previously transmitted by the server in response to the
connection identifier request. Thus, the server may correlate
the newly established connection 360 and existing connec-
tion 320, based on the connection identifiers transmitted by
the client. Responsive to correlating the newly established
connection (1.e., the connection over which the connection
identifier was received to the client) and an existing con-
nection (1.e., the connection over which the same connection
identifier has been previously sent to the client), the server
may transier to new connection 360 the ownership of the file
locks with respect to one or more files i1dentified by the
connection identifier.

The connections that have been opened by the client to
one or more file system servers using the old configuration
graph may be terminated either by the client or by the
respective servers. The client may complete the configura-
tion change process by discarding the old configuration
graph.

FIG. 4 depicts a tlow diagram of an example method 400
performed by a distributed file system server for migrating,
file locks. Method 400 and/or each of 1ts individual func-
tions, routines, subroutines, or operations may be performed
by one or more processors of the computer system (e.g., file
server 140 of FIG. 1) executing the method. In certain

10

15

20

25

30

35

40

45

50

55

60

65

6

implementations, method 400 may be performed by a single
processing thread. Alternatively, method 400 may be per-
formed by two or more processing threads, each thread
executing one or more individual functions, routines, sub-
routines, or operations ol the method. In an illustrative
example, the processing threads implementing method 400
may be synchronized (e.g., using semaphores, critical sec-
tions, and/or other thread synchronization mechanisms).
Alternatively, the processing threads implementing method
400 may be executed asynchronously with respect to each
other.

At block 410, a file system server may receive, over a first
connection 1nitiated by a file system client, a connection
identifier request from a file system client that has one or
more open files residing on the server.

At block 420, the server may send the connection 1den-
tifier to the requesting file system client. As noted herein
above, the connection identifier may comprise a unique
identifier of the server, and identifiers of one or more files
residing on the server and opened by the requesting client.
In certain implementations, the connection 1dentifier may be
encrypted by a secret key maintained by the 1ssuing server.

At block 430, the server may receive, over a second
connection mitiated by the file system client, a plurality of
connection identifiers.

At block 440, the server may discard the connection
identifiers which were not 1ssued by the receiving server
itselt (e.g., by filtering the received connection identifiers
based on the server identifier field), as described in more
details herein above.

At block 450, the server may, for each remaining con-
nection identifier, identily a corresponding previously estab-
lished connection, as the connection over which the respec-
tive connection 1dentifiers have been previously transmitted
by the server 1n response to the connection identifier request,
as described 1n more details herein above.

At block 460, the server may transier to second connec-
tion the ownership of the file locks with respect to one or
more files identified by the connection identifier. Upon
completing the operations referenced by block 460, the
method may terminate.

FIG. 5 depicts a tlow diagram of an example method 500
performed by a distributed file system client for migrating
file locks. Method 500 and/or each of 1ts 1individual func-
tions, routines, subroutines, or operations may be performed
by one or more processors ol the computer system (e.g., file
system client 120 of FIG. 1) executing the method. In certain
implementations, method 500 may be performed by a single
processing thread. Alternatively, method 500 may be per-
formed by two or more processing threads, each thread
executing one or more 1ndividual functions, routines, sub-
routines, or operations ol the method. In an illustrative
example, the processing threads implementing method 500
may be synchronized (e.g., using semaphores, critical sec-
tions, and/or other thread synchronization mechanisms).
Alternatively, the processing threads implementing method
500 may be executed asynchronously with respect to each
other.

At block 510, a distributed file system client may trans-
mit, based on a first configuration graph describing the
configuration of the distributed file system, a first open
request with request to a file.

At block 515, the client may issue a lock request with
respect to at least a part of the file, as described 1n more
details herein above.

At block 520, the client may receive a notification of a
configuration change in the distributed file system. In certain

US 11,461,283 B2

7

implementations, clients may be notified of file system
configuration changes, e.g., by a file system server. Alter-
natively, the client may periodically or responsive to a
certain event request configuration updates from a file
system server and/or from a peer client.

At block 525, the client may request, from a file system
server or from a peer client, configuration information
describing the updated configuration of the distributed file
system.

At block 530, the client may construct and store 1n its
memory the second configuration graph describing the
updated configuration of the distributed file system, as
described 1n more details herein above.

At block 533, the client may transmit, based on the first
configuration graph, connection 1dentifier requests to a plu-
rality of servers of the distributed file system.

At block 540, the client may receive a plurality of
responses from the file system servers. Each response may
comprise a connection identifier constructed by the respec-
tive file system server, as described 1in more details herein
above.

At block 545, the client may send the receirved set of
connection identifiers to the servers referenced by the leaf
nodes of the second configuration graph, as described in
more details herein above.

At block 550, the client may transmit, based on the second
configuration graph, file open requests with respect to the
files that have previously been opened by the client using the
first configuration graph.

At block 555, the client may discard the first configuration
graph. Upon completing the operations referenced by block
555, the method may terminate.

FIG. 6 depicts an 1llustrative computer system operating,
in accordance with examples of the present disclosure. In
illustrative examples, computer system 1000 may corre-
spond to file system server 140 or file system client 120 of
FIG. 1.

In one example, computer system 1000 may be connected
(e.g., via a network, such as a Local Area Network (LAN),
an intranet, an extranet, or the Internet) to other computer
systems (e.g., other nodes). Computer system 1000 may
operate 1n the capacity of a server or a client computer 1n a
client-server environment, or as a peer computer 1 a peer-
to-peer or distributed network environment. Computer sys-
tem 1000 may be provided by a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, switch or bridge, or any device capable of
executing a set of 1nstructions (sequential or otherwise) that
specily actions to be taken by that device. Further, the term
“computer” shall include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
described herein.

In a further aspect, computer system 1000 may include a
processor 1002, a volatile memory 1004 (e.g., random
access memory (RAM)), a non-volatile memory 1006 (e.g.,
read-only memory (ROM) or electrically-erasable program-
mable ROM (EEPROM)), and a storage memory 1016 (e.g.,
a data storage device), which may communicate with each
other via a bus 1008.

Processor 1002 may be provided by one or more proces-
sors such as a general purpose processor (such as, for
example, a complex mstruction set computing (CISC)
microprocessor, a reduced instruction set computing (RISC)
microprocessor, a very long istruction word (VLIW)
microprocessor, a microprocessor implementing other types

10

15

20

25

30

35

40

45

50

55

60

65

8

of imstruction sets, or a microprocessor implementing a
combination of types of instruction sets) or a specialized
processor (such as, for example, an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), or a network
Processor).

Computer system 1000 may further include a network
interface device 1022. Computer system 1000 also may
include a video display unit 1010 (e.g., an LCD), an alpha-
numeric mput device 1012 (e.g., a keyboard), a pointing
device 1014 (e.g., a mouse), and an audio output device
1020 (e.g., a speaker).

In an illustrative example, secondary memory 1016 may
include a tangible computer-readable storage medium 1024
on which may be stored instructions 1054 encoding file
system server daecmon 142 implementing method 400 for
migrating file locks by a distributed file system server. In
another 1illustrative example, secondary memory 1016 may
include a tangible computer-readable storage medium 1024
on which may be stored instructions 1054 encoding file
system client daemon 185 implementing method 500 for
migrating file locks by a distributed file system client.
Instructions 1054 may also reside, completely or partially,
within main memory 1004 and/or within processor 1002
during execution thereol by computer system 1000, hence,
main memory 1004 and processor 1002 may also constitute
machine-readable storage media.

While computer-readable storage medium 1024 1s shown
in the illustrative examples as a single medium, the term
“computer-readable storage medium” shall include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of executable instructions. The term
“computer-readable storage medium” shall also include any
tangible medium that 1s capable of storing or encoding a set
of 1nstructions for execution by a computer that cause the
computer to perform any one or more ol the methods
described herein. The term “computer-readable storage
medium” shall include, but not be limited to, solid-state
memories, optical media, and magnetic media.

The methods, components, and features described herein
may be implemented by discrete hardware components or
may be integrated in the functionality of other hardware
components such as ASICS, FPGAs, DSPs or similar
devices. In addition, the methods, components, and features
may be implemented by firmware modules or functional
circuitry within hardware devices. Further, the methods,
components, and features may be implemented 1n any com-
bination of hardware devices and soitware components, or
only 1n software.

Unless specifically stated otherwise, terms such as
“updating”, “1dentifying”, “determining’, “‘sending”,
“assigning”, or the like, refer to actions and processes
performed or implemented by computer systems that
mamipulates and transforms data represented as physical
(electronic) quantities within the computer system registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or
registers or other such information storage, transmission or
display devices.

Examples described herein also relate to an apparatus for
performing the methods described herein. This apparatus
may be specially constructed for performing the methods
described herein, or 1t may comprise a general purpose
computer system selectively programmed by a computer

US 11,461,283 B2

9

program stored in the computer system. Such a computer
program may be stored i a computer-readable tangible
storage medium.

The methods and illustrative examples described herein
are not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used 1n
accordance with the teachings described herein, or 1t may
prove convenient to construct more specialized apparatus to
perform methods 300, 400 and/or each of their individual
functions, routines, subroutines, or operations. Examples of
the structure for a variety of these systems are set forth 1n the
description above.

The above description 1s itended to be illustrative, and
not restrictive. Although the present disclosure has been
described with references to specific illustrative examples
and 1mplementations, 1t will be recognized that the present
disclosure 1s not limited to the examples and 1implementa-
tions described. The scope of the disclosure should be
determined with reference to the following claims, along
with the full scope of equivalents to which the claims are
entitled.

The 1nvention claimed 1s:

1. A method, comprising:

receiving, by a processor of a file system server, over a

first connection, a connection identifier request mitiated
by a file system client;

generating a first connection identifier comprising a server

identifier of the file system server and identifiers of a
plurality of files that were previously opened by the file
system client over the first connection, wherein a file of
the plurality of files has a file lock associated with the
first connection;

transmitting, over the first connection, the first connection

identifier:;

receiving, by the processor, over a second connection, a

plurality of connection identifiers;

responsive to determining, in view of respective server

identifier fields of one or more connection 1dentifiers of
the plurality of connection identifiers, that the one or
more connection identifiers of the plurality of connec-
tion 1dentifiers were not previously issued by the file
system server, discarding the one or more connection
identifiers;

identifying, among remaining connection identifiers of

the plurality of connection i1dentifiers, a second con-
nection identifier that matches the first connection
identifier; and

transferring, by the processor, the file lock to the second

connection.

2. The method of claim 1, wherein receiving the second
connection 1dentifier comprises decrypting the second con-
nection identifier using a secret key stored by the file system
SErver.

3. The method of claim 1, wherein generating the first
connection 1dentifier further comprises:

encrypting the first connection identifier using a secret

key stored by the file system server.

4. The method of claim 3, wherein determining that the
one or more connection i1dentifiers of the plurality of con-
nection identifiers are not associated with were not previ-
ously 1ssued by the file system server further comprises:
filtering the plurality of connection i1dentifiers based on the
secret key.

5. The method of claim 3, further comprising;:

generating, using a random number generator, the secret

key.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

6. The method of claim 1, further comprising:

terminating the first connection.

7. The method of claim 1, wherein the file lock applies to
a part of the file, and wherein the part of the file 1s 1dentified
by a starting byte address and a size.

8. The method of claim 1, further comprising;:

generating, using a random number generator, the server

identifier.

9. The method of claim 1, wherein the server identifier 1s
represented by a global unique 1dentifier.

10. The method of claim 1, further comprising:

responsive to receiving a flile system configuration

request, transmitting a file system configuration infor-
mation to the client.

11. The method of claim 10, wherein the file system
configuration information 1s described by a configuration
graph comprising a root node representing a file system
mount point and further comprising a plurality of terminal
nodes representing a plurality of file system servers.

12. A system, comprising;:

a memory; and

a processor, operatively coupled to the memory, to:

receive, over a first connection, a connection i1dentifier
request mitiated by a file system client;

generate a first connection identifier comprising a
server 1dentifier of a file system server and identifiers
ol a plurality of files that were previously opened by
the file system client over the first connection,
wherein a file of the plurality of files has a file lock
associlated with the first connection;

transmit, over the first connection, the first connection
identifier;

receive over a second connection, a second plurality of
connection identifiers;

responsive to determining, 1n view of respective server
identifier fields of one or more connection 1dentifiers
of the plurality of connection identifiers, that the one
or more connection identifiers of the plurality of
connection i1dentifiers were not previously 1ssued by
the file system server, discard the one or more
connection 1dentifiers:

identily, among remaining connection identifiers of the
plurality of connection i1dentifiers, a second connec-
tion 1dentifier that matches the first connection 1den-
tifier; and

associate the file lock with the second connection.

13. The system of claim 12, wherein to associate the file
lock with the second connection, the processor 1s further to
disassociate the lock from the first connection.

14. The system of claim 12, wherein the connection
identifier further comprises an identifier of a file system
Server.

15. The system of claim 12, wherein generating the first
connection identifier further comprises:

encrypting the first connection identifier using a secret

key stored by the file system server.

16. The system of claim 12, wherein the processor 1s
turther to:

terminate the first connection.

17. A non-transitory computer-readable storage medium
comprising executable mstructions that, when executed by a
processor of a file system server, cause the processor to:

receive, by the processor, over a first connection, a

connection 1dentifier request initiated by a file system
client:

generate a {irst connection identifier comprising a server

identifier of the file system server and identifiers of a
plurality of files that were previously opened by the file

US 11,461,283 B2

11

system client over the first connection, wherein a file of
the plurality of files has a file lock associated with the
first connection;

transmit, over the first connection, the first connection
identifier; d

receive, by the processor, over a second connection, a
second plurality of connection identifiers;

responsive to determining, 1 view ol respective server
identifier fields of one or more connection identifiers of |
the plurality of connection identifiers, that the one or
more connection 1dentifiers of the plurality of connec-
tion 1dentifiers were not previously issued by the file
system server, discard the one or more connection
identifiers;

0

15
identily, among remaining connection identifiers of the

plurality of connection identifiers, a second connection
identifier that matches the first connection identifier;
and

12

associate, by the processor, the file lock with the second

connection.

18. The non-transitory computer-readable storage
medium of claim 17, wherein the executable instructions to
cause the processor to associate the file lock with the second
connection further comprise executable 1nstructions to cause
the processor to disassociate the lock from the first connec-
tion.

19. The non-transitory computer-readable storage
medium of claim 17, wherein generating the first connection
identifier further comprises:

encrypting the first connection identifier using a secret

key stored by the file system server.

20. The non-transitory computer-readable storage
medium of claim 17, further comprising executable mnstruc-
tions that, when executed by the processor, cause the pro-
CESSor 10:

terminate the first connection.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

