US011461146B2
a2 United States Patent (10) Patent No.: US 11,461,146 B2
Yao et al. 45) Date of Patent: Oct. 4, 2022

(54) SCHEDULING SUB-THREAD ON A CORE (38) Field of Classification Search

RUNNING A TRUSTED EXECUTION

ENVIRONMENT

CPC .. GO6F 9/505; GO6F 21/33; GO6F 2209/501

3;

GO6N 3/063

See application file for complete search history.

(71) Applicant: Huawei Technologies Co., Ltd.,
Shenzhen (CN) (56) References Cited
(72) Inventors: Dongdong Yao, Beijing (CN); Yu Li, U.s. PATENT DOCUMENTS
Betjing (CN) 11263312 BL* 3/2022 Meng oo GOGF 21/73
_ 2004/0221269 Al 11/2004 Ray et al.
(73) Assignee: HUAWEI TECHNOLOGIES CO., (Continued)
LTD., Shenzhen (CN)
(*) Notice: Subject to any disclaimer, the term of this FORBIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 CN 103064742 A 4/2013
U.S.C. 154(b) by 13 days. CN 106547618 A 3/2017
Continued
(21) Appl. No.: 17/126,873 ()
_ OTHER PUBLICATIONS
(22) Filed: Dec. 18, 2020
Gruilbon, J., “Introduction to Trusted Execution Environment: ARMs
(65) Prior Publication Data TrustZone,” https://blog.quarkslab.com/introduction-to-trusted-
US 2021/0103470 A1 Apr. 8, 2021 execution-environment-arms-trustzone.html, XP055808991, Jun. 19,
! 2018, 6 pages.
Related U.S. Application Data
(63) Continuation of application No. Primary Examiner — Ben) N ¢ Wu
PCT/CN2019/086133, filed on May 9, 2019. (74) Attorney, Agent, or Firm — Conley Rose, P.C.
(30) Foreign Application Priority Data (57) ABSTRACT
A method, implemented by a computer system comprising a
Jun. 19, 2018 (CN) .o, 201810632168.2 trusted execution environment (TEE) and a rich execution
environment (REE) includes creating, by the TEE, a plural-
(51) Int. Cl. ity of sub-threads preparing to implement sub-functions of a
GOol 9/50 (2006.01) trusted application (TA), for each sub-thread, triggering, by
GOol 21/53 (2013.01) the TEE, the REE to generate a shadow thread, where
GOON 3/063 (2006.01) running of the shadow thread will cause a core on which the
(52) U.S. CL shadow thread runs to enter the TEE, and scheduling the
CPC GO6I" 9/505 (2013.01); GO6F 21/53 created sub-thread to the entered core for execution.

(2013.01); GO6N 3/063 (2013.01); GO6F

2209/5018 (201

Rich execution
environment REE

3.01) 20 Claims, 10 Drawing Sheets

Trusted execution
environment TEE

==
Android operating system : : TEE operating system (TEE OS)
| |
] |
I
User + | | User
mode Cl.lenJ.[: Il mode Tn_lste_d
applicaticn F t application
(CA) | (TA)
I
] | I
' |
______________________ : | I J
I

i TEE client APT : : TEE internal API

= I 3

= - I 2 1 et

= | Android component I oS Trusted core component

D I : ¥

z ‘ | g

Q —— l |8 =

REE communication proxy : | 2 TEE communication proxy
i | : A

‘ r
SO

Hardware layer

Message channel -

US 11,461,146 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2014/0095918 Al1* 4/2014 Stahl GO6F 21/725
713/500
2014/0205099 Al1* 7/2014 Christodorescu H041. 9/321
380/278
2014/0317686 Al* 10/2014 Vetilllard GO6F 21/74
726/2
2018/0034793 Al* 2/2018 Kibalo GOG6F 21/575
2018/0101688 Al 4/2018 Zage et al.
2020/0050798 Al* 2/2020 Jang HO4L 9/3247
2020/0151428 Al1* 5/2020 GuOooeevvvnnnnnnnn, GO6V 40/173
2020/0250302 Al1* 8/2020 Chenoeeeeee, GO6F 21/121
2020/0260278 Al1* 8/2020 Duccooveininnnnn, HO4L 9/3263
2021/0034763 Al* 2/2021 Li ...ooviiiiinnn, HO4L 9/3231
2021/0064740 A1* 3/2021 Han GOG6F 9/5038
2021/0240807 Al1* 8/2021 Wang G06Q 20/3267
2021/0390173 Al* 12/2021 Wangoevee. GO6F 21/12
2022/0006617 Al1* 1/2022 Wu ...coccciviiiiniiinnn HO4L 65/40
2022/0172192 Al1* 6/2022 Leeooooeerrinnne... G06Q 20/3224
FORFEIGN PATENT DOCUMENTS
CN 106548077 A 3/2017
CN 106844082 A 6/2017
EP 2759955 Al 7/2014
EP 31739206 Al 5/2017

* cited by examiner

US 11,461,146 B2

Sheet 1 of 10

Oct. 4, 2022

U.S. Patent

E
OALID HH L

_
_
_
_
_
_
_
_
_
_
_
_
(qu ua1pd) Areiqy | |
Jua1o g1 “
_

_

_

_

_

_

_

_

_

_

_

_

[DId

E
ALID HH 1L

_
_
_
_
_
_
_
_
_
_
_
_
(qu uar[d) Arexquy | |
ST AL |
_

_

_

_

_

_

_

_

_

_

_

_

_

E
IOALID HH L.

_
_
_
_
_
_
_
_
_
_
_
_
(qu 3ua1pd) Areiqy |
Jua1 o JAI “
_

_

_

_

_

_

_

_

_

_

_

_

E
AP HH.L

(qI[Jua1]d) ATerqr
sl A1

I IS IS IS IS IS BEESS DS Baaae Beees aeees el

U.S. Patent Oct. 4, 2022 Sheet 2 of 10 US 11,461,146 B2

Rich execution Trusted execution
environment REE environment TEE

Android operating system TEE operating system (TEE OS)

User
mode

I

|

|

|

|

| User
: mode
|

|

|

|

|

-
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Client Trusted

application
(CA)

application
(TA)

TEE client API

Android component

REE communication proxy

1 TEE internal API

Trusted core component

TEE communication proxy

Kernel mode
Kemel mode

[
|
|
|

Hardware layer

Message channel

F1G. 2

US 11,461,146 B2

Sheet 3 of 10

Oct. 4, 2022

U.S. Patent

¢ DIA

dIEMPIRY 21N SIEMPIRY SIND3S-UON]

I9AR] a1eMPIEH

(10)1U0UT) IOITUOIA]

CO¢ dnpour Iurmpayds g4.1.
€O€ 2[npou pOE Spow peanp B\
mEmm@uo& Mopeqs |||

uonNedJNnoN N

uonNBd YUoON

Aelle snjejs [8qojn

oPOU [QUIDD dpoul [QUIdY

JPOU Jab[) oPOW Io5[}

c0¢ °[npoui
uoIRAID PBAIY |

peaIyI-qns peargi-qns | [peoayp-gns

95RI0IS uonddlep || uosuedwod

peaIy-qns

UOI}OBIIXD

V) UOIITUS0J3I [BI0.,]

aInyed,J SSQURAI] oInIBJ 2INJBI]

[0€ VI UONIUS0021 [e1dR]

H4.L H4d

U.S. Patent

Oct. 4, 2022 Sheet 4 of 10

S101: A facial recognition CA calls

a facial recognition TA

S102: Create a sub-thread

S103: Generate and send a software
interrupt

S104: Generate a shadow thread
corresponding to the sub-thread,

where the shadow thread enters a
TEE side

S105: Record a PID of the shadow
thread in a global status array

S106: Schedule the sub-thread to a
core on which the shadow thread
runs for running

S107: Assign a value of the PID of
the shadow thread to a ca field of
the TCB

FIG. 4A

US 11,461,146 B2

S103a; Create a TCB for
the sub-thread

U.S. Patent Oct. 4, 2022 Sheet 5 of 10 US 11,461,146 B2

S108: After the shadow thread returns to
the REE side, set a value of the PID of the

shadow thread 1in the global status array to
0

The shadow

thread still runs
on an original

core
S109: When the shadow thread re-enters Two cases
the TEE side, record the PID of the
shadow thread at a corresponding location
in the global status array The shadow
thread 1s
scheduled to
another core for
running
S110: Search for a target sub-thread, and Target sub-thread

schedule the target sub-thread to a current
core for running TCB

F1G. 4B

US 11,461,146 B2

Sheet 6 of 10

Oct. 4, 2022

U.S. Patent

dpow
[QUIDY

dpow
198

peAIY)-qns A38I0IS NI
PeIYI-qNS UOTIIIIP SSQUIAIT]
peaiy-qns uos Led wod AINILd

PRAIYI-qNS UOIIRIIXD 9INJLI

peaiu)
UIeW Y], UOTIIUSOII [R1OR]

GIGR}S

¢ DI

12[PAYDS SO

[S pealy)
m MOPRYS

peaiy
V) UONIUS0II

[108]

dpowr
[PUIDY

uorjesrjdde
RUIoOUY

US 11,461,146 B2

Sheet 7 of 10

Oct. 4, 2022

U.S. Patent

9 DIA
(gH] ‘Aeire smejs [€qO[3)
019 @[npOW SUINPAYIS HH 1.
uonBIIUN WO $s9201d1syuy
dpowt
[ouID Yy
apowr | | .
198 | _ 600
“ “ o3eueW
| |

.

,

L dnois 909 | 509 SIIAISS 709 V.1

| Surmpayos IQALIP JUdUIdSRUBUI | UODIUG0Ia]
" . yuLrdiagur] UOISSTULIDJ jundiosur,]
A i W .

e
”

| €09 | zogddmares | 109 VI

| dnois IOATIP | JusweSeurew uonIugosal
| SUIMPaYS [erowe) " UOISSTULID J _ [[eIORY

N N S »

\

JOLTUOIA

I9ALIP QUOZISNI].

LO9 V)
| UONIUS0daI

juridiogur,y

uorjeorjdde
wpyouy

13[NPaYds S

apouu
[OUI Y

apouu
19

U.S. Patent Oct. 4, 2022 Sheet 8 of 10 US 11,461,146 B2

Payment

application
701

Camera Facial NPU
Service - — recognition — — ®{ service CA
703 CA 702 704
REE
TEE

Facial recognition TA 708 NPU Payment

service TA application
709 TA 710

Camera
driver 705 Feature LLiveness
extraction detection

sub-thread sub-thread

Feature Feature
comparison storage
Image sub-thread | | sub-thread

security
bufter

707

NPU dnver
712

Storage
service
713

Hardware
layer

Memory /714 _
Neural processing

unit
(NPU) 715

Camera _
706 Facial template

FIG. 7

U.S. Patent Oct. 4, 2022 Sheet 9 of 10 US 11,461,146 B2

860
Communications Audio/Video
210 module input module

Camera

880 ——————- |
| I
|
850~ | = e —— - : Neural |
Power | _4 processing :
supply | unit
| (NPU) 890 :
l .
e)
Processor
820 870
Memory
Sensor 871
Application
program
872
Operating
system 873

User input module

Other data
630 Touch panel -

Output module 840

Another input

device Display panel

Audio output
module

FIG. 8

US 11,461,146 B2

Sheet 10 of 10

Oct. 4, 2022

U.S. Patent

606

1N 4o19]
UOIONISU]

6 DId

006 (NdN) 1un guissadoxd [pmaN

06 11Un d0RTINUI Sng

06
I9[[ONU0))

306

101 TNUINDD Y/

06
1INoId uonendp

706 Alowauw
WSIOM

0()6 AIoW AW

paLjIur)

L06 un
uore[noeo

107199 A

106
AJowdw nduy

CO6 JOT[ONUO0D
SS209°
AJowawl

10911

AJOWOW [BUIJIXY

10SS9%01d ureA

US 11,461,146 B2

1

SCHEDULING SUB-THREAD ON A CORE
RUNNING A TRUSTED EXECUTION
ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of International Patent
Application No. PCT/CN2019/086133 filed on May 9, 2019,
which claims prionity to Chinese Patent Application No.
201810632168.2 filed on Jun. 19, 2018. The disclosures of
the alorementioned applications are hereby incorporated by
reference 1n their entireties.

TECHNICAL FIELD

This application relates to operating system technologies,

and 1n particular, to a method and an apparatus for imple-
menting multiprocessing on a trusted execution environment
(TEE) in a multidomain operating system, and a system.

BACKGROUND

As a representative security framework of a terminal
device, advanced reduced instruction set computer (RISC)
machines (ARM) TrustZone® emerges to ensure security of
the terminal device. In the ARM TrustZone® architecture,
system-level security 1s achieved by dividing soitware and
hardware resources of a system on chip (SoC) into two
worlds a normal world and a secure world. The two worlds
may also be referred to as a secure domain and a non-secure
domain, and correspond to a rich execution environment
(REE) and a TEE respectively. The REE and the TEE run on
a same physical device, and one operating system 1s run 1n
cach of the REE and the TEE. A client apphca‘[lon (CA)
having a low security requirement 1s run in the REE. A
trusted application (TA) having a high security requirement
1s run in the TEE, and the TEE provides a secure execution
environment for an authorized TA. Communication 1s per-
formed between the CA and the TA according to a commu-
nication mechanism provided by ARM TrustZone®, where
the communication 1s similar to communication performed
between a client and a server.

Currently, a biometric recognition technology, ifor
example, a fingerprint recognition technology or a facial
recognition technology, 1s applied to more application sce-
narios on a terminal. Both the fingerprint recognition tech-
nology and the facial recognition technology can be used in
scenarios such as unlocking the terminal and making pay-
ment on the terminal. The use of the biometric recognition
technology brings great convenience to a user of the termi-
nal. However, some biometric features of the user, which are
sensitive personal data, are stored when the biometric rec-
ognition technology 1s used. Therefore, a solution using the
biometric recognition technology has a high security
requirement for the terminal.

In other approaches, the ARM TrustZone® architecture
may be used to ensure security of the biometric recognition
solution. Specifically, main service logic (including feature
extraction, feature comparison, liveness detection, and fea-
ture storage) of biometric recogmtion 1s implemented as a
TA, and the TA 1s run 1n the TEE. In addition, biometric
feature data 1s also stored in the TEE. In this way, a secure
environment provided by the TEE ensures security of the
entire solution.

However, ARM TrustZone® i1s designed in the early stage
according to a principle that the TEE can run only on one

10

15

20

25

30

35

40

45

50

55

60

65

2

core (usually referred to as a core 0). This design can greatly
simplify a system and meets a requirement of a previous

comparatively simple application scenario. However, 1n the
foregoing application scenarios, because high performance
1s required and processing logic of the biometric recognition
technology 1s comparatively complex, a high computation
capability of the TEE 1s required. Consequently, the early
implementation solution in which the TEE runs on a single
core cannot meet performance requirements of these appli-
cation scenarios. If the single-core solution 1s used for face
unlock or facial payment, user experience 1s poor due to a
slow face unlock speed or facial payment speed.

To resolve this problem, other approaches suggest open
portable (OP)-TEE that provides a simple multi-core imple-
mentation solution. As shown 1n FIG. 1, a plurality of CAs
are allowed to initiate secure access to a plurality of TAs 1n
parallel. Specifically, each CA may access a TEE driver by

ling a TEE client library (TEE client 1ib) on an REE, the

cal.

TEE driver sends a secure monitor call (SMC) instruction,
so that each core can enter a monitor mode, where statuses
of all the cores are independent of each other, then each core
enters a secure mode, that 1s, enters the TEE, and the TEE
searches a thread pool for a thread corresponding to the CA,
to complete a task 1n the TEE. However, a quantity of cores
in the TEE 1s directly restricted by a quantity of threads for
calling the TA on the REE. When the cores are msulilicient,
the TEE cannot actively create a thread. In addition, 1n this
solution, a plurality of TAs that are run 1n parallel are
implemented based only on a simple thread pool, and unified
scheduling and a load balancing mechanism are not pro-
vided. Consequently, parallel running of the plurality of TAs
degrades overall system performance and increases power

consumption.

SUMMARY

This application provides a method and an apparatus for
implementing multiprocessing, a computer system, and the
like. The method may be applied to an ARM TrustZone®-
based terminal device or may be applied to another type of
computer system. According to this solution, a plurality of
pieces ol service logic 1n a service having a high perfor-
mance requirement can run in parallel in a TEE, and a core
can be actively added onto the TEE, so that multiprocessing
flexibility on the TEE 1s improved.

The following describes this application 1n a plurality of
aspects. It 1s easy to understand that for implementations of
the plurality of aspects, mutual reference may be made.

According to a first aspect, this application provides a
computer system. A REE and a TEE are deployed 1n the
computer system, a CA 1s deployed on the REE, and a TA
1s deployed on the TEE. The CA 1s configured to send a call
request to the TA to call a function of the TA. The function
of the TA includes a plurality of sub-functions. A thread
creation module, a notification module, and a TEE sched-
uling module are further deployed on the TEE. The thread
creation module 1s configured to create a sub-thread under
calling of the TA, where the sub-thread 1s used to implement
one of the plurality of sub-functions. The notification mod-
ule 1s configured to trigger the REE to generate a shadow
thread, where running of the shadow thread causes a core on
which the shadow thread runs to enter the TEE. The TEE
scheduling module 1s configured to schedule the sub-thread
to the core for running. For example, the TA 1s a TA for
implementing a facial recognition function (facial recogni-
tion TA), or a TA for implementing a fingerprint recognition

function (fingerprint recognition TA).

US 11,461,146 B2

3

It can be learned that the TA on the TEE actively creates
one or more sub-threads (usually a plurality of sub-threads),
and each time when one sub-thread is created, the REE 1is
triggered, by sending a notification, to generate one shadow
thread REE. The shadow thread 1s to be switched a core on
which the shadow thread runs onto the TEE, and then the
TEE scheduling module schedules the sub-thread created by
the TA to the core for running. In this way, the TA on the
TEE can create a sub-thread as required and actively “pull”
a core onto the TA side to run the sub-thread. One or more
sub-threads and a TA main thread run 1n parallel, so that
multiprocessing on the TEE 1s implemented. In addition, the
manner of actively “pulling” a core 1s more flexible and

more eff

ective 1n comparison with other approaches.

In some implementations, a notification processing mod-
ule 1s further deployed on the REE, and the notification
module 1s specifically configured to generate a notification
after the sub-thread 1s created, and send the notification to
the notification processing module, and the noftification
processing module 1s configured to create the shadow thread
based on the notification, where running of the shadow
thread causes the core on which the shadow thread runs to
enter the TEE. For example, the notification 1s a software
interrupt.

After the shadow thread is created and runs, the core on
which the shadow thread runs enters the TEE. This 1s “the
first time” that the shadow thread enters the TEE. After a
period of time, the shadow thread may return to the REE, or
may re-enter the TEE.

It should be noted that, that a shadow thread enters the
REE or the TEE may be understood as that a core on which
the shadow thread runs enters the REE or the TEE, or may
be understood as that a core on which the shadow thread

— T

runs 1n the REE or the TEE or the core runs in an REE mode
or TEE mode.

In some 1implementations, the TEE scheduling module 1s
turther configured to record a correspondence between the
shadow thread and the sub-thread. Specifically, the TEE
scheduling module 1s configured to create a first thread
identifier for the sub-thread, where the first thread 1dentifier
1s used to indicate a thread that accesses the sub-thread, and
set a value of the first thread 1dentifier to an 1dentifier of the
shadow thread after scheduling the sub-thread to the core for
running.

The “shadow thread” may be considered as a virtual CA
on the RFEE, the virtual CA accesses a sub-thread on the
TEE, and a client/server relationship between the shadow
thread and the sub-thread is established by recording the
identifier of the shadow thread.

In the foregoing solution, the correspondence between the
shadow thread and the sub-thread 1s recorded. In this way,
regardless of whether the shadow thread 1s scheduled to
another core by a scheduler on the REE, 1t can be ensured
that when the shadow thread re-enters the TEE, the sub-
thread corresponding to the shadow thread can still be
scheduled to the core on which the shadow thread runs for
execution.

In some implementations, the first thread identifier 1s

included in a thread control block (TCB) corresponding to
the sub-thread, and the first thread identifier 1s a field in the

TCB.

In some 1implementations, the TEE scheduling module 1s
specifically configured to, when determiming that the
shadow thread enters the TEE for the first time, schedule the
newly created sub-thread to the core on which the shadow
thread runs for running.

10

15

20

25

30

35

40

45

50

55

60

65

4

It 1s assumed herein that the shadow thread 1s created
under the trigger of the sub-thread. Therefore, when 1t 1s
determined that the shadow thread enters the TEE for the
first time, the sub-thread 1s scheduled to the core on which
the shadow thread runs for running.

In some implementations, the TEE scheduling module 1s
turther configured to, when determining that the shadow
thread re-enters the TEE, schedule, based on the recorded
correspondence between the shadow thread and the sub-
thread, the sub-thread to a current core on which the shadow
thread runs for running. The *“current core” on which the
shadow thread runs herein may be an original core or
another core.

In some implementations, the shadow thread calls a SMC
instruction to enable the core on which the shadow thread
runs to enter the TEE. The core may enter the TEE for the
first time or re-enter the TEE. “Re-entering” means that the
core enters the TEE not for the first time. The SMC
istruction includes a parameter, and the parameter 1s used
to indicate whether the core enters the TEE for the first time
or re-enters the TEE. Correspondingly, the TEE scheduling
module 1s configured to determine, based on the parameter,
that the shadow thread re-enters the TEE.

In some implementations, the TEE scheduling module 1s
turther configured to record a correspondence between the
current core on which the shadow thread runs and the
shadow thread.

The “current core” on which the shadow thread runs
herein may be an original core or another core.

In some implementations, the TEE scheduling module 1s
specifically configured to, after the current core on which the
shadow thread runs enters the TEE, record the identifier of
the shadow thread in an element corresponding to the
current core 1n a global status array, where the global status
array 1mcludes N elements, and each element corresponds to
one core of the computer system, and after the current core
on which the shadow thread runs leaves the TEE, clear a
value of the element corresponding to the current core in the
global status array.

The correspondence between the current core on which
the shadow thread runs and the shadow thread i1s recorded,
and this provides required data for scheduling. In other
words, a specific current core and a specific current shadow
thread are learned of, so that a corresponding sub-thread 1s
found based on an i1dentifier of the shadow thread, and the
sub-thread 1s scheduled to the core for running.

In some implementations, the TEE scheduling module 1s
specifically configured to, after the current core on which the
shadow thread runs enters the TEE, record the identifier of
the shadow thread in the element corresponding to the
current core 1n the global status array, search for a target
sub-thread, and schedule the target sub-thread to the current
core for running, where a first thread identifier correspond-
ing to the target sub-thread is the identifier recorded 1n the
clement corresponding to the current core in the global
status array.

In some 1implementations, that the shadow thread returns
to the REE may be triggered by an interrupt.

In some 1mplementations, the TEE scheduling module
determines that the shadow thread enters the TEE for the
first time, and schedules a sub-thread that has not run (which
may also be understood as a sub-thread for which a corre-
spondence has not been established between the sub-thread
and any shadow thread) to a core on which the shadow
thread runs for running. The sub-thread may be indicated by
a running state of a thread. For example, a newly created

sub-thread 1s set to a specific running state. In this way, when

US 11,461,146 B2

S

a core 1s pulled onto the TEE for the first time, the sub-thread
can be 1dentified by the core and runs on the core. In some
other implementations, the TEE scheduling module may
identily a newly created sub-thread (a sub-thread that has
not run yet) based on information that a value of the first
thread i1dentifier 1s null.

In some implementations, when determining that the
shadow thread enters the TEE not for the first time, the TEE
scheduling module determines a target sub-thread, and
schedules the target sub-thread to the current core on which
the shadow thread runs for running, where the first thread
identifier of the target sub-thread 1s the identifier of the
shadow thread.

In some 1implementations, a neural processing unit (NPU)
driver 1s further deployed in the TEE. The NPU dniver is

configured to drive, under calling of the one or more
sub-threads of the TA, an NPU to run.

The NPU 1s a dedicated neural processor, and 1s config-
ured to implement large-scale complex parallel operations,
especially neural-related operations. When some TAs use a
complex algorithm, software may be used to implement the
algorithm, or the NPU may be called for acceleration
according to the method provided 1n this application.

The NPU driver 1s deployed on the TEE, so that the NPU
can be called on the TEE. In addition, in the solution
provided in this application, multiprocessing can be imple-
mented on the TEE, so that the NPU can be better used on
the TEE. This improves overall system performance.

In some 1mplementations, a security storage unit and a
hardware driver unit are further deployed in the TEE. The
security storage unit and the hardware driver unit can be
accessed only by the TEE. The hardware driver unit is
configured to access corresponding hardware under calling
of the one or more sub-threads of the TA. The security
storage unit 1s configured to store data collected by the
hardware. The security storage unit herein i1s understood as

a storage area. Because the security storage unit can be
accessed only by the TEE, the security storage unit 1s secure.
In some 1mplementat10ns the secure storage unit 1s
bufler with a fixed size or a non-fixed size. The bufler Wlth
a non-fixed size may also be referred to as a dynamic builer
for short. In some 1mplementations, 1f the hardware driver
unit 1s a camera driver, hardware corresponding to the
camera driver 1s a camera.

The TA directly accesses hardware on the TEE, and stores
data collected by the hardware 1n a storage area on the TEE,
so that security of using the data by the TA and security of
the data are further ensured. For example, for a 3 dimension
(3D) facial recognition TA, the camera driver may be
deployed on the TEE by using the method provided 1n this
application, and a face image captured by the camera 1is
stored on the TEE. The TA may directly drive the camera on
the TEE to access the face 1 1mage, so that security of an entire
facial recognition process 1s further ensured.

Manners of division into modules are not enumerated, and
the modules 1n the first aspect of this application are merely
examples, but should not constitute any limitation on the
scope of this application. The method executed by all the
modules deployed on the TEE may also be considered as a
method executed by the TEE. Correspondingly, the method
executed by all the modules deployed on the REE may also
be considered as a method executed by the REE. In addition
to some steps performed by hardware, the method per-
formed by the TEE and the REE 1n this application may be
generally considered as a method performed by operating
systems or applications in the TEE and the REE.

10

15

20

25

30

35

40

45

50

55

60

65

6

According to a second aspect, this application provides a
method for implementing multiprocessing on a TEE. The
method 1s applied to a multi-core computer device. The
method includes creating, by a TEE, a sub-thread, where the
sub-thread 1s used to implement a sub-function of a TA
deployed on the TEE, and triggering, by the TEE, a REE to
generate a shadow thread, where running of the shadow
thread causes a core on which the shadow thread runs to
enter the TEE, and scheduling, by the TEE, the created
sub-thread to the core for execution.

In some implementations, the TEE generates a notifica-
tion (for example, a software interrupt) after the sub-thread
1s created, and sends the notification to the REE, so that the
REE creates the shadow thread based on the notification.

In some i1mplementations, the method further includes
recording, by the TEE, a correspondence between the
shadow thread and the sub-thread.

In some 1mplementations, the recording, by the TEE, a
correspondence between the shadow thread and the sub-
thread includes recording, by the TEE, an identifier of the
shadow thread 1n a TCB of the sub-thread.

In some 1mplementations, the method further includes,
after the runnming of the shadow thread causes a current core
on which the shadow thread runs to enter the TEE (which
may also be understood as that the shadow thread re-enters
the TEE), the TEE schedules, based on the recorded corre-
spondence between the shadow thread and the sub-thread,
the sub-thread to the current core on which the shadow
thread runs for running. The “current core” herein may be an
original core or another core because the shadow thread may
be scheduled to a different core for running.

In some implementations, the method further includes
recording, by the TEE, a correspondence between the cur-
rent core on which the shadow thread runs and the shadow
thread. Specifically, after the current core on which the
shadow thread runs enters the TEE, the identifier of the
shadow thread is recorded in an element corresponding to
the current core 1n a global status array, where the global
status array includes N elements, and each element corre-
sponds to one core of the computer system, and after the
current core on which the shadow thread runs leaves the
TEE, a value of the element corresponding to the current
core 1n the global status array 1s set to 0.

In some i1mplementations, the method further includes
calling, by the TEE, a NPU by calling an NPU driver

deployed in the TEE.

In some implementations, the method further includes
accessing, by the TEE, corresponding hardware through a
hardware driver unit deployed on the TEE, and storing, in a
security storage unit deployed on the TEE, data collected by
the hardware.

In some implementations, the TA 1s a TA for implement-
ing a facial recognition function or a TA for implementing a
fingerprint recognition function, or a TA for implementing
both a facial recognition function and a fingerprint recog-
nition function. The facial recognition may be specifically
3D facial recognition.

According to a third aspect, this application provides a
computer system. The computer system includes a memory
and a processor, the memory 1s configured to store a com-
puter-readable instruction (or referred to as a computer
program), and the processor 1s configured to read the com-
puter-readable instruction to implement the method 1n any
one of the foregoing implementations.

According to a fourth aspect, this application provides a
computer storage medium. The computer storage medium
may be a non-volatile storage medium. The computer stor-

US 11,461,146 B2

7

age medium stores a computer-readable instruction, and
when the computer-readable instruction i1s executed by a
processor, the method in any one of the foregoing 1mple-
mentations 1s implemented.

According to a fifth aspect, this application provides a
computer program product. The computer program product
includes a computer-readable instruction, and when the
computer-readable instruction 1s executed by a processor,
the method 1n any one of the foregoing implementations 1s
implemented.

It can be learned that, according to the method and
apparatus for implementing multiprocessing on the TEE,
and the computer system that are provided in this applica-
tion, a plurality of tasks can be executed 1n parallel on the
TEE. For example, a plurality of sub-tasks of one TA are
executed 1n parallel. Therefore, some complex services
having comparatively high security requirements, for
example, 3D facial recognition, can be all executed in
parallel on the TEE. In this way, both security requirements
and performance requirements of these services can be met.
Further, the shadow thread 1s generated on the REE under
the trigger of the TEE, so that a core 1s actively “pulled” onto
the TEE. This improves multiprocessing flexibility on the
TEE.

Further, based on the provided multiprocessing mecha-

[1

nism, an access correspondence between the CA on the REE
and the TA on the TEE (that 1s, a CA-TA scheduling group)
1s recorded, so that the CA (including the shadow thread)
and the corresponding TA (including the sub-thread of the
TA) can run on a same core. Therefore, accuracy of CA load
calculation on the REE 1s ensured, and overall load balanc-
ing of a system can be better implemented.

Further, the NPU 1s deployed on the TEE, so that service
execution efliciency 1s further improved based on the mul-
tiprocessing running solution and an acceleration capability
of the NPU.

Further, data required by a service 1s stored in a secure
storage medium on the TEE, so that security of the data can
be further ensured. Therefore, security of the service i1s

ensured.

BRIEF DESCRIPTION OF DRAWINGS

To describe the technical solutions provided 1n this appli-
cation more clearly, the following briefly describes the
accompanying drawings. It 1s clearly that the accompanying
drawings in the following description show only some
embodiments of this application.

FIG. 1 1s a schematic diagram of a multi-core solution on
a TEE 1n other approaches.

FIG. 2 1s a schematic structural diagram of a terminal
device according to an embodiment of this application.

FIG. 3 1s a schematic diagram of deployment of a mul-
tiprocessing solution on a TEE according to an embodiment
of this application.

FIG. 4A and FIG. 4B are schematic diagrams of a
multiprocessing solution on a TEE according to an embodi-
ment of this application.

FIG. 5 1s a schematic diagram of a plurality of CA-TA
scheduling groups according to this application.

FIG. 6 1s a schematic diagram of a terminal system for
implementing dual authentication face authentication and
fingerprint authentication according to an embodiment of
this application.

FIG. 7 1s a schematic diagram of a payment solution
according to an embodiment of this application.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 8 1s a schematic structural diagram of a computer
system according to an embodiment of this application.

FIG. 9 1s a schematic structural diagram of an NPU
according to an embodiment of this application.

DESCRIPTION OF EMBODIMENTS

Betfore the embodiments are described, several concepts
that may be used in the embodiments are first described. It
should be understood that the following explanations of the
concepts may be limited due to a specific case in the
embodiments, but this does not indicate that this application
1s limited to the specific case. The following explanations of
the concepts may also vary with a specific case 1n different
embodiments.

Multi-core scheduling 1s a scheduling mechanism 1n
which operations of task creation, scheduling, migration,
and exiting that are performed on a plurality of cores are
supported, where the scheduling mechanism 1s provided by
a computer system including a multi-core processor.

Load balancing means that a plurality of tasks running in
parallel on a multi-core processor need to be distributed to
different cores 1n a balancing manner to achieve system load
balancing, so as to improve overall system performance and
reduce power consumption.

A task 1s a general concept in this application. Any work
to be done by a computer may be referred to as a task, e.g.
a process, a thread, a sub-thread, a CA, a TA, or a service.

A thread 1s sometimes referred to as a light-weight
process (LWP), and 1s a smallest unit of a program execution
flow. Entities of a thread include a program, data, and a TCB.
The thread 1s a dynamic concept, and a dynamic feature of
the thread 1s described by using a TCB. The TCB may
include the following information a thread status, stored
context when the thread is not running, a group of execution
stacks, a main memory area 1n which a local variable of each
thread 1s stored, a main memory accessing a same process,
and another resource. Some changes are made to the TCB 1n
the embodiments.

Interrupt request (IRQ). An IRQ generally refers to an
event generated by hardware or software. The hardware
sends the event to a processor. When receiving the event, the
processor temporarily stops execution of a current program
and executes a program corresponding to the event. IRQs
include a software interrupt and a hardware interrupt. An
interrupt generated by hardware (for example, a network
adapter, a hard disk, a keyboard, or a mouse) for a processor
1s usually referred to as a hard interrupt or a hardware
interrupt (sometimes also referred to as an interrupt). The
soltware interrupt 1s generally generated by a process cur-
rently running on the processor. A processing process of the
software interrupt 1s similar to a processing process of the
hardware interrupt. The processing process of the software
interrupt 1s as follows. After a software interrupt occurs, a
corresponding interrupt tlag 1s first set to trigger an interrupt
transaction, then a daemon thread 1s woken up to detect an
interrupt status register, and 11 1t 1s found, through query, that
a software interrupt occurs, a corresponding software inter-
rupt service program 1s called by querying a software
interrupt vector table. A diflerence between the processing
process of the software interrupt and the processing process
of the hardware interrupt lies 1n a mapping process from an
interrupt tlag to an interrupt service program. After the
hardware interrupt occurs, the processor needs to map a
hardware IRQ) to a specific service program based on a
vector table. This process 1s automatically completed by

hardware. However, for the software interrupt, this process

US 11,461,146 B2

9

1s different, because the daemon thread 1s required to 1mple-
ment this process for the software mterrupt. In other words,
software i1mitates hardware to implement the processing
process for the interrupt. Therefore, the interrupt 1s referred
to as a soltware interrupt.

A completely fair scheduler (CFS) scheduler 1s a com-
pletely fair scheduling program that 1s implemented as a
scheduling module in a kernel of a Linux® operating
system.

FIG. 2 1s a schematic structural diagram of a terminal
device according to an embodiment of this application. The
terminal device may be a desktop computer, a notebook
computer, a mobile phone, a tablet computer, a smartwatch,
a smart band, or the like. A TrustZone® system 1s deployed
on the terminal device. The system includes an REE and a
TEE. A Linux® operating system and a TEE operating
system (for example an open-source OP-TEE operating
system) are run in the REE and the TEE respectively. The
Linux® operating system and the TEE OS each have a user
mode and a kernel mode. A plurality of CAs such as a facial
recognition CA and a fingerprint recognition CA are
deployed in the user mode on the REE. A plurality of TAs
such as a fingerprint recognition TA and a facial recognition
TA are deployed in the user mode on the TEE. An Android®
component 1s deployed 1n the kernel mode on the REE, and
a trusted core component 1s deployed 1n the kernel mode on
the TEE. The CA in the REE and the TA in the TEE
constitute an architecture similar to a client/server architec-
ture, where the CA serves as a client, and the TA serves as
a server. The CA 1nitiates an access operation, and the CA
and the TA exchange data through an REE communication
proxy, a message channel at a hardware layer, and a TEE
communication proxy. A secure communication channel 1s
established between the CA and the TA through the REE
communication proxy, the message channel at the hardware
layer, and the TEE communication proxy, so that security of
data transmission 1s ensured to some extent. Specifically, the
CA calls a TEE client application program interface (API) to
communication with a corresponding TA, and the TA calls a
TEE mternal API to use a programming resource provided
by the TEE, so as to implement a related function.

FIG. 3 1s a schematic diagram of deployment of a mul-
tiprocessing solution on a TEE according to an embodiment.
In this embodiment, a facial recognition CA and a facial
recognition TA 301 are used as examples to describe the
technical solution. The facial recognition CA and the facial
recognition TA 301 are deployed on an REE and a TEE
respectively. The facial recognition CA and the facial rec-
ognition TA 301 work cooperatively to implement a facial
recognition service such as face verification that 1s widely
applied in scenarios such as terminal unlocking, application
login, and financial payment. In this embodiment, the facial
recognition TA 301 may have the following four sub-
functions feature extraction, feature comparison, liveness
detection, and feature storage. In some other embodiments,
the facial recognition TA may include more, fewer, or other
types of sub-functions. This 1s not limited 1n this application.

Further, the facial recognition TA 301, a thread creation
module (for example, libthread) 302, a notification module
303, and a TEE scheduling module 3035 are deployed on the
TEE. A notification processing module 304 1s deployed on
the REE. A monitor 1s an existing module provided by a
TrustZone® system, and 1s configured for switching from
the REE to the TEE. The thread creation module 302 1s
configured to create a sub-thread under calling of the facial
recognition TA 301, and call the notification module 303 to
generate a software interrupt. The notification module 303 1s

Lu

10

15

20

25

30

35

40

45

50

55

60

65

10

configured to generate the software interrupt and send the
soltware interrupt to the notification processing module 304
on the REE. The notification processing module 304 1is
configured to receive the software iterrupt and create a
shadow thread, where the created shadow thread 1s sched-
uled to a core for running. Then, the shadow thread enters
the TEE by sending an SMC instruction, and this 1s equiva-
lent to that the core on which the shadow thread runs enters
the TEE (that 1s, a secure mode).

In this embodiment, secure hardware and non-secure
hardware are further deployed at a hardware layer. The
secure hardware 1s hardware that can be accessed only by the
TEE. The non-secure hardware 1s hardware that can be
accessed by both the REE and the TEE or hardware that can
be accessed only by the REE.

FIG. 4A and FIG. 4B are schematic diagrams of a method
of a multiprocessing solution on a TEE according to an
embodiment. The following describes an implementation
process of the solution 1n detail based on FIG. 3, FIG. 4A,
and FIG. 4B.

S101. The facial recognition CA sends a call request to the
tacial recognition TA 301 on the TEE according to an SMC
instruction provided by TrustZone®. This process 1s another
approach, and 1s not described 1n detail in this application.
For ease of understanding, the process may be understood as
follows. A core on which the facial recognition CA runs
enters a TEE (a secure mode) according to the SMC instruc-
tion prewded by TrustZone®, and the facial recognition TA
starts to run 1n the secure mode to 1implement a function of
the facial recognition TA.

S102. After recerving the call request, the facial recogni-
tion TA 301 creates one sub-thread T1. Specifically, the
tacial recognition TA 301 creates the sub-thread T1 through
a pthread_create interface 1n the thread creation module 302
(for example, libthread).

In this embodiment, the facial recognition TA finally
creates four sub-threads T1 to T4. The four sub-threads
respectively process four sub-functions feature extraction,
feature comparison, liveness detection, and feature storage.
In this embodiment, creation and running of one sub-thread
are used as an example for description. For creation and
running processes of the other three sub-threads, refer to the
creation and running of the sub-thread.

S103. After creating the sub-thread T1, the thread creation
module 302 calls the notification module 303 to generate a
soltware mterrupt, and the notification module 303 sends the
soltware 1nterrupt to the notification processing module 304
on the REE.

S103a. The TEE scheduling module 305 creates a corre-
sponding task control data structure, that 1s, a TCB, for the

sub-thread T1.
For example, a structure of the TCB 1s shown as follows

struct tcb /* struct tcb refers to a thread control data structure,
and each TEE thread corresponds to one thread control data structure. */

{

thread_ states state;
sched__policy__t sched_ policy;

/* task running state */
/* task scheduling policy */

struct tcb__prop { /* TCB property */
char tcb__ name[TCB__ NAME_SIZE]; /* TCB name */
unt6é4 t ca; /* process identifier (PID)
of a CA that accesses the sub-thread */
h
|3

US 11,461,146 B2

11

The “task” refers to a sub-thread, and a TCB of each
sub-thread includes a running state, a scheduling policy, a

TCB name, and the like. The English i1dentifier before each

field indicates a type of a value of the field. A runming state
of a newly created sub-thread 1s set to a specific running
state. For example, state=000 1ndicates that the sub-thread
waits for a new core for execution.

The TCB provided 1n this embodiment includes a ca field,
and the ca field 1s an implementation of a “first thread

identifier” proposed 1n this application. A value of the ca
ficld may be 0 by default.

S5104. The notification processing module 304 generates a

thread S1 after receiving the software interrupt, where a PID
of the thread S1 1s S1, and the thread S1 enters the TEE by
sending an SMC 1nstruction.

The thread 1s referred to as a shadow thread in the
following 1n this embodiment, and is essentially the same as
a common thread, except that a function to be implemented
by the shadow thread 1s special 1n this embodiment. For the
tacial recognition TA 301, only the facial recognition CA
accesses the facial recognition TA 301. However, in this
embodiment, the facial recognition TA 301 1s completed by
a plurality of threads instead of one thread. Therefore, the
shadow thread may be understood as a “‘virtual CA” that
accesses a sub-thread.

It 1s easy to understand that ““a thread enters a TEE™ herein
means that “a core on which the thread runs enters the TEE”,
or “a core on which the thread runs enters a TEE mode (or
the secure mode)”. There are some abstract descriptions
about software, 1t 1s similar for a TrustZone® technology,
and descriptions may be different 1n a same case.

It should be noted that the “core” in this application 1s a
smallest physical processing unit.

Specifically, the SMC 1nstruction sent by the shadow
thread may include a parameter, and the parameter 1s used to
indicate that the shadow thread enters the TEE for the first
time. For example, the parameter may be firstin. When
firstin=true, 1t indicates that the shadow thread enters the
TEE {for the first time. When firstIn=false, 1t indicates that
the shadow thread enters the TEE not for the first time.
Alternatively, the shadow thread includes a parameter when
sending the SMC 1nstruction only for the first time, and does
not include the parameter in other cases. In this way, a
receiver may determine, based on information whether the
parameter exists or not, whether the shadow thread enters
the TEE for the first time.

S105. After the shadow thread S1 enters the TEE, that 1s,

after a core on which the shadow thread S1 runs enters the
TEE, the TEE scheduling module 305 records the PID of the
shadow thread S1 at a location of the core 1n a global status
array.

For example, the global status array ctx_map_t[CPU-

_NUM] 1s shown as follows

ctx_ map_ t [CPU_NUM] /* ctx_map_t [CPU__NUM] indicates
an REE&TEE switching state, and CPU__ NUM indicates a quantity of
cores. */

1
unté4_ t ops; /* type of an operation of entering
the TEE from the REE */
umnté4d_ t ca; /* PID of the CA that enters the
TEE */
umnté4d t ta; /* TA accessed this time */
unté4_ t exit reason; /* type of a reason for exiting from
the TEE */
unté4_ t flags; /* other flags */
}.

10

15

20

25

30

35

40

45

50

55

60

65

12

The “CPU” refers to the foregoing described “core”. In
this embodiment, the core on which the shadow thread S1
runs 1s a core numbered 1 (which 1s referred to as a core 1
in the following), and the TEE scheduling module 305
records the PID of the shadow thread S1 at a ca field of

ctx_map_t[1]. In other words, 1f ca=S1, it indicates that a
(virtual) CA that enters the TEE this time 1s the shadow
thread S1.

S106. When determining that the shadow thread S1 enters

the TEE {for the first time, the TEE scheduling module 3035
searches for the sub-thread T1 1n the specific running state,

that 1s, state=000, and schedules the sub-thread T1 to a
current core, that is, the core 1, on which the shadow thread
runs, for running.

S107. Further, the TEE scheduling module 305 assigns
the value (that 1s, S1) of the ca field of ctx_map_t[1] to a ca
field of a TCB corresponding to the sub-thread 11, so that a

CA-TA group in which the shadow thread S1 and the

sub-thread T1 are respectively used as a CA and a TA 1s
established.

The foregoing steps S101 to S107 are a process 1n which
the shadow thread 1s created for the first time and enters the
TEE for the first time. By repeating the foregoing steps S102
to S103, S1034, and S104 to S107, the other three sub-
threads and other three corresponding shadow threads each
may be created and other three CA-TA groups each may be
constituted. In this way, a plurality of cores run on the TEE
at the same time, and perform the four sub-functions of the
facial recognition TA 301 at the same time, so that efliciency
of executing the facial recognition TA 1s greatly improved.

Further, according to the foregoing method, the TEE
actively “pulls” a core onto the TEE, so that a sub-thread can
be actively executed on the TEE that 1s used as a passive
operating system. This improves multiprocessing flexibility
on the TEE.

Similar to a common CA, the shadow thread S1 may be
interrupted and return to the REE during running, and may
be scheduled to another core on the REE. In this case,
referring to FIG. 4B, the following operations need to be
performed to ensure that the sub-thread T1 and the shadow
thread S1 still run on a same core.

S108. After the shadow thread (that 1s, the core 1) returns
to the REE, the TEE scheduling module 305 sets the value
of the ca field of ctx_map_t[1] to O.

S109. When the shadow thread S1 re-enters the TEE, the
TEE scheduling module 305 sets the ca field at the corre-
sponding location in the global status array to S1.

Specifically, 11 the shadow thread S1 that re-enters the
TEE still runs on the core 1, the TEE scheduling module 305
still sets the ca field of ctx_map_t[1] to S1. If the shadow
thread S1 on the REE 1s scheduled by a scheduling module
(for example, a CFS scheduler) on the REE to another core
for runming, for example, a core 2, the TEE scheduling
module 305 sets a ca field of ctx_map_t[2] to S1.

S110. The TEE scheduling module 305 searches for a
target sub-thread, and schedules the target sub-thread to the
current core for running.

The target sub-thread needs to meet the following condi-
tion. A ca field in a TCB of the target sub-thread 1s the same
as the ca field corresponding to the current core 1n the global
status array, that is, the ca fields are both S1 in this
embodiment. It can be learned that in this embodiment, the
target sub-thread 1s the sub-thread T1. Therefore, the sub-
thread T1 1s scheduled to the current core for running. The
“current core” may be the core 1 or the core 2 based on the
description 1n step S109.

US 11,461,146 B2

13

It 1s easy to understand that only a target sub-thread that
1s 1n an executable state can be scheduled to a core for
execution 1n this embodiment. IT the target sub-thread 1s 1n
a non-executable state, the TEE scheduling module 305 may
enable, according to a scheduling policy, the core 1 or the
core 2 to wait or to execute another executable process. This
1s not limited in this application.

FIG. 5 shows a plurality of CA-TA scheduling groups
constituted after the method provided 1n this application 1s
implemented. It can be learned from the figure that a facial
recognition TA main thread and the facial recognition CA
constitute one scheduling group, and the other four sub-
threads together with the shadow threads S1 to S4 respec-
tively constitute four scheduling groups. The five scheduling,
groups and another application together participate 1n a
scheduling process of load balancing performed by the CFS
scheduler.

It can be learned that, according to the solution provided
in this embodiment, even i1f a shadow thread 1s scheduled to
another core for running, 1t can be ensured that a sub-thread
corresponding to the shadow thread on the TEE can be
scheduled to a same core for running. In this way, the
shadow thread and the corresponding sub-thread are used as
a CA-TA scheduling group that 1s to be scheduled as an
entirety, thereby ensuring accuracy of CA load calculation.

The following describes another scenario in this applica-
tion. In this scenario, dual authentication facial recognition
and fingerprint recognition, needs to be performed. In this
scenario, a CA and a TA can be scheduled as an entirety
according to the multiprocessing solution provided in this
application.

FIG. 6 1s a schematic diagram of a terminal system for
implementing dual authentication face authentication and
fingerprint authentication according to an embodiment. A
solution to 1mplementing the dual authentication 1s
described as follows.

A Tacial recognition CA 608 and a fingerprint recognition
CA 607 on an REE each mitiate a request to a TEE. The
tacial recognition CA 608 and the fingerprint recognition
CA 607 each 1nitiate the request 1n the following manner. A
central processing unit (CPU) enters a monitor mode by
calling a monitor through a TrustZone® driver, and then the
CPU enters a TEE mode from the monitor mode. Then, a TA
manager 609 determines, based on information carried in the
request, that a facial recognition TA 601 and a fingerprint
recognition TA 604 process the request from the facial
recognition CA and the request from the fingerprint recog-
nition CA respectively.

It 1s easy to understand that the facial recognition CA and
the fingerprint recognition CA are essentially two threads
and respectively run on two cores. Alter the foregoing steps,
the two cores both enter the TEE.

A TEE scheduling module 610 records a PID of the facial
recognition CA and a PID of the fingerprint recognition CA
at respective locations corresponding to the two cores 1 a
global status array, and records the PID of the facial recog-
nition CA 608 1n a ca field of a TCB of the facial recognition
TA 601 and records the PID of the fingerprint recognition
CA 607 1n a ca field of a TCB of the fingerprint recognition
TA 604. In this way, two CA-TA scheduling groups are
established, and load of a TA on the TEE may be added to
load of the corresponding CA.

In addition, the TA usually further requests another ser-
vice process and/or driver process for implementation. A
CA-TA scheduling group 1s also to be established for these
processes that are indirectly accessed. The facial recognition
TA 601 calls a permission management service 602 by

10

15

20

25

30

35

40

45

50

55

60

65

14

sending a message, and the permission management service
602 calls a camera driver 603. Similarly, the fingerprint
recognition TA 604 calls a permission management service
605, and the permission management service 6035 calls a
fingerprint driver. In this embodiment, the permission man-
agement service 602 and the permission management ser-
vice 605 are a same service. In another embodiment, the two
services may be alternatively two independent services.

The foregoing “calling” essentially refers to interprocess
communication (IPC). An IPC mechanism in the TEE 1is
implemented based on a message. In this embodiment,
during message transier, a value of a ca field in a TCB of a
message 1nitiator 1s transierred to a message receiver. There-
fore, all service processes on a calling chain of the TA are
correspondingly pulled into corresponding CA-TA schedul-
ing groups. As shown in FIG. 5, two scheduling groups are
constituted 1n this embodiment.

When a service process receives, alter processing a mes-
sage from a TA, a message from another TA, the service
process updates a value of the ca field with the new message
and the value 1s carried to another CA-TA group. As shown
in the figure, the permission management service 602 may
switch from a facial recognition CA-TA scheduling group to
a fingerprint recognition CA-TA scheduling group.

Specifically, the facial recognition TA 601 sends a mes-
sage to the permission management service 602, and trans-
fers the value of the ca field in the TCB of the facial
recognition TA 601, that 1s, the PID of the facial recognition
CA, to the permission management service 602. A value of
a ca field in a TCB of the permission management service
602 1s also set to the PID of the facial recognition CA 601.
Then, the permission management service 602 1s called by
the fingerprint recognition TA 604, and the value of the ca
field 1n the TCB of the permission management service 602
(which 1s equivalent to the permission management service
605 1n the figure) 1s reset to the PID of the fingerprint
recognition CA.

One CA-TA scheduling group 1s used as one scheduling
unit and 1s scheduled as an entirety by a CFS scheduler on
the REE, and the scheduling may be triggered by a load
balancing requirement. For example, 11 a CA 1s scheduled to
another core by the CFS scheduler, a TA 1n a scheduling
group 1n which the CA 1s located and another process called
by the TA are also scheduled to the core by the TEE
scheduling module 610. Therefore, according to the method
provided 1n this application, a CA and a corresponding TA
are scheduled as an entirety when a plurality of TAs run 1n
parallel, thereby ensuring accuracy of CA load calculation.
For example, 11 the facial recognition CA 608 1s scheduled
to another core but the facial recognition TA 601 1s not
scheduled to the core, and load of another thread running on
the core 1s added to load of the facial recognition CA 608.
However, this 1s 1incorrect.

Further, a case similar to S108 may also exist in this
scenario. For example, when an IRQ occurs, a core on which
the facial recognition TA 601 runs 1s mterrupted and returns
to the REE to respond to the IRQ. When the core exits, the
TEE scheduling module 610 sets a value of a ca field
corresponding to the core 1n the global status array to 0. If
the facial recognition CA 608 1s scheduled by the CFS
scheduler on the REE to a new core for running, and then
re-enters the TEE, the TEE scheduling module 610 sets a ca
field corresponding to the new core 1n the global status array
to the PID of the facial recognition CA 608. The TEE
scheduling module 610 searches for a target task based on
the PID of the facial recognition CA 608, and a ca value 1n

a TCB field of the target task 1s also the PID of the facial

US 11,461,146 B2

15

recognition CA 608. It can be learned from the description
in the foregoing embodiment that the target task includes
one or more of the facial recogmition TA 601, the camera
driver 603 (process), and the permission management ser-
vice 602 (process). The permission management service
may not belong to the target task because the ca field of the
permission management service may be modified due to
calling of the fingerprint recognition TA 604. Then, the TEE
scheduling module 610 schedules the target task to the new
core for running, so that the TA and a service called by the
TA are migrated between cores. This implements that an
entire CA-TA scheduling group 1s migrated, thereby ensur-
ing that tasks icluded in the CA-TA scheduling group run
On a same core.

FIG. 7 1s a schematic diagram of a payment solution
according to an embodiment. In the payment solution, 1n
addition to the method for implementing multiprocessing on
the TEE 1n the foregoing embodiment, a NPU and another
manner are further used to mmprove security and perfor-
mance.

The payment solution includes a plurality of pieces of
service logic a payment application 701, a facial recognition
CA 702, a facial recognition TA 708, and a camera service
703 that are triggered by the payment application, and the
like. The facial recognition TA 708 further includes four
pieces of sub-service logic feature extraction, liveness detec-
tion, feature comparison, and feature storage. Hardware
used 1n this solution includes a camera 706, a NPU 715, a
memory 714, a central processing unit (not shown), and the
like. A driver of the camera 706, a driver of the NPU 715,
and a driver of the memory 714 are deployed on the TEE.
The camera service 703, the facial recognition CA 702, and
an NPU service CA 704 on the REE are responsible only for
initiating a service and processing some non-crucial service
logic.

It should be noted that the driver of the camera 706 1s
deployed on the TEE 1n this embodiment, but the driver of
the camera 706 may alternatively be deployed on the REE,
so that an application or a service on the REE accesses the
camera 706 through the driver.

Specifically, after the payment application 701 1nitiates a
tacial payment authentication request, the facial recognition
CA 702 1in the REE calls the facial recognition TA 708 on the
TEE, to mitiate a facial recognition procedure. The facial
recognition TA 708 accesses the camera 706 through the
camera driver 705 on the TEE. Spec1ﬁcally, the facial
recognition TA 708 may drive an image signal processor
(ISP) through a driver of the ISP to access the camera 706.

Then, an 1mage captured by the camera 706 1s stored 1n an
image security bufler 707, and an access address of the
image security bufler 707 1s returned to the facial recogni-
tion TA 708. The image security builer 707 may be under-
stood as software on the TEE, or may be understood as
storage space (for example, a memory) that can be accessed
only by the TEE. The facial recognition TA 708 accesses the
image security builer 707 based on the address, and executes
algorithms such as feature extraction, liveness detection,
feature comparison, and feature storage for the captured
image based on information such as a prestored facial
template.

In other approaches, the camera driver 1s usually deployed
only on the REE, some functions, for example, feature
extraction, of the facial recognition TA are deployed on the
REE, and when the feature extraction function 1s executed,
the camera driver 1s called on the REE to capture an image
REE. However, in the foregoing manner provided in this
embodiment, the facial recogmition TA 708 can directly

10

15

20

25

30

35

40

45

50

55

60

65

16

access the camera 706 through the camera driver 703 that 1s
deployed on the TEE, and bufler the image in the image
security bufler 707 on the TEE, so as to ensure that both use
of the camera and storage of data are completed on the TEE.
This further ensures data security.

During algorithm execution, the facial recognition TA 708
accesses an NPU driver 712 through the NPU service TA

709 on the TEE, and then calls the NPU 715 through the
NPU driver 712 to increase a processing speed. Finally, the
payment application 701 obtains a final facial recognition
result through a payment application TA 710 of the payment
application 701. For example, an Alipay application obtains

a final facial recogmition result through the internet finance
authentication alliance (IFAA) TA.

The facial template 1s recorded on a terminal device 1n
advance. Payment application 1s completed only when a face
image captured during payment matches the facial template.
Therefore, security of the facial template 1s extremely
important. In this embodiment, the facial template 1s stored
in the memory 714 through the storage service 713 on the
TEE, to prevent the facial template from being tampered
with. The memory 714 may be a memory with a specific
security feature, for example, a replay protected memory
block (RPMB). The memory may be set to be accessed only
by a TEE-side service, so that security of the memory 1s
turther improved, security of the facial template 1s ensured,
and further, security during facial recognition 1s ensured.

The facial recognition solution implemented by using the
method provided 1n this application can meet both a security
requirement and a high performance requirement. A differ-
ence from other approaches in which some crucial service
logic 1n facial recognition 1s implemented on the REE (for
example, liveness detection 1s implemented on the REE) to
improve facial recognition efliciency lies in that, in the
solution provided 1n thus application, all crucial service logic
in facial recognition 1s implemented on the TEE, and facial
recognition efliciency 1s improved through multiprocessing,
so as to meet the performance requirement. In addition, data
(for example an 1mage) generated or used during facial
recognition 1s stored on the TEE, to further improve facial
recogmtlon security by using a security assurance mecha-
nism of the TEE.

FIG. 8 1s a schematic structural diagram of a computer
system according to an embodiment. The computer system
may be a terminal device. As shown in the figure, the
computer system includes a commumnications module 810, a
sensor 820, a user mput module 830, an output module 840,
a processor 830, an audio/video imput module 860, a
memory 870, and a power supply 880. Further, the computer
system provided 1n this embodiment may further include an
NPU 890.

The commumnications module 810 may include at least one
module that can enable the computer system to communi-
cate with a communications system or another computer
system. For example, the communications module 810 may
include one or more of a wired network interface, a broad-
cast receiving module, a mobile communications module, a
wireless internet module, a local-area communications mod-
ule, and a location (or positioning) information module. The
plurality of modules each have a plurality of implementa-
tions in other approaches, and details are not described one
by one in this application.

The sensor 820 can sense a current status of the system,
for example, an on/ofl state, a location, whether the system
1S 1n contact with a user, an orientation, and acceleration/
deceleration. In addition, the sensor 820 can generate a sense
signal used to control an operation of the system.

US 11,461,146 B2

17

The user input module 830 1s configured to receive mput
number information, character information, or a contact
touch operation/contactless gesture, and receive a signal
input related to user settings and function control of the
system, and the like. The user input module 830 includes a
touch panel and/or another mput device.

The output module 840 includes a display panel, config-
ured to display information mput by the user, information
provided for the user, various menu interfaces of the system,
and the like. Optionally, the display panel may be configured
in a form of a liquid-crystal display (LCD), an organic
light-emitting diode (OLED), or the like. In some other
embodiments, the touch panel may cover the display panel,
to form a touch display screen. In addition, the output
module 840 may further include an audio output module, an
alarm, a tactile module, and the like.

The audio/video mput module 860 1s configured to input
an audio signal or a video signal. The audio/video 1nput
module 860 may include a camera and a microphone.

The power supply 880 may receive external power and
internal power under control of the processor 830, and
provide power required for operations of various compo-
nents of the system.

The processor 850 includes one or more processors. For
example, the processor 850 may include a central processing
unit and a graphics processing unit. In this application, the
central processing umt has a plurality of cores, and 1s a
multi-core processor. The plurality of cores may be inte-
grated 1nto one chip, or each of the plurality of cores may be
an independent chip.

The memory 870 stores a computer program, and the
computer program includes an operating system program
872, an application program 871, and the like. For example,
a typical operating system 1s a system used for a desktop
computer or a notebook computer, such as WINDOWS of
MICROSOEFT Corp. or MACOS of APPLE Inc., or a system
used for a mobile terminal, such as a Linux®-based
Android® system developed by GOOGLE Inc. The method
provided 1n the foregoing embodiment may be implemented
by using software, and may be considered as specific imple-
mentation of the operating system program 872.

The memory 870 may be one or more of the following
types of memories a flash memory, a hard disk type memory,
a micro multimedia card type memory, a card type memory
(for example, a secure digital (SD) or extreme digital (XD)
memory), a random-access memory (RAM), a static random
access memory (SRAM), a read-only memory (ROM), an
clectrically erasable programmable read-only memory (EE-
PROM), a programmable read-only memory (PROM), a
RPMB, a magnetic memory, a magnetic disk, or an optical
disc. In some other embodiments, the memory 870 may be
a network storage device on the internet. The system may
perform an operation such as updating or reading on the
memory 870 on the internet.

The processor 850 1s configured to read the computer
program from the memory 870, and then perform a method
defined by the computer program. For example, the proces-
sor 850 reads the operating system program 872, to run an
operating system in the system and implement various
functions of the operating system, or reads one or more
application programs 871, to run an application in the
system.

The memory 870 further stores other data 873 1n addition
to the computer program.

The NPU 890 1s mounted to the main processor 850 as a
coprocessor, and 1s configured to execute a task assigned by
the main processor 850 to the NPU 890. In this embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

18

the NPU 890 may be called by one or more sub-threads of
a facial recognition TA, to implement some complex algo-
rithms 1n facial recognition. Specifically, the sub-thread of
the facial recognition TA runs on a plurality of cores of the
main processor 850, then the main processor 850 calls the
NPU 890, and a result implemented by the NPU 890 1s
returned to the main processor 850.

A connection relationship between the modules 1s merely
an example. A method provided 1n any embodiment of this
application may also be applied to a terminal device having
another connection manner, for example, all modules are
connected through a bus.

FIG. 9 1s a schematic structural diagram of an NPU 900
according to an embodiment. The NPU 900 1s connected to
a main processor and an external memory. A crucial part of
the NPU 900 1s an operation circuit 903, and a controller 904
controls the operation circuit 903 to extract data from the
memory and perform a mathematical operation.

In some implementations, the operation circuit 903 nside
includes a plurality of processing engines (PEs). In some
implementations, the operation circuit 903 1s a two-dimen-
sional systolic array. The operation circuit 903 may be
alternatively a one-dimensional systolic array or another
clectronic circuit that can perform mathematical operations
such as multiplication and addition. In some other imple-
mentations, the operation circuit 903 i1s a general-purpose
matrix processor.

For example, 1t 1s assumed that there are an input matrix
A, a weight matrix B, and an output matrix C. The operation
circuit 903 fetches data corresponding to the matrix B from
a weight memory 902 and builers the data on each PE of the
operation circuit 903. The operation circuit 903 performs a
matrix operation on the matrix B and data, fetched from an
input memory 901, of the matrix A, and store an obtained
partial result or an obtained final result of the matrix into an
accumulator 908.

A unified memory 906 1s configured to store mput data
and output data. Weight data 1s directly copied to the weight
memory 902 through a direct memory access controller
(DMAC) 905 (for example, a DMAC). The mput data 1s
copied to the unified memory 906 also through the DMAC
905.

A bus interface unit 910 (BIU) 1s configured to interact
with the DMAC 905 and an instruction fetch bufiler 909
through an advanced extensible interface (AXI) bus.

The BIU 910 15 used by the mstruction fetch bufler 909 to
obtain an struction from the external memory, and 1is
turther used by the DMAC 903 to obtain original data of the
input matrix A or the weight matrix B from the external
memory.

The DMAC 905 1s mainly configured to copy input data
in the external memory to the unified memory 906, copy the
weilght data to the weight memory 902, or copy input data
to the mput memory 901.

A vector calculation unit 907 usually includes a plurality
ol operation processing units. If necessary, further process-
ing 1s performed on an output of the operation circuit 903,
such as vector multiplication, vector addition, an exponen-
tial operation, a logarithmic operation, and/or value com-
parison.

In some implementations, the vector calculation unit 907
can store a processed vector mto the unified memory 906.
For example, the vector calculation unit 907 may apply a
non-linear function to the output of the operation circuit 903,
for example, to a vector of an accumulated value, so as to
generate an activation value. In some implementations, the
vector calculation unit 907 generates a normalized value, a

US 11,461,146 B2

19

combined value, or both. In some implementations, the
processed vector can be used as an activation input of the
operation circuit 903.

The 1nstruction fetch bufler 909 connected to the control-
ler 904 1s configured to store an instruction used by the
controller 904.

The unified memory 906, the mput memory 901, the
welght memory 902, and the instruction fetch bufler 909 are
all on-chip memories. The external memory in the figure 1s
independent of the NPU hardware architecture.

It should be noted that the method provided in this
embodiment may be alternatively applied to a non-terminal
computer device, for example, a cloud server.

It should be noted that, in the foregoing embodiments, the
tacial recognition solution 1s mostly used as an example for
description. However, it 1s definitely that the method pro-
vided 1n this application can be applied to another solution
in addition to facial recognition. A person skilled in the art
can easily figure out a similar implementation of another
solution based on the implementation provided 1n this appli-
cation.

It should be noted that division mto modules or units
provided i the foregoing embodiments i1s merely an
example, and functions of the described modules are merely
used as examples for description. This application i1s not
limited thereto. A person of ordmary skill in the art can
combine functions of two or more modules or divide a
function of a module to obtain more modules at a finer
granularity and in another variation as required.

For same or similar parts in the foregoing embodiments,
mutual reference may be made to each other. “A plurality of”
in this application means two or more or “at least two”
unless otherwise specified. “A/B” 1n this application
includes three cases “A”, “B”, and “A and B”.

The described apparatus embodiments are merely
examples. The modules described as separate parts may or
may not be physically separate, and parts displayed as
modules may or may not be physical modules, may be
located 1n one position, or may be distributed 1n a plurality
of network modules. Some or all the modules may be
selected depending on actual needs to achieve the objectives
of the solutions of the embodiments. In addition, 1n the
accompanying drawings of the apparatus embodiments pro-
vided 1n this application, connection relationships between
modules indicate that the modules have communication
connections with each other, which may be specifically
implemented as one or more communications buses or
signal cables. A person of ordinary skill in the art can
understand and 1mplement the embodiments of the present
disclosure without creative eflorts.

The foregoing descriptions are merely some specific
implementations of this application, but are not intended to
limit the protection scope of this application.

What 1s claimed 1s:

1. A multiprocessing method, implemented by a computer
system comprising a trusted execution environment (TEE)
and a rich execution environment (REE), wherein the mul-
tiprocessing method comprises:

creating, by the TEE, a sub-thread, wherein the sub-thread

implements a sub-function of a trusted application (TA)
on the TEE;

triggering, by the T,

thread;

running, by the REE, the shadow thread on a core of the

computer system to cause the core to enter the TEE;
and

Ll

E, the REE to generate a shadow

10

15

20

25

30

35

40

45

50

55

60

65

20

scheduling, by the TEE, the sub-thread for execution by
the core.

2. The multiprocessing method of claim 1, further com-

prising;:

generating, by the TEE,
creating the sub-thread;

sending, by the TEE, the notification to the REE; and

creating, by the REE, the shadow thread based on the
notification.

3. The multiprocessing method of claim 2, wherein the

notification 1s a soltware interrupt.
4. The multiprocessing method of claim 1, further com-
prising recording, by the TEE, a correspondence between
the shadow thread and the sub-thread.
5. The multiprocessing method of claim 4, tfurther com-
prising recording, by the TEE, an i1dentifier of the shadow
thread 1n a first thread identifier 1n a thread control block
(TCB) of the sub-thread, wherein the first thread identifier
indicates a thread that accesses the sub-thread.
6. The multiprocessing method of claim 4, further com-
prising scheduling, by the TEE based on the correspon-
dence, the sub-thread to a current core that the shadow
thread uses to run when the shadow thread re-enters the
TEE.
7. The multiprocessing method of claim 1, further com-
prising recording, by the TEE, a correspondence between
the shadow thread and the core.
8. The multiprocessing method of claim 7, tfurther com-
prising;:
recording, by the TEE, an 1dentifier of the shadow thread
in an element corresponding to the core i a global
status array 1n response to the core entering the TEE,
wherein the global status array comprises a plurality of
clements that each correspond to one core of the
computer system; and
clearing, by the TEE, a value of the element 1n response
to the core leaving the TEE.
9. The multiprocessing method of claim 1, further com-
prising calling, by the TEE, a neural processing unit (NPU)
driver in the TEE to call an NPU of the computer system.
10. The multiprocessing method of claim 1, further com-
prising;:
accessing, by the TEE, corresponding hardware through a
hardware driver unit on the TEE; and
storing, by the TEE, data from the hardware 1n a security
storage unit on the TEE.
11. The multiprocessing method of claim 1, wherein the
TA 1s for implementing either a facial recognition function
or a fingerprint recognition function.
12. A computer system comprising:
a plurality of processing cores configured to run a trusted
execution environment (IEE) and in a rich execution
environment (REE); and
a memory coupled to the processing cores and configured
to store instructions that, when executed by the pro-
cessing cores, cause the computer system to be con-
figured to:
create, by the TEE, a sub-thread, wherein the sub-
thread implements a sub-function of a trusted appli-
cation (TA) on the TEE;

trigger, by the TEE, the REE to generate a shadow
thread;

run, by the REE, the shadow thread on a core of the
processing cores to cause the core to enter the TEE;
and

schedule, by the TEE, the sub-thread for execution by

the core.

a notification 1n response to

US 11,461,146 B2

21

13. The computer system of claim 12, wherein the instruc-
tions further cause the computer system to be configured to:
generate, by the TEE, a notification in response to creating,
the sub-thread;
send, by the TEE, the notification to the REE; and
create, by the REE, the shadow thread based on the
notification.
14. The computer system of claim 12, wherein the instruc-

tions further cause the computer system to be configured to
record, by the TEE, a correspondence between the shadow
thread and the sub-thread.

15. The computer system of claim 14, wherein the instruc-
tions further cause the computer system to be configured to
record, by the TEE, an identifier of the shadow thread in a
first thread 1dentifier 1n a thread control block (TCB) of the
sub-thread, and wherein the first thread identifier indicates a
thread that accesses the sub-thread.

16. The computer system of claim 14, wherein the mstruc-
tions further cause the computer system to be configured to
schedule, by the TEE based on the correspondence, the
sub-thread to a current core that the shadow thread uses to
run when the shadow thread re-enters the TEE.

17. The computer system of claim 12, wherein the instruc-
tions further cause the computer system to be configured to
record, by the TEE, a correspondence between the shadow
thread and the core.

18. The computer system of claim 17, wherein the mstruc-

tions further cause the computer system to be configured to:

LL

22

record, by the TEE, an identifier of the shadow thread 1n
an element corresponding to the core 1n a global status
array 1n response to the core entering the TEE, wherein
the global status array comprises a plurality of elements

5 that each correspond to one core of the REE; and

clear, by the TEE, a value of the element in response to the
core leaving the TEE.

19. The computer system of claim 12, wherein the mnstruc-

tions further cause the computer system to be configured to:

10 access, by the TEE, corresponding hardware through a
hardware driver unit on the TEE; and

store, by the TEE, data from the hardware in a security
storage unit on the TEE.
20. A non-transitory computer-readable medium storing

15 1nstructions that, when executed by a processor, cause a

computer system to:
create, by a trusted execution environment (TEE), a
sub-thread, wherein the sub-thread implements a sub-
function of a trusted application (TA) on the TEE;

20 tnigger, by the TEE, a processing core running in a rich
execution environment (REE) to generate a shadow
thread:

run, by the REE, the shadow thread on a core of the
computer system to cause the core to enter the TEE;

25 and

schedule, by the TEE, the sub-thread to the core for
execution.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,461,146 B2 Page 1 of 1
APPLICATIONNO. :17/126873

DATED : October 4, 2022
INVENTOR(S) : Dongdong Yao and Yu La

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Page 2, Item (56) Reterences Cited, U.S. Patent Documents: “2021/0064740 A1 03/2021 Han” should
read “2021/0064740 A1 03/2021 Hanel”

Signed and Sealed this
Twenty-ninth Day of November, 2022

Katherine Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

