12 United States Patent

Liu et al.

US011457354B2

US 11,457,354 B2
Sep. 27, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(63)

(1)

(52)

(58)

SYSTEM AND METHOD 1O SECURELY
BROADCAST A MESSAGE TO
ACCELERATORS

Applicant: Baidu USA LLC, Sunnyvale, CA (US)

Inventors: Yong Liu, Sunnyvale, CA (US);
Yueqiang Cheng, Sunnyvale, CA (US)

BAIDU USA LLC, Sunnyvale, CA
(US); KUNLUNXIN TECHNOLOGY
(BELJING) COMPANY LIMITED,
Beijing (CN)

Assignees:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 157 days.

Notice:

Appl. No.: 16/709,389

Filed: Dec. 10, 2019

Prior Publication Data

US 2021/0176632 Al Jun. 10, 2021

Int. CIL.
HO4W 12/04
HO4W 12/0471

(2021.01)
(2021.01)

(Continued)

U.S. CL
CPC HO4W 12/0471 (2021.01); GO6N 20/00

(2019.01); HO4W 4/06 (2013.01);

(Continued)

Field of Classification Search
CPC HO4W 12/0471; HO4W 12/033; HO4W
12/041; HO4AW 4/06; HO4W 4/12; HO4W
64/00; GO6N 20/00; HO4L 2463/062;
HO41. 63/0428:; HO4L. 63/12; HO4L

63/0823; GO6F 21/57;, GO6F 21/64
See application file for complete search history.

Authenticaiion § Key(s) Store
Moddile { 954
251 | —
Termmnation Cryoto. Engine
Module ~55
257 § £22

Host Channel
Manager
299

Key Manager |

253 |

Host Server
104

Comm. Channei 215

200

Comm.
Channel

215

(56) References Cited

U.S. PATENT DOCUMENTS

HO4L 12/64
370/238

6,426,945 B1* 7/2002 Sengodan

ttttttttttttttt

4/2003 Artzi et al.
(Continued)

0,553,009 B2

OTHER PUBLICATTONS

PacketShader: A GPU-Accelerated Software Router, Sangjin Han et
al. published 1n 2010 (Year: 2010).*

(Continued)

Primary Examiner — Jeremy S Duftheld
Assistant Examiner — Andrew Suh

(74) Attorney, Agent, or Firm — Womble Bond Dickinson
(US) LLP

(57) ABSTRACT

According to one embodiment, a broadcast request is
received from a host that hosts an application that iitiated
a broadcast message to be broadcast to one or more DP
accelerators of a plurality of DP accelerators coupled to the
host, where the broadcast request includes one or more DP
accelerator 1dentifiers (IDs) 1dentifying the one or more DP
accelerators. A broadcast session key for a broadcast com-
munication session to broadcast the broadcast message 1s
received from the host. For each of the one or more DP
accelerator 1Ds, a public key of a security key pair corre-
sponding to the DP accelerator ID 1s identified. The broad-
cast message 1s encrypted using the broadcast session key.
The broadcast session key 1s encrypted using the public key.
The encrypted broadcast message and the encrypted broad-

cast session key are transmitted to a DP accelerator identi-
fied by the DP accelerator 1ID.

18 Claims, 13 Drawing Sheets

D Acceterator 105

Watermark Unit
2L6
Truye Random
Key Ma?ager Number Gen.
el 273

Accelerator
Channei Manager
270

.!.{ey(ﬁ} Store Crypto. Engine
212 274

Security Unit 275

Al Model(s)
277

Watermark §
Kemel(s) 2/ ;

Encryption [ata l
kemel(s) 281 279

Memory/Storage 280

ACM
270

g

DP Accelerator
107

US 11,457,354 B2

Page 2
51 Int. Cl. 2015/0195261 Al1* 7/2015 Gehrmann HO41. 9/0833
(51)
CO6N 20/00 (2019'01) 2016/0044001 Al 2/2016 P lik 12007
: 1 1 1 ogorell
ggjgj;‘])g (38838) 2018/0225237 Al 8/2018 Edirisooriya et al.
(') 2018/0343258 Al™ 11/2018 Spiescoooeeeeennnn HO4I. 63/101
HO4W 12/033 (2021.01) 2019/0140979 Al 5/2019 Levi et al.
HOo4W 12/041 (2021.01) 2019/0230094 Al* 7/2019 Pieteaccooen..... GO6F 9/542
(52) US. Cl 2020/0073734 Al 3/2020 Wang
" J _ 2020/0323024 Al1* 10/2020 Huang HO4W 4/06
CPC HO4W 4712 (2013.01); HO4W 12/033 2020/0380322 Al* 12/2070 Selander Ho4T 12/18
(2021.01); HO4W 12/041 (2021.01) 2021/0176632 Al 6/2021 Liu
(56) References Cited

U.S. PATENT DOCUMENTS

6,912,655 Bl

8477941 BI1*
10,813,001 B1*
2004/0143645
2006/0161502
2006/0248142
2011/0072270

A A A

1 =

2014/0280627 Al

6/2005
7/2013

10/2020
7/2004
7/2006

11/2006
3/2011

9/2014

Zucker

Dhanoa HO4AW 12/033
455/411

Ibarracccovvevne.nn. HO04W 40/22

Cheenath

Cerruti et al.

Ishizaki et al.

Little ...oocovveinennn. HO041. 63/0823
713/175

Ross

OTHER PUBLICATTIONS

Kurzak, J. et al.; Design and Implementation of the PULSAR
Programming System for Large Scale Computing [online] 2017 |
retrieved on Feb. 7, 2022]; Supercomputing Frontiers and Innova-
tions; (Year: 2017) Retrieved from the internet: <URL:https://www.
research.manchester.ac.uk/portal/en/publications/design-and-
implementation-of-the-pulsar-programming-system-for-large-scale-
computing(4e594e¢04-2024-4614-a314-92¢5¢eac92dib).html (Year:
2017).

* cited by examiner

US 11,457,354 B2

Sheet 1 of 13

Sep. 27, 2022

U.S. Patent

L Ol

/0L
10)elJ8|920VY 4q

Ol
(1soy ‘“"b9) (s)lenlag
BbuIsSsao01d Bleq

a0l
10)elJ8|929VY 4Q

GOl

Joiels|e2oy (4dq)
pbuissao0ld Bleq

001

c0l

90I1A8(JBIID

101

90I1A8(JUSIID

V¢ Ol

O¢ (s)@21neg abelols

NOTARILSIVNIS)Y

US 11,457,354 B2

/01
10)elJa]e00Y dQ

0¢ SIPPON IV

102 (S)Jossaedold

12 ((S)NdD/NdL “6°8) aiemplieH

—

f ——

~ T2

- walsAg buneladp
GOl 507

10)eI18|8922Y d(- SJOALIQ

~ Glc

m (s)|ouuBy) "WWO9

N 90¢

w salleldl7 swinuny

.

/0¢
suoljeol|ddy

G0c¢

suoleol|ddy Jasn djes AJowsN

0l¢c
I\. (331) wswuolIAUg uolNoex pajsnl|
00¢ 70l

U.S. Patent

US 11,457,354 B2

Sheet 3 of 13

Sep. 27, 2022

U.S. Patent

.0}
10}BlJ8je00Y dd

08¢ ebelojg/AIoWS

187 (s)12uIoY
uondAiou3

8/¢C (s)ipuley TJ)e
MIBLULIBIBAA (S)[OPOIN |V

G/¢ Yun Ajunoses

Ve clc
suibug ‘01dA1n 8101S (s)Ae

€Ll
'usc) JAqUINN
wopuey ant |

12¢
Jobeuely Aoy

0/¢
labeuelp jsuuey)

JOJIB |00y

9/¢
HUN YJeULSIBAA

0] J0Jei8|800Y 40

da¢ 9Old

G1LZ [BUUBYD "WWOY

GLe
jlsuuBey?D
W0

00c¢

oL

JoAI8S JSOH

65¢
lebeuep

[aliueyo JsOH

14
suibug 0)dAID

¥Ge
8101S (S)Aoy

€se
labeue|y As)

AT
SINPOIN
UoleuILLIS |

16¢
Slglele]
LoljednuaLiny

US 11,457,354 B2

Sheet 4 of 13

Sep. 27, 2022

U.S. Patent

ZouU pue |Lou buisn
. 'S A8y UOISS8s a)rlaush
¢ Old Cle pue asuodsal 1dAIos(]

........ { " { ; 21V L M
=50 pUB [oU BUISH G (20 Md' (1A Md'ZON'LON)A #S3)ka Adq 1

'Aay UoIssas ajelsuab ‘Zou

133

‘20UOU WopuUR) B 8lRIoUs0)

LOU UIB)JO 0}

60¢ AIM SS3IS QND dAioeq

(Lou)e@ >4z A3y SSIS AIND 80T o

0% ‘DOUOU Wopukl B 9)RIoUan)

NDiv_n_ Uie]qoO O] apbessal
90¢ AIM 9nd 13¥dAoeg

.. @mwxa (2A Md DA Nd)P 18)La X4 ‘A3 dNd L3IH GOE

LA Md UiBigo 0} LMY Md
70€ Buisn }senbal |00y 1dAIoa

s

pP8]00J ZooY buisn ‘zq ‘Jied

et ASY pPOALIBD B ojelauss)
MY Md (LT Ad MY AMd)P 83 AN and 139 208 _ _

LMY MS MY Md Jied Aoy

81004 LDoV Buisn ‘Jied
L0S Pol 1 33V DU L

A8¥ PBALISD B 8)Blausn)

(10]B1B 920V JO 1SOH)
¢ ©PON

00¢% | JO)RIS|200Y

U.S. Patent Sep. 27, 2022 Sheet 5 of 13 US 11,457,354 B2

DP Accelerator
107

400
FIG. 4

o]~

c'7>~=r|
o=
1.

US 11,457,354 B2

Sheet 6 of 13

Sep. 27, 2022

U.S. Patent

RS ISEREND

=

B ,»w,ww BN SRR

o ,iwaﬂ wwwxﬁ

TUGIRHLRERG

o :?wﬁ.ﬁ% w..?mﬂw

L i b]

ﬁ% mﬁx BOFSRIK

g w@?,, mawm_

o APHR m%wwm

FRJINPPE SRYG |

ffffff

”m;wmwm%w,ﬁ ﬁm o miw.wmw Jﬂmﬁ

R+ PP FRER |

§ v SEPR ISEE | SIFTTEVRT

F o ARPE QIR | SR

iﬁwﬁﬁﬂm

ﬁs%w, ,,ww,.wwﬂwﬁ ﬂ.wow 3 3%

FHE T IAVE ADRIOVRGY Va0

wﬁ?a% A R S
§ © P 30 |
¥ e AT .m.ﬂm.mm_.

TP SULHY |

481 P4
3 40 W
M S0 VdYy

US 11,457,354 B2

Sheet 7 of 13

Sep. 27, 2022

U.S. Patent

009

9 Ol

‘pajesausb s V4 au) 10} ajge} Aousoelpe

oy} Jey} pue ‘sydq J1aylo Jo 1sl| 8y} Ul Ydd Yoes o} Asy uoisses
509 e bunelasusb psal)s|dulod sey vda aul 1eul |eubis B SoAIslal 1SOH

'SyYd({ J8Y10 Jo ISl 8y} sepnjoul 1eyl YdQ auj Jo} 8|gey Aousoelpe
ue sjessusb 0) uononJISUl UB pue ‘Yim A8y UOISSas B Usi|gelss

VoS 0} SI VdQ 8y} iUl sYdQ Jeuljo Jo isl| B 'Yd(8y} 0} ‘sjiwisuel) }SoH

(G pue ¢ sbiq ‘@8g)
'$8|ge) Aousoe(pe aAljoadsal JIay] Ul Aay UoISSss 8yl 810)s
c09 -~ Uors V4 PUB 1SOH VY41 aul YlIIm ASY UOISSSS B $S8UsI|qrlse 1SOH

1SOY 8U] YIIM UONBIIUNWWOD 10} painbijuod vd4dQq Yoes Jo4

¢09

1SOY UlIMm
UONEDIUNWWOD JOJ painbljuod si leyl (Vd(Q) Jolelejedoe Duissesoid

109 7| gjep yoes ssi) jey) o|qe) Aousoelpe ue seI0)s pue sejeleusd JSOH

US 11,457,354 B2

Sheet 8 of 13

Sep. 27, 2022

U.S. Patent

004

G0L

0L

0L

¢0/

LOL

L Ol

'SV (] JUI0 Y} YUM SUOHEBIIUNWIWOD 8Indas Jo) palnbijuod

SI Vd@ SIyl ey} 1soy ey} [eubis usy) ‘'siyd@ J8yio sy} JO U0 Yjm
asn 0) Y4 (] SiU) J0) ajessual 0} sA9y UOISSES 2J0W OU aJe alau) |

(G pue ¢ 'sbi4 ‘@9g) 'sa|ge} Aouaoelpe
oAlj0adsal Jisyl Ul Aay UOISSas ay] 8401s yoea vd(Jeylo pue vdQ

‘UQINesIuniuiog Joj %@v_ LIOISSaS B USHdelse Y J8yjo pue Yd(

pajelauab A|snoinald usaq sey Asy U0ISSes
OU U2Iuym Joj} ajge} Aouadelpe syl ul syd4q Jayio ayi Jo yoes Jo

‘Uim Aay UOISSSS B Usi|gelss 0} Sl Ydd @y} eyl svdq J8uio
8L} JO Yyoes s)si| 1ey) a|ge} Aouadelpe ue sal0is pue sajelsusab vda

180U 8U] WOJ} PaAIe2a) SUOIONJISUI

oyl Ul PBlsl 5 Yd4((o410 4] JO Yoo ol] JO) %@x LIOISSeS B aleJtaual

pue ‘vdq au} Joj ajge} Aouadelpe ue sjelauab 0] 821A8D JSOU
B WOJ} SUOIIONJISUI SBAI8D8) (Yd () Jolela|eoor Duissadold ele(]

US 11,457,354 B2

Sheet 9 of 13

Sep. 27, 2022

U.S. Patent

008

708

€08

c08

108

8 Ol

'UONIEDIUNWIWOD 8IN08s o) 1SOY U} PUB Yd(1 89U} JO Aoy
uoissas e Buisn Jsoy sy} 0} S}nsaJ ajow J0 auo Buiuinial pue ‘vd4da
aU] JO YsSe1-gns ay Buneidwon ‘uoieIuNWWod 84ndas 10} ‘vd(
IBUOIIPPE SUO)SES| 1B PUR PUB Y (] 8U} 10 Aey uoissas e Buisn
V4 [BUOHIPPE SUO 1SE3| JB 8y] WOoJ) S}NSaJ aJoW Jo auo BUIAISDay

yse] Buissaooid ay) Jo YsSel-gns e ‘vdq aul Ag ‘Buiwiopsd

UOIIEDIUNWIWOD 81N08S o) A8 UOISSes 8Y) sasn
uoissiwsuel] “wiopad o} ‘Mse} Buissasoid ay) Jo sHSB}-gns aiow
10 BUO ‘Y (] |eUOllIppE 8UOo 1sE8| B aU) 0] V4 aul Ag ‘Bunyiwsuel |

yse) buissenoud ay) buiwiioied ul 8sn 0} Vd(
[BUOIIPPE 8uUO0 }SE8| 1B JO UohEDIpUl UB Bulpnioul 1Soy Wol) Yse)
puissesold e (Vd(@) Jolela|adoke buissado.d elep e AQ 'BuUlAisDay

US 11,457,354 B2

Sheet 10 of 13

Sep. 27, 2022

U.S. Patent

Zle

Ao} UOISSO] 6 9l

1seopeolg uelao
pue 1dAI08(]

016 1seopeold
0} syyd(Jusoelpe
0] sA8)| UoIsSseg jseopeoly

pajdAioug au} pues TT6 Aoy UoISsag

== }seopeoug jo uons|dwo)) AJIoN

sA8y o1lgnd 8y} buisnh AsY
U0ISSag 1seopeolg e JdAnul

806 Vd(Q Iseopeoug 0] sAay olgnd puss

d506 VG606 V206 AS) dllgnd uinjey
lled Ao lled Asy
Alunoag (psAaus() A1IN08g (paAlls(])
o)elausn) alelsUsn)

ay06 V06 Aey olgnd
10} 188Nnbay pue sSi0)ela|820Yy 4 AIION

/0L
l0jeJa|800Yy

GO
10]B19|800Y

d(dd

006

.06

vd(1Seopeo.q B 109|899

206 sJojelsjedoy
(0 paloauu0d

JO 1S1| B suilwse(

106 uoneoljday
UB Wolj 1sanbay
ISEOPROIE] B aAle00Y

US 11,457,354 B2

Sheet 11 of 13

Sep. 27, 2022

U.S. Patent

0L "©Old

S\ (] 8J0W JO 8UO 8U) JO Yoea 0} A8y UoISSas Jseopreolq pajdAious

CO0 | B} PaISBOPEOI] V(] 1SEDPE0IJ BU] Jey) |Bubis B saAledal 1SOH
S\ d (] 10 18sgns au) Jo) sAsy oljgnd ay) pue

400)° 'A@) UOISSSS 1SBOPEOIJ B 'Y (] 1SBOPEOIQ 8Y) 0] ‘slisuel] 1SOH

001 obessaWw e 1seoproId 0] V4 1seopeold B S109|9S 1SOH

SVdd
Z001 I JO 18sgns a4} 0} w>wx OM_QSQ JOJ 1Senbal e SpuUas }S0Y 'svd(d aul o

18Sgns B 0] 1seopeold e bunssnbal uonesijdde syl 0 asuodssl U]

SV d({ @|deijleAe al]
JO uoneolidde ue saljjou pue }soy sy} 0] pa|dnoo AIBAIBIIUNWWIOD

00} (S d(]) sJoiels|eooe buissadoold Biep Jo 1Sl B saulliielsp 1SOH

0001

US 11,457,354 B2

Sheet 12 of 13

Sep. 27, 2022

U.S. Patent

GOLL

POL1

c0L1

¢OlLl

LOL L

L1l Old

AS¥ UOISSSS]SBOpEOIq 8Y) UO paskq paldAlosp sl abessaw ay)
aJaUm ‘I0JBIBI9I0E (] paleubisap aul Yum paieioosse Asy ajeAlid bulpuodsallod e
UO paseq Ay UoISSas 1seopeolq paldAious ay) sidAioap Jojels|sdoe 4 paleubissp
e aJoym ‘uoljebedold 1o} siojels|8d0e (] Juadelpe 0] sAey UoISSSs 1SBopeoUd
pa)dAIous aioW JO BUO 8U) pue abessaW jseopeold paldAious ay) 1seopeold

sAay 21|[gnd aJow JO 8UO pauIWLIB}Bp 8Y) UO pased AsY U0ISSaSs JSEOPBOUQg
ay) pue A8y UOISSSS JSEOPEROIJ 8Y) Uo peseq sbessaw jseopeolq ay) jJdAioul

SJO)els|802e d(] paleublissp ay) JO 8UO Y)IM PBIBIDOSSE
yoee siied Aay A)lunoas aJow JO 8uU0 Jo sAay 21jgnd aJow JO suo aululLla(]

afessaw J1SeopEOId 8Y) 1SBOpE0.]
0] UOISSSS UOIBIIUNWWOD JSEJPEOIJ B JO) A9Y UOISSSS JSBOPEOIJ B aulwlala(]

obessaw 1SEOPEOIJ B 8AI808] 0} }Soy e

0] pa|dnoo siojeis|eooEe 4 Jo Aljeln|d e Jo siojeis@oore 4 @Jow Jo auo Buneubissp

UOIjoNJISUIl }JSeopeolq 8y ‘uoneoljdde ue woJj uoljonJIsul 1ISBOPROIJ B 8AIS09Y

00L1

US 11,457,354 B2

¢l Old

8CGl
(s)Jojelts|oooe bs

80G1 _ﬂ
(s)eoIne(ebelo)g

(S)8Inpojp buissadold | .

Sheet 13 of 13

Sep. 27, 2022

Jod gsn “69)
sadInag O/ J8eYlo

0OLS 1 108UU02JIBU}

yonoy ‘esnow “"H8) |
(s)aoine(] Induy |

(s)o01A8(
S0BLIBIU| YJOMIBN

60G1
WNIpa\ a|gepeay-Jaindwon | TOGT | | 30CL | _
(oIpne | (Uuopng/youms | (9IN ﬁgmmo\,mm_\owcm 1
YATN ‘BloWeD Josuss | 'snjA)s ‘pieogAey | ssojeum “60)
(S)a|npoN buisssedo.id od |9|jeled/euss | ‘Usslos/ped _ .
|
_

U.S. Patent

[— = = 7 777

L0G 1 | 7OG T |

(8)JosSs8201 _ (801n8p |

| Ae|dsig Jo/pue |

8CYl 8CHl | J9jjoquod Aeidsiq |

(S)8|npo buissen0.d (s)e|npojN buissaooid T — J
0061

US 11,457,354 B2

1

SYSTEM AND METHOD TO SECURELY
BROADCAST A MESSAGE TO
ACCELERATORS

TECHNICAL FIELD

Embodiments of the present disclosure relate generally to
artificial intelligence model training and inference. More
particularly, embodiments of the disclosure relate to a sys-
tem and method for a broadcast protocol to securely broad-
cast a message to data processing accelerators configured to
communicate with each other.

BACKGROUND

Data processing accelerators (DPAs) that are configured
to communicate with a host computing device generally
cannot communicate securely with each other. Communi-
cation, e.g. peer-to-peer communication, between DPAs 1s
uselul so that two or more DPAs can cooperate and coor-
dinate to perform a data processing task on behalf of a host
computing device. However, 1t 1s important that DPAs
communicate securely so that the processing task performed
by cooperating DPAs 1s performed securely such that
another computing entity may not alter a result produced by
the communicating DPAs, and may not steal code or data
from any of the communicating DPAs.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings in which like references indicate similar
clements.

FIG. 1 1s a block diagram illustrating a secure processing,
system, according to one embodiment.

FIGS. 2A and 2B are a block diagrams illustrating a
secure computing environment between one or more hosts
and one or more data processing accelerators, according to
one embodiment.

FIG. 3 1s a block diagrams 1llustrating a method of a host
and data processing accelerator, or two data processing
accelerators, generating a session key for securing commu-
nications, according to an embodiment.

FIG. 4 1s a block diagram illustrating a hardware con-
figuration of a host computing device and a plurality of data
processing accelerators that securely communicate with one
another, according to an embodiment.

FIG. 5 1s a block diagram illustrating secure communi-
cations adjacency tables between a host device and a plu-

rality of data processing accelerators, according to an
embodiment.

FIG. 6 1s block diagrams illustrating a method 600 of a
host device instructing a plurality of data processing accel-
erators to configure themselves for secure communications,
according to an embodiment.

FIG. 7 1s a block diagram 1llustrating a method 700 of a
data processing accelerator configuring itself for secure
communication with one or more other data processing
accelerators, according to an embodiment.

FIG. 8 1s block diagram illustrating a method of a data
processing accelerator receiving a processing task from a
host and performing one or more sub-tasks of the tasks by
one or more additional data processing accelerators, accord-
ing to an embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 1s a flow chart 1llustrating a broadcast protocol of
a host and one or more data processing accelerators accord-
ing to an embodiment.

FIG. 10 1s a flow diagrams 1llustrating an example method
for a host to perform a broadcast according to an embodi-
ment.

FIG. 11 1s a flow diagrams illustrating an example method
for a data processing accelerator to perform a broadcast
according to an embodiment.

FIG. 12 1s a block diagram 1llustrating a data processing,
system according to one embodiment.

DETAILED DESCRIPTION

Various embodiments and aspects of the disclosures will
be described with reference to details discussed below, and

the accompanying drawings will illustrate the various

embodiments. The following description and drawings are
illustrative of the disclosure and are not to be construed as
limiting the disclosure. Numerous specific details are
described to provide a thorough understanding of various
embodiments of the present disclosure. However, 1n certain
instances, well-known or conventional details are not
described 1 order to provide a concise discussion of
embodiments of the present disclosures.

Retference 1n the specification to “one embodiment™ or
“an embodiment” means that a particular feature, structure,
or characteristic described in conjunction with the embodi-
ment can be included in at least one embodiment of the
disclosure. The appearances of the phrase “in one embodi-
ment” 1n various places 1n the specification do not neces-
sarily all refer to the same embodiment.

The following embodiments relate to usage of a data
processing (DP) accelerator to increase processing through-
put of certain types of operations that may be offloaded (or
delegated) from a host device to one or more DP accelera-
tors. A DP accelerator can be a graphics processing unit
(GPU), an artificial itelligence (AI) accelerator, math
coprocessor, digital signal processor (DSP), or other type of
processor. A DP accelerator can be a proprietary design, such
as a Baidu® Al accelerator, or another GPU, and the like.
While embodiments are illustrated and described with host
device securely coupled to one or more DP accelerators, the
concepts described herein can be implemented more gener-
ally as a distributed processing system.

The host device and the DP accelerator can be intercon-
nected via a high-speed bus, such as a peripheral component
interconnect express (PCle), or other high-speed bus. The
host device and DP accelerator can exchange keys and
initiate a secure channel over the PCle bus before perform-
ing operations of the aspects of the invention described
below. Embodiments are described herein for generating one
or more keys for securing communications between a host
and a DP accelerator, and for securing communications
between any two DP accelerators in a plurality of DP
accelerators. In an embodiment, communications between
any two DP accelerators use one or more keys that are
unique with respect to any other two DP accelerators. Some
of the operations include the DP accelerator using an arti-
ficial telligence (Al) model to perform inferences using
data provided by the host device. Belore the Al model
inferences are delegated to a DP accelerator, secure com-
munication channels are established between the host and
DP accelerator and between the DP accelerator and any other
DP accelerator that may participate 1n the Al model infer-
ence.

US 11,457,354 B2

3

Embodiments disclosed systems and methods to broad-
cast a message among DPAs. In one embodiment, the system
receives a broadcast instruction from an application, the
broadcast mstruction designating one or more DP accelera-
tors (e.g., a subset of DPAs) of a plurality of DP accelerators
coupled to a host to receive a broadcast message. The system
determines a broadcast session key for a broadcast commu-
nication session to broadcast the broadcast message. In one
embodiment, the system determines one or more public keys
ol one or more security key pairs each associated with one
of the designated DP accelerators. The system encrypts the
broadcast message based on the broadcast session key and
encrypts the broadcast session key based on the determined
one or more public keys. The system broadcasts the
encrypted broadcast message, and the one or more encrypted
broadcast session keys to adjacent DP accelerators for
propagation, where a designated DP accelerator decrypts the
encrypted broadcast session key based on a corresponding
private key associated with the designated DP accelerator,
where the message 1s decrypted based on the broadcast
session key.

Any of the above functionality can be programmed as
executable instructions onto one or more non-transitory
computer-readable media. When the executable instructions
are executed by a processing system having at least one
hardware processor, the processing systems causes the func-
tionality to be implemented.

Any of the above functionality can be implemented by a
processing system having at least one hardware processor,
coupled to a memory programmed with executable mstruc-
tions that, when executed, cause the processing system to
implement the functionality.

FIG. 1 1s a block diagram illustrating an example of
system configuration for securing communication between a
host 104 and data processing (DP) accelerators 105-107
according to some embodiments. Referring to FIG. 1, sys-
tem configuration 100 includes, but is not limited to, one or
more client devices 101-102 communicatively coupled to
DP server 104 (e.g. host) over network 103. Client devices
101-102 may be any type of client devices such as a personal
computer (e.g., desktops, laptops, and tablets), a “thin”
client, a personal digital assistant (PDA), a Web enabled
appliance, a Smart watch, or a mobile phone (e.g., Smart-
phone), etc. Alternatively, client devices 101-102 may be
other servers. Network 103 may be any type of networks
such as a local area network (LAN), a wide area network
(WAN) such as the Internet, or a combination thereof, wired
or wireless.

Server (e.g., host) 104 may be any kind of servers or a
cluster of servers, such as Web or cloud servers, application
servers, backend servers, or a combination thereof. Server
104 further includes an interface (not shown) to allow a
client such as client devices 101-102 to access resources or
services (such as resources and services provided by DP
accelerators via server 104) provided by server 104. For
example, server 104 may be a cloud server or a server of a
data center that provides a varniety of cloud services to
clients, such as, for example, cloud storage, cloud comput-
ing services, artificial intelligence training services, data
minmng services, etc. Server 104 may be configured as a part
of soltware-as-a-service (SaaS) or platform-as-a-service
(PaaS) system over the cloud, which may be a private cloud,
public cloud, or a hybrid cloud. The interface may include
a Web interface, an application programming interface
(API), and/or a command line intertace (CLI).

For example, a client, 1n this example, a user application
of client device 101 (e.g., Web browser, application), may

10

15

20

25

30

35

40

45

50

55

60

65

4

send or transmit an istruction (e.g., artificial intelligence
(Al) traiming, inference instruction, etc.) for execution to
server 104 and the instruction 1s received by server 104 via
the mterface over network 103. In response to the instruc-
tion, server 104 communicates with DP accelerators 105-
107 to fulfill the execution of the instruction. In some
embodiments, the instruction 1s a machine learning type of
istruction where DP accelerators, as dedicated machines or
processors, can execute the instruction many times faster
than execution by server 104. Server 104 thus can control/
manage an execution job for the one or more DP accelerators
in a distributed fashion. Server 104 then returns an execution
result to client devices 101-102. A DP accelerator or Al
accelerator may include one or more dedicated processors
such as a Baidu® artificial intelligence (Al) chipset avail-
able from Baidu, Inc.® or alternatively, the DP accelerator
may be an Al chipset from another Al chipset provider.

According to one embodiment, each of the applications
accessing any of DP accelerators 105-107 hosted by data
processing server 104 (also referred to as a host) may verily
that the application 1s provided by a trusted source or vendor.
Each of the applications may be launched and executed
within a trusted execution environment (TEE) specifically
configured and executed by a central processing unit (CPU)
of host 104. When an application 1s configured to access any
one of the DP accelerators 105-107, an obscured connection
can be established between host 104 and the corresponding
one of the DP accelerator 105-107, such that the data
exchanged between host 104 and DP accelerators 105-107 1s
protected against attacks from malware/intrusions.

FIG. 2A 1s a block diagram illustrating an example of a
multi-layer protection solution for obscured communica-
tions between a host system 104 and data process (DP)
accelerators 105-107 according to some embodiments. In
one embodiment, system 200 provides a protection scheme
for obscured communications between host 104 and DP
accelerators 105-107 with or without hardware modifica-
tions to the DP accelerators. Referring to FIG. 2A, host
machine or server 104 can be depicted as a system with one
or more layers to be protected from intrusion such as user
application(s) 205, runtime libraries 206, driver 209, oper-
ating system 211, and hardware 213 (e.g., security module
(trusted platform module (TPM))/central processing unit
(CPU)). Memory safe applications 207 can run in a sand-
boxed memory. Below the applications 205 and run-time
libraries 206, one or more drivers 209 can be installed to
interface to hardware 213 and/or to DP accelerators 105-
107.

Hardware 213 can include one or more processor(s) 201
and storage device(s) 204. Storage device(s) 204 can include
one or more artificial intelligence (Al) models 202, and one
or more kernels 203. Kernels 203 can include signature
kernels, watermark-enabled kernels, encryption and/or
decryption kernels, and the like. A signature kernel, when
executed, can digitally sign any input in accordance with the
programming of the kernel. A watermark-enabled kernel can
extract a watermark from a data object (e.g. an Al model or
other data object). A watermark-enabled kernel can also
implant a watermark into an Al model, an inference output,
or other data object. A watermark kernel (e.g. a watermark
inherited kernel) can inherit a watermark from another data
object and 1mplant that watermark into a different object,
such as an inference output or an Al model. A watermark, as
used herein, 1s an i1dentifier associated with, and can be
implanted into, an Al model or an inference generated by an
Al model. For example, a watermark may be implanted in
one or more weight variables or bias variables. Alternatively,

US 11,457,354 B2

S

one or more nodes (e.g., fake nodes that are not used or
unlikely used by the artificial intelligence model) may be
created to implant or store the watermark.

Host machine 104 1s typically a CPU system which can
control and manage execution of jobs on the host machine
104 and/or DP accelerators 105-107. In order to secure/
obscure a communication channel 2135 between DP accel-
crators 105-107 and host machine 104, different components
may be required to protect different layers of the host system
that are prone to data intrusions or attacks. For example, a
trusted execution environment (TEE) can protect the user
application 205 layer and the runtime library 206 layer from
data intrusions.

System 200 includes host system 104 and DP accelerators
105-107 according to some embodiments. DP accelerators
can include Baidu® AI chipsets or another Al chipset such
as a graphical processing umts (GPUs) that can perform
artificial intelligence (Al)-1intensive computing tasks. In one
embodiment, host system 104 includes a hardware that has
one or more CPU(s) 213 equipped with a security module
(such as a trusted plattorm module (TPM)) within host
machine 104. A TPM 1s a specialized chip on an endpoint
device that stores cryptographic keys (e.g., RSA crypto-
graphic keys) specific to the host system for hardware
authentication. Fach TPM chip can contain one or more
RSA key pairs (e.g., public and private key pairs) called
endorsement keys (EK) or endorsement credentials (EC),
1.€., root keys. The key pairs are maintained mside the TPM
chip and cannot be accessed by software. Critical sections of
firmware and software can then be hashed by the EK or EC
before they are executed to protect the system against
unauthorized firmware and software modifications. The
TPM chip on the host machine can thus be used as a root of
trust for secure boot. The TPM chip can include a secure
memory for storing keys that are rooted, e.g. in hardware,
and keys that are derived from the rooted keys. In an
embodiment, secure storage can include a rooted asymmet-
ric key pair (RK): a public key (PK_RK) and a private key
(SK_RK) of the asymmetric rooted key (RK) parr.

The TPM chip also secure driver(s) 209 and operating
system (OS) 211 1n a working kernel space to communicate
with the DP accelerators 105-107. Here, driver 209 1s
provided by a DP accelerator vendor and can serve as a
driver for the user application to control a communication
channel(s) 215 between host and DP accelerators. Because
the TPM chip and secure boot processor protects the OS 211
and drivers 209 1n their kernel space, TPM also eflectively

protects the driver 209 and OS 211.

Since communication channels 215 for DP accelerators
105-107 may be exclusively occupied by the OS 211 and
driver 209, thus, communication channels 215 can be
secured through the TPM chip. In one embodiment, com-
munication channels 2135 include a peripheral component
interconnect or peripheral component interconnect express
(PCIE) channel. In one embodiment, communication chan-
nels 215 are obscured communication channels. Communi-
cation channels may be connected to one or more hardware
communication ports, accessible by drivers 209, for com-
municating over communication channels 215 with DP
accelerators 105-107. Communication channels 215 may be
secured using a session key as described herein. Each
communication channel 215 may be secured using a difler-
ent session key than other communication channels 215.
Drivers 209 may include an adjacency table that maps DP
accelerators 105-107 each to a hardware communication
port, and a session key associated with each hardware
communication port.

10

15

20

25

30

35

40

45

50

55

60

65

6

Host machine 104 can include trusted execution environ-
ment (TEE) 210 which 1s enforced to be secure by TPM/
CPU 213. A TEE 1s a secure environment. TEE can guar-
antee code and data which are loaded 1nside the TEE to be
protected with respect to confidentiality and integrity.
Examples of a TEE may be Intel® software guard exten-
sions (SGX), or AMD® secure encrypted virtualization
(SEV). Intel® SGX and/or AMD® SEV can include a set of
central processing unit (CPU) mnstruction codes that allows
user-level code to allocate private regions of memory of a
CPU that are protected from processes runmng at higher
privilege levels. Here, TEE 210 can protect user applications
205 and runtime libraries 206, where user application 205
and runtime libraries 206 may be provided by end users and
DP accelerator vendors, respectively. Here, runtime libraries
206 can convert application programming interface (API)
calls to commands for execution, configuration, and/or con-
trol of the DP accelerators. In one embodiment, runtime
libraries 206 provides a predetermined set of (e.g., pre-
defined) kernels for execution by the user applications. In an
embodiment, the kernels may be stored in storage device(s)
204 as kernels 203.

Host machine 104 can include memory safe applications
207 which are implemented using memory safe languages
such as Rust, and GolLang, etc. These memory safe appli-
cations running on memory sale Linux® releases, such as
MesalLock Linux®, can further protect system 200 from data
confidentiality and integrity attacks. However, the operating
systems may be any Linux® distributions, UNIX®, Win-
dows® OS, or Mac® OS.

The host machine 104 can be set up as follows: A memory
safe Linux® distribution 1s 1nstalled onto a system equipped
with TPM secure boot. The installation can be performed
oflline during a manufacturing or preparation stage. The
installation can also ensure that applications of a user space
of the host system are programmed using memory safe
programming languages. Ensuring other applications run-
ning on host system 104 to be memory safe applications can
further matigate potential confidentiality and integrity
attacks on host system 104.

After installation, the system can then boot up through a
TPM-based secure boot. The TPM secure boot ensures only
a signed/certified operating system and accelerator driver are
launched 1n a kernel space that provides the accelerator
services. In one embodiment, the operating 211 system can
be loaded through a hypervisor (not shown). A hypervisor or
a virtual machine manager 1s a computer soltware, firmware,
or hardware that creates and runs virtual machines. A kernel
space 1s a declarative region or scope where kernels (1.e., a
predetermined set of (e.g., predefined) functions for execu-
tion) are 1dentified to provide functionalities and services to
user applications. In the event that integrity of the system 1s
compromised, TPM secure boot may fail to boot up and
instead shuts down the system.

After secure boot, runtime libraries 206 runs and creates
TEE 210, which places runtime libraries 206 1n a trusted
memory space associated with CPU 213. Next, user appli-
cation 205 1s launched in TEFE 210. In one embodiment, user
application 205 and runtime libraries 206 are statically
linked and launched together. In another embodiment, run-
time library 206 1s launched 1n TEE 210 first and then user
application 205 1s dynamically loaded in TEE 210. In
another embodiment, user application 205 1s launched 1n
TEE first, and then runtime 206 1s dynamically loaded 1n
TEE 210. Statically linked libraries are libraries linked to an
application at compile time. Dynamic loading can be per-
formed by a dynamic linker. Dynamic linker loads and links

US 11,457,354 B2

7

shared libraries for running user applications at runtime.
Here, user applications 205 and runtime libraries 206 within
TEE 210 are visible to each other at runtime, ¢.g., all process
data are visible to each other. However, external access to
the TEE 1s denied.

In one embodiment, the user application 205 can only call
a kernel from a set of kernels as predetermined by runtime
libraries 206. In another embodiment, user application 2035
and runtime libraries 206 are hardened with side channel
free algorithm to defend against side channel attacks such as
cache-based side channel attacks. A side channel attack 1s
any attack based on information gained from the implemen-
tation of a computer system, rather than weaknesses in the
implemented algorithm itself (e.g. cryptanalysis and sofit-
ware bugs). Examples of side channel attacks include cache
attacks which are attacks based on an attacker’s ability to
monitor a cache of a shared physical system 1n a virtualized
environment or a cloud environment. Hardeming can include
masking of the cache, outputs generated by the algorithms to
be placed on the cache. Next, when the user application
finishes execution, the user application terminates 1ts execu-
tion and exits from the TEE.

In one embodiment, TEE 210 and/or memory safe appli-
cations 207 are not necessary, e€.g., user application 2035
and/or runtime libraries 206 are hosted 1n an operating
system environment of host 104.

In one embodiment, the set of kernels include obfuscation
kernel algorithms. In one embodiment, the obfuscation
kernel algorithms can be symmetric or asymmetric algo-
rithms. A symmetric obfuscation algorithm can obfuscate
and de-obfuscate data communications using a same algo-
rithm. An asymmetric obfuscation algorithm requires a pair
of algorithms, where a first of the pair 1s used to obfuscate
and the second of the pair 1s used to de-obfuscate, or vice
versa. In another embodiment, an asymmetric obfuscation
algorithm 1includes a single obfuscation algorithm used to
oblfuscate a data set but the data set 1s not intended to be
de-obfuscated, e.g., there 1s absent a counterpart de-obfus-
cation algorithm. Obfuscation refers to obscuring of an
intended meaning of a communication by making the com-
munication message dificult to understand, usually with
confusing and ambiguous language. Obscured data 1s harder
and more complex to reverse engineering. An obfuscation
algorithm can be applied before data 1s communicated to
obscure (cipher/decipher) the data communication reducing
a chance of eavesdrop. In one embodiment, the obfuscation
algorithm can further include an encryption scheme to
turther encrypt the obfuscated data for an additional layer of
protection. Unlike encryption, which may be computation-
ally intensive, obluscation algorithms may simplily the
computations. Some obluscation techniques can include but
are not limited to, letter obfuscation, name obfuscation, data
obfuscation, control flow obfuscation, etc. Letter obfusca-
tion 1s a process to replace one or more letters 1n a data with
a specific alternate letter, rendering the data meaningless.
Examples of letter obfuscation include a letter rotate func-
tion, where each letter 1s shifted along, or rotated, a prede-
termine number ol places along the alphabet. Another
example 1s to reorder or jumble up the letters based on a
specific pattern. Name obfuscation 1s a process to replace
specific targeted strings with meaningless strings. Control
flow obfuscation can change the order of control flow 1n a
program with additive code (insertion of dead code, insert-
ing uncontrolled jump, mserting alternative structures) to
hide a true control flow of an algorithm/Al model. Systems
and methods for sharing keys used for obfuscation are
described herein, below.

10

15

20

25

30

35

40

45

50

55

60

65

8

In summary, system 200 provides multiple layers of
protection for DP accelerators (for data transmissions
including machine learning models, training data, and infer-
ence outputs) from loss of data confidential and integrity.
System 200 can include a TPM-based secure boot protection
layer, a TEE protection layer, and a kernel validation/
verification layer. Furthermore, system 200 can provide a
memory sale user space by ensuring other applications on
the host machine are implemented with memory safe pro-
gramming languages, which can further eliminate attacks by
climinating potential memory corruptions/vulnerabilities.
Moreover, system 200 can include applications that use
side-channel free algorithms so to detfend against side chan-
nel attacks, such as cache based side channel attacks.

Runtime 206 can provide obfuscation kernel algorithms to
obfuscate data communication between a host 104 and DP
accelerators 105-107. In one embodiment, the obfuscation
can be pair with a cryptography scheme. In another embodi-
ment, the obfuscation 1s the sole protection scheme and
cryptography-based hardware 1s rendered unnecessary for
the DP accelerators.

FIG. 2B 1s a block diagram illustrating an example of a
host channel manager (HCM) 259 communicatively coupled
to one or more accelerator channel managers (ACMs) 270
that interface to DP accelerators 105-107, according to some
embodiments. Referring to FIG. 2B, 1n one embodiment,
HCM 259 1includes authentication module 251, termination
module 252, key manager 253, key(s) store 254, and cryp-
tography engine 255. Authentication module 251 can
authenticate a user application running on host server 104
for permission to access or use a resource of a DP accelerator
105. Termination module 2352 can terminate a connection
(e.g., channels associated with the connection would be
terminated). Key manager 253 can manage (e.g., create or
destroy) asymmetric key pairs or symmetric keys {for
encryption/decryption of one or more data packets for
different secure data exchange channels. Here, each user
application (as part of user applications 205 of FIG. 2A) can
correspond or map to different secure data exchange chan-
nels, on a one-to-many relationship, and each data exchange
channel can correspond to a DP accelerator 105. Each
application can utilize a plurality of session keys, where
cach session key 1s for a secure channel corresponding to a
DP accelerator (e.g., accelerators 105-107). Key(s) store 254
can store encryption asymmetric key pairs or symmetric
keys. Cryptography engine 255 can encrypt or decrypt a data
packet for the data exchanged through any of the secure
channels. Note that some of these modules can be integrated
into fewer modules.

In one embodiment, DP accelerator 105 includes ACM
270 and security unit (SU) 275. Security unit 275 can
include key manager 271, key(s) store 272, true random
number generator 273, and cryptography engine 274. Key
manager 271 can manage (e.g., generate, sate keep, and/or
destroy) asymmetric key pairs or symmetric keys. Key(s)
store 272 can store the cryptography asymmetric key pairs
or symmetric keys 1n secure storage within the security unit
2775. True random number generator 273 can generate seeds
for key generation and cryptographic engine 274 uses.
Cryptography engine 274 can encrypt or decrypt key infor-
mation or data packets for data exchanges. In some embodi-
ments, ACM 270 and SU 275 1s an integrated module.

DP accelerator 105 can further includes memory/storage
280 that can store artificial intelligence model(s) 277, water-
mark kernel(s) 278 (including inherited watermark kernels
watermark-enabled kernels, watermark-signature kernels, et

US 11,457,354 B2

9

al.), encryption and decryption kernels 281, and data 279.
HCM 259 can communicate with ACM 270 via communi-

cation channel 215.

FIG. 3 1s a block diagrams 1llustrating a method 300 of a
host and data processing accelerator, or two data processing,
accelerators, generating a session key for securing commu-
nications, according to an embodiment. Method 300 can be
used between a first data processing (DP) accelerator
“Accelerator 17 and a second node, “Node 2.” Node 2 can
be either a host device or second DP accelerator. Accelerator
1 has a rooted key pair PK_RK1 and SK_RK1. PK_RKI1 is
a public key of a rooted asymmetric key pair of Accelerator
1 (RK1). SK_RKI1 1s a private (secret) key (SK) of rooted
asymmetric key pair of Accelerator 1 (RK1). Rooted key
pair RK1 1s stored in a secured storage of Accelerator 1.

Similarly, Node 2 (either a host or another DP accelerator)
has a rooted key pair PK_RK2 and SK_RK2. RK2 can be

stored 1n a secure storage of Node 2.

In operation 301, Accelerator 1 generates a derived asym-
metric key pair, PK_D1 and SK_D1, from rooted key pair
PK_RK1 and SK_RKI1. Dertving an asymmetric key pair 1s
known 1n the art and will not be described herein.

In operation 302, Accelerator 1 sends to Node 2, a “Get
Public Key” command (GET_PUB_KEY) to request a pub-
lic key of Node 2. The GET_PUB_KEY includes encrypting
two of Accelerator 1’°s public keys: PK_RK1 and PK_DI1. In
an embodiment, PK_RK1 and PK_D1 can be encrypting
using Accelerator 1°s private rooted key SK_RKI1. The
GET PUB_ KEY command further includes Accelerator 1°s
public rooted key, PK_RKI1 1n clear-text form. Node 2 can
decrypt Accelerator 1°s encrypted keys using PK_RK1 and
verily that the GE'T_PUB_KEY request did, in fact, come
from Accelerator 1.

In operation 303, Node 2 generates a derived asymmetric

key pair PK_D2 and SK_D2 from Node 2’s rooted key pair
PK_RK2 and SK_RK2. Derived keys PK_D2 and SK_D2
can be stored in secure storage at Node 2.

In operation 304, Node 2 can decrypt the recerved
“GET_PUB_KEY” command from Accelerator 1, using the
clear-text public rooted key of Accelerator 1: PK_RKI.
Once decrypted, Node 2 obtains Accelerator 1’s derived
public key: PK_DI.

In operation 305, Node 2 sends to Accelerator 1 a “Return
Public Key” (RET_PUB_KEY) message. The message
includes Node 2°s PK_RK?2 and PK_D2, encrypted using
Node 2’s private rooted key, SK_RK?2. Node 2’s public
rooted key PK_RK?2 1s packaged with the encrypted keys
PK_RK2 and PK_D2, and packaged keys are then encrypted
using Accelerator 1°s derived public key PK_D1.

In operation 306, Accelerator 1 decrypts the
RET_PUB_KEY message using Accelerator 1°s private
derived key SK_D1. After decryption, Accelerator 1 can
obtain Node 2’s public rooted key, PK_RK?2. Accelerator 1
then decrypts the encrypted keys PK_RK2 and PK_D?2 using
Node 2’s newly-obtamned public rooted key, PK_RK2.
Accelerator 1 can then obtain Node 2’s derived public key,
PK_D2. In an embodiment, Accelerator 1 can verily
PK_RK2 either, or both, the decrypted PK_RK?2 and clear-
text PK_RK?2 by checking with the host device or a history
copy ol PK_RK2.

In operation 307, Accelerator 1 can generate a nonce,
&k 2
ncl.

In operation 308, Accelerator 1 can send a command
“Generate Session Key” (CMD_SESS KEY) to Node 2.
The command includes nonce ncl, encrypted using Node
2’s public derived key PK_D2. CMD_SESS_KEY instructs

10

15

20

25

30

35

40

45

50

55

60

65

10

Node 2 to generate a session key from Accelerator 1’°s nonce
ncl and a nonce nc2 that 1s generated by Node 2.

In operation 309, Node 2 can decrypt nonce ncl 1n the
received CMD_SESS_KEY using Node 2’s private derived
key SK_D2.

In operation 310, Node 2 can generate a nonce, nc2. Node
2 can then generate a session key, based on nonces ncl and
nc2. Node 2 stores the session key in an adjacency table of
Node 2. The session key 1s stored in association with
Accelerator 1 and a unique identifier of Accelerator 1.

In operation 311, Node 2 can send nonce nc2 to Accel-
erator 1. Node 2 packages ncl, nc2, and PK_D1 1n a first
package and encrypts the first package using Node 2’s
private derived key, SR_D2. Node 2 then adds PK_D?2 to the
encrypted first package, and generates a second encrypted
package that 1s encrypted using Accelerator 1°s public
derived key, PK_D1. The encrypted second package 1s then
transmitted to Accelerator 1.

In operation 312, Accelerator 1 receives the encrypted
second package from Node 2 and decrypts the second
package using Accelerator 1’°s derived private key, SK_D1.
Accelerator 1 can then remove PK_D?2 from the decrypted
second package, leaving just the encrypted first package. In
an embodiment, Accelerator 1 can verily that PK_D2
removed from the decrypted second package matches the
PK_D2 previously received 1n operation 305 and decrypted
in operation 306, above. Accelerator 1 can also verity that
the ncl obtained from the decrypted first package, and
previously sent to Node 2 1n operation 308, has not expired
(aka, “verity freshness™). Accelerator 1 can then generate a
session key based upon nonces ncl and nc2. Accelerator 1
can store the generated session key in Accelerator 1°s
adjacency table, 1n association with a unique i1dentifier of the
Node 2 and the session key.

At this point, both Accelerator 1 and Node 2 have a same
session key that was derived from nonces ncl and nc2 Both
Accelerator 1 and Node 2 have stored the session key 1n their
respective adjacency tables. Adjacency tables are described
in detail, below, with reference to FIG. 5.

FIG. 4 1s a block diagram illustrating a hardware con-
figuration 400 of a host computing device 104 and a plurality
ol data processing accelerators 105-107 that securely com-
municate with one another, according to an embodiment.

Host 104 1s communicatively coupled to each of DP
accelerator 105, 106, and 107. Host 104 includes a commu-
nication interface having, e.g., ports 0, 1, and 2. In FIG. 4,
DP accelerator 105°s communication port 0 1s communica-
tively coupled to host 104°s communication port 0. DP
accelerator 106’ s communication port O 1s communicatively
coupled to host 104’s communication port 1. DP accelerator
107°s communication port O 1s communicatively coupled to
host 104’s communication port 2. DP accelerator’s 105-107
are also communicatively coupled to each other. DP accel-
crator 105°s communication port 1 1s communicatively
coupled to DP accelerator 106’s communication port 1. DP
accelerator 105°s communication port 2 1s communicatively
coupled to DP accelerator 107°s communication port 2. DP
accelerator 106’ s communication port 2 1s communicatively
coupled to DP accelerator 107°s communication port 1. Each
of the foregoing communication channels 1s secured by a
different session key for the other communication channels.
Thus, 1s any one of the communication channels 1s compro-
mised, the other communication channels are still secure.
Further, there 1s redundancy 1n communication with respect
to the host device 104. Each DP accelerator 105-107 can
monitor theirr own communication ports to ensure that the
cach communication channel i1s operable. 1T a channel fails,

US 11,457,354 B2

11

one or both of the DP accelerators at either end of the
channel can notify the host 104 of the failed communication
channel.

Each of the host 104, and DP accelerator 105, 106, and
107, can have an adjacency table that stores a list of nodes
(DP accelerators or host) that the host 104 or DP accelerator
105-107 1s communicatively coupled to. Adjacency tables
are described below, with reference to FIG. 5.

FIG. 5 1s a block diagram illustrating secure communi-
cations adjacency tables 300, 510, 520, and 530 between a
host device 104 and a plurality of data processing (DP)
accelerators 105-107, according to an embodiment.

As shown 1n FIG. 4, above, host 104 and DP accelerators
105-107 are communicatively coupled via communication
ports on each of the host and DP accelerators. Host 104, e.g.,
can have an adjacency table 500 that lists the DP accelerators
(DPA) that are communicatively coupled to host 104. DP
accelerators, e.g. 105-107, can have a unique 1D 501, e.g.
DP_105_1ID, etc., so that the DP accelerator can be referred
to by name. In an embodiment, when a host wants to send
a message to a DP accelerator, the message can have the
format [source, message payload, destination]. Host can
refer to 1itself, as sender, by its own ID 301 e.g.
HOST 104 ID. Host can refer to a destination DP accel-
erator by its unique ID 3501, by a port 502 to which the DP
accelerator 1s connected at the host, or by the address 503 1n
memory to which DP accelerator port 1s connected at the
host. Thus, if host having ID 501 of HOST_104_ID sends a
message to DP accelerator 106, the host can look up the 1D
501 of DP accelerator 106, or the port 502, or address of the
port 503 to use as the destination address for the message.
The message can be encrypted using the session key 504 for
the host and DP accelerator 106. Similarly, DP accelerator
105 can have an adjacency table 510, stored 1n memory of
DP accelerator 105, indicating an 1D, port 512, address 513,
and session key 514 for communicating with each of host
104, DP accelerator 106, or DP accelerator 107. DP accel-
erator 106 can have an adjacency table 3520, stored in
memory of DP accelerator 106, indicating an ID 521, port
522, address 523, and session key 524 for communicating
with each of host 104, DP accelerator 105, and DP accel-
erator 107. DP accelerator 107 can have an adjacency table
530, stored 1n memory of DP accelerator 107, indicating an
ID 531, port 532, address 533, and session key 534 of host
104, DP accelerator 105, and DP accelerator 107.

Determining and generating session keys for each channel
between two devices (host to DP accelerator, or DP accel-
erator to DP accelerator) are described above with reference
to FIG. 3, and a method 1s described below with reference
to FIG. 6. A session key of NULL indicates that the session
key has not yet been determined between the two nodes
(host or DP accelerator) referenced 1n the line item of the
adjacency table having the NULL session key. For example,
DP accelerator 106 adjacency table 520 indicates a line item
tor DP accelerator 103, having unique 1D DPA_105_1ID, and
a null session 1dentifier. The null session 1dentifier indicates
that DP accelerator 106 and DP accelerator 105 have not yet
determined a session key for communication between DP
accelerator 106 and DP accelerator 105.

FIG. 6 1s block diagrams illustrating a method of a host
device mnstructing a plurality of data processing accelerators
to configure themselves for secure communications, accord-
ing to an embodiment.

In operation 601, a host, e.g. host 104, generates and
stores an adjacency table that lists each DP accelerator that
1s configured for communication with the host. In an
embodiment, one or more DP accelerators can be configured

10

15

20

25

30

35

40

45

50

55

60

65

12

by a system administrator using a configuration file. The
configuration file can indicate which DP accelerators can
communicate with which other DP accelerators. The con-
figuration file can specily the unique i1dentifier for the host
and DP accelerators, the specific communication port num-
ber to which each DP accelerator i1s assigned, and/or the
memory address corresponding to the host commumnication
port number associated with the DP accelerator. There can
be any number of DP accelerators. For simplicity, one host,
104, and three DP accelerators, e.g. 105-107, are described.
The generated adjacency table for the host can be similar to
host table 500, described above with reference to FIG. 5.

In operation 602, logic in the host can iterate through the
list of DP accelerators configured for the host. For each DP
accelerator, operations 603 through 605 can be performed.
In there are no more DP accelerators 1n the list, then method
600 ends.

In operation 603, host selects a DP accelerator from the
list and generates a session key with the selected DP
accelerator. Generating a session key between an accelerator
and a host (Node) 1s described above with reference to FIG.
3. Host stores the generated session key in an entry in the
adjacency table corresponding to the selected DP accelera-
tor. Host uses the configuration file complete the entry in the
adjacency table, including the unique identifier of the DP
accelerator, the port number of the host for communicating
with the DP accelerator, and the memory address of the port.
In an embodiment, the memory address can be calculated
from a base address of the communication ports, and an
oflset 1n memory for each port number.

In operation 604, host transmits instructions to the
selected DP accelerator for the DP accelerator to create its
own adjacency table. The mformation 1n the host-transmit-
ted instructions can be obtained from the configuration file.
The 1nstructions include a list of other DP accelerators that
the selected DP accelerator 1s to include when the selected
DP accelerator generates 1ts own adjacency table. The
instructions can further include a unique 1dentifier of each of
the other DP accelerators, a port number of the selected DP
accelerator to assign to each of the other DP accelerators, a
memory address to assign to each of the other DP accelera-
tors, and a NULL value for the session key associated with
cach of the other DP accelerators. The 1nstructions further
include an instruction that the selected DP accelerator 1s to
generate 1ts own adjacency table, and to generate and store
a session key with each of the other DP accelerators 1n the
adjacency table of the selected DP accelerator. A method for
a selected DP accelerator to generate its own adjacency table
1s described below with reference to FIG. 7.

In operation 605, host receives a signal from the selected
DP accelerator that the selected DP accelerator has gener-
ated 1ts own adjacency table, populated the adjacency table
with the information provided 1n operation 604, above, and
has generated and stored a session key for each of the other
DP accelerators 1n the selected DP accelerator’s adjacency
table. Method 600 continues at operation 602.

FIG. 7 1s a block diagram 1llustrating a method 700 of a
data processing accelerator configuring itsellf for secure
communication with one or more other data processing
accelerators, according to an embodiment.

In operation 701, a DP accelerator (“this” DP accelerator)
receives 1nstructions from a host device to generate an
adjacency table for this DP accelerator. The information 1n
the host-transmitted 1nstructions can be obtained by the host
from an administrator-created configuration file. In an
embodiment, the instructions can be default instructions.
The mstructions include a list of other DP accelerators that

US 11,457,354 B2

13

the DP accelerator 1s to include when this DP accelerator
generates 1ts own adjacency table. The instructions can
turther include a umique 1dentifier of each of the other DP
accelerators, a port number of this DP accelerator to assign
to each of the other DP accelerators in the instructions, a
memory address to assign to each of the other DP accelera-
tors, and a NULL value for the session key associated with
cach of the other DP accelerators. The instructions further
include an instruction that the DP accelerator 1s to generate
its own adjacency table, and to generate and store a session
key with each of the other DP accelerators in the adjacency
table of this DP accelerator.

In operation 702, the DP accelerator stores the adjacency
table that lists each of the other DP accelerators that this DP
accelerator 1s to generate and store a session key {for.

In operation 703, logic of the DP accelerator iterates
through the list of other DP accelerators. If there are more
DP accelerators 1n the list of other DP accelerators, then the
logic selects a next DP accelerator from the list.

In operation 704, the (“this”) DP accelerator and the
selected DP accelerator generate a session key for use 1n
communicating between this DP accelerator and the selected
DP accelerator. Generating a session key between a DP
accelerator and a node (host or DP accelerator) 1s described
above with reference to FIG. 3. DP accelerator logic stores
the session key 1n 1ts adjacency table for this DP accelerator,
in association with the selected DP accelerator.

In operation 705, if there are no more DP accelerators in
the list, and thus no more session keys to generate, then this
DP accelerator transmits a message or signal to the host that
this DP accelerator has finished generating 1ts adjacency
table and has generated a session key for secure communi-
cation with each of the other DP accelerators in the adja-
cency table. In an embodiment, each session key in the
adjacency table 1s different than other session keys in the
adjacency table.

FI1G. 8 1s block diagram 1illustrating a method 800 of a data
processing accelerator receiving a processing task from a
host and performing one or more sub-tasks of the tasks by
one or more additional data processing accelerators, accord-
ing to an embodiment.

In operation 801, a DP accelerator receives a processing,
task from a host device. In an embodiment, the processing
task includes mstructions on dividing the processing task
into sub-tasks that are to be processed on at least on
additional DP accelerator, and the DP accelerator has an
entry 1 the adjacency table of the DP accelerator for
securely communicating with the at least one additional DP
accelerator. In this embodiment, 1t 1s assumed that host
determined that the at least one additional DP accelerator 1s,
or soon will be, 1dle such that the at least one additional DP
accelerator can perform one or more sub-tasks on behalf of
the DP accelerator.

In operation 802, the DP accelerator transmits one or more
sub-tasks to the at least one additional DP accelerator with
instructions to perform the sub-task(s). The at least one
additional DP accelerator performs the one or more sub-
tasks.

In operation 803, the DP accelerator also performs one or
more sub-tasks of the received processing task.

In operation 804, the DP accelerator receives one or more
results from the at least one additional DP accelerator. The
DP accelerator completes 1ts one or more sub-tasks of the
processing tasks, and returns, to the host, one or more results
from the one or more sub-tasks perform by the DP accel-
erator and the one or more sub-tasks performed by the at
least one additional DP accelerator. Method 800 ends.

10

15

20

25

30

35

40

45

50

55

60

65

14

The peer-to-peer communication between DPAs can be
extended to broadcast a message from the host to a select
number of DPAs (or subset of DPAs or designated DPAs)
using a broadcast protocol through a communication chain
between the DPAs or via a communication switch (such as
a PCle switch) coupled to the DPAs. Broadcast can be used
where the host 1s required to communicate a message to a
number of DPAs. A broadcast communication occurs when
an application of the host schedules a job to be processed by
a subset ol DPAs (or designated DPAs) and the application
1s required to send the same information (e.g., nput data or
model) to the subset of DPAs. The broadcast protocol 1s
required to be secure (1.e., only the subset of DPAs can read
the broadcast message) yet robust (e.g., having a session-
based encryption scheme).

FIG. 9 1s a flow chart 1llustrating a broadcast protocol of
a host and one or more data processing accelerators accord-
ing to an embodiment. A broadcast communication refers to
a communication of data from a host or DPA to many
listeners (e.g., many DPAs) (e.g., one-to-many relationship),
instead of a one-to-one relationship. The recerving DPAs can
include many DPAs, including DPAs 1n communication with
one or more hosts or a subset of DPAs associated with one
host 1n communication with a requesting application
requesting the broadcast. Referring to FIG. 9, method 900
can be performed by host 104 and one or more DPAs
105-107 communicatively coupled to host 104, where the
DPAs are coupled to each other 1n a chain configuration as
illustrated 1 FIG. 4.

In one embodiment, at block 901, host 104 receives a
broadcast request from an application of host 104. The
broadcast request can be a request to broadcast an 1dentical,
or repeatable message to a subset of DPAs 1n communication
with host 104. The broadcast request can identify the subset
of DPAs by DPA identifiers. At block 902, optionally, host
104 determines a list of DPAs coupled to host 104 or
requests an update to the list of coupled DPAs. In one
embodiment, host 104 verifies the broadcast DPAs are
within the list of DPAs. At block 904, host 104 sends
requests to the subset of DPAs for a public key associated
with the DPAs. The public key can be part of a security key
pair derived by a root key of a security unit for each of the
DPAs, or a public key associated with the root key. At block
9035, the DPAs generate derived security key pairs, where the
derived private keys of the pairs are kept safe by the DPAs,

and the dertved public keys of the pairs are sent to host 104,
at block 906.

At block 907, host 104 selects a broadcast DPA. In one
embodiment, the broadcast DPA can be selected based on an
average ol the shortest distances to each of the subset of
DPAs from the broadcast DPA to minimize a broadcast
latency. In another embodiment, the broadcast DPA can be
selected based on a currently scheduled computational load,
or available computation capacity of the DPAs compared
with the rest of the DPAs. In another embodiment, the DPASs
can be randomly selected based on a random number
generator. For this example, the broadcast DPA selected 1s
DPA 105 for the purpose of illustration. At block 908, host
104 sends the public keys to the broadcast DPA 105, and
optionally, generates and sends a broadcast session key to
the broadcast DPA 105, where the broadcast session key 1s
a symmetric key used for encrypting and decrypting of the
broadcast communication session. In another embodiment,
the broadcast session key 1s generated locally by broadcast
DPA 105 and the broadcast session key 1s sent by broadcast
DPA 105 to host 104. In one embodiment, the broadcast
session key can be a randomly generated session key.

US 11,457,354 B2

15

At block 909, upon receiving the public keys (and option-
ally the broadcast session key), DPA 105 encrypts the
broadcast session key with each of the public keys to
generate a set of messages for propagation. In another
embodiment, block 909 can be performed by host 104, e.g.,
host 104 encrypt the broadcast session key with each of the
public keys to generate a set of messages and host 104 sends
the set of messages to DPA 105 for propagation.

At block 910, broadcast DPA 105 broadcasts the
encrypted broadcast session key to the DPAs through physi-

cal channels coupled to any of 1ts ports (here, as 1llustrated
in FI1G. 4, DPA 106 1s coupled at port 1 of DPA 1035, and DPA

107 1s coupled at port 2 of DPA 105). Broadcast DPA 105
sends the encrypted broadcast session key to DPA 106 at
port 1 and DPA 107 at port 2. In one embodiment, the
broadcast message includes a message header that specifies
a propagation istruction for the DPAs receiving the broad-
cast message to propagate or repeat the broadcast to DPAs
coupled to their respective ports, and an instruction to
terminate a propagation when any DPA receives the broad-
cast message twice. Referring to FIG. 4, for example, upon
receiving the broadcast at port 1 by DPA 106, DPA 106 sends
or propagates a first message to a DPA coupled at port 2 of
DPA 106, e.g., sends the broadcast message to DPA 107 via
port 1 of DPA 107. Because DPA 107 received the message
twice, (from DPA 105 and DPA 106), this first message
propagation terminates at DPA 107. Similarly, upon receiv-
ing the broadcast at port 2 by DPA 107 (because DPA 105
sends the broadcast to DPA 107 at port 2), DPA 107 sends
or propagates a second propagation message to a DPA
coupled at port 1 of DPA 107, e.g., sends the broadcast
message to DPA 106 via port 2 of DPA 106. Here, because
DPA 106 received the message twice (from DPA 1035 and
DPA 107), this second message propagation terminates at
DPA 106. At block 911, upon dispatch of the propagation
messages, DPA 105 notifies host 104 that the broadcast
session key 1s delivered to the DPAs. At block 912, each of
the subset of DPAs receiving the encrypted broadcast ses-
sion key decrypts and obtains the broadcast session key
using a private key of the DPA.

Thereafter, data to be broadcasted by the requesting
application can be encrypted by host 104 based on a broad-
cast session key and data can be sent from host 104 to
broadcast DPA 105 for propagation, or broadcast DPA 105
encrypts the data based on the broadcast session key for
propagation. Upon receiving the broadcast data, the subset
of DPAs with the broadcast session key can decrypt and
obtain the broadcast data.

In another embodiment, DPA 105 broadcasts the
encrypted broadcast session key to a DPA coupled to only
one of 1ts ports, the broadcast includes a propagation instruc-
tion for the DPAs recerving the broadcast message to propa-
gate the broadcast to DPAs coupled to their respective ports,
and an 1nstruction to terminate the propagation when the
broadcast DPA 105 receives the original broadcast message.
In this case, the broadcast message would traverse in a
circular manner. For example, the broadcast can traverse
clockwise, e.g., DPA 105->DPA 107->DPA 106->DPA 105,
in which case, DPA 105 receirves the original broadcast and

terminates the propagation. The broadcast can traverse
counter clockwise, e.g., DPA 105->DPA 106->DPA

107->DPA 105, 1n which case, DPA 1035 receives the original
broadcast and terminates the propagation. When each of the
DPAs receive the broadcast, the subset of DPAs participating
in the broadcast can decrypt and obtain the broadcast session
key based on a private key associated with the DPA.
Thereatter, broadcast data received by any of the subset of

5

10

15

20

25

30

35

40

45

50

55

60

65

16

DPAs can decrypt the broadcast using the broadcast session
key. In some embodiments, any communication (or broad-
casts) between adjacent ADPs discussed above can be
further encrypted using adjacent session keys based on the
adjacency tables of FIG. 5.

FIG. 10 1s a tlow diagrams 1llustrating an example method
for a host to perform a broadcast according to an embodi-
ment. Process 1000 may be performed by processing logic
which may include software, hardware, or a combination
thereof. For example, process 1000 may be performed by
host system, such as host 104 of FIG. 4 or FIG. 9. Referring
to FIG. 10, at block 1001, processing logic determines a list
of data processing accelerators (DPAs) communicatively
coupled to the host and notifies an application of the
available DPAs. At block 1002, in response to an application
requesting to broadcast to a subset of the DPAs, processing
logic sends a request for public keys from the subset of the
DPAs. At block 1003, processing logic determines one of the
subset of DPAs as a broadcast DPA to facilitate the broad-
cast. Here, the selection can be made based on an average of
nearest distances to the rest of the subset of DPAs or based
on availability of computational capacity, or based on a
random selection, etc. At block 1004, processing logic
transmits to the broadcast DPA the broadcast session key,
and each of the public keys for the subset of DPAs, where
the broadcast DPA encrypts the broadcast session key using
cach of the public keys to propagation the message to 1ts
adjacent DPAs. In another embodiment, processing logic
encrypts the broadcast session key using each of the public
keys for the subset of DPAs to generate a set of encrypted
broadcast session key messages, and transmit the set of
messages to the broadcast DPA, where only a DPA with a
corresponding private key can decrypt the message. At block
1005, processing logic receives a signal indicating that the
broadcast DPA broadcasted the encrypted broadcast session
key to each of the one or more DPAs, where only the subset
of DPAs can decrypt the broadcast session key.

FIG. 11 1s a flow diagrams illustrating an example method
for a data processing accelerator to perform a broadcast
according to an embodiment. Process 1100 may be per-
formed by processing logic which may include software,
hardware, or a combination thereof. For example, process

1100 may be pertormed by a DPA, such as DPA 105 of FIG.
4 or FIG. 9. Referring to FIG. 11, at block 1101, processing
logic recetves a broadcast mstruction from an application,
the broadcast nstruction designating one or more DP accel-
erators of a plurality of DP accelerators coupled to a host to
receive a broadcast message. At block 1102, processing
logic determines a broadcast session key for a broadcast
communication session to broadcast the broadcast message.
At block 1103, processing logic determines one or more
public keys of one or more security key pairs each associated
with one of the designated DP accelerators. At block 1104,
processing logic encrypts the broadcast message based on
the broadcast session key and the broadcast session key
based on the determined one or more public keys. At block
1105, processing logic broadcasts the encrypted broadcast
message, and the one or more encrypted broadcast session
keys to adjacent DP accelerators for propagation, where a
designated DP accelerator decrypts the encrypted broadcast
session key based on a corresponding private key associated
with the designated DP accelerator, where the message 1s
decrypted based on the broadcast session key.

In one embodiment, the DP accelerator receiving the
broadcast mstruction from the application 1s designated as a
broadcast DP accelerator to broadcast a message. In one
embodiment, the adjacent DP accelerators propagates the

US 11,457,354 B2

17

broadcast by receiving the broadcast and forwarding the
broadcast to their adjacent DP accelerators.

In one embodiment, the broadcast propagation terminates
if the designated DP accelerator receives the propagation
broadcast. In one embodiment, the broadcasted message for
propagation 1ncludes a message source, a message context,
but no message destination.

In one embodiment, a non-designated DP accelerator of
the plurality of DP accelerators receives the broadcast but
does not have a corresponding key to decrypt the encrypted
broadcast for generation of the broadcast session key and the
non-designated DP accelerator has no access to the broad-
cast session key to decrypt the broadcast message for the
communication session. In one embodiment, the broadcast
message 1s communicated via a physical communication
channel associated with a DP accelerator.

With respect to any of the above aspects, a host processor
may be a central processing unit (CPU) and a DP accelerator
may be a general-purpose processing unit (GPU) coupled to
the CPU over a bus or interconnect. A DP accelerator may
be implemented 1n a form of an application-specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA) device, or other forms of integrated circuits (ICs).
Alternatively, the host processor may be a part of a primary
data processing system while a DP accelerator may be one
of many distributed systems as secondary systems that the
primary system can oflload 1ts data processing tasks
remotely over a network (e.g., cloud computing systems
such as a solftware as a service or SaaS system, or a platform
as a service or Paas system). A link between a host processor
and a DP accelerator may be a peripheral component inter-
connect express (PCle) link or a network connection such as
Ethernet connection.

Note that some or all of the components as shown and
described above may be implemented in software, hardware,
or a combination thereof. For example, such components
can be implemented as software installed and stored in a
persistent storage device, which can be loaded and executed
in a memory by a processor (not shown) to carry out the
processes or operations described throughout this applica-
tion. Alternatively, such components can be implemented as
executable code programmed or embedded into dedicated
hardware such as an integrated circuit (e.g., an application
specific IC or ASIC), a digital signal processor (DSP), or a
fiecld programmable gate array (FPGA), which can be
accessed via a corresponding driver and/or operating system
from an application. Furthermore, such components can be
implemented as specific hardware logic 1n a processor or
processor core as part ol an instruction set accessible by a
soltware component via one or more speciiic instructions.

FIG. 12 1s a block diagram illustrating an example of a
data processing system which may be used with one
embodiment of the mmvention. For example, system 1500
may represent any of data processing systems described
above performing any of the processes or methods described
above, such as, for example, a client device or a server
described above, such as, for example, host 104 or DPAs
105-107, as described above.

System 1500 can include many different components.
These components can be implemented as integrated circuits
(ICs), portions thereof, discrete electronic devices, or other
modules adapted to a circuit board such as a motherboard or
add-in card of the computer system, or as components
otherwise incorporated within a chassis of the computer
system.

Note also that system 1500 1s intended to show a high
level view of many components of the computer system.

.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

However, 1t 1s to be understood that additional components
may be present 1n certain implementations and furthermore,
different arrangement of the components shown may occur
in other implementations. System 1500 may represent a
desktop, a laptop, a tablet, a server, a mobile phone, a media
player, a personal digital assistant (PDA), a Smartwatch, a
personal communicator, a gaming device, a network router
or hub, a wireless access point (AP) or repeater, a set-top
box, or a combination thereof. Further, while only a single
machine or system 1is illustrated, the term “machine” or
“system” shall also be taken to include any collection of
machines or systems that individually or jointly execute a set
(or multiple sets) of instructions to perform any one or more
ol the methodologies discussed herein.

In one embodiment, system 1500 includes processor
1501, memory 1503, and devices 1505-1508 via a bus or an
interconnect 1510. Processor 1501 may represent a single
processor or multiple processors with a single processor core
or multiple processor cores included therein. Processor 1501
may represent one or more general-purpose processors such
as a microprocessor, a central processing unit (CPU), or the
like. More particularly, processor 1501 may be a complex
istruction set computing (CISC) microprocessor, reduced
instruction set computing (RISC) microprocessor, very long
istruction word (VLIW) microprocessor, or processor
implementing other instruction sets, or processors 1mple-
menting a combination of instruction sets. Processor 1501
may also be one or more special-purpose processors such as
an application specific integrated circuit (ASIC), a cellular
or baseband processor, a field programmable gate array
(FPGA), a digital signal processor (DSP), a network pro-
cessor, a graphics processor, a network processor, a com-
munications processor, a cryptographic processor, a co-
processor, an embedded processor, or any other type of logic
capable of processing instructions.

Processor 1501, which may be a low power multi-core
processor socket such as an ultra-low voltage processor, may
act as a main processing unit and central hub for commu-
nication with the various components of the system. Such
processor can be implemented as a system on chip (SoC).
Processor 1501 1s configured to execute instructions for
performing the operations and steps discussed herein. Sys-
tem 1500 may further include a graphics interface that
communicates with optional graphics subsystem 1504,
which may include a display controller, a graphics proces-
sor, and/or a display device.

Processor 1501 may communicate with memory 13503,
which 1n one embodiment can be implemented via multiple
memory devices to provide for a given amount of system
memory. Memory 1503 may include one or more volatile

storage (or memory) devices such as random access memory
(RAM), dynamic RAM (DRAM), synchronous DRAM

(SDRAM), static RAM (SRAM), or other types of storage
devices. Memory 1503 may store information including
sequences ol istructions that are executed by processor
1501, or any other device. For example, executable code
and/or data of a variety of operating systems, device drivers,
firmware (e.g., mput output basic system or BIOS), and/or
applications can be loaded in memory 1503 and executed by
processor 1501. An operating system can be any kind of
operating systems, such as, for example, Windows® oper-
ating system from Microsoft®, Mac OS®/10S® {from
Apple, Android® from Google®, Linux®, Unix®, or other
real-time or embedded operating systems such as VxWorks.

System 1500 may further include 10 devices such as
devices 1505-1508, including network interface device(s)
1505, optional mput device(s) 1506, and other optional 10O

US 11,457,354 B2

19

device(s) 1507. Network interface device 1505 may include
a wireless transceiver and/or a network interface card (NIC).
The wireless transceiver may be a WiF1 transceiver, an
infrared transceiver, a Bluetooth transceiver, a WiMax trans-
ceiver, a wireless cellular telephony transceiver, a satellite
transceiver (€.g., a global positioming system (GPS) trans-
ceiver), or other radio frequency (RF) transceivers, or a
combination thereol. The NIC may be an Fthernet card.

Input device(s) 1506 may include a mouse, a touch pad,
a touch sensitive screen (which may be integrated with
display device 1504), a pointer device such as a stylus,
and/or a keyboard (e.g., physical keyboard or a virtual
keyboard displayed as part of a touch sensitive screen). For
example, mput device 1506 may include a touch screen
controller coupled to a touch screen. The touch screen and
touch screen controller can, for example, detect contact and
movement or break thereof using any of a plurality of touch
sensitivity technologies, including but not limited to capaci-
tive, resistive, infrared, and surface acoustic wave technolo-
gies, as well as other proximity sensor arrays or other
clements for determining one or more points of contact with
the touch screen.

10 devices 1507 may include an audio device. An audio
device may 1include a speaker and/or a microphone to
tacilitate voice-enabled functions, such as voice recognition,
voice replication, digital recording, and/or telephony func-
tions. Other 10 devices 1507 may further include universal
serial bus (USB) port(s), parallel port(s), serial port(s), a
printer, a network interface, a bus bridge (e.g., a PCI-PCI
bridge), sensor(s) (e.g., a motion sensor such as an acceler-
ometer, gyroscope, a magnetometer, a light sensor, compass,
a proximity sensor, etc.), or a combination thereof. Devices
1507 may further include an 1imaging processing subsystem
(e.g., a camera), which may include an optical sensor, such
as a charged coupled device (CCD) or a complementary
metal-oxide semiconductor (CMOS) optical sensor, utilized
to facilitate camera functions, such as recording photographs
and video clips. Certain sensors may be coupled to inter-
connect 1510 via a sensor hub (not shown), while other
devices such as a keyboard or thermal sensor may be
controlled by an embedded controller (not shown), depen-
dent upon the specific configuration or design ol system
1500.

To provide for persistent storage of information such as
data, applications, one or more operating systems and so
forth, a mass storage (not shown) may also couple to
processor 1501. In various embodiments, to enable a thinner
and lighter system design as well as to 1mprove system
responsiveness, this mass storage may be implemented via
a solid state device (SSD). However 1n other embodiments,
the mass storage may primarily be implemented using a hard
disk drive (HDD) with a smaller amount of SSD storage to
act as a SSD cache to enable non-volatile storage of context
state and other such information during power down events
so that a fast power up can occur on re-mitiation of system
activities. Also a tlash device may be coupled to processor
1501, e.g., via a senal peripheral interface (SPI). This flash
device may provide for non-volatile storage of system
soltware, imncluding a basic mput/output software (BIOS) as
well as other firmware of the system.

Storage device 1508 may include computer-accessible
storage medium 1509 (also known as a machine-readable
storage medium or a computer-readable medium) on which
1s stored one or more sets of instructions or software (e.g.,
module, unit, and/or logic 1528) embodying any one or
more of the methodologies or functions described herein.
Processing module/unit/logic 1528 may represent any of the

10

15

20

25

30

35

40

45

50

55

60

65

20

components described above, such as, for example, host
server 104 or DPAs 105-107 of FIG. 4. Processing module/
unmt/logic 1528 may also reside, completely or at least
partially, within memory 1503 and/or within processor 1501
during execution thereof by data processing system 1500,
memory 1503 and processor 1501 also constituting
machine-accessible storage media. Processing module/unit/
logic 1528 may further be transmitted or received over a
network via network interface device 1505.

Computer-readable storage medium 1509 may also be
used to store the some soltware functionalities described
above persistently. While computer-readable storage
medium 1509 1s shown 1n an exemplary embodiment to be
a single medium, the term “‘computer-readable storage
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
and/or associated caches and servers) that store the one or
more sets of instructions. The terms “computer-readable
storage medium” shall also be taken to include any medium
that 1s capable of storing or encoding a set of istructions for
execution by the machine and that cause the machine to
perform any one or more of the methodologies of the present
invention. The term “computer-readable storage medium”™
shall accordingly be taken to include, but not be limited to,
solid-state memories, and optical and magnetic media, or
any other non-transitory machine-readable medium.

Processing module/unit/logic 1528, components and
other features described herein can be implemented as
discrete hardware components or integrated 1n the function-
ality of hardware components such as ASICS, FPGAs, DSPs
or similar devices. In addition, processing module/unit/logic
1528 can be implemented as firmware or functional circuitry
within hardware devices. Further, processing module/unit/
logic 1528 can be implemented 1n any combination hard-
ware devices and soltware components.

Note that while system 1500 1s 1llustrated with various
components ol a data processing system, it 1s not intended
to represent any particular architecture or manner of inter-
connecting the components; as such details are not germane
to embodiments of the present invention. It will also be
appreciated that network computers, handheld computers,
mobile phones, servers, and/or other data processing sys-
tems which have fewer components or perhaps more com-
ponents may also be used with embodiments of the 1nven-
tion.

Some portions of the preceding detailed descriptions have
been presented in terms of algorithms and symbolic repre-
sentations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm 1s here, and generally,
conceived to be a self-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, 1t 1s appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories mto other data
similarly represented as physical quantities within the com-

US 11,457,354 B2

21

puter system memories or registers or other such iforma-
tion storage, transmission or display devices.

The techmiques shown 1n the figures can be implemented
using code and data stored and executed on one or more
electronic devices. Such electronic devices store and com-
municate (internally and/or with other electronic devices
over a network) code and data using computer-readable
media, such as non-transitory computer-readable storage
media (e.g., magnetic disks; optical disks; random access
memory; read only memory; flash memory devices; phase-
change memory) and transitory computer-readable transmis-
sion media (e.g., electrical, optical, acoustical or other form
ol propagated signals—such as carrier waves, inirared sig-
nals, digital signals).

The processes or methods depicted in the preceding
figures may be performed by processing logic that comprises
hardware (e.g. circuitry, dedicated logic, etc.), firmware,
soltware (e.g., embodied on a non-transitory computer read-
able medium), or a combination of both. Although the
processes or methods are described above 1n terms of some
sequential operations, 1t should be appreciated that some of
the operations described may be performed in a diflerent
order. Moreover, some operations may be performed 1n
parallel rather than sequentially.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to specific exem-
plary embodiments thereof. It will be evident that various
modifications may be made thereto without departing from
the broader spirit and scope of the invention as set forth in
the following claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather
than a restrictive sense.

What 1s claimed 1s:

1. A computer-implemented method to broadcast a mes-
sage to two or more data processing (DP) accelerators, the
method comprising:

receiving a broadcast request from a host that hosts an

application that initiated a broadcast message to be
broadcast to two or more DP accelerators of a plurality
of DP accelerators coupled to the host, wherein the
broadcast request includes two or more DP accelerator
identifiers (IDs) 1identifying the two or more DP accel-
crators;

receiving from the host a broadcast session key for a

broadcast communication session to broadcast the
broadcast message; and

for each of the one or more DP accelerator 1Ds:

identifying a public key of a security key pair correspond-

ing to the DP accelerator 1D,

encrypting the broadcast message using the broadcast

session key,

encrypting the broadcast session key using the public key,

and

transmitting the encrypted broadcast message and the

encrypted broadcast session key to the DP accelerator
identified by the DP accelerator ID, wherein the DP
accelerator 1s configured to decrypt the encrypted
broadcast session key using a corresponding private
key associated with the DP accelerator 1D and to
decrypt the encrypted broadcast message using the
broadcast session key, wherein one or more adjacent
DP accelerators of the two or more DP accelerators
propagates the broadcast by receiving the broadcast and
forwarding the broadcast to their adjacent DP accel-
erators and the broadcast message 1s communicated via
peripheral component interconnect or peripheral com-
ponent interconnect express channel.

10

15

20

25

30

35

40

45

50

55

60

65

22

2. The method of claim 1, wherein the DP accelerator of
the two or more DP accelerators receiving the broadcast
from the application 1s designated as a broadcast DP accel-
erator to broadcast the message.

3. The method of claim 1, wherein the broadcast termi-
nates 11 a designated DP accelerator receives the broadcast.

4. The method of claim 1, wherein the broadcast message
includes a message source, a message context, but no
message destination.

5. The method of claim 1, wherein a non-designated DP
accelerator of the plurality of DP accelerators receives the
broadcast but does not have the corresponding key to
decrypt the encrypted broadcast message for generation of
the broadcast session key and the non-designated DP accel-
erator has no access to the broadcast session key to decrypt
the broadcast message for a communication session.

6. The method of claim 1, wherein the broadcast message
1s communicated via a physical communication channel
associated with a DP accelerator.

7. A non-transitory machine-readable medium having
instructions stored therein, which when executed by a pro-
cessor, cause the processor to perform one or more opera-
tions, the operations comprising:

recerving a broadcast request from a host that hosts an

application that imitiated a broadcast message to be
broadcast to two or more DP accelerators of a plurality
of DP accelerators coupled to the host, wherein the
broadcast request includes two or more DP accelerator
identifiers (IDs) 1identifying the two or more DP accel-
crators;

recerving from the host a broadcast session key for a

broadcast communication session to broadcast the
broadcast message; and

for each of the one or more DP accelerator IDs:

identifying a public key of a security key pair correspond-

ing to the DP accelerator 1D,

encrypting the broadcast message using the broadcast

session key,

encrypting the broadcast session key using the public key,

and

transmitting the encrypted broadcast message and the

encrypted broadcast session key to the DP accelerator
identified by the DP accelerator ID, wherein the DP
accelerator 1s configured to decrypt the encrypted
broadcast session key using a corresponding private
key associated with the DP accelerator ID and to
decrypt the encrypted broadcast message using the
broadcast session key, wherein one or more adjacent
DP accelerators of the two or more DP accelerators
propagates the broadcast by receiving the broadcast and
forwarding the broadcast to theiwr adjacent DP accel-
erators and the broadcast message 1s communicated via
peripheral component interconnect or peripheral com-
ponent 1nterconnect express channel.

8. The non-transitory machine-readable medium of claim
7, wherein the DP accelerator of the two or more DP
accelerators receiving the broadcast from the application 1s
designated as a broadcast DP accelerator to broadcast the
message.

9. The non-transitory machine-readable medium of claim
7, wherein the broadcast terminates 1 a designated DP
accelerator receives the broadcast.

10. The non-transitory machine-readable medium of
claim 7, wherein the broadcast message includes a message
source, a message context, but no message destination.

11. The non-transitory machine-readable medium of
claam 7, wherein a non-designated DP accelerator of the

US 11,457,354 B2

23

plurality of DP accelerators receives the broadcast but does
not have the corresponding key to decrypt the encrypted
broadcast message for generation of the broadcast session
key and the non-designated DP accelerator has no access to
the broadcast session key to decrypt the broadcast message
for a communication session.

12. The non-transitory machine-readable medium of
claiam 7, wherein the broadcast message 1s communicated
via a physical communication channel associated with a DP
accelerator.

13. A data processing system, comprising:

a processor; and

a memory coupled to the processor to store instructions,

which when executed by the processor, cause the
processor to perform operations, the operations includ-
ing receiving a broadcast request from a host that hosts
an application that imitiated a broadcast message to be
broadcast to two or more DP accelerators of a plurality
of DP accelerators coupled to the host, wherein the
broadcast request includes two or more DP accelerator
identifiers (IDs) identiiying the two or more DP accel-
erators;

receiving from the host a broadcast session key for a

broadcast communication session to broadcast the
broadcast message; and

for each of the one or more DP accelerator 1Ds:

identifying a public key of a security key pair correspond-

ing to the DP accelerator 1D,

encrypting the broadcast message using the broadcast

session key,

encrypting the broadcast session key using the public key,

and

transmitting the encrypted broadcast message and the

encrypted broadcast session key to the DP accelerator

5

10

15

20

25

30

24

identified by the DP accelerator ID, wherein the DP
accelerator 1s configured to decrypt the encrypted
broadcast session key using a corresponding private
key associated with the DP accelerator ID and to
decrypt the encrypted broadcast message using the
broadcast session key, wherein one or more adjacent
DP accelerators of the two or more DP accelerators
propagates the broadcast by receiving the broadcast and
forwarding the broadcast to theiwr adjacent DP accel-
erators and the broadcast message 1s communicated via
peripheral component interconnect or peripheral com-
ponent mterconnect express channel.

14. The system of claim 13, wherein the DP accelerator of
the two or more DP accelerators receiving the broadcast
from the application 1s designated as a broadcast DP accel-
erator to broadcast the message.

15. The system of claim 13, wherein the broadcast ter-
minates 11 a designated DP accelerator receives the broad-
cast.

16. The system of claim 13, wherein the broadcast mes-
sage 1mcludes a message source, a message context, but no
message destination.

17. The system of claim 13, wherein a non-designated DP
accelerator of the plurality of DP accelerators receives the
broadcast but does not have the corresponding key to
decrypt the encrypted broadcast message for generation of
the broadcast session key and the non-designated DP accel-
erator has no access to the broadcast session key to decrypt
the broadcast message for a communication session.

18. The system of claim 13, wherein the broadcast mes-
sage 1s communicated via a physical communication chan-
nel associated with a DP accelerator.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

