US011456870B2

a2y United States Patent (10) Patent No.: US 11,456,870 B2
Subramaniam et al. 45) Date of Patent: Sep. 27, 2022

(54) AUTHORIZATION TOKEN INCLUDING (56) References Cited

FINE GRAIN ENTITLEMENTS
U.S. PATENT DOCUMENTS

(71) Applicant: T-Mobile USA, Inc., Bellevue, WA

(US) 6,328,217 Bl 12/2001 Everett et al.
6,668,322 Bl 12/2003 Wood et al.

(72) Inventors: Komethagan Subramaniam, Redmond, (Continued)
WA (US); Michael Engan, Bellevue, . -
WA (US); Ramkishan Sadasivam, FORFEIGN PATENT DOCUMENTS
Cummings, GA (US); Douglas
McDorman, Sammamish, WA (US) WO W02019/079356 Al 4/2019

(73) Assignee: T-Mobile USA, Inc., Bellevue, WA OTHER PUBLICATIONS
(US)

Stalling, Cryptograph and Network Security—Principles And Prac-

(*) Notice: Subject to any disclaimer, the term of this tice, 2011, Prentice Hall, pp. 360-400.*
patent 1s extended or adjusted under 35 (Continued)

U.S.C. 134(b) by 241 days.

(21) Appl. No.: 16/776,879 Primary Examiner — Minh Dinh

(22) Filed: Jan. 30. 2020 (74) Attorney, Agent, or Firm — Lee & Hayes, P.C.

(65) Prior Publication Data (57) ABSTRACT

US 2020/0169405 Al May 28, 2020

A method of interpreting an authorization token 1s described
Related U.S. Application Data

herein. The service can receive an authorization token from
(62) Division of application No. 15/828,266, filed on Nov. a client device, and validate a signature of the authorization

30, 2017, now Pat. No. 10,587.,409. token. The service can identify an allowed function value
associated at least part of an entitlement representation

(51) Int. Cl. contained 1n a body of the authorization token. The service
HO4L 9/32 (2006.01) can convert the allowed function value to an allowed func-
GO6t 9/30 (2018.01) tion bitmask that includes bits at a plurality of bit positions
HO4W 8/15 (2009.01) that are set to values indicating whether the subscriber

(52) U.S. Cl. clement has attributes associated with each of the plurality
CPC e, HO4L 9/3213 (2013.01); GO6F 9730018 ol bit positions on a predefined attribute list. The service can

(2013.01); HO4L 9/3247 (2013.01); HO4W determine whether the allowed function bitmask indicates
8/18 (2013.01); HO4L 2209/56 (2013.01) that the subscriber element has one or more qualifying

(58) Field of Classification Search attributes that entitle a user of the client device to access the
CPC HO4L, 63/0807; HO4L 63/10-102; HO4L service.

9/3213; HO4L 9/324°7, HO4L 2209/56;
GO6F 9/30018; HO4W 8/18

See application file for complete search history. 20 Claims, 9 Drawing Sheets

Determine Attributes of
Subscriber Elament —,

1002

'

Generate Allowed Function Bitmask
Basad on Atiributes

1004

l

Convert Allowead Function Bitrmask
to Allowed Function Value

1006

:

Add Subscriber Elamant Identifier and
Allowed Function Value to Entitlement Representation —

1008

'

Compress
Entitleamant Repressantation

1010

,

Add Compressed Entitlement Description
to Body of Authorization Token

1012

'

Sign Authorization Token
1014

US 11,456,870 B2

Page 2
(56) References Cited 2017/0289197 Al 10/2017 Mandyam et al.
2018/0219863 Al 8/2018 Tran
UU.S. PATENT DOCUMENTS 2019/0044940 Al 2/2019 Khalil et al.
2019/0124070 Al 4/2019 Engan et al.
6,842,863 Bl 1/2005 Fox et al. 2019/0165942 Al 5/2019 Subramaniam et al.
6,983,381 B2 1/2006 Jerdonek 2019/0312730 A1 10/2019 Engan et al.
7.711,122 B2 5/2010 Allen et al. 2019/0312733 Al 10/2019 Engan et al.
7,849,326 B2 12/2010 Chao
8,601,553 B1 12/2013 Grithin et al.
8,880,880 B1 11/2014 Ward et al. OTHER PUBLICATIONS
g:ggg:ggg E éggg #53 :tt 3‘11: 3GPP; Technical Specification Group Services and System Aspects;
9.331,990 B2 5/2016 I.e Saint 3rd Generation Partnership Project; Security Aspects; Study on
9,462,473 B2 10/ 2016 Ward et al. Service Based Architecture (SBA) Security (Release 15), 3GPP TR
9,641,344 Bl 52017 Kim | 33.855 V0.1.0, May 2018. See Section 6.2.2.2.1 and Section 6.2.2
9,947,008 Bl 4/2018 Camacho Diaz 2.2, 33 pas

10,505,916 B2 12/2019 E t al. - ' . .

10:735:425 B2 /2020 T:,lfnan o M. Jones et al., :Proof-of-Possessmn Key Semantics for JSON Web
2003/0120610 Al 6/2003 Hamber Tokens (JWTs)”, IETF RFC 7800, Apr. 1, 2016 See pp. 4-9 and
2006/0021004 Al 1/2006 Moran et al. figures 1, 2.

2006/0168446 Al 7/2006 Ahonen et al. The Non-Final Oflice Action for U.S. Appl. No. 15/788,731, dated
2006/0264202 Al 11/2006 Hagmeier et al. Feb. 7, 2019, 20 pages.

2008/0189778 Al 8/2008 Rowley The International Search Report and Written Opinion for PCT
2009/0328207 Al 12/2009 Patel Application No. PCT/US2018/056157, dated Feb. 7, 2019, 9 pages.
2010/0329464 Al 12/2010 Kerschbaum Extended Search Report for EP Application 18847769.9, dated Mar.
2013/0031361 Al 1/2013 Fahn et al. ’ ’ | S

5013/01918%4 A 1 79013 T.eicher of al. gxtze(;lzdledliegsh Report for EP Application 18868374.2, dated Mar.
2013/0219473 Al 8/2013 Schaefer ’ ’ o . .
2013/0347071 Al 12/2013 Polo Moragon et al. Navas et al., “Nonce-based Aut.hentlcate:d Key Establlshn.lent over
2014/0013396 Al 1/2014 Field-Eliot et al. OAuth 2.0 IoT Proof-of-possession Architecture”, IEEE third World
2014/0250003 Al 9/2014 Levchin et al. Forum on Internet of Things, Dec. 2016, 7 pgs.

2014/0325640 Al 10/2014 Aggarwal et al. The Non-Final Oflice Action for U.S. Appl. No. 16/205,089, dated
2014/0366080 A1 12/2014 Gupta et al. Mar. 12, 2021, 13 pages.

2015/0113283 Al 4/2015 Corella et al. Final Oflice Action dated Jun. 7, 2019 for U.S. Appl. No. 15/788,731,
2015/0150109 Al 5/2015 Bocanegra et al. 20 pes.

2015/0281362 Al 10/2015 Shanmugam et al. Final Office Action dated Jun. 21, 2019 for U.S. Appl. No. 15/683,666,
2015/0295930 A1 10/2015 Dixon et al. 12 pgs

2015/0341330 A1 11/2015 Field-Eliot et al. : - :

2016/0094531 Al 3/2016 Unnikrishnan et al. T;Iégg‘gg% Olf_l“;;jc“o“ dated Feb. 8, 2019 for U.S. Appl. No.
2016/0142409 Al 5/2016 Frel et al. T T ‘ . ..

2016/0241405 Al 8/2016 Jeong et al. Intl S.ear.ch Report and Written Opinion dated Dec. 11, 2018, Intl
2016/0300223 Al 10/2016 Grey et al. Application PCT/US18/47373, 12 pgs.

2016/0344635 A1 11/2016 Lee et al.

2017/0171187 Al 6/2017 Yin et al. * cited by examiner

U.S. Patent Sep. 27, 2022 Sheet 1 of 9 US 11,456,870 B2

Subscriber
Database

110

Subscriber
Elements

112

Attributes
114

|dentity
Provider

(IDP)
106

Authorization
Token

104

Client

Device
102

Authorization
Token

104

Service
108

FIG. 1

U.S. Patent Sep. 27, 2022 Sheet 2 of 9 US 11,456,870 B2

Attribute List
202

Bit Positions 204

Set x o: Attributes 114

1 if has attnibute, or
O if does not have afttribute

x
0

000

0000

00000

000000
<000000C
<0000000C
000000000
x0000000000 Can Pay a Bill
<0000000000C
<00000000000C
0000000000000
x00000000000000
I

FIG. 2

Allowed Function Bitmask 302

1011011010001100
46732

FIG. 3

Allowed Function Value 304:

U.S. Patent Sep. 27, 2022 Sheet 3 of 9 US 11,456,870 B2

Entitlement
Representation
Allowed 402
Functions for
User Account "session"{
"userld":" U-96be1cf7-788-11d6e12f2926 t",
"AFs":[13952]}.
Allowead "accounts":]
Functions for | ¢{
Billing "accountNumber":"987654320",
Account A "AFSs":[46732],
"line":[Allowed
{ Functions for
"MSISDN":"9876543210", Line 1 of Billing
"AFs"[56892] ! Account A
},
{
"MSISDN":"9876543211", Allowed
"AFs":[43645] | Functions for
1y Line 2 of Billing
Allowed 3 Account A
Functions for {
Billing "accountNumber":"887654320",
Account B "AFs":[86342],
"line™| Allowed
{ Functions for
"MSISDN":"8876543210", Line 1 of Billing
"AFs":[65656] Account B
}
{
"MSISDN"."8876543211", Allowed
"AFs":[76873] — Functions for
1] Line 2 of Billing
1] Account B
compress
Entitlement
rRepresentaton 0000000000000
402

"eJyNjjsOWJAQRO8YtQs7WZu10yiQaLgAcgHBRaTgSLFdRbk
7YEQD4tOsNN030zcjhZT6McLNKCIMuzMcckgZi8Cx68YSc4l
7zM+wL5d TmGBQ5ZXR1DYSAUuVNIg7FMgyiHpiGKHIGXmDo
Y6gL75Qiw1LaBn4RP/6VeHXgrwbPtqGPEIASFOWWWDTEYIL
hT6eWuDr55QrkPI153’

FIG. 4

U.S. Patent Sep. 27, 2022 Sheet 4 of 9 US 11,456,870 B2

Authorization Token 104

Header {

é.Q.Z. th peﬂ :ijtﬂ ,
"alg" "HS256"

"exp"."84600",
"lat"."1481699266017",
"Iss":"https://account.t-maobile.com’”,
"aud”:"mytmo’,

Body "nonce":"NONCE",

204 "auth_time":"1481699265",

"at"."3285.432656y1245462%%3521112m4",

"sub":"U-96be1cf7-0f9f-450c-bdbe-11d6e12f9926",

M"."R5,T2,M2"

"acr':"loa2",

"amr’:"password”,

"enf"CLIENTS public KEY",

"enttype”."AFZ"

"ent" "eJyNjjsOwjAQRO8yiQs 7/WZu10yiQalLgAcgHBRaTgSLFd
Rbk/7YEQD4tOsNNo30ozcjhZTOMcLNKCIMuzMcckgZi8Cx6
8YSc4l7zM+wLbd TMGBQLSZXRIDYSAUVNIg 7FMgyiHpjG
KIlGXmDoY6gL75Qiw1LaBn4dRP/6VeHXgrwbPtqGPEIASF
bVWWb TEYLhT6eWuDr55QrkPIiS3"

Entitlement
Representation
402

FIG. 5

Header 502:
“eyJnbGciOIJIUzITNIilsInR5¢cCI8IkpXVCJ9”

Authorization Token 104:
eyJhbGciOIUzIMNilsInRScCIBIkpXVCJ9.eyJzdWHOIIXMIMONTY3ODkwliwibmFtZS161kpvaG4gR G 9l

HwIYWRtaW4i0OnRydWVI. TJVASS0rM7E2cBab30RMHrHDcEfxjoY ZgeFONFh/7HgQ

Signature 602:
“TIVA950rM7E2cBab30RMHrHDCEfXjoYZgeFONFh7HgQ”

Body 504
“eyJzdWIOIIXMIMONTY 30ODkwliwibmFtZS161kpvaG4gRGOHiwiY WRtaW4iOnRydWV9”

FIG. 6

U.S. Patent Sep. 27, 2022 Sheet 5 of 9 US 11,456,870 B2

Entitlement
Representation

402

"session”{

"userld™:" U-96be1cf7-788-11d6e12f9926 t",

"AFs": ["BYPASS_ VERIFICATION","MANUAL_CARD_AUTHORIZATION"]
;

"accounts”:|
{
"accountNumber":"987654320",
"AFs": ["PAH", "WAIVE PROCESSING FEE","PUSH FEES TO BILL"],
"line":]
{
"MSISDN":"9876543210",
"AFs": ["TACTIVITY ACCOUNT OWNER",
"ACTIVITY ACCOUNT MANAGER",
"ACTIVITY SUBSCRIBER EDITOR",]

"MSISDN"."9876543211",

"AFs™: ["ACTIVITY_ACCOUNT_OWNER",
"ACTIVITY_ACCOUNT_MANAGER",
"ACTIVITY_SUBSCRIBER_EDITOR",]

j]

"accountNumber":"887654320",
"AFs":[“Restricted”, "WAIVE PROCESSING FEE", "PUSH FEES TO BILL",
"EXEMPT_PROCESSING_FEE" |,
"line":|
{
"MSISDN":"8876543210",
"AFs":["Restricted|SV","accounttype”,"accountsubtype”,
"active|suspended_(in)volentary|canceled”,
"ADJUSTMENTS _PER_FAN_IN_PERIOD",
"ACTIVITY_ _ACCOUNT_OWNER",
"ACTIVITY A MANAGER",]

"MSISDN"."8876543211",

"AFs™:["ACTIVITY_ACCOUNT_OWNER",
"ACTIVITY_ACCOUNT_MANAGER",
"ACTIVITY_SUB_EDITOR",]

j]
j]

FIG. 7

U.S. Patent

Subscriber

Database
110

Allowed Function

Value Generator
3804

Token
Signer
808

Public
Key
812

Sep. 27, 2022

Sheet 6 of 9

System Memory 802

ROM/RAM

Attribute List
202

Token

Generator
3806

Private
Key
3810

Other Modules
and Data
814

FIG. 8

US 11,456,870 B2

|dentity Provider
106

o)

Processor(s) 81

Removable
Storage 818

Non-Removable
Storage 820

Input Device(s)
822

Output Device(s)
824

Communication

Connection(s) 826

Other
Computing
Devices 828

U.S. Patent

Sep. 27, 2022

Sheet 7 of 9

System Memory 902

Issuer's Public
Key
812

Signature
Validator
904

Allowed Function
Analyzer

208

ROM/RAM

Other Modules

and Data
912

Attribute List

202

Token

Decoder

9206

Service
Component

210

FIG. 9

US 11,456,870 B2

Server 900

Processor(s) 91

—

| Removable |

| Storage 916 |
[Non-Removable]

| Storage 918 |

(i b Pranrimmd oy)
Input Device(s)

| 920 |
(At Pme it o))
Output Device(s)

| 922 |
Communication

Connection(s) 924
|

Other
Computing

Devices 926

U.S. Patent

Sep. 27, 2022 Sheet 8 of 9

US 11,456,870 B2

Determine Attributes of

Subscriber Element
1002

Y

Generate Allowed Function Bitmask
Based on Attributes

1004

Y

Convert Allowed Function Bitmask
to Allowed Function Value

1006

Y

Add Subscriber Element Identifier and
Allowed Function Value to Entitlement Representation /

1008

Y

Compress

Entitlement Representation
1010

Y

Add Compressed Entitlement Description

to Body of Authorization Token
1012

Y

Sign Authorization Token
1014

FIG. 10

U.S. Patent Sep. 27, 2022 Sheet 9 of 9 US 11,456,870 B2

Recelve Service Request and

Authorization Token from Client Device
1102

Y

Validate Signature
1104

Y

Decompress Entitlement Representation
1106

Convert Allowed Function Value to Allowed Function Bitmask
1108

Bit(s) of
Allowed Function Bitmask

Y N
Entitle Client Device
to the Service?
1110
- ' ™~ / ' A
Proceed with Deny
Service Request Service Request
1112 1114

FIG. 11

US 11,456,870 B2

1

AUTHORIZATION TOKEN INCLUDING
FINE GRAIN ENTITLEMENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This 1s a divisional application which claims prionty to
commonly assigned, co-pending U.S. patent application Ser.

No. 15/828,266, filed Nov. 30, 20177. Application Ser. No.
15/828,266 1s fully incorporated herein by reference.

BACKGROUND

A telecommunications provider and/or third parties can
ofler various services to subscribers of the telecommunica-
tions provider’s service. For example, parties can make
servers available through which mobile phone users can pay
a bill associated with their account, add a phone line to their
account, receive a promotional offer, or request any other
type of service.

However, some services can be limited to users that are
associated with user accounts, billing accounts, and/or sub-
scriptions that have specific attributes. For example, users
with a prepaid billing account may be restricted from
accessing a bill payment service that 1s intended for postpaid
billing accounts. A service can accordingly check whether or
not a user account, billing account, or subscription associ-
ated with a user has an attribute or combination of attributes
that entitles the user to access the service.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description 1s set forth with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number 1dentifies the figure 1n which the refer-
ence number {irst appears. The use of the same reference
numbers 1 different figures indicates similar or i1dentical
items or features.

FIG. 1 depicts an example environment in which a client
device receirves an authorization token from an identity
provider (IDP).

FIG. 2 depicts a non-limiting example of an attribute list.

FIG. 3 depicts an example of an allowed function bit-
mask.

FIG. 4 depicts an example of an entitlement representa-
tion for an authornization token.

FIG. § depicts the header and body of an exemplary
authorization token.

FIG. 6 depicts an example of an authorization token 1n an
encoded and signed form.

FIG. 7 depicts an example of a decoded version of the
entitlement representation of an authorization token.

FIG. 8 illustrates an example architecture of an IDP.

FIG. 9 1llustrates an example architecture of a server of a
service.

FIG. 10 depicts a flow chart of an exemplary process for
generating an authorization token for a client device at an
IDP.

FIG. 11 depicts a flow chart of an exemplary process for
a service to determine whether a client device 1s entitled to
access the service, based on an authorization token provided
by the client device.

DETAILED DESCRIPTION

Introduction

A telecommunications provider, such as a cellular carrer,
can maintain information about attributes of individual

10

15

20

25

30

35

40

45

50

55

60

65

2

subscriber elements that are associated with users of its
service. Subscriber elements can include user accounts,

billing accounts, and/or individual subscriptions.

The telecommunication provider, and/or third parties, can
offer various services to users. Such services can include
account management services, promotional services, and/or
services ol any other type.

However, access to some services can be restricted. When
a user makes a request to a particular service, the attributes
maintained by the telecommunication provider about the
attributes of one or more of the user’s subscriber elements
can indicate whether or the user i1s entitled to access the
service. For example, some services can be oflered only to
users associated with a subscriber element that has a par-
ticular attribute or a particular combination of attributes.

In existing systems, the process for determining whether
a user 1s entitled to a particular service can be time con-
suming and/or involve numerous network calls. In these
systems, a user can make a service request through a device.
The device can be provisioned with an access token that
identifies the user’s user account and/or other subscriber
clements. The device can provide this access token to a
service’s server when 1t makes a request to the service.

When a service’s server receives an access token, 1t can
make a network call to an authorization server or other
server to validate the access token and confirm the identity
of the user. The authorization server can also inform the
service’s server whether or not the user 1s entitled to access
the service. Sending the access token from the service’s
server to the authorization server, validating 1t at the autho-
rization server, and sending a reply from the authorization
server to the service’s server can take time.

Additionally, 1n many systems there can be multiple
layers between the device making the request and the final
service 1t 1s attempting to access. For instance, a memory 1n
the device can provide the access token to a particular
application, which then provides the access token to a
networking layer, which then provides the access token to an
application programming interface (API) proxy layer, and so
on until the access token reaches the end service.

Often, there can be cascading lookups of the access token
as some or all intermediate layers perform their own check
of the access token with the authorization server. This can
impose a processing load on the authorization server. For
example, 1n some systems an authorization server can be
asked three or more times to validate the same access token
as the access token passes through intermediate layers on 1ts
way to an end service.

Cascading lookups can also introduce latency at each
layer, increasing the time 1t takes for the end service to
receive the access token, validate it, and respond to the
request. In some cases, cascading lookups can introduce 50
to 200 milliseconds or more to the validation process.

Example Environment

FIG. 1 depicts an example environment 1n which a client
device 102 receives an authorization token 104 from an
identity provider (IDP) 106. The client device 102 can then
provide the authorization token 104 to a service 108 when 1t
makes a request to the service 108. As will be explained
below, the authorization token 104 can include fine grain
entitlement 1nformation that the service 108 can use to
determine if a user of the client device 102 is eligible to
make a request to the service 108.

A client device 102 can be a smart phone, a cellular
phone, a personal digital assistant (PDA), a personal com-

US 11,456,870 B2

3

puter (PC), a laptop, a desktop, a workstation, a media
player, a tablet, a gaming device, a smart watch, or any other
type of computing or communication device.

An IDP 106 can be a server or other component that
generates an authorization token 104. An example IDP 106
1s 1llustrated 1n greater detail in FIG. 8 and 1s described 1n
detail below with reference to that figure.

The IDP 106 can include, or have access to, a subscriber
database 110 that stores imnformation about subscriber ele-
ments 112 associated with a telecommunication provider’s
subscribers. Subscriber elements 112 can include user
accounts, billing accounts, and/or subscriptions. In some
examples, a user account can be identified with a userID, a
billing account can be identified with a billing account
number (BAN), and a subscription can be i1dentified with a
phone number such as a Mobile Station International Sub-
scriber Directory Number (MSISDN). Multiple subscriber
clements 112 can be associated with one another for a
particular user. For example, a single user can have one or
more billing accounts, such that one or more BANs can be
associated with a particular userID. Similarly, one or more
subscriptions can be associated with a single billing account,
such that one or more MSISDNs can be associated with a
particular BAN for a user.

The subscriber database 110 can include information
about multiple attributes 114 that are associated with 1ndi-
vidual subscriber elements 112.

In some examples, an attribute 114 can 1ndicate a specific
quality of the subscriber element 112. For example, a billing
account can have one attribute 114 that indicates that 1t 1s a
prepaid billing account, or another attribute 114 that indi-
cates that it 1s a postpaid billing account.

In other examples, an attribute 114 can 1ndicate a particu-
lar function that a user has been permitted to perform 1n
association with the subscriber element 112. For example,
one attribute 114 can 1ndicate that a particular user account
1s allowed to add a postpaid billing account, a second
attribute 114 can indicate that a billing account can have a
line added to 1t, and a third attribute 114 can indicate that a
subscriber 1dentification module (SIM) card can be swapped
in association with a particular subscriber element 112.

As will be discussed below, functions that are permitted
for a user due to a particular attribute 114, or a particular
combination of attributes 114, can be referred to as allowed
functions.

The IDP 106 can generate and/or provide an authorization
token 104 to a client device 102. In some examples, the
authorization token 104 can be a JavaScript Object Notation
(JSON) Web Token (JWT). The contents of a JWT can be
represented using JSON attribute-value pairs. In other
examples, the contents of an authorization token 104 can be
represented using Extensible Markup Language (XML),
YAML, or any other format.

In some examples a subscriber can use a client device 102
to provide the authorization token 104 to one or more
services 108 1n order to manage the subscriber’s account. A
service 108 can provide an API through which the client
device 102 can request the service. For example, the sub-
scriber can use the client device 102 to make a request to a
service 108 add a phone line to a particular billing account,
upgrade a line, change a phone number, swap a SIM card,
change a billing plan, pay a bill, add a stored payment
method, make a payment, cancel a line, or perform any other
service. In these examples the IDP 106 can provide an
authorization token 104 to the client device 102 that includes
fine grain entitlement information based on attributes 114 of
the subscriber elements 112 associated with that subscriber.

10

15

20

25

30

35

40

45

50

55

60

65

4

In other examples, a client device 102 of an agent user can
obtain an authorization token 104 based on the attributes 114
of a subscriber that 1s different from the agent user, and/or
attributes 114 that are specific to the agent user. For example,
a client device 102 of a customer service representative can
obtain an authorization token 104 that has fine grain entitle-
ment information based on attributes 114 of a particular
subscriber, and/or attributes 114 specific to the customer
service representative. Accordingly, the customer service
representative’s client device 102 can use the authorization
token 104 to make service requests on the subscriber’s
behall.

In some situations, the authorization token 104 provided
to a user agent’s client device 102 can be different than an
authorization token 104 that would be provided to the
subscriber’s client device 102. For example, while a cus-
tomer service representative’s device can obtain an autho-
rization token 104 that indicates attributes 114 of a particular
subscriber, that authorization token 104 can also indicate
attributes 114 that additionally allow the customer service
representative to waive certain fees or provide a certain level
of credit to the subscriber through one or more services 108.

As shown 1n FIG. 1, the IDP 106 can provide an autho-
rization token 104 to a client device 102 associated with the
subscriber elements 112. The client device 102 can in turn
provide the authorization token 104 to a server of a service
108 when it makes a request to the service 108. For example,
a web browser or other application that presents an account
management user iterface can send a service request and an
authorization token 104 to a server of a service 108 to have
the service 108 implement an account management function.

A server of a service 108 can receirve a service request and
authorization token 104 from a chent device 102. The
service 108 can identify attributes 114 associated with
subscriber elements 112 directly from the fine grain entitle-
ment information in the authorization token 104. Accord-
ingly, the service 108 can locally determine 1f an attribute
114, or a combination of attributes 114, entitles the user
associated with the authorization token 104 to access the
service 108, without making a validation call over a network
to the IDP 106 or another authorization server and waiting
for a response to the validation call. An example server of a
service 108 1s illustrated in greater detail mn FIG. 9 and 1s
described 1n detail below with reference to that figure.

FIG. 2 depicts a non-limiting example of an attribute list
202. Telecommunications providers, network operators, ser-
vices 108, and/or IDPs 106 can have a predefined attribute
l1st 202 that includes possible attributes 114 that a subscriber
clement 112 may or may not have. A predefined attribute list
202 can have any number of possible attributes 114, such as
tens or hundreds of attributes 114. Each attribute 114 on a
predefined attribute list 202 can be associated 1n the attribute
list 202 with a particular bit position 204, as shown 1n FIG.
2. For example, the first attribute 114 on the attribute list 202
can be associated with a first bit position 204, while the fifth
attribute 114 on the attribute list 202 can be associated with
a fifth bat position 204.

For a particular subscriber element 112, a bit at the bit
position 204 associated with a particular attribute 114 can be
set to one value i1f the subscriber element 112 has that
attribute 114, or to a different value 1f the subscriber element
112 does not have that attribute 114. Although the descrip-
tion herein will use a bit set to “1” as indicating that a
subscriber element 112 has an associated attribute 114 and a
bit set to “0” as indicating that the subscriber element 112
does not have an associated attribute 114, 1n other examples
the meaning of “0” and “1” can be reversed.

US 11,456,870 B2

S

FIG. 3 depicts an example of an allowed function bitmask
302. An allowed function bitmask 302 can encapsulate
information about all of the attributes 114 1n the attribute list

202 for a particular subscriber element 112. As access to
services 108 can be conditioned on a subscriber element 110

having a particular attribute 114 or a particular combination
of attributes 114, an allowed function bitmask 302 can be
used to i1dentify allowed functions associated with a sub-
scriber element 112.

An allowed function bitmask 302 can be generated for a
subscriber element 112 by setting bits at bit positions 204
associated with each of the attributes 114 in the predefined
attribute list 202 to either “1” or “0,” based on whether or not
the subscriber element 112 has those attributes 114. For
example, an allowed function bitmask 302 of “01101”

generated for a subscriber element 112 from a predefined list
attribute list 202 of five attributes 114 would indicate that the
subscriber element 112 has the first, third, and fourth attri-
butes 114 on the attribute list 202, but does not have the
second and fifth attributes 114 on the attribute list 202.

In some examples, for a particular subscriber element 112,
a separate bitmask can be generated for each attribute 114 1n
the attribute list 202 by setting a bit at a corresponding bit
position 204 to “1” or “0,” and setting trailing bit positions
204 to “0,” as shown in FIG. 2. For example, 1if a user
account has the sixth attribute 114 on the attribute list 202,
the bitmask specific to the sixth attribute 114 would be
“100000.” The separate bitmasks for each of the attributes
114 1in the attribute list 202 can then be summed together to
determine a final allowed function bitmask 302 that encap-
sulates information about all of the attributes 114 in the
attribute list 202 for the subscriber element 112. In other
examples, the bits of an allowed function bitmask 302 can
be set as “0” or “1” directly based on a subscriber element’s
attributes 114 and their associated bit positions 204.

Accordingly, an allowed function bitmask 302 for a
subscriber element 112 can indicate whether a particular
function 1s or 1s not an allowed function for that subscriber
element 112, based on the value of bits at one or more bit
positions 204. For 1nstance, 1f a function 1s allowed only for
subscriber elements 112 that have a particular attribute 114,
the function can be allowed 11 the bit at the bit position 204
corresponding to that attribute 114 1s set to “1” 1n the
allowed function bitmask 302. Similarly, 1f a function 1is
allowed only for subscriber elements 112 that have a par-
ticular combination of attributes 114, the function can be

allowed 11 the bits at the bit positions 204 corresponding to
those attributes 114 are all set to “1”” 1n the allowed function
bitmask 302.

A service 108 can accordingly be set to condition access
to users based on the attributes of their subscriber elements
112, such that the service 108 1s an allowed function for a
user only 1f the user’s allowed function bitmask 302 indi-
cates that the user’s subscriber elements 112 have one or
more attributes 114 that entitle the user to access the service
108. For example, a promotional service 108 can be set to
qualify users to recerve a free taco i1f the user’s client device
102 provides an authorization token 102 with an allowed
function bitmask 302 indicating that a subscriber element
112 has a “prepaid” attribute 114 and an “active” attribute
114, or any other combination of one or more attributes 114.
Accordingly, the promotional service 108 can qualily users
for 1ts promotion based on one or more existing attributes
114 on the predefined attribute list 202, rather than having a
new “eligible for free taco” attribute 114 to the predefined
attribute list 202.

10

15

20

25

30

35

40

45

50

55

60

65

6

An allowed function bitmask 302 expressed in binary can
be converted into an allowed function value 304 that 1s
expressed using another numeral system, and/or with
another data type of a language compatible with a compiler
or interpreter. For example, FIG. 3 depicts an example of a
binary allowed function bitmask 302 converted into a deci-
mal allowed function value 304. In other examples, the
binary allowed function bitmask 302 can be converted to a
hexadecimal allowed function value 304, an allowed func-
tion value 304 expressed in any other numeral system, or an
allowed function value 304 expressed using any other data

type.

FIG. 4 depicts an example of an entitlement representa-
tion 402 for an authorization token 104. In some examples,
an enfitlement representation 402 can be expressed using
JSON, as shown 1n FIG. 4. In other examples, entitlement
representations 402 can be expressed using XML, YAML, or
any other format.

An entitlement representation 402 can include informa-
tion about one or more subscriber elements 112. For
example, as shown 1n FIG. 4, an entitlement representation
402 can 1nclude 1information about a user account 1dentified
by a “userID” value, two billing accounts identified by
BANSs that are associated with the user account, two MSIS-
DN associated with the first billing account, and two more
MSISDNs associated with the second billing account.

The enftitlement representation 402 can include an
allowed function bitmask 302 or allowed function value 304
associated with each of the subscriber elements 112. For
example, each subscriber element 112 can be associated 1n
the entitlement representation 402 with a decimal allowed
function value 304 generated from the complete set of
attributes 114 for that subscriber element 112. Although FIG.
4 shows decimal allowed function values 304 1n the entitle-
ment representation 402, 1n other examples the entitlement
representation 402 can include the original binary allowed
function bitmasks 302, include hexadecimal allowed func-
tion values 304, or express the allowed function bitmask 302
in any other format.

Although FIG. 4 shows five digit decimal allowed func-

tion values 304 for brevity, decimal allowed function values
304 can have any number of digits. For example, when a
predefined attribute list 202 has 130 attributes 114, the
allowed function bitmask 302 can have 150 bits and a
corresponding decimal allowed function value 304 can have
46 digits.

As shown 1 FIG. 4, 1n some examples an entitlement
representation 402 can be compressed and/or encoded. For
example, GZIP or any other compression algorithm can be
used to compress the entitlement representation 402 so that
it can be expressed using fewer characters and/or bits. The
compressed enfitlement representation 402 can also be
encoded 1n a manner such that it printable with a set of
known characters. For example, the compressed entitlement
representation 402 can be Base64 encoded.

FIG. 5 depicts the header 502 and body 504 of an
exemplary authorization token 104. As with the entitlement
representation 402, the header 502 and/or body 504 of an
authorization token 104 can express nformation using
JSON, XML, YAML, or any other format. When the autho-
rization token 104 1s a JW', the header 502 and body 504
can be expressed i JSON.

The header 502 can 1dentily the type of the authorization
token 104 and/or a cryptographic algorithm used to sign the
authorization token 104. For example, the header 502 can

US 11,456,870 B2

7

indicate that the authorization token 104 1s a JW'T and that
it was signed using a RSASSA-PKCS1-vl_5 using SHA-
256 (HS256) algorithm.

The body 504 can be a payload including one or more
claims asserted by the authorization token 104. As will be
discussed below, when the authorization token 104 1s signed
and the signature can be validated by a service 108, the
service 108 can trust that the claims in the body 504 are
accurate. Claims can 1ndicate an expiration time (“exp”) of
the authorization token 104, a time when the authorization
token 104 was 1ssues (“1at”), an 1ssuer (“1ss”) of the autho-
rization token 104, such as the IDP 106, an audience (“aud™)
identifyving intended recipients of the authorization token
104, and/or any other type of claim.

In particular, the body 504 can include the entitlement
representation 402, which itself includes information about
the attributes 114 of one or more subscriber elements 112 as
described above. In some examples, the body 504 can
include a compressed version of the entitlement represen-
tation 402, as shown 1 FIG. 5. In other examples the body
504 can include a non-compressed version of the entitlement
representation 402. The body 504 can also include a claim
identifying a type of the entitlement representation 402
(“enttype”). For example, 1n FIG. 5 “AFZ” 1s included for
the “enttype” claim, with “AF” indicating that the entitle-
ment representation 402 includes allowed function informa-
tion, such as a decimal allowed function value 304, and “Z”
indicating that the entitlement representation 402 was com-
pressed using the GZIP algorithm. Accordingly, a recipient
can decompress the entitlement representation 402 based on
the “enttype” claim’s 1dentification of the algorithm used to
compress the entitlement representation 402.

FIG. 6 depicts an example of an authorization token 104
in an encoded and signed form. In the example of FIG. 6, the
authorization token 104 1s a JWT in which encoded forms of
the header 502, body 504, and signature 602 are concat-
cnated together with a dot separating each part of the JWT.
For example, the header 502, body 504, and signature 602
can be Base64 encoded. The example encoded body 504
shown 1 FIG. 6 has been shortened for brevity, as in some
situations a compressed version of an entitlement represen-
tation 402 that encompasses information about tens or
hundreds of attributes 114 can make the encoded body 504
longer than 1s shown 1n FIG. 6.

The signature 602 can be generated by the IDP 106 or
other signing entity using a cryptographic algorithm. For
example, the IDP 106 can have a private key and a corre-
sponding public key, and can use the private key 1n a digital
signature function or other cryptographic algorithm on origi-
nal or encoded versions of the header 502 and the body 504
to generate the signature 602. As noted above, the crypto-
graphic algorithm used to sign the authorization token 104
can be 1dentified 1n the header 502 of the authorization token
104. The generated signature 602 can be added to the
authorization token 104. For example, the signature 602 can
be concatenated to representations of the header 502 and/or
body 504 as discussed above.

In some examples the IDP 106 can generate the signature
602 and sign the final authorization token 104 as described
above. However, in other examples an IDP 106 can provide
an authorization token 104 to a client device 102 that
includes a public key of the client device 102, and the client
device 102 can then generate a final authorization token 104
that encapsulates the IDP’s authorization token 104 and 1s
signed by the client device 102.

When the signature 602 1s provided to a service 108 along
with the rest of the authorization token 104, the service 108

5

10

15

20

25

30

35

40

45

50

55

60

65

8

can locally validate the signature 602 using the issuer’s
public key. Because the signature 602 was generated based

on the header 502 and the body 504, when the service 108

can validate the signature 602, the service 108 can verily
that the header 502 and the body 504 were not altered after
the authorization token 104 was signed. Accordingly, the
service 108 can trust the fine grain entitlements embedded 1n
the authorization token’s entitlement representation 402
without making a validation network call to the IDP 106 or
other authorization server.

FIG. 7 depicts an example of a decoded version of the
entitlement representation 402 of an authorization token
104. When a service 108 verifies the signature 602 of an
encoded authorization token 104, it can decode the autho-
rization token’s header 502 and body 504. If the entitlement
representation 402 1n the body 504 was encoded and/or
compressed, the service 108 can decode and/or decompress
the enfitlement representation 402. For example, a service
108 can Base64 decode the entitlement representation 402,
identify a compression scheme used on the entitlement
representation 402 from an “enttype” field in the body 504,
and reverse the compression based on the identified com-
pression scheme.

The service 108 can determine which attributes 114 are
associated with the subscriber elements 112. In some
examples the service 108 can convert a decimal allowed
function value 304 1nto an allowed function bitmask 302, so
that it can review values of bits in one or more specific bit
positions 204 to determine 11 a subscriber element 112 has
corresponding attributes 114. As shown i FIG. 7, 1n some
examples the service 108 can generate a list of text string
descriptions corresponding to attributes 114 and/or allowed
functions for a subscriber element 112 based on bits 1n the
allowed function bitmask 302 that are set to “1,” such that
the attributes 114 are human-readable.

In some examples, a telecommunication provider can
provide a library of files to a server of a service 108 that can
assist 1in validating and/or interpreting an authorization token
104 received by the service 108. For example, a library can
include a copy of the predefined attribute list 202. As another
example, a library can include one or more scripts and/or
applications that can locally validate a signature 602, decode
the header 502 and/or body 504 of an authorization token
104, decompress an entitlement representation 402, and/or
convert allowed function values 304 into machine and/or
human-readable descriptions of attributes 114 associated
with a subscriber element 112.

Example Architecture

FIG. 8 1llustrates an example architecture of an IDP 106.
The IDP 106 can have a system memory 802. The system
memory 802 can store data for the subscriber database 110,
the attribute list 202, an allowed function value generator
804, a token generator 806, a token signer 808, a private key
810, a public key 812, and/or other modules and data 814.
The IDP 106 can also include processor(s) 816, removable
storage 818, non-removable storage 820, mput device(s)
822, output device(s) 824, and/or communication connec-
tions 826 for communicating with other computing devices
828.

In various examples, system memory 802 1s volatile (such
as RAM), non-volatile (such as ROM, flash memory, etc.),
or some combination of the two. Example system memory
802 can include one or more of RAM, ROM, EEPROM, a

Flash Memory, a hard drive, a memory card, an optical

US 11,456,870 B2

9

storage, a magnetic cassette, a magnetic tape, a magnetic
disk storage or another magnetic storage devices, or any
other medium.

The subscriber database 110 and attribute list 202 are
described in greater detail above. In some examples the
subscriber database 110 and/or attribute list 202 can be
stored directly 1n the system memory 802 of the IDP 106. In
other examples the subscriber database 110 and/or attribute
list 202 can be stored elsewhere, such as at a separate server
of a telecommunication provider, and the IDP 106 can
access data from the subscriber database 110 and/or attribute
list 202 remotely.

The allowed function value generator 804 can generate
allowed function bitmasks 302 and/or allowed function
values 304 for individual subscriber elements 112. The
allowed function value generator 804 can use bit positions
204 1n an attribute list 202 and associated attributes 114 of
subscriber elements 112 from the subscriber database 110 to
generate the allowed function bitmasks 302 and/or allowed
function values 304 as described in more detail above.

The token generator 806 can generate the header 502
and/or body 504 of an authorization token 104, including a
compressed or non-compressed entitlement representation
402 that includes allowed function bitmasks 302 or allowed
function values 304 generated by the allowed function value
generator 804. In some examples the token generator 806
can also encode a compressed entitlement representation
402 to express 1t 1n a set of printable characters, for instance
using Base64 encoding.

The token signer 808 can use the IDP’s private key 810
to generate a signature 602 from the header 502 and/or body
504 of an authorization token 104. The signature 602 can
then be added to the authorization token 104 as described
above. The private key 810 and public key 812 can be
related such that the public key 812, when distributed to a
service 108, can be used by the service 108 to verily the
signature 602.

The other modules and data 814 can be utilized by the IDP
106 to perform or enable performing any action taken by the
IDP 106. The other modules and data 814 can include a
platform and applications, and data utilized by the platform
and applications.

In some embodiments, the processor(s) 816 1s a central
processing unit (CPU), a graphics processing unit (GPU), or
both CPU and GPU, or other processing unit or component
known 1n the art.

IDP 106 can also include additional data storage devices
(removable and/or non-removable) such as, for example,
magnetic disks, optical disks, or tape. Such additional stor-
age 1s 1llustrated 1n FIG. 8 by removable storage 818 and
non-removable storage 820. Computer storage media may
include volatile and nonvolatile, removable and non-remov-
able media implemented 1n any method or technology for
storage ol information, such as computer readable nstruc-
tions, data structures, program modules, or other data.
System memory 802, removable storage 818 and non-
removable storage 820 are all examples of computer-read-
able storage media. Computer-readable storage media
include, but are not limited to, RAM, ROM, EEPROM, tlash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information and which can be

accessed by IDP 106. Any such computer-readable storage
media can be part of IDP 106.

10

15

20

25

30

35

40

45

50

55

60

65

10

In various examples, any or all of system memory 802,
removable storage 818, and non-removable storage 820,
store programming instructions which, when executed,
implement some or all of the above-described operations of
the IDP 106.

IDP 106 can also have mput device(s) 822, such as a
keyboard, a mouse, a touch-sensitive display, voice input
device, etc., and output device(s) 824 such as a display,
speakers, a printer, etc. These devices are well known 1n the
art and need not be discussed at length here.

IDP 106 can also contain communication connections 826
that allow the IDP 106 to communicate with other comput-
ing devices 828, such as client devices 102 or other servers
or components of a telecommunication provider. By way of
a non-limiting example, communication connections 826
can transmit an authorization token 104 to a client device
102, such that the client device 102 can 1n turn provide the
authorization token 104 to one or more services 108.

FIG. 9 1llustrates an example architecture of a server 900
of a service 108. The server 900 can have a system memory
902. The system memory 902 can store data for the IDP’s
public key 812, the attribute list 202, a signature validator
904, a token decoder 906, an allowed function analyzer 908,
a service component 910, and/or other modules and data
912. The server 900 can also include processor(s) 914,
removable storage 916, non-removable storage 918, input
device(s) 920, output device(s) 922, and/or communication
connections 924 for communicating with other computing
devices 926.

In various examples, system memory 902 1s volatile (such
as RAM), non-volatile (such as ROM, flash memory, etc.),
or some combination of the two. Example system memory
902 can include one or more of RAM, ROM, EEPROM, a
Flash Memory, a hard drive, a memory card, an optical
storage, a magnetic cassette, a magnetic tape, a magnetic
disk storage or another magnetic storage devices, or any
other medium.

The 1ssuer’s public key 812 and the attribute list 202 are
described 1n greater detail above. In some examples the
public key 812 and/or attribute list 202 can be stored directly
in the system memory 902 of a service’s server 900. In other
examples the public key 812 and/or attribute list 202 can be
stored elsewhere, such as at a separate server of a telecom-
munication provider, and a server 900 of a service 108 can
retrieve them when the server 900 receives an authorization
token 104 from a client device 102.

The signature validator 904 can use the public key 812 to
determine whether or not a signature 602 of an authorization
token 104 1s valid. If the signature validator 904 determines
that the signature 602 1s valid, the server 900 can trust the
contents of the authorization token 104.

The token decoder 906 can decode and/or decompress the
header 502 and/or body 504 of an authorization token 104.
This can 1include decoding and/or decompressing an entitle-
ment representation 402 and/or converting allowed function
values 304 in the entitlement representation 402 1nto binary
allowed function bitmasks 302.

The allowed function analyzer 908 can analyze an
allowed function bitmask 302 from the entitlement repre-
sentation 402. In some examples the server’s allowed func-
tion analyzer 908 can be configured to check the values of
one or more bits 1 specific bit positions 204 corresponding
to one or more attributes 114 that the service 108 1s inter-
ested 1n.

For example, i1 the service 108 1s a promotional service
that allows a client device 102 to download an MP3 song it
the client device 102 1s associated with a prepaid billing

US 11,456,870 B2

11

account, the allowed function analyzer 908 can check that an
allowed function bitmask 302 for a billing account has a bit
set to “1”” at a bit position 204 associated with a “prepaid”
attribute 114. As another example, i the service 108 1s a
telecommunication provider’s service that adds a phone line
to a billing account, the allowed function analyzer 908 can
check that an allowed function bitmask 302 for a billing
account has bits set to “1” at one or more bit positions 204
associated with attributes 114 that alone or 1n combination
show eligibility to add a phone line.

In other examples, the allowed function analyzer 908 can
convert an allowed function bitmask 302 into a list of text
strings that describe attributes 114 and/or allowed functions
associated with the authorization token 104. For example,
the allowed function analyzer 908 can i1dentify which attri-
butes 114 1n an attribute list 202 have their bits set to “1” in
an allowed function bitmask 302, and generate a list of
corresponding attributes 114 and/or allowed {functions.
Accordingly, the server 900 can use that text list when
determining whether or not to implement the service 108,
and/or keep 1t in 1ts records for later review by human
readers.

The service component 910 can implement the service
108, based at least 1n part on determining that the service 108
1s allowed for a subscriber element 112 based on the allowed
function bitmask 302 i an authorization token 104. For
example, when the service 108 1s a billing payment service
and the server 900 receives an authorization token 104 from
a client device 102 that indicates in an allowed function
bitmask 302 that a user of the client device 102 1s eligible to
pay a certain type of bill, the service component 910 can
cause a user interface to be displayed on the client device
102 through which the service component 910 can accept
payment.

The other modules and data 912 can be utilized by the
server 900 to perform or enable performing any action taken
by the server 900 of the service 108. The other modules and
data 912 can include a platform and applications, and data
utilized by the platform and applications.

In some embodiments, the processor(s) 914 1s a central
processing unit (CPU), a graphics processing umt (GPU), or
both CPU and GPU, or other processing unit or component
known 1n the art.

Server 900 can also include additional data storage
devices (removable and/or non-removable) such as, for
example, magnetic disks, optical disks, or tape. Such addi-
tional storage is illustrated in FIG. 9 by removable storage
916 and non-removable storage 918. Computer storage
media may include volatile and nonvolatile, removable and
non-removable media implemented 1n any method or tech-
nology for storage of information, such as computer read-
able mstructions, data structures, program modules, or other
data. System memory 902, removable storage 916 and
non-removable storage 918 are all examples of computer-
readable storage media. Computer-readable storage media
include, but are not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information and which can be
accessed by the server 900. Any such computer-readable
storage media can be part of the server 900.

In various examples, any or all of system memory 902,
removable storage 916, and non-removable storage 918,

10

15

20

25

30

35

40

45

50

55

60

65

12

store programming instructions which, when executed,
implement some or all of the above-described operations of
the server 900.

The server 900 can also have input device(s) 920, such as
a keyboard, a mouse, a touch-sensitive display, voice input
device, etc., and output device(s) 922 such as a display,
speakers, a printer, etc. These devices are well known in the
art and need not be discussed at length here.

The server 900 can also contain communication connec-
tions 924 that allow the server 900 to communicate with
other computing devices 926, such as client devices 102. By
way of a non-limiting example, communication connections
924 can recerve an authorization token 104 and service
request from a client device 102, and/or other communica-
tions during the implementation of the service 108.

In some examples a telecommunication provider can
provide the server 900 with a library that contains one or
more of the 1ssuer’s public key 812, the attribute list 202, the
signature validator 904, the token decoder 906, and/or the
allowed function analyzer 908. Accordingly, the service 900
can use the provided library to validate and/or interpret an
authorization token 104.

Example Operations

FIG. 10 depicts a tflow chart of an exemplary process for
generating an authorization token 104 for a client device 102
at an IDP 106.

At block 1002, the IDP 106 can determine attributes 114
ol a subscriber element 112 associated with a user of the
client device 102, such as a user account, billing account, or
subscription. The IDP 106 can determine the attributes 114
ol a subscriber element 112 from a subscriber database 110.

At block 1004, the IDP 106 can generate an allowed
function bitmask 302. In some examples the IDP 106 can set
cach bit of the allowed function bitmask 302 to “0” or “1”
directly based on whether the subscriber element 112 has or
does not have an attribute 114 corresponding to that bat
position 204 on a predefined attribute list 202. In other
examples the IDP 106 can generate a separate bitmask for
cach attribute 114 in the predefined attribute list 202 by
setting a bit at the corresponding bit position 204 to “0” or
“1” based on whether the subscriber element 112 has that
attribute 114 and setting trailing bits to “0,” and then adding

the separate bitmasks together to generate the final allowed
function bitmask 302.

At block 1006, the IDP 106 can convert the allowed
function bitmask 302 into an allowed function value 304. In
some examples the allowed function value 304 can be a
decimal value. In other examples the allowed function value
304 can be expressed 1n hexadecimal or any other numeral
form.

At block 1008, the IDP 106 can add the allowed function
value 304 to an entitlement representation 402 1n association
with an 1denftifier of the subscriber element 112. For
example, the IDP 106 can add a decimal allowed function

value 304 to an entitlement representation 402 1n association
with a userlD, BAN, or MSISDN.

The IDP 106 can repeat blocks 1002 through 1008 for any
or all of the subscriber elements associated with the user of

the client device 102. For example, the user of the client
device 102 can have one user account linked to two billing
accounts, each with one or more subscriptions, and the IDP
106 can generate an entitlement representation 402 that
includes allowed function values 304 for some or all of
them.

US 11,456,870 B2

13

At block 1010, after filling out the entitlement represen-
tation 402 with identifiers of subscriber elements 112 and
assoclated allowed function values 304, the IDP 106 can
compress and/or encode the entitlement representation 402.
For example, the IDP 106 can compress the entitlement
representation 402 using GZIP or any other compression
algorithm, and then encode 1t using Base64 encoding or
another encoding scheme so that 1t 1s expressed using a set
of printable characters. In some examples block 1010 can be
skipped 1f the entitlement representation 402 1s to be
included in the authorization token 104 in non-compressed
form.

At block 1012, the IDP 106 can add the entitlement
representation 402 as a claim 1n the body 504 of an autho-
rization token 104. As indicated above, 1n some examples
the entitlement representation 402 can be compressed and/or
encoded prior to being added to the body 504 of the
authorization token 104. The IDP 106 can also add other
claims to the body, such as an “entitlement type” claim that
indicates that the enftitlement representation 402 1s com-
pressed and includes allowed function values 304. The IDP

106 can also prepare a header 502 for the authorization token
104.

At block 1014, the IDP 106 can use a cryptographic
algorithm to generate a signature 602 for the authorization
token 104 based on the header 502 and/or body 504. The
IDP 106 can add the signature 602 to the authorization token
104. For example, the authorization token 104 can be a JW'T
that 1s formatted with an encoded version of the header 502,
an encoded version of the body 504, and the signature 602
concatenated together with periods between them.

The IDP 106 can provide the authorization token 104 to
the client device 102. The client device 102 can thereafter
provide the authorization token 104 to one or more services
108. A service 108 can then use the entitlement description
402 1n the authorization token 104 to locally verify that a
subscriber element 112 associated with the client device has
one or more attributes 114 that make the client device 102
cligible for the service 108.

FIG. 11 depicts a tlow chart of an exemplary process for
a service 108 to determine whether a client device 102 1s
entitled to access the service 108, based on an authorization
token 104 provided by the client device 102.

At block 1102, a service 108 can receive an authorization
token 104 from a client device 102 along with a request to
access the service 108. For example, a web browser or
another application running on the client device 102 can

send a service request and the authorization token 104 to a
server ol the service 108.

At block 1104, the service 108 can validate the signature
602 of the authorization token 104. For example, the service
108 can use the issuer’s public key 812 to verily the
signature 602. If the service 108 1s able to validate the
signature 602, it can trust the contents of the authorization
token’s header 502 and body 504. If the header 502 and body
504 were encoded using Base64 encoding or any other
encoding scheme, the service 108 can decode the header 502
and body 504 and recreate 1ts original form, such as an
arrangement of attribute-value pairs 1n a JWT.

At block 1106, the service 108 can decode and/or decom-
press the entitlement representation 402 from the body 504
of the authorization token 104. For example, if the entitle-
ment representation 402 was compressed and Base64
encoded, the service 108 can reverse the Base64 encoding
and then decompress the entitlement representation 402. In
some examples, an entitlement type (“enttype”) value can
indicate a type of compression that was used to compress the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

entitlement representation 402, such that the service 108 can
identily how to reverse the compression. If the entitlement
representation 402 was not compressed, block 1106 can be
skipped.

At block 1108, the service 108 can convert an allowed
function value 304 from the entitlement representation 402
that 1s associated with a subscriber element 112 to an
allowed function bitmask 302. For example, 11 the service
108 conditions access based on a particular type of sub-
scriber element 112 having one or more specific attributes
114, the service 108 can 1dentify the allowed function value
304 for that particular type of subscriber element 112, and
convert that allowed function value 304 from decimal or
another numeral system to a binary allowed function bait-

mask 302.

In some examples the client device 102 can 1dentily 1n 1ts
service request which subscriber element 112 should be
reviewed by the service 108 for attributes 114 that may
quality 1t for the service 108. For example, 1f a client device
102 makes a request to a service 108 to add a subscription
to a particular billing account, the client device’s service
request can identity the BAN of that billing account. The
service 108 can accordingly find an allowed function value
304 1n the authorization token 104 that 1s associated with
that BAN to determine 1f the billing account 1s qualified to
add another subscription, even 1f allowed function values
304 for separate billing accounts are also included in the
authorization token 104.

At block 1110, the service 108 can determine 1f one or
more bits of the allowed function bitmask 302 entitle the
user to access the service 108 through the client device 102.
The service 108 can be configured with a set of one or more
qualitying attributes 114 that a subscriber element 112 must
have 1n order for the user to access the service 108. In some
examples the service 108 can check bits in the allowed
function bitmask 302 at one or more bit positions 204
corresponding to qualifying attributes 114 on a predefined
attribute list 202 to determine if they are set to “1” and
thereby indicate that the subscriber element 112 has the
qualifying attributes 114. In other examples the service 108
can generate a list of attributes 114 that the subscriber
clement 112 has based on whether bits at corresponding bit
positions 204 are set to “1” 1n the allowed function bitmask
302. The service 108 can then determine if the qualifying
attributes 114 appear on the list of attributes 114 associated
with the subscriber element 112.

If the allowed function bitmask 302 indicates at block
1110 that the subscriber element 112 has the one or more
qualitying attributes 114 that entitle the client device 102 to
access the service 108, the service 108 can move to block
1112 and proceed with one or more operations to implement
the requested service 108. In some cases, the client device
102 may need to provide additional information for the
service 108 to implement the requested service, such as a
payment amount or credit card number. However, if the
allowed function bitmask 302 indicates that the subscriber
clement 112 does not have the qualitying attributes 114 that
entitle the client device 102 to access the service 108, the
service 108 can deny the service request at block 1114.

In some examples a telecommunication provider can
provide a service 108 with a library that includes scripts,
applications, and/or other data for performing any or all of

blocks 1104 through 1110.

Conclusion

As described above, an IDP 106 can include fine grain
entitlement information i1n an authorization token 104 that it

US 11,456,870 B2

15

provides to a client device 102. The client device 102 can
then provide the authorization token 104 to a service 108.
Because the service 108 can locally determine whether or
not the client device 102 1s eligible for the service 108 from
the fine grain entitlement information in the authorization
token 104, the service 108 can avoid making network calls
to the IDP 106 or other entities to determine i1f the client
device 102 1s eligible for the service 108. Similarly, 1f any
intermediate layers are present between the client device and
the service 108, those intermediate layers can also locally
determine the client device’s eligibility using the fine grain
entitlement information in the authorization token 104,
thereby avoiding additional network calls to determine the
client device’s eligibility.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter 1s not
necessarily limited to the specific features or acts described
above. Rather, the specific features and acts described above
are disclosed as example embodiments.

What 1s claimed 1s:

1. A method of generating an authorization token, the
method comprising:

generating an allowed function bitmask for a subscriber

clement, the allowed function bitmask comprising bits
at a plurality of bit positions that are set to values
indicating whether the subscriber element has attributes
associated with each of the plurality of bit positions on
a predefined attribute list;

converting the allowed function bitmask to an allowed

function value;

adding the allowed function value 1 an entitlement

representation;

adding the enftitlement representation to a body of an

authorization token:; and

signing the authorization token.

2. The method of claim 1, wherein the subscriber element
1s a user account, billing account, or subscription associated
with a telecommunications provider.

3. The method of claim 1, further comprising compressing,
the entitlement representation prior to adding the entitlement
representation to the body of the authorization token.

4. The method of claim 1, wherein whether the subscriber
clement has a particular attribute 1s determined based on
information stored in a subscriber database.

5. The method of claim 1, wherein the allowed function
bitmask 1s generated by directly setting bits in the allowed
function bitmask at each of the plurality of bit positions to
“0” or “1” based on whether the subscriber element has a
particular attribute corresponding to that bit position on the
predefined attribute list.

6. The method of claim 1, wherein the allowed function
bitmask 1s generated by:

generating a separate binary value for each of the attri-
butes on the predefined attribute list, the separate
binary value including a leading bit set to “0” or “1”
based on whether the subscriber element has the attri-
bute, and zero or more trailing bits set to “0”; and

adding the separate binary values together to obtain the

allowed function bitmask.

7. The method of claim 1, wherein sigming the authori-
zation token comprises:

generating a signature using a cryptographic algorithm

with a private key on the body and a header of the
authorization token: and

adding the signature to the authorization token.

10

15

20

25

30

35

40

45

50

55

60

65

16

8. A method of generating an authorization token, the
method comprising:

generating an allowed function bitmask used to i1dentily

allowed functions associated with subscriber elements,
respectively, associated with a subscriber of a telecom-
munication provider, the allowed function bitmask
comprising groups ol bits 1n a plurality of bits, the
groups of bits having values indicating whether tele-
communication service attributes are included in the
subscriber elements, respectively;

generating an entitlement representation based at least 1n

part on the allowed function bitmask; and

adding the entitlement representation to a body of an

authorization token.

9. The method of claim 8, wherein generating the entitle-
ment representation further comprises:

converting the allowed function bitmask to an allowed

function value; and

adding the allowed function value 1n the entitlement

representation.

10. The method of claim 8, further comprising:

controlling access for a user to a service based on the

telecommunication service attributes of the subscriber
clements, respectively.

11. The method of claim 8, wherein a subscriber element
ol the subscriber elements 1s a user account, billing account,
or subscription associated with the telecommunications pro-
vider.

12. The method of claim 8, wherein first bits of the
plurality of bits 1 the allowed function bitmask are set to
first values indicating that a subscriber entity has the tele-
communication service attributes corresponding to the first
bits, respectively, and

wherein second bits of the plurality of bits 1n the allowed

function bitmask are set to second values indicating
that a subscriber entity does not have the telecommu-
nication service attributes corresponding to the second
bits, respectively.

13. The method of claim 8, further comprising:

signing the authorization token to indicate that an 1ssuing

entity generated the authorization token.

14. The method of claim 8, further comprising;:

inserting, into the authorization token, a signature gener-

ated with a cryptographic algorithm.

15. The method of claim 8, wherein the telecommunica-
tion service attributes include a telecommunication service
attribute indicating a function that a user has been permitted
to perform 1n association with a subscriber element of the
subscriber elements.

16. A server of a service, the server comprising:

One Or more Processors;

a communication connection; and

memory storing computer-executable instructions that,

when executed by the one or more processors, cause the

one or more processors to perform operations compris-

ng:

generating an allowed function bitmask for a subscriber
clement, the allowed function bitmask comprising
bits at a plurality of bit positions that are set to values
indicating whether the subscriber element has attri-
butes associated with each of the plurality of bat
positions on a predefined attribute list;

converting the allowed function bitmask to an allowed
function value;

adding the allowed function value 1n an entitlement
representation;

US 11,456,870 B2

17

adding the entitlement representation to a body of an
authorization token; and
signing the authorization token.

17. The server of claim 16, wherein the subscriber ele-
ment 1s a user account, billing account, or subscription
associated with a telecommunications provider.

18. The server of claim 16, wherein whether the sub-
scriber element has a particular attribute 1s determined based
on mformation stored 1 a subscriber database.

19. The server of claim 16, wherein the allowed function
bitmask 1s generated by directly setting the bits in the
allowed function bitmask at each of the plurality of bit
positions to “0” or “1” based on whether the subscriber
clement has a particular attribute corresponding to that bit
position on the predefined attribute list.

20. The server of claim 16, wherein the allowed function
bitmask 1s generated by:

generating a separate binary value for each of the attri-
butes on the predefined attribute list, the separate
binary value including a leading bit set to “0” or “1”
based on whether the subscriber element has the attri-
bute, and zero or more trailing bits set to “0”; and
adding the separate binary values together to obtain the

allowed function bitmask.

¥ ¥ # ¥ ¥

10

15

20

25

18

	Front Page
	Drawings
	Specification
	Claims

