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(57) ABSTRACT

A method of wireless communication by a user equipment
(UE) indicates, to a base station, a training state ol a machine
learning model for a given channel condition, and a request
for a change in demodulation reference signal (DMRS)
transmissions. The UE also recerves DMRS transmissions in
accordance with the training state for the given channel
condition. The UE performs online training of the machine
learning model with the DMRS transmissions. A UE may
also request, from a base station, a specific number of
demodulation reference signal (DMRS) symbols for a slot,
and recetve DMRS transmissions in response to the request
to estimate a raw channel.
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ADAPTIVE DEMODULATION REFERENCE
SIGNAL (DMRS)

FIELD OF THE DISCLOSURE

Aspects of the present disclosure generally relate to
wireless communications, and more particularly to tech-
niques and apparatuses for adaptive demodulation reference
signal (DMRS) transmission, for example, with machine
learning-based receivers.

BACKGROUND

Wireless communications systems are widely deployed to
provide various telecommunications services such as tele-
phony, video, data, messaging, and broadcasts. Typical
wireless communications systems may employ multiple-
access technologies capable of supporting communications
with multiple users by sharing available system resources
(e.g., bandwidth, transmit power, and/or the like). Examples
of such multiple-access technologies include code division
multiple access (CDMA) systems, time division multiple
access (ITDMA) systems, Irequency-division multiple
access (FDMA) systems, orthogonal frequency-division
multiple access (OFDMA) systems, single-carrier 1re-
quency-division multiple access (SC-FDMA) systems, time
division synchronous code division multiple access (TD-

SCDMA) systems, and long term evolution (LTE). LTE/

LTE-Advanced 1s a set of enhancements to the universal
mobile telecommunications system (UMTS) mobile stan-
dard promulgated by the Third Generation Partnership Proj-
ect (3GPP).

A wireless communications network may include a num-
ber of base stations (BSs) that can support communications
for a number of user equipment (UEs). A user equipment
(UE) may communicate with a base station (BS) via the
downlink and uplink. The downlink (or forward link) refers
to the communications link from the BS to the UE, and the
uplink (or reverse link) refers to the communications link
from the UE to the BS. As will be described in more detail,
a BS may be referred to as a Node B, a gNB, an access point
(AP), aradio head, a transmit and receive point (TRP), anew
radio (NR) BS, a 5G Node B, and/or the like.

Artificial neural networks may comprise interconnected
groups ol artificial neurons (e.g., neuron models). The
artificial neural network may be a computational device or
represented as a method to be performed by a computational
device. Convolutional neural networks, such as deep con-
volutional neural networks, are a type of feed-forward
artificial neural network. Convolutional neural networks
may include layers of neurons that may be configured in a
tiled receptive field. It would be desirable to apply neural
network processing to wireless communications to achieve
greater efliciencies.

SUMMARY

According to an aspect of the present disclosure, a method
of wireless communication by a user equipment (UE) 1ndi-
cates, to a base station, a training state of a machine learning
model for a given channel condition. The UE also requests
a change in demodulation reference signal (DMRS) trans-
missions. The UE receives DMRS transmissions 1n response
to the request, based on the imndicated training state. The UE
performs online training of the machine learning model with

the received DMRS transmissions.
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In another aspect, a method of wireless communication by
a UE requests, from a base station, a specific number of
demodulation reference signal (DMRS) symbols for a slot.
The method also receives DMRS transmissions in response
to the requesting 1n order to estimate a raw channel.

In another aspect of the present disclosure, an apparatus
for wireless communications at a user equipment (UE),
includes a processor and memory coupled with the proces-
sor. Instructions stored 1n the memory are operable, when
executed by the processor, to cause the apparatus to indicate,
to a base station, a training state of a machine learning model
for a given channel condition. The apparatus also requests a
change in demodulation reference signal (DMRS) transmis-
sions. The apparatus receives DMRS transmissions in
response to the request, based on the indicated training state.
The apparatus can perform online training of the machine
learning model with the received DMRS transmissions.

In another aspect of the present disclosure, an apparatus
for wireless communications at a user equipment (UE),
includes a processor and memory coupled with the proces-
sor. Instructions stored 1n the memory are operable, when
executed by the processor, cause the apparatus to request,
from a base station, a specific number of demodulation
reference signal (DMRS) symbols for a slot. The apparatus
can also recertve DMRS transmissions in response to the
request, to estimate a raw channel.

In another aspect of the present disclosure, a UE includes
means for indicating, to a base station, a training state of a
machine learning model for a given channel condition. It
also includes requesting a change in demodulation reference
signal (DMRS) transmissions. The UE also includes means
for receiving DMRS {transmissions 1n response to the
request, based on the indicated training state. The UE further
includes means for performing online traimng of the
machine learning model with the DMRS transmissions.

In another aspect of the present disclosure, a UE 1ncludes
means for requesting, from a base station, a specific number
of demodulation reference signal (DMRS) symbols for a
slot. The UE also includes means for receiving DMRS
transmissions 1n accordance with the request, to estimate a
raw channel.

In another aspect of the present disclosure, a non-transi-
tory computer-readable medium with program code
recorded thereon 1s disclosed. The program code 1s executed
by a user equipment (UE) and includes program code to
indicate, to a base station, a training state of a machine
learning model for a given channel condition. It also
includes a request for a change 1n demodulation reference
signal (DMRS) transmissions. The UE includes program
code to receive DMRS transmissions in response to the
request, based on the indicated training state. The UE further
includes program code to perform online training of the
machine learning model with the DMRS transmissions.

In another aspect of the present disclosure, a non-transi-
tory computer-readable medium with program code
recorded thereon 1s disclosed. The program code 1s executed
by a user equipment (UE) and includes program code to
request, from a base station, a specific number of demodu-
lation reference signal (DMRS) symbols for a slot. The UE
also 1ncludes program code to recerve DMRS transmissions
in accordance with the request, to estimate a raw channel.

Aspects generally include a method, apparatus, system,
computer program product, non-transitory computer-read-
able medium, user equipment, base station, wireless com-
munication device, and processing system as substantially
described with reference to and as illustrated by the accom-
panying drawings and specification.
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The foregoing has outlined rather broadly the features and
technical advantages of examples according to the disclo-
sure 1n order that the detailed description that follows may
be better understood. Additional features and advantages
will be described. The conception and specific examples
disclosed may be readily utilized as a basis for modifying or
designing other structures for carrying out the same pur-
poses ol the present disclosure. Such equivalent construc-
tions do not depart from the scope of the appended claims.
Characteristics of the concepts disclosed, both their organi-
zation and method of operation, together with associated
advantages will be better understood from the following
description when considered in connection with the accom-
panying figures. Each of the figures i1s provided for the
purposes of illustration and description, and not as a defi-
nition of the limaits of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

So that features of the present disclosure can be under-
stood 1n detail, a particular description, may be had by
reference to aspects, some of which are illustrated in the
appended drawings. It 1s to be noted, however, that the
appended drawings illustrate only certain aspects of this
disclosure and are therefore not to be considered limiting of
its scope, for the description may admit to other equally
cllective aspects. The same reference numbers in different
drawings may 1dentily the same or similar elements.

FIG. 1 1s a block diagram conceptually illustrating an
example of a wireless commumnications network, in accor-
dance with various aspects of the present disclosure.

FIG. 2 1s a block diagram conceptually illustrating an
example of a base station 1n communication with a user
equipment (UE) 1n a wireless communications network, 1n
accordance with various aspects of the present disclosure.

FIG. 3 illustrates an example implementation of designing,
a neural network using a system-on-a-chip (SOC), including
a general-purpose processor, in accordance with certain
aspects of the present disclosure.

FIGS. 4A, 4B, and 4C are diagrams illustrating a neural
network, 1n accordance with aspects of the present disclo-
sure.

FIG. 4D 1s a diagram illustrating an exemplary deep
convolutional network (DCN), 1n accordance with aspects of
the present disclosure.

FIG. 5 1s a block diagram 1llustrating an exemplary deep
convolutional network (DCN), 1n accordance with aspects of
the present disclosure.

FIG. 6 1s a call flow diagram for channel adaptive
demodulation reference signal (DMRS) transmission based
on UE feedback, in accordance with various aspects of the
present disclosure.

FIG. 7 1s a block diagram 1illustrating transmit and receive
beams, according to aspects of the present disclosure.

FIG. 8 1s a flow diagram 1llustrating an example process
performed, for example, by a user equipment, in accordance
with various aspects of the present disclosure.

FIG. 9 1s a flow diagram 1llustrating an example process
performed, for example, by a user equipment, in accordance
with various aspects of the present disclosure.

DETAILED DESCRIPTION

Various aspects of the disclosure are described more fully
below with reference to the accompanying drawings. This
disclosure may, however, be embodied 1n many different
forms and should not be construed as limited to any specific
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structure or function presented throughout this disclosure.
Rather, these aspects are provided so that this disclosure will
be thorough and complete, and will fully convey the scope
of the disclosure to those skilled in the art. Based on the
teachings, one skilled in the art should appreciate that the
scope of the disclosure 1s intended to cover any aspect of the
disclosure, whether implemented independently of or com-
bined with any other aspect of the disclosure. For example,
an apparatus may be implemented or a method may be
practiced using any number of the aspects set forth. In
addition, the scope of the disclosure 1s mtended to cover
such an apparatus or method which 1s practiced using other
structure, functionality, or structure and functionality 1n
addition to or other than the various aspects of the disclosure
set forth. It should be understood that any aspect of the
disclosure disclosed may be embodied by one or more
clements of a claim.

Several aspects of telecommunications systems will now
be presented with reference to various apparatuses and
techniques. These apparatuses and techniques will be
described 1n the following detailed description and 1llus-
trated 1n the accompanying drawings by various blocks,
modules, components, circuits, steps, processes, algorithms,
and/or the like (collectively referred to as “‘elements”).
These elements may be implemented using hardware, sofit-
ware, or combinations thereof. Whether such elements are
implemented as hardware or software depends upon the
particular application and design constraints imposed on the
overall system.

It should be noted that while aspects may be described
using terminology commonly associated with 5G and later
wireless technologies, aspects of the present disclosure can
be applied in other generation-based communications sys-
tems, such as and including 3G and/or 4G technologies.

Machine learning may be beneficial for wireless commu-
nications. For example, learning-based receivers can learn to
estimate channel conditions from training data. After train-
ing, the learning-based receivers may estimate (e.g., infer)
characteristics of channels. The receiver can rely upon the
inferred channel characteristics instead of, or as a supple-
ment, to conventional channel estimation. These receivers
are also referred to as data-driven receivers.

As wireless communications occur between base stations
and UEs, a pilot signal, such as demodulation reference
signal (DMRS), may be transmitted to facilitate demodula-
tion of data. According to an aspect of the present disclosure,
a channel adaptive demodulation reference signal (DMRS)
transmission 1s based on UE feedback. The channel adaptive
DMRS may have applications with, for example, data-
driven receivers or with beamformed communications.

In one aspect of the present disclosure, a data-driven user
equipment (UE) receiver may be well-trained (e.g., oflline)
for particular channel conditions. As described below, a
measure of decoding quality may determine whether the
receiver 1s well-trained. The UE may indicate the state of
training (e.g., well trained or not) to the base station (e.g.,
gNB). In response, the base station may transmit the
demodulation reference signal (DMRS) less frequently for
this UE, for the purpose of online training. In another aspect
of the present disclosure, 1f for a given channel condition the
UE has not been well-traimned, the UE may request more
frequent DMRS transmissions from the base station.

According to aspects of the present disclosure, the UE
may transmit the feedback over a physical uplink control
channel (PUCCH). In another aspect, the feedback from the
UE can explicitly mention the reason for the request.
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An adaptive, configurable DMRS has other applications.
For example, 1n a millimeter wave system (e.g., frequency
range two (FR2)), beam management procedures are
executed to obtain best transmit beams and receive beams
from the base station and UE, respectively, for a downlink
scenar1o. Accordingly, downlink communications occur via
the beamformed channel, which includes the best transmait
and receive beams. The effective beamformed channel,
however, only represents a portion of the overall channel.

According to aspects of the present disclosure, to obtain
an estimate of the raw channel, the UE requests additional
DMRSs. The UE sweeps through the receive beams to
receive each additional DMRS on a different receive beam.
In one aspect, the UE requests a specific number of DMRS
transmissions (e.g., four). Based on the measurements from
the multiple receive beams, the UE may select a better
receive beam, directed more specifically towards an incident
beam. Thus, the additional overhead of extra DMRSs can be
compensated for by improved throughput based on a better
channel estimate.

FIG. 1 1s a diagram 1llustrating a network 100 1n which
aspects ol the present disclosure may be practiced. The
network 100 may be a 3G or NR network or some other
wireless network, such as an LTE network. The wireless
network 100 may include a number of BSs 110 (shown as
BS 110q, BS 1105, BS 110c, and BS 1104) and other
network entities. A BS 1s an enfity that communicates with
user equipment (UEs) and may also be referred to as a base
station, a NR BS, a Node B, a gNB, a 5G node B (NB), an
access point, a transmit receive point (1RP), and/or the like.
Each BS may provide communications coverage for a
particular geographic area. In 3GPP, the term ““cell” can refer
to a coverage area of a BS and/or a BS subsystem serving
this coverage area, depending on the context in which the
term 1s used.

A BS may provide communications coverage for a macro
cell, a pico cell, a femto cell, and/or another type of cell. A
macro cell may cover a relatively large geographic area
(e.g., several kilometers in radius) and may allow unre-
stricted access by UEs with service subscription. A pico cell
may cover a relatively small geographic area and may allow
unrestricted access by UEs with service subscription. A
femto cell may cover a relatively small geographic area
(c.g., a home) and may allow restricted access by UEs
having association with the femto cell (e.g., UEs 1n a closed
subscriber group (CSG)).

A BS for a macro cell may be referred to as a macro BS.
A BS for a pico cell may be referred to as a pico BS. A BS
for a femto cell may be referred to as a femto BS or a home
BS. In the example shown 1n FIG. 1, a BS 110a may be a
macro BS for a macro cell 102a, a BS 1106 may be a pico
BS for a pico cell 1026, and a BS 110¢ may be a femto BS
for a femto cell 102¢. A BS may support one or multiple
(c.g., three) cells. The terms “eNB”, “base station™, “NR
BS”, “gNB”, “TRP”, “AP”, “node B”, “5G NB”, and *“cell”
may be used interchangeably.

In some aspects, a cell may not necessarily be stationary,
and the geographic area of the cell may move according to
the location of a mobile BS. In some aspects, the BSs may
be interconnected to one another and/or to one or more other
BSs or network nodes (not shown) in the wireless network
100 through various types of backhaul interfaces such as a
direct physical connection, a virtual network, and/or the like
using any suitable transport network.

The wireless network 100 may also include relay stations.
A relay station 1s an entity that can recetve a transmission of
data from an upstream station (e.g., a BS or a UE) and send
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a transmission of the data to a downstream station (e.g., a UE
or a BS). A relay station may also be a UE that can relay
transmissions for other UEs. In the example shown in FIG.
1, a relay station 1104 may communicate with macro BS
110a and a UE 1204 1n order to facilitate communications

between the BS 110aq and UE 1204d. A relay station may also

be referred to as a relay BS, a relay base station, a relay,
and/or the like.

The wireless network 100 may be a heterogeneous net-
work that includes BSs of diflerent types, e.g., macro BSs,
pico BSs, femto BSs, relay BSs, and/or the like. These
different types of BSs may have different transmit power
levels, different coverage areas, and different impact on
interference 1n the wireless network 100. For example,
macro BSs may have a high transmit power level (e.g., 5 to
40 Watts) whereas pico BSs, femto BSs, and relay BSs may
have lower transmit power levels (e.g., 0.1 to 2 Watts).

A network controller 130 may couple to a set of BSs and

may provide coordination and control for these BSs. The
network controller 130 may communicate with the BSs via
a backhaul. The BSs may also communicate with one
another, e.g., directly or indirectly via a wireless or wireline
backhaul.
UEs 120 (e.g., 120a, 1205, 120c) may be dispersed
throughout the wireless network 100, and each UE may be
stationary or mobile. A UE may also be referred to as an
access terminal, a terminal, a mobile station, a subscriber
unit, a station, and/or the like. A UE may be a cellular phone
(e.g., a smart phone), a personal digital assistant (PDA), a
wireless modem, a wireless communications device, a hand-
held device, a laptop computer, a cordless phone, a wireless
local loop (WLL) station, a tablet, a camera, a gaming
device, a netbook, a smartbook, an ultrabook, a medical
device or equipment, biometric sensors/devices, wearable
devices (smart watches, smart clothing, smart glasses, smart
wrist bands, smart jewelry (e.g., smart ring, smart bracelet),
an entertainment device (e.g., a music or video device, or a
satellite radio), a vehicular component or sensor, smart
meters/sensors, industrial manufacturing equipment, a
global positioning system device, or any other suitable
device that 1s configured to communicate via a wireless or
wired medium.

Some UEs may be considered machine-type communica-
tions (MTC) or evolved or enhanced machine-type commu-
nications (eMTC) UEs. MTC and eMTC UEs include, for
example, robots, drones, remote devices, sensors, meters,
monitors, location tags, and/or the like, that may commu-
nicate with a base station, another device (e.g., remote
device), or some other entity. A wireless node may provide,
for example, connectivity for or to a network (e.g., a wide
area network such as Internet or a cellular network) via a
wired or wireless communications link. Some UEs may be
considered Internet-of-Things (IoT) devices, and/or may be
implemented as NB-IoT (narrowband internet of things)
devices. Some UEs may be considered a customer premises
equipment (CPE). UE 120 may be included inside a housing
that houses components of UE 120, such as processor
components, memory components, and/or the like.

In general, any number of wireless networks may be
deployed 1n a given geographic area. Fach wireless network
may support a particular RAT and may operate on one or
more frequencies. A RAT may also be referred to as a radio
technology, an air interface, and/or the like. A frequency
may also be referred to as a carrier, a frequency channel,
and/or the like. Each frequency may support a single RAT 1n
a given geographic area in order to avoid interference
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between wireless networks of different RATs. In some cases,
NR or 5G RAT networks may be deployed.

In some aspects, two or more UEs 120 (e.g., shown as UE
120a and UE 120¢) may communicate directly using one or
more sidelink channels (e.g., without using a base station
110 as an intermediary to communicate with one another).
For example, the UEs 120 may communicate using peer-
to-peer (P2P) communications, device-to-device (D2D)
communications, a vehicle-to-everything (V2X) protocol
(e.g., which may include a vehicle-to-vehicle (V2V) proto-
col, a vehicle-to-infrastructure (V2I) protocol, and/or the
hke) a mesh network, and/or the like. In this case, the UE
120 may perform scheduling operations, resource selection
operations, and/or other operations described elsewhere as
being performed by the base station 110. For example, the
base station 110 may configure a UE 120 via downlink
control information (DCI), radio resource control (RRC)
signaling, a media access control-control element (MAC-
CE) or via system information (e.g., a system information
block (SIB).

As imdicated above, FIG. 1 1s provided merely as an

example. Other examples may differ from what 1s described
with regard to FIG. 1.

FIG. 2 shows a block diagram of a design 200 of the base
station 110 and UE 120, which may be one of the base
stations and one of the UEs 1n FIG. 1. The base station 110
may be equipped with T antennas 234a through 2347, and
UE 120 may be equipped with R antennas 252a through
2527, where 1n general T=z1 and R=1.

At the base station 110, a transmit processor 220 may
receive data from a data source 212 for one or more UEs,
select one or more modulation and coding schemes (MCS)
for each UE based at least in part on channel quality
indicators (CQIs) recerved from the UE, process (e.g.,
encode and modulate) the data for each UE based at least 1in
part on the MCS(s) selected for the UE, and provide data
symbols for all UEs. Decreasing the MCS lowers throughput
but increases reliability of the transmission. The transmit
processor 220 may also process system information (e.g., for
semi-static resource partitioning information (SRPI) and/or
the like) and control information (e.g., CQI requests, grants,
upper layer signaling, and/or the like) and provide overhead
symbols and control symbols. The transmit processor 220
may also generate reference symbols for reference signals
(e.g., the cell-specific reference signal (CRS)) and synchro-
nization signals (e.g., the primary synchronization signal
(PSS) and secondary synchronization signal (SSS)). A trans-
mit (TX) multiple-input multiple-output (MIMO) processor
230 may perform spatial processing (e.g., precoding) on the
data symbols, the control symbols, the overhead symbols,
and/or the reference symbols, 1T applicable, and may provide
T output symbol streams to T modulators (MODs) 232a
through 232¢. Each modulator 232 may process a respective
output symbol stream (e.g., for OFDM and/or the like) to
obtain an output sample stream. Each modulator 232 may
turther process (e.g., convert to analog, amplity, filter, and
upconvert) the output sample stream to obtain a downlink
signal. T downlink signals from modulators 232a through
232¢ may be transmitted via T antennas 234a through 234z,
respectively. According to various aspects described in more
detail below, the synchronization signals can be generated
with location encoding to convey additional information.

At the UE 120, antennas 2352a through 2527 may receive
the downlink signals from the base station 110 and/or other
base stations and may provide received signals to demodu-
lators (DEMODs) 2354a through 254, respectively. Each

demodulator 254 may condition (e.g., filter, amplify, down-
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convert, and digitize) a received signal to obtain input
samples. Each demodulator 254 may further process the
iput samples (e.g., for OFDM and/or the like) to obtain
received symbols. A MIMO detector 256 may obtain
received symbols from all R demodulators 254a through
254y, perform MIMO detection on the received symbols 1f
applicable, and provide detected symbols. A recerve proces-

sor 258 may process (e.g., demodulate and decode) the
detected symbols, provide decoded data for the UE 120 to a
data sink 260, and provide decoded control information and
system 1nformation to a controller/processor 280. A channel
processor may determine reference signal received power
(RSRP), recerved signal strength indicator (RSSI), reference
signal received quality (RSRQ)), channel quality indicator
(CQI), and/or the like. In some aspects, one or more com-
ponents of the UE 120 may be included 1n a housing.

On the uplink, at the UE 120, a transmit processor 264
may receive and process data from a data source 262 and
control information (e.g., for reports comprising RSRP,
RSSI, RSRQ, CQI, and/or the like) from the controller/
processor 280. Transmit processor 264 may also generate
reference symbols for one or more reference signals. The
symbols from the transmit processor 264 may be precoded
by a TX MIMO processor 266 1f applicable, further pro-
cessed by modulators 254a through 23547 (e.g., for DFT-s-
OFDM, CP-OFDM, and/or the like), and transmitted to the
base station 110. At the base station 110, the uplink signals
from the UE 120 and other UEs may be received by the
antennas 234, processed by the demodulators 254, detected
by a MIMO detector 236 if applicable, and further processed
by a receive processor 238 to obtain decoded data and
control information sent by the UE 120. The receive pro-
cessor 238 may provide the decoded data to a data sink 239
and the decoded control information to a controller/proces-
sor 240. The base station 110 may include communications
unit 244 and communicate to the network controller 130 via
the communications unit 244. The network controller 130
may nclude a communications unit 294, a controller/pro-
cessor 290, and a memory 292.

The controller/processor 280 of the UE 120, and/or any
other component(s) of FIG. 2 may perform one or more
techniques associated with adaptive DMRS for machine
learning as described 1n more detail elsewhere. For example,
the controller/processor 280 of the UE 120, and/or any other
component(s) ol FIG. 2 may perform or direct operations of,
for example, the processes of FIGS. 8-9 and/or other pro-
cesses as described. Memories 242 and 282 may store data
and program codes for the base station 110 and UE 120,
respectively. A scheduler 246 may schedule UEs for data
transmission on the downlink and/or uplink.

In some aspects, the UE 120 may include means for
indicating, means for recerving, means for performing, and/
or means for requesting. Such means may include one or
more components of the UE 120 described in connection
with FIG. 2.

As 1ndicated above, FIG. 2 1s provided merely as an
example. Other examples may differ from what 1s described
with regard to FIG. 2.

In some cases, different types ol devices supporting
different types of applications and/or services may coexist in
a cell. Examples of diflerent types of devices include UE
handsets, customer premises equipment (CPEs), vehicles,
Internet of Things (IoT) devices, and/or the like. Examples
of different types of applications include ultra-reliable low-
latency communications (URLLC) applications, massive
machine-type communications (mMTC) applications,

enhanced mobile broadband (eMBB) applications, vehicle-
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to-anything (V2X) applications, and/or the like. Further-
more, 1n some cases, a single device may support diflerent
applications or services simultaneously.

FIG. 3 illustrates an example implementation of a system-
on-a-chip (SOC) 300, which may include a central process-
ing unit (CPU) 302 or a multi-core CPU configured for
generating gradients for neural network training, 1n accor-
dance with certain aspects of the present disclosure. The

SOC 300 may be included 1n the base station 110 or UE 120.

Varniables (e.g., neural signals and synaptic weights), system
parameters associated with a computational device (e.g.,
neural network with weights), delays, frequency bin infor-
mation, and task information may be stored in a memory
block associated with a neural processing unit (NPU) 308, in
a memory block associated with a CPU 302, 1n a memory
block associated with a graphics processing unit (GPU) 304,
in a memory block associated with a digital signal processor
(DSP) 306, 1n a memory block 318, or may be distributed

across multiple blocks. Instructions executed at the CPU 302
may be loaded from a program memory associated with the

CPU 302 or may be loaded from a memory block 318.

The SOC 300 may also include additional processing
blocks tailored to specific functions, such as a GPU 304, a

DSP 306, a connectivity block 310, which may include fifth
generation (5G) connectivity, fourth generation long term
evolution (4G LTE) connectivity, Wi-Fi1 connectivity, USB
connectivity, Bluetooth connectivity, and the like, and a
multimedia processor 312 that may, for example, detect and
recognize gestures. In one implementation, the NPU 1s
implemented 1n the CPU, DSP, and/or GPU. The SOC 300
may also include a sensor processor 314, image signal
processors (ISPs) 316, and/or navigation module 320, which
may include a global positioning system.

The SOC 300 may be based on an ARM instruction set.
In an aspect of the present disclosure, the imstructions loaded
into the general-purpose processor 302 may comprise code
to 1ndicate, to a base station, a training state of a machine
learning model for a given channel condition, and a request
for a change in demodulation reference signal (DMRS)
transmissions. Additionally, the general-purpose processor

302 may comprise code to receive DMRS transmissions 1n
accordance with the training state for the given channel
condition, and code to perform online training of the
machine learning model with the DMRS transmission. The
general-purpose processor 302 may further comprise code to
request, from a base station, a specific number of DMRS
symbols for a slot, and code to receive DMRS transmissions
in response to the request, to estimate a raw channel.
Deep learming architectures may perform an object rec-
ognition task by learning to represent iputs at successively
higher levels of abstraction 1n each layer, thereby building
up a useful feature representation of the mput data. In this
way, deep learning addresses a major bottleneck of tradi-
tional machine learning. Prior to the advent of deep learning,
a machine learning approach to an object recognition prob-
lem may have relied heavily on human engineered features,
perhaps 1n combination with a shallow classifier. A shallow
classifier may be a two-class linear classifier, for example, 1n
which a weighted sum of the feature vector components may
be compared with a threshold to predict to which class the
input belongs. Human engineered features may be templates
or kernels tailored to a specific problem domain by engi-
neers with domain expertise. Deep learning architectures, in
contrast, may learn to represent features that are similar to
what a human engineer might design, but through training.
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Furthermore, a deep network may learn to represent and
recognize new types of features that a human might not have
considered.

A deep learning architecture may learn a hierarchy of
features. If presented with visual data, for example, the first
layer may learn to recognize relatively simple features, such
as edges, 1 the mput stream. In another example, 11 pre-
sented with auditory data, the first layer may learn to
recognize spectral power 1n specific frequencies. The second
layer, taking the output of the first layer as mput, may learn
to recognize combinations of features, such as simple shapes
for visual data or combinations of sounds for auditory data.
For instance, higher layers may learn to represent complex
shapes 1n visual data or words 1n auditory data. Still higher
layers may learn to recognmize common visual objects or
spoken phrases.

Deep learning architectures may perform especially well
when applied to problems that have a natural hierarchical
structure. For example, the classification of motorized
vehicles may benelit from first learning to recognize wheels,
windshields, and other features. These features may be
combined at higher layers in different ways to recognize
cars, trucks, and airplanes.

Neural networks may be designed with a variety of
connectivity patterns. In feed-forward networks, informa-
tion 1s passed from lower to higher layers, with each neuron
in a given layer communicating to neurons 1n higher layers.
A hierarchical representation may be built up 1n successive
layers of a feed-forward network, as described above. Neu-
ral networks may also have recurrent or feedback (also
called top-down) connections. In a recurrent connection, the
output from a neuron 1n a given layer may be communicated
to another neuron 1n the same layer. A recurrent architecture
may be helpiul 1 recognizing patterns that span more than
one of the mput data chunks that are delivered to the neural
network 1n a sequence. A connection from a neuron in a
given layer to a neuron 1n a lower layer 1s called a feedback
(or top-down) connection. A network with many feedback
connections may be helpful when the recognition of a
high-level concept may aid 1in discriminating the particular
low-level features of an mput.

The connections between layers of a neural network may
be fully connected or locally connected. FIG. 4 A illustrates
an example of a fully connected neural network 402. In a
tully connected neural network 402, a neuron 1n a first layer
may communicate its output to every neuron 1n a second
layer, so that each neuron in the second layer will receive
input from every neuron in the first layer. FIG. 4B illustrates
an example of a locally connected neural network 404. In a
locally connected neural network 404, a neuron 1n a {first
layer may be connected to a limited number of neurons 1n
the second layer. More generally, a locally connected layer
of the locally connected neural network 404 may be con-
figured so that each neuron 1n a layer will have the same or
a similar connectivity pattern, but with connections
strengths that may have different values (e.g., 410, 412, 414,
and 416). The locally connected connectivity pattern may
give rise to spatially distinct receptive fields 1n a higher
layer, because the higher layer neurons 1n a given region
may receive mputs that are tuned through training to the
properties ol a restricted portion of the total mput to the
network.

One example of a locally connected neural network 1s a
convolutional neural network. FIG. 4C 1illustrates an
example of a convolutional neural network 406. The con-
volutional neural network 406 may be configured such that
the connection strengths associated with the iputs for each
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neuron 1n the second layer are shared (e.g., 408). Convolu-
tional neural networks may be well suited to problems in
which the spatial location of mputs 1s meaningiul.

One type of convolutional neural network i1s a deep
convolutional network (DCN). FIG. 4D illustrates a detailed
example of a DCN 400 designed to recognize visual features
from an 1mage 426 input from an i1mage capturing device
430, such as a car-mounted camera. The DCN 400 of the
current example may be trained to identify traflic signs and
a number provided on the traffic sign. Of course, the DCN
400 may be trained for other tasks, such as identiiying lane
markings or identifying traflic lights.

The DCN 400 may be trained with supervised learning.
During traiming, the DCN 400 may be presented with an
image, such as the image 426 of a speed limit sign, and a
forward pass may then be computed to produce an output
422. The DCN 400 may include a feature extraction section
and a classification section. Upon receiving the image 426,
a convolutional layer 432 may apply convolutional kernels
(not shown) to the image 426 to generate a first set of feature
maps 418. As an example, the convolutional kernel for the
convolutional layer 432 may be a 5x35 kernel that generates
28x28 feature maps. In the present example, because four
different feature maps are generated 1n the first set of feature
maps 418, four different convolutional kernels were applied
to the image 426 at the convolutional layer 432. The
convolutional kemels may also be referred to as filters or
convolutional filters.

The first set of feature maps 418 may be subsampled by
a max pooling layer (not shown) to generate a second set of
feature maps 420. The max pooling layer reduces the size of
the first set of feature maps 418. That 1s, a size of the second
set of feature maps 420, such as 14x14, 1s less than the size
of the first set of feature maps 418, such as 28x28. The
reduced size provides similar information to a subsequent
layer while reducing memory consumption. The second set
of feature maps 420 may be further convolved via one or
more subsequent convolutional layers (not shown) to gen-
erate one or more subsequent sets of feature maps (not
shown).

In the example of FI1G. 4D, the second set of feature maps
420 1s convolved to generate a first feature vector 424.
Furthermore, the first feature vector 424 1s further convolved
to generate a second feature vector 428. Each feature of the
second feature vector 428 may include a number that
corresponds to a possible feature of the image 426, such as
“sign,” “60,” and “100.” A soltmax function (not shown)
may convert the numbers 1n the second feature vector 428 to
a probability. As such, an output 422 of the DCN 400 1s a
probability of the image 426 including one or more features.

In the present example, the probabilities 1n the output 422
for “sign” and “60” are higher than the probabilities of the
others of the output 422, such as “30,” “40,” “30,” *70,”
“80,” “90,” and “100”. Before traiming, the output 422
produced by the DCN 400 1s likely to be incorrect. Thus, an
error may be calculated between the output 422 and a target
output. The target output 1s the ground truth of the 1mage 426
(e.g., “sign” and “60”). The weights of the DCN 400 may
then be adjusted so the output 422 of the DCN 400 1s more
closely aligned with the target output.

To adjust the weights, a learning algorithm may compute
a gradient vector for the weights. The gradient may indicate
an amount that an error would increase or decrease if the
weight were adjusted. At the top layer, the gradient may
correspond directly to the value of a weight connecting an
activated neuron 1n the penultimate layer and a neuron 1n the
output layer. In lower layers, the gradient may depend on the
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value of the weights and on the computed error gradients of
the higher layers. The weights may then be adjusted to
reduce the error. This manner of adjusting the weights may
be referred to as “back propagation™ as 1t involves a “back-
ward pass” through the neural network.

In practice, the error gradient of weights may be calcu-
lated over a small number of examples, so that the calculated
gradient approximates the true error gradient. This approxi-
mation method may be referred to as stochastic gradient
descent. Stochastic gradient descent may be repeated until
the achievable error rate of the entire system has stopped
decreasing or until the error rate has reached a target level.
After learning, the DCN may be presented with new 1mages
(e.g., the speed limit sign of the image 426) and a forward
pass through the network may yield an output 422 that may
be considered an inference or a prediction of the DCN.

Deep belief networks (DBNs) are probabilistic models
comprising multiple layers of hidden nodes. DBNs may be
used to extract a hierarchical representation of training data
sets. A DBN may be obtained by stacking up layers of
Restricted Boltzmann Machines (RBMs). An RBM 1is a type
of artificial neural network that can learn a probability
distribution over a set of mputs. Because RBMs can learn a
probability distribution in the absence of information about
the class to which each input should be categorized, RBMs
are often used in unsupervised learning. Using a hybnd
unsupervised and supervised paradigm, the bottom RBMs of
a DBN may be trained in an unsupervised manner and may
serve as feature extractors, and the top RBM may be trained
in a supervised manner (on a joint distribution of inputs from

the previous layer and target classes) and may serve as a
classifier.

Deep convolutional networks (DCNs) are networks of
convolutional networks, configured with additional pooling
and normalization layers. DCNs have achieved state-of-the-
art performance on many tasks. DCNs can be trained using
supervised learning in which both the input and output
targets are known for many exemplars and are used to
modily the weights of the network by use of gradient descent
methods.

DCNs may be feed-forward networks. In addition, as
described above, the connections from a neuron in a first
layer of a DCN to a group of neurons 1n the next higher layer
are shared across the neurons in the first layer. The feed-
forward and shared connections of DCNs may be exploited
for fast processing. The computational burden of a DCN
may be much less, for example, than that of a sitmilarly sized
neural network that comprises recurrent or feedback con-
nections.

The processing of each layer of a convolutional network
may be considered a spatially invariant template or basis
projection. If the mput 1s first decomposed into multiple
channels, such as the red, green, and blue channels of a color
image, then the convolutional network trained on that input
may be considered three-dimensional, with two spatial
dimensions along the axes of the image and a third dimen-
s1on capturing color mnformation. The outputs of the convo-
lutional connections may be considered to form a feature
map 1n the sub sequent layer with each element of the feature
map (€. 2., 220) recerving mput from a range of neurons 1n
the previous layer (e.g., feature maps 218) and from each of
the multiple channels. The values 1n the feature map may be
turther processed with a non-linearity, such as a rectification,
max(0, x). Values from adjacent neurons may be further
pooled, which corresponds to down sampling, and may
provide additional local invariance and dimensionality
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reduction. Normalization, which corresponds to whitening,
may also be applied through lateral inhibition between
neurons in the feature map.

The performance of deep learning architectures may
increase as more labeled data points become available or as
computational power increases. Modern deep neural net-
works are routinely tramned with computing resources that
are thousands of times greater than what was available to a
typical researcher just fifteen years ago. New architectures
and training paradigms may further boost the performance
of deep learning. Rectified linear units may reduce a training
1ssue known as vamshing gradients. New training tech-
niques may reduce over-fitting and thus enable larger models
to achieve better generalization. Encapsulation techniques
may abstract data 1n a given receptive field and further boost
overall performance.

FIG. 5 1s a block diagram 1llustrating a deep convolutional
network 550. The deep convolutional network 350 may
include multiple different types of layers based on connec-

tivity and weight sharing. As shown in FIG. 5, the deep
convolutional network 550 includes the convolution blocks
554 A, 554B. Each of the convolution blocks 554A, 554B
may be configured with a convolution layer (CONV) 356, a
normalization layer (LNorm) 538, and a max pooling layer
(MAX POOL) 560.

The convolution layers 556 may include one or more
convolutional filters, which may be applied to the input data
to generate a feature map. Although only two of the con-
volution blocks 554 A, 554B are shown, the present disclo-
sure 1s not so limiting, and instead, any number of the
convolution blocks 554 A, 554B may be 1included 1n the deep
convolutional network 550 according to design preference.
The normalization layer 358 may normalize the output of the
convolution filters. For example, the normalization layer 558
may provide whitening or lateral inhibition. The max pool-
ing layer 560 may provide down sampling aggregation over
space for local invariance and dimensionality reduction.

The parallel filter banks, for example, of a deep convo-
lutional network may be loaded on a CPU 302 or GPU 304
of an SOC 300 to achieve high performance and low power
consumption. In alternative embodiments, the parallel filter
banks may be loaded on the DSP 306 or an ISP 316 of an
SOC 300. In addition, the deep convolutional network 550
may access other processing blocks that may be present on
the SOC 300, such as sensor processor 314 and navigation
module 320, dedicated, respectively, to sensors and naviga-
tion.

The deep convolutional network 550 may also include
one or more fully connected layers 562 (FC1 and FC2). The
deep convolutional network 350 may further include a
logistic regression (LR) layer 564. Between each layer 556,
538, 560, 562, 564 of the deep convolutional network 550
are weights (not shown) that are to be updated. The output
of each of the layers (e.g., 556, 558, 560, 562, 564) may
serve as an input of a succeeding one of the layers (e.g., 556,
538, 560, 562, 564) 1n the deep convolutional network 550
to learn hierarchical feature representations from 1nput data
552 (e.g., 1images, audio, video, sensor data and/or other
input data) supplied at the first of the convolution blocks
554A. The output of the deep convolutional network 550 1s
a classification score 366 for the iput data 5352. The
classification score 566 may be a set of probabilities, where
cach probability 1s the probability of the mput data, includ-
ing a feature from a set of features.

As indicated above, FIGS. 3-5 are provided as examples.
Other examples may differ from what 1s described with

respect to FIGS. 3-5.
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Machine learning may be beneficial for wireless commu-
nications. For example, learning-based receivers can learn to
estimate (e.g., infer) channel conditions from training data.
After training, the learning-based receivers may infer char-
acteristics of channels. The receiver can rely upon the
inferred channel characteristics 1stead of, or as a supple-
ment to, conventional channel estimation. These receivers
are also referred to as data-driven receivers.

A learning-based recerver architecture may be considered,
for example, to avoid channel estimation 1n more challeng-
ing scenarios, such as in low-resolution analog-to-digital
converter (ADC) systems. A class of these recervers decodes
quantized signals independent of explicit channel estima-
tion. The described class of receivers may learn character-
istics of the quantized outputs at each beam, instead of
estimating the channel state information (CSI), by consid-
ering the channel and quantization functions as a black box.
Data-driven recervers may have less dependence on channel
estimation, particularly 1f they have been well-tramned for
certain channel conditions.

The described receivers may be trained to learn channel
conditions based on received reference signals (RSs). The
reference signal training may be online training. As a result
of the learming, the receivers may omit explicit channel
estimation, and for instance, may instead look at a sequence
of the transmitted and received training symbols to infer the
channel.

As wireless communications occur between base stations
and UEs, a pilot signal, such as demodulation reference
signal (DMRS), may be transmitted to facilitate demodula-
tion of data. The DMRS 1is utilized by a wireless commu-
nications device to produce channel estimates for demodu-
lation of an associated physical channel. The DMRS may be
device-specific, and thus, directly corresponds to data tar-
geted to that particular UE. The DMRS may be transmitted
on demand. The receivers may train on DMRSs.

According to an aspect of the present disclosure, a chan-
nel adaptive demodulation reference signal (DMRS) trans-
mission 1s based on UE feedback. The channel adaptive
DMRS may have applications with, for example, data-
driven receivers with beamiformed channels.

In one aspect of the present disclosure, a data-driven user
equipment (UE) receiver may be well-trained (e.g., ofiline)
for particular channel conditions. The UE may indicate this
state of training to the base station (e.g., gNB). In response,
the base station may transmit the demodulation reference
signal (DMRS) less frequently for this UE, for the purpose
of online training. For example, the base station may skip the
DMRS for a slot or a few slots altogether. In another aspect,
the base station may use a light training DMRS pattern (e.g.,
transmitting on fewer symbols), etc., for online training.

In another aspect of the present disclosure, 1f for a given
channel condition the UE has not been well-trained, the UE
may request more frequent DMRS transmissions from the
base station. Alternatively, the UE may request a heavier
DMRS pattern, etc., to perform online training and improve
decoding quality. As an example, a number of symbols for
the DMRS may increase for the heavier DMRS pattern.

According to an aspect of the present disclosure, a crite-
rion for the UE to determine whether the machine learming
model 1s well-trained 1s a measure of decoding quality. In
one example, a measure of decoding quality 1s a bit error rate
(BER).

In this example, 1 the bit error rate 1s less than a threshold,
the UE may request less frequent DMRS training (and/or a
light DMRS pattern), implying a performance of the previ-
ously trained receiver 1s equal to or greater than a perfor-
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mance threshold. If the bit error rate 1s larger than the
threshold, the UE may request more frequent DMRS train-
ing (and/or a heavy DMRS pattern), implying the perfor-
mance of the previously trained receiver 1s less than the
performance threshold, and needs to improve through online
training.

In summary, for some channel realizations, the UE may
request more Irequent reference signal transmission (e.g.,
because the UE has not been trained for similar channel
realizations 1n the ofiline training phase). For other channel
realizations, the UE may have been well-trained, and there-
fore the UE can request less Irequent reference signal
transmission.

According to aspects of the present disclosure, the UE
may transmit the feedback over a physical uplink control
channel (PUCCH). In another aspect, the feedback from the
UE can explicitly mention the reason for the request. The
reason may be for online training purposes, etc.

In still another aspect of the present disclosure, the DMRS
used for online training of the data-driven receiver may be
defined particularly for this purpose. That 1s, the DMRS
pattern for online training may be different from legacy
DMRS patterns defined 1n the current 3GPP specifications.

FIG. 6 1s a call flow diagram for channel adaptive
demodulation reference signal (DMRS) transmission based
on UE feedback, in accordance with various aspects of the
present disclosure. At time t1, a UE 602 determines an
oflline training state for particular channel conditions. For
example, a machine learning model may be well-trained or
poorly-tramned for the particular channel conditions. As
described above, comparison of a decoding quality to a
performance threshold may determine whether the machine
learning model 1s well-trained or poorly-trained. At time 2,
the UE informs a base station 604 of the training state. In
other aspects, the UE may explicitly request a given number
of DMRS symbols with a given rank to facilitate raw
channel estimation (as described 1n more detail below). In
response, at time t3, the base station configures a DMRS
based on the training state. For example, the base station 604
may select a more frequent DMRS or a heavier DMRS
pattern 11 the machine learning model i1s poorly-trained, in
order to improve training. At time t4, the base station 604
transmits the configured DMRS. Finally, at time t5, the UE
602 trains 1ts machine learming model for the particular
channel conditions based on the received DMRS. By adap-
tively configuring the DMRS, the UE 1s able to more
ciliciently train its machine learning models.

An adaptive, configurable DMRS has other applications,
as well. For example, in a millimeter wave system (e.g.,
frequency range two (FR2)), beam management procedures
are executed to obtain best transmit beams and receive
beams from the base station and UE, respectively, for a
downlink scenario. Accordingly, downlink communications
occur via the beamiformed channel including the best trans-
mit and receive beams. The eflective beamformed channel,
however, only represents a portion of the overall channel.

FIG. 7 1s a block diagram 1illustrating transmit and receive
beams, according to aspects of the present disclosure. A UE
710 communicates across the downlink with a base station
712 via a number of receive beams Al, A2, A3, and A4, as
well as transmit beams B1, B2, B3, B4, BS, and B6. In this
example, the best receive beam 1s the fourth beam A4 and
the best transmit beam 1s the fifth transmit beam BS. The
observed channel 1s thus the beam formed channel from the
fifth transmit beam B3 and the fourth receive beam A4. If an
estimate of the overall, raw channel 1s desired, beam sweep-
ing may occur at the receiver side. For example, sweeping
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across four beams (e.g., A4, A3, A2, and Al) enables the UE
to observe a 4x1 channel, instead of a 1x1 channel seen with
a single receive beam (e.g., the fourth receive beam A4).

According to aspects of the present disclosure, to obtain
an estimate of the raw channel, the UE 710 requests addi-
tional DMRSs. The additional DMRSs may be repeated
DMRSs or newly defined DMRSs. In this aspect, the base
station 712 transmits the DMRS four times from the fifth
transmit beam B5. The UE 710 sweeps through the receive
beams to receive each DMRS on a different receive beam
(e.g., Al, A2, A3, or A4). Thus, the UE can measure the
channel with a first beam Al based on the first DMRS at a
first symbol, can measure the channel with a second beam
A2 based on the second DMRS at a second symbol, can
measure the channel with a third beam A3 based on the third
DMRS at a third symbol, and can measure the channel with
a fourth beam A4 based on the fourth DMRS at a fourth
symbol.

To enable these measurements of the raw channel, the UE
adaptively requests multiple DMRS transmissions. In other
words, the UE customizes the DMRS transmissions for a
particular purpose, in this case, raw channel estimation. In
one aspect, the UE requests a specific number of DMRS
transmissions (e.g., four). In other aspects, the UE also
requests a specific rank for the given number of symbols
(e.g., a number of transmission layers). The DMRS trans-
mission may occur in consecutive symbols, for example,
three or four consecutive symbols.

The UE may request, from the base station, a given
number of DMRS symbols with a given rank. For a
mmWave use case, rank one and rank two transmissions are
considered. In this case, the UE may request four DMRS
symbols, each with rank one, for example. Or the UE may
request four DMRS symbols, each with rank two, efc.

In some aspects, based on the measurements from the
multiple recerve beams, the UE may select a better beam,
directed more specifically towards an incident beam. Thus,
the additional overhead of extra DMRSs can be compen-
sated for by improved throughput based on a better channel
estimate. In contrast to current specifications that employ
DMRS for beamformed channel estimation, aspects of the
present disclosure apply to raw, non-beamformed channel
estimation through consecutive beamiormed measurements.

FIG. 8 1s a diagram 1llustrating an example process 800
performed, for example, by a UE, in accordance with
various aspects ol the present disclosure. The example
process 800 1s an example of adaptive demodulation refer-
ence signal (DMRS) ftransmission, for example, with
machine learning-based receivers.

As shown 1n FIG. 8, in some aspects, the process 800 may
include indicating, to a base station, a traiming state of a
machine learning model for a given channel condition, and
a request for a change in demodulation reference signal
(DMRS) transmissions (block 802). For example, the user
equipment (UE) (e.g., using the antenna 252, DEMOD/
MOD 254, MIMO detector 256, TX MIMO processor 266,
receive processor 238, transmit processor 264, controller/
processor 280, and/or memory 282) can indicate, to a base
station, the training state and the request. In some aspects,
the process 800 may include receiving DMRS transmissions
in accordance with the training state for the given channel
condition (block 804). For example, the UE (e.g., using the
antenna 252, DEMOD/MOD 254, MIMO detector 256,
receive processor 238, controller/processor 280, and/or
memory 282) can receive DMRS transmissions. The process
800 may also include performing online training of the
machine learning model with the DMRS transmission (block
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806). For example, the UE (e.g., using the antenna 252,
DEMOD/MOD 254, MIMO detector 256, TX MIMO pro-
cessor 266, receive processor 258, transmit processor 264,
controller/processor 280, and/or memory 282) can perform
online training.

FIG. 9 1s a diagram 1llustrating an example process 900
performed, for example, by a UE, in accordance with
vartous aspects ol the present disclosure. The example
process 900 1s an example of adaptive demodulation refer-
ence signal (DMRS) transmission, for example, with
machine learning-based receivers.

As shown in FIG. 9, 1n some aspects, the process 900 may
include requesting, from a base station, a specific number of
demodulation reference signal (DMRS) symbols for a slot
(block 902). For example, the UE (e.g., using the antenna
252, DEMOD/MOD 254, TX MIMO processor 266, trans-
mit processor 264, controller/processor 280, and/or memory
282) can request the specific number of DMRS symbols. In
some aspects, the process 900 may include recerving,
DMRS transmissions in accordance with the requesting to
estimate a raw channel (block 904). For example, the UE
(e.g., using the antenna 252, DEMOD/MOD 254, MIMO
detector 256, receive processor 258, Controller/processor
280, and/or memory 282) can receive, the DMRS transmis-
S1011S.

The 1foregoing disclosure provides illustration and
description, but 1s not intended to be exhaustive or to limait
the aspects to the precise form disclosed. Modifications and
variations may be made in light of the above disclosure or
may be acquired from practice of the aspects.

As used, the term “component” 1s intended to be broadly
construed as hardware, firmware, and/or a combination of
hardware and software. As used, a processor 1s implemented
in hardware, firmware, and/or a combination of hardware
and software.

Some aspects are described 1n connection with thresholds.
As used, satisfying a threshold may, depending on the
context, refer to a value being greater than the threshold,
greater than or equal to the threshold, less than the threshold,
less than or equal to the threshold, equal to the threshold, not
equal to the threshold, and/or the like.

It will be apparent that systems and/or methods described
may be implemented 1n different forms of hardware, firm-
ware, and/or a combination of hardware and software. The
actual specialized control hardware or software code used to
implement these systems and/or methods 1s not limiting of
the aspects. Thus, the operation and behavior of the systems
and/or methods were described without reference to specific
soltware code—it being understood that software and hard-
ware can be designed to immplement the systems and/or
methods based, at least 1n part, on the description.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
various aspects. In fact, many of these features may be
combined in ways not specifically recited in the claims
and/or disclosed 1n the specification. Although each depen-
dent claim listed below may directly depend on only one
claim, the disclosure of various aspects includes each depen-
dent claim in combination with every other claim in the
claim set. A phrase referring to “at least one of” a list of
items refers to any combination of those items, including
single members. As an example, “at least one of: a, b, or ¢”
1s 1ntended to cover a, b, ¢, a-b, a-c, b-c, and a-b-c, as well
as any combination with multiples of the same element (e.g.,
a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c,
and c-c-c or any other ordering of a, b, and c).
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No element, act, or instruction used should be construed
as critical or essential unless explicitly described as such.
Also, as used, the articles “a” and “an” are intended to
include one or more 1tems, and may be used interchangeably
with “one or more.” Furthermore, as used, the terms “set”
and “group” are intended to include one or more items (e.g.,
related 1items, unrelated 1tems, a combination of related and
unrelated items, and/or the like), and may be used inter-
changeably with “one or more.” Where only one item 1s
intended, the phrase “only one™ or similar language 1s used.
Also, as used, the terms “has,” “have,” “having,” and/or the
like are intended to be open-ended terms. Further, the phrase
“based on” 1s intended to mean “based, at least 1n part, on”
unless explicitly stated otherwise.

What 1s claimed 1s:

1. A method of wireless communication by a user equip-
ment (UE), comprising:

indicating, to a base station, a training state of a machine

learning model for a given channel condition, and a
request for a change in demodulation reference signal
(DMRS) transmissions;
recerving DMRS transmissions in accordance with the
training state for the given channel condition; and
performing online training of the machine learning model
with the DMRS transmissions.

2. The method of claim 1, in which the training state
indicates a decoding quality 1s above a threshold value, and
the recelving comprises receiving a light DMRS pattern.

3. The method of claim 1, 1n which the training state
indicates a decoding quality 1s above a threshold value, and
the receiving comprises recerving fewer DMRS symbols in
a slot.

4. The method of claim 1, 1n which the training state
indicates a decoding quality 1s below a threshold value, and
the receiving comprises receiving a heavy DMRS pattern.

5. The method of claim 1, 1n which the training state
indicates a decoding quality 1s below a threshold value, and
the receiving comprises recerving additional DMRS sym-
bols 1n a slot.

6. The method of claim 1, 1n which the training state 1s
based on a bit error rate associated with decoding by the
machine learning model.

7. The method of claim 1, in which the indicating occurs
via a physical uplink control channel.

8. The method of claim 1, further comprising indicating,
to the base station, online training as a reason for indicating
the training state.

9. The method of claim 1, 1n which a pattern of the
received DMRS differs from a legacy DMRS pattern.

10. A method of wireless communication by a user
equipment (UE), comprising:

requesting, from a base station, a specific number of

demodulation reference signal (DMRS) symbols for a
slot; and

recetving DMRS transmissions across a plurality of

beams, 1n accordance with the requesting to estimate a
raw, non-beamiformed channel including the plurality
of beams.

11. The method of claim 10, 1n which requesting com-
prises requesting a specific number of repeated DMRS
symbols.

12. The method of claim 10, 1n which requesting com-
prises requesting a specific number of newly defined DMRS
symbols.

13. The method of claim 10, 1n which the specific number
of DMRS symbols comprises three symbols or four sym-

bols.
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14. The method of claim 13, 1n which the three symbols
or four symbols comprise three consecutive symbols or four
consecutive symbols.

15. The method of claim 10, further comprising performs-
ing a beam sweep across a specilic number of beams
corresponding to the specific number of DMRS symbols to
obtain an estimate of the raw, non-beamformed channel.

16. The method of claim 10, further comprising request-
ing a rank corresponding to the specific number of DMRS
symbols.

17. An apparatus for wireless communication by a user
equipment (UE), comprising:

a Processor,

memory coupled with the processor; and

instructions stored in the memory and operable, when

executed by the processor, to cause the apparatus:

to indicate, to a base station, a training state ol a machine

learning model for a given channel condition, and a
request for a change in demodulation reference signal
(DMRS) transmissions;

to receive DMRS transmissions in accordance with the

training state for the given channel condition; and

to perform online training of the machine learning model

with the DMRS transmissions.

18. The apparatus of claim 17, in which the training state
indicates a decoding quality 1s above a threshold value, and
in which the processor causes the apparatus to receive a light
DMRS pattern.

19. The apparatus of claim 17, in which the training state
indicates a decoding quality 1s above a threshold value, and
in which the processor causes the apparatus to receive fewer
DMRS symbols 1n a slot.

20. The apparatus of claim 17, 1n which the training state
indicates a decoding quality 1s below a threshold value, and
in which the processor causes the apparatus to receive a
heavy DMRS pattern.

21. The apparatus of claim 17, 1n which the training state
indicates a decoding quality 1s below a threshold value, and
in which the processor causes the apparatus to receive
additional DMRS symbols 1n a slot.

22. The apparatus of claim 17, in which the training state
1s based on a bit error rate associated with decoding by the
machine learning model.

23. The apparatus of claim 17, in which the processor
causes the apparatus to indicate via a physical uplink control
channel.

24. The apparatus of claim 17, 1n which the processor
causes the apparatus to indicate, to the base station, online
training as a reason for indicating the training state.

25. The apparatus of claim 17, 1n which a pattern of the
received DMRS differs from a legacy DMRS pattern.

26. An apparatus for wireless communication by a user
equipment (UE), comprising:

a Processor,

memory coupled with the processor; and

instructions stored in the memory and operable, when

executed by the processor, to cause the apparatus:

to request, from a base station, a specific number of

demodulation reference signal (DMRS) symbols for a
slot; and

to receive DMRS transmissions across a plurality of

beams, 1n accordance with the requesting to estimate a
raw, non-beamformed channel including the plurality
of beams.

27. The apparatus of claim 26, 1n which the processor
causes the apparatus to request a specific number of repeated

DMRS symbols.
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28. The apparatus of claim 26, in which the processor
causes the apparatus to request a specific number of newly
defined DMRS symbols.

29. The apparatus of claim 26, in which the specific
number of DMRS symbols comprises three symbols or four
symbols.

30. The apparatus of claim 29, 1n which the three symbols
or four symbols comprise three consecutive symbols or four
consecutive symbols.

31. The apparatus of claim 26, in which the processor
causes the apparatus to perform a beam sweep across a
specific number of beams corresponding to the specific
number of DMRS symbols to obtain an estimate of the raw,
non-beamiormed channel.

32. The apparatus of claim 26, in which the processor
causes the apparatus to request a rank corresponding to the
specific number of DMRS symbols.

33. A user equipment (UE) for wireless communications,
comprising:

means for indicating, to a base station, a training state of

a machine learning model for a given channel condi-
tion, and a request for a change in demodulation
reference signal (DMRS) transmissions;

means for receiving DMRS transmissions 1n accordance

with the training state for the given channel condition;
and

means for performing online training of the machine

learning model with the DMRS transmissions.

34. The UE of claim 33, in which the traiming state
indicates a decoding quality 1s above a threshold value, and
the recelving means comprises means for receiving a light
DMRS pattern.

35. The UE of claim 33, in which the traimng state
indicates a decoding quality 1s above a threshold value, and
the recerving means comprises means lor receiving fewer
DMRS symbols 1n a slot.

36. The UE of claim 33, in which the traiming state
indicates a decoding quality 1s below a threshold value, and
the receiving means comprises means for receiving a heavy
DMRS pattern.

37. The UE of claim 33, in which the traiming state
indicates a decoding quality 1s below a threshold value, and
the receiving means comprises means for receiving addi-
tional DMRS symbols 1n a slot.

38. The UE of claim 33, in which the training state 1s
based on a bit error rate associated with decoding by the
machine learning model.

39. The UE of claim 33, 1n which the means for indicating,
operates via a physical uplink control channel.

40. The UE of claim 33, further comprising means for
indicating, to the base station, online training as a reason for
indicating the training state.

41. The UE of claim 33, in which a pattern of the received
DMRS differs from a legacy DMRS pattern.

42. A user equipment (UE) for wireless communications,
comprising:

means for requesting, from a base station, a specific

number of demodulation reference signal (DMRS)
symbols for a slot; and

means for recerving DMRS transmissions across a plu-

rality of beams, 1n accordance with the requesting to
estimate a raw, non-beamiormed channel including the
plurality of beams.

43. The UE of claim 42, in which the requesting means
comprises means for requesting a specific number of

repeated DMRS symbols.
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44. The UE of claim 42, in which the requesting means condition, and a request for a change 1n demodulation
comprises means for requesting a specific number of newly reference signal (DMRS) transmissions;
defined DMRS syml?ols. _ _ _ program code to receive DMRS transmissions in accor-
45. The UE of claim 42, 1n which the specific number of

dance with the training state for the given channel

DMRS symbols comprises three symbols or four symbols. condition: and

46. The UE of claim 45, in which the three symbols or
four symbols comprise three consecutive symbols or four

consecutive symbols.
47. The UE of claim 42, further comprising means for 50. A non-transitory computer-readable medium having

performing a beam sweep across a specific number of beams .o program code recorded thereon, the program code executed

corresponding to the specific number of DMRS symbols to by a user equipment (UE) and comprising:
obtain an estimate of the raw, non-beamformed channel.

48. The UE of claim 42, further comprising means for
requesting a rank corresponding to the specific number of
DMRS symbols.

49. A non-transitory computer-readable medium having
program code recorded thereon, the program code executed
by a user equipment (UE) and comprising:

program code to indicate, to a base station, a training state

of a machine learning model for a given channel I T

program code to perform online training of the machine
learning model with the DMRS transmissions.

program code to request, from a base station, a specific
number of demodulation reference signal (DMRS)

symbols for a slot; and

15 program code to receive DMRS transmissions across a
plurality of beams, 1n accordance with the requesting to
estimate a raw, non-beamiormed channel including the
plurality of beams.
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