US011451569B1

a2 United States Patent 10) Patent No.: US 11,451,569 B1

Pendse et al. 45) Date of Patent: Sep. 20, 2022
(54) FILE EXTRACTION FROM NETWORK (36) References Cited
DATA TO ARTIFACT STORE FILES AND N
FII.E RECONSTRUCTION U.S. PATENT DOCUMENTS
6,532,517 B1* 3/2003 Wagner GOGF 3/0601
(71) Applicant: Arbor Networks, Inc., Westiord, MA ehe T11/112
(US) 8,504,519 B1* 82013 Sachsccccoo....... GOGF 16/27
707/758
(72) Inventors: Bhargav M. Pendse, Pune (IN); Neil ggggi gﬂggg i: L %3882 idﬂﬂ;leé *************** Glggngg%%gj
. : 1 CAAraovvns
Richard Terry, Cedar Hills, UT (US) 2010/0250918 Al* 9/2010 Tremblay HOA4L 47/2441
_ 706/46
(73) Assignee: Arbor Networks, Inc., Westford, MA 2012/0271941 Al* 10/2012 Mirandette ... GOGF 16/955
(US) 709/224
2015/0149407 Al1l* 5/2015 Abbott ..., GO6F 16/13
(*) Notice: Subject to any disclaimer, the term of this _ 707/610
patent 15 extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days. Primary Examiner — Muhammad Raza
(74) Attorney, Agent, or Firm — Locke Lord LLP; Scott
(21) Appl. No.: 17/354,153 D. Woisy; Christopher J. Capell
(37) ABSTRACT
(22) Filed: Jun. 22, 2021 A method 1s provided of extracting file content from a live
stream of network data streaming multiple files. The method
(30) Foreign Application Priority Data includes receiving artifact chunks each including a portion
of file content of a file of the multiple files as identified by
Apr. 17:J 2021 (IN) 202111017891 DPI at first Capture o the network dataj Storing the artifact
chunks 1n an artifact chunk section of an artifact store for
(51) Int. CL linearly storing the artifact chunks 1n an order as received,
HO4L 9/40 (2022.01) storing artifact chunk intformation (ACI) for each artifact
HO4L 67/06 (2022.01) chunk 1n a chunk table section of the artifact store, the ACI
HO4L 67/1097 (2022.01) identifying the artifact chunk, identifying another artifact

(52) U.S. CL chunk of the file, and identifying a location of the artitact

CPC HO4L 63/1425 (2013.01); HO4L 63/1416 chunk 1n the artifact chunk section, and storing a unique

(2013.01); HO4L 63/20 (2013.01); HO4L 67/06 artifact locator identifier (ALI) that uniquely 1dentifies a
(2013.01); HO4L 67/1097 (2013.01) storage location within the artifact store of an artifact chunk

(58) Field of Classification Search assoclated with file, wherein the ALI and ACI associated

CPC HO4T. 63/1425- HO4T. 63/1416° HOAL. 63/20- with the artifact chunks are configured to locate each artifact
| HO4L:: 67/06: HO4T, 6:‘17/1097 HO4L:J Chun.k aSSOCiﬂted Wlth the ﬁle that iS Stored iIl the ElI’tifElCt

633 11408 store for future reconstruction of the file.
See application file for complete search history. 12 Claims, 7 Drawing Sheets
s
\
?QE}

112,

Packet Metadata | Packel
T R Metadata

Database

Artitact
i 1 Locator
il 104, identifier

Network
2 F

| a 06 e,
1 |

* - Arfitact 1 Astifact _
» UPlEngine et siore £ng§ne{m

Packet Processing Module

| Network Monitor
2
i

(”i 2

geconsiruction
System

US 11,451,569 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0166013 Al1* 5/2019 Shaikh HO4L 41/5022
2021/0021616 Al1* 1/2021 Shabtai HO4L 63/1416
2021/0342783 Al* 11/2021 Pasala GO6N 5/022

* cited by examiner

U.S. Patent Sep. 20, 2022 Sheet 1 of 7 US 11,451,569 B1

100

102,

Metwork Moniter
112,

tttttt

et Metadata | Packet

" Metadata
Database |

‘‘‘‘‘‘‘‘

Store

Artifact Artifact
Locator Store
108, identifier Chinles

2 o Arfitact 1 Artifact
> DPiEngine | | Store Engine

»;
ii

Packet Processing Module

iii

U.S. Patent Sep. 20, 2022 Sheet 2 of 7 US 11,451,569 B1

200
ARCHETYPE B
STORE FILE 324 -
210, ; /222 e 1
Header

Sechion

“%ﬂ (humk 1 23@“1 734-2 23-4%--- 234—»*4\ I;»Bff%mﬁ
éﬂ Ch&mkz i G}&m fmm § imm i

{mmks Chuﬂkﬁﬁgetzéfi 1 ihmk length 222-2

203

Next Chunk 222-3 \22)

Artitact
{hunk
Section

iiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

U.S. Patent Sep. 20, 2022 Sheet 3 of 7 US 11,451,569 B1

114
f
\ Start
Here
3@53 306, 306
L3002 2000 200¢ 200d
é ¢ 232 | [2324
2322, 51 232 e \
ore 155887440005 Store 155876993355 Store 155888899345 \ Store 155806834455 |
234@2\ 304 : _ ! 23’@2\
j[6422 { 33565 -~876492| (122445 |
234@‘; ‘%3@4 7142 | | B4y \304 23443
222a1|~Chunk 1D ;5 ¢t | *ChunkiD 33565 1 1o Chunk 1D : 87892
\\; « Previgus Store Seed; 12 \ -Previous Store deed: | |+ Previous Store Seed:
- Next_chunk: 455 135887440005 |1 155888899345
< First chunk instore: S5 | - Next_chuni: { e Next_chunlke 122445
< Flags: FIRST_CHUNK_IN | - First chunk instore: 5 | 1. First chunk in store: 33565
- STORF, ARTIFACT START | *Flags: HRST_CHUNK | {+Flags: FIRST CHUNK
S N SIORE 14 IN STORF
VN prmerTpr e
\[*Pm‘i@us&tm Seed:-1 | 133/ 12241/ Chunk 1D - 177445
< Next_chunk: 66422 « Previous Store Seed: {
- First chunk instore: 3 3394 < Next_chunk: 125665
= Flags: § ? \\ « First chunk in store: 87892
... ﬁﬁaggug

<
I L}
-
<
L D > :
H BE A IR R T IO R T I T T T T T N L T T IR L T I L L I D IR O R L T TR T R |
: -i. .
-
*, L]
+
<
:
:

_ | *Previous Store Seed: -1 | 222431 - (hunk 1D 125665
o Next chunic § * Previous Store Seed: §

- Hirst chunk in store: 5 1+ Next_chunk: 0
= Hags: 0 * First chunk in store: 87852 |
++ © Fgagﬁz ﬁﬁﬁ?ﬁ;i?mEﬁg ;
; "
2223/ 2224/

e -
L] N -
- -
14 i -
- -
44 -
Py Pt
LI . -
R]
-
4 1
-

U.S. Patent Sep. 20, 2022

102,

NETWORK MONITOR

104 114,
Packet ‘

" Metadata |
. Database |

it i i e

Processing |
Moduie

ii

Write (opled Artifact
Chunks to Artifact File and

Sheet 4 of 7

114,

iiiiiiiiiiiiii

{Z@y Artitact

Artifact
Store

US 11,451,569 B1

/329

Oblain Artifact Logator
Identifier from Packet

Metadata Database
411 404
TERMINAL 4.,

User |
interface |

********* SN N I B N T I L I B

hh

#3 Request Reconstruction

Using the Artifact
L ocator Identiher

Chunks from
Artifact Store

Store in Artifact Hle Storage

‘415

Provide User Access 1o
Artifact File for Downioad

1417

Artitact
Store
Reader

++++++++++++++++++++++++++++

U.S. Patent Sep. 20, 2022 Sheet 5 of 7 US 11.451,569 B1

/502

- Receive Artifact Chunks |

l 504

Store Artifact Chunks in an Artifact Chunk
Section of an Artifact Store for Lineariy Storing |
the Artifact Chunks in an Order as Recelved |

iii

506
¥ i

Store Artifact Chunicinformation (AL Tor each Artifact
Chunk in a Chunk Table Section of the Artifact Store, Whereinthe AU |
dentifies the Artifact Chunk, Identifies Another Artifact Chunk of the Hie, |
and identifies a Location of the Artifact (hunicin the Artifact (hunk Section |

508

¥
Store a Unigue Artitact Locator identifier (ALL) that Unigquely identifies a Sorage
Location within the Artifact Store of an Artifact Chunk Assodiated with Hig,
wherein the AL and AU Associated with the Artitact Chunks are (onfigured with the
abiiity to Locate bach Artitact Chunk Associated with the File that is Stored inthe
Artitact Store tor Future Reconstruction of the Hie

ii

U.S. Patent Sep. 20, 2022 Sheet 6 of 7 US 11,451,569 B1

604

Access an Artifact Store having Muitiple Artifact Store Files
Conhgured for Forward Sequential Pointing within an Artifact Store |
Hie and for Reverse Sequential Pointing Between Artifact Store Files

-
iii

604

Start with an Artifact Store Hie that inciuges a Hnal Artifact Chunk that is the Last
Artifact Chunk Associated with the Fie Stored in the Artitact Store, and Repeating until
After an Artifact Store File having an First Artifact Chunk of the File is Processed, Sequentially
Point in the Reverse Direction to a Selected Artifact Chuni of each Artifact Store Hie
Storing an Artifact (hunk Associated with the File for Processing the Artifact Store that is Pointed
at, Wherein the Artifact Store Hle Being Pointed to is Treated as the Current Artifact Store File |

iii

;606
¥ 1

Process the Current Artifact Store File that is Pointed at by Building a Sorted List of Artifact
Chunks in the Current Artitact Store Hie by Sequentiaily Pointing in the Forward Direction to
each Artitact (hunk Stored in the Cumrent Artifact Store Fie, Beginning from the First Artifact
{hunk to the Last Artitact Chunk Stored in the (urrent Artifact Store Hie, and Appending the

Sorted List in Front of the Sorted List Built Tor an Artifact Store Fie that was Processed
immediately Prior to Processing the (urrent Artifact Store Fies

ii

| 608

Heceive Metadata Associated with a Hie of the Muitiple Hiss

610

Associate the Metadata with a Unique Artifact Locator Igentifier (AL} that
tnables Pointing to the Artifact Chunks in the Artifact Store that are
Associated with the File of Interest for Enabiing Reconstruction of the Fle

~ig. 6

S. Patent Sep. 20, 2022 Sheet 7 of 7 S 11,451,569 B1

108y 402+

DEVICE AT

PROCESSING SYSTEM
710, 704,

v

USER
INTERFACE

LI N N N B L B B O N B O D O O I B O O I D B B O I N O O O D O B D I B N B B N BN

STORAGE

o o o o

LR -
LI
4 &
-
-
-
-
L]
-
L]
-
- -
-
L I ! L]
-
-
-
. L]
-
L]
-
-
L]
-
-
L]
-
-
L]
. - "
-
L]
-
- - -
LI - L]
- - L]
- - -
- -
-
-
L]
* -
L] LB B B U B L D B DL D BN B D BN D BN D DN B D BN D D D DL U DL UL D DL U B D D D B BB B BN
-
-
L]
-

4 ko oh ok hhhE ko hdh o h o h R

= o ko ko F ko ko ko ko F ko ko ko ko ko ko ko kR
= o ko F ko ko ko ko ko ko ko ko ko ko ko ko ko ko ko F ko ko ko

iiii@iii‘liiiiiiiiiiiiiiiii‘lii‘lii‘liiiiiiiiiiiiiiiiiiiiiiiiiiiii@iiiiii

F08

cATERNAL
COMPONENT

L L N N B B B B B O B N O D I B O B O D I B D B O O B O D O B O B O O O N D N O B N D D B AN

ok ok bk ko

US 11,451,569 Bl

1

FILE EXTRACTION FROM NETWORK
DATA TO ARTIFACT STORE FILES AND
FILE RECONSTRUCTION

BACKGROUND
1. Field of the Disclosure

The present disclosure relates to file extraction from
network data to artifact store files, file reconstruction, and
artifact store files, and 1n addition to handling requests for
reconstruction of one or more {files of interest.

2. Description of Related Art

One aspect of network security 1s location of threats
within network data. Threats can be 1n the form of malicious
files that were transierred to a computer network. One way
of detecting these malicious files 1s to capture all network
data on the network, extract file content from the network
data, and store the extracted file content to disk 1n its exact,
original form. This extracted file can then be processed using
file security tools for analysis of the extracted file.

An existing method for capturing network data includes
capturing packets, storing the captured packets, performing
deep packet inspection (DPI) on the stored packets to extract
metadata, using the metadata to generate a capture file of the
captured data that i1s stored to disk (such as in a standard
format, e.g., PCAP, or a proprietary format). The capture file
1s then retrieved from the disk and processed by a file
extraction program. The file extraction program extracts all
files found 1n network threads of the stored data by invoking
DPI and stores all of the extracted files to disk. This process
can produce one file or millions of files, which presents a file
management challenge and can negatively affect file system
performance.

Data 1s stored to disk twice and DPI 1s invoked twice in
this process. In addition, various etliciencies arise due to the
large amount of writing to and reading from disk that can
occur and the potentially large number of files that can be
created. Furthermore, when the network data 1s received 1n
multiple threads, synchronization of access to storage can
turther complicate management of the captured network
data. Further inefhiciencies arise, since all network data 1s
extracted, which can include network data that 1s not needed
for the analysis task at hand.

Furthermore, the reconstruction process can be cumber-
some. When reconstruction of a particular file 1s desired, 1t
may be necessary to sort through the extracted files (which
can include millions of files) to identily a file of interest.

A commercially available method that invokes DPI only
once uses hash generation for file extraction. This method
only provides the ability for identification of an extracted
file, but does not provide contents of the file.

While conventional methods and systems have generally
been considered satisfactory for their intended purpose,
there 1s still a need 1n the art for file extraction and

reconstruction processes having improved efliciency and
capability.

SUMMARY

The purpose and advantages of the below described
illustrated embodiments will be set forth 1 and apparent
from the description that follows. Additional advantages of
the illustrated embodiments will be realized and attained by
the devices, systems and methods particularly pointed out in

10

15

20

25

30

35

40

45

50

55

60

65

2

the written description and claims hereof, as well as from the
appended drawings. To achieve these and other advantages
and 1n accordance with the purpose of the illustrated
embodiments, in one aspect, disclosed 1s a method of
extracting file content from a live stream of network data
streaming multiple files. The method includes receiving
artifact chunks, wherein each artifact chunk includes a
portion of file content of a file of the multiple files as
identified by deep packet mspection (DPI) at first capture of
the network data. The method further includes storing the
artifact chunks 1n an artifact chunk section of an artifact
store for linearly storing the artifact chunks 1n an order as
received and storing artifact chunk information (ACI) for
cach artifact chunk in a chunk table section of the artifact
store. The ACI 1identifies the artifact chunk, identifies
another artifact chunk of the file, and 1dentifies a location of
the artifact chunk 1n the artifact chunk section. The method
further includes storing a unique artifact locator i1dentifier
(ALI) that uniquely 1dentifies a storage location within the
artifact store of an artifact chunk associated with file,
wherein the ALI and ACI associated with the artifact chunks
are configured with the ability to locate each artifact chunk
associated with the file that 1s stored 1n the artifact store for
future reconstruction of the file.

In accordance with a further aspect of the disclosure, an
artifact store 1s provided that stores artifact chunks associ-
ated with multiple files extracted from a live stream of
network data. The artifact store has multiple artifact store
files. Each artifact store file includes an artifact chunk
section for storing the artifact chunks 1n an order as received,
from first to last, per thread and a chunk table section for
storing artifact chunk information (ACI) for each of the
artifact chunks. Artifact chunks associated with a file of the
multiple files that exceed the capacity of a first artifact store
file of the multiple artifact store files are stored in the order
as received 1n a next artifact store file of the multiple artifact
store files. The artifact chunks associated with the file are
stored 1n a series of artifact store files 1n which the artifact
store files are ordered from first to last. The ACI for artifact
chunks associated with the file that are stored in more than
one artifact store files of the multiple artifact store files
include inter-artifact store file pointers that enable sequen-
tially pointing to a selected artifact chunk associated with
the file in each of the artifact store files having artifact
chunks associated with the file mm a backward reverse
direction from last stored to first stored. The ACI for artifact
chunks associated with the file 1n the same artifact store file
include intra-artifact store file pointers that enable sequen-
tially pointing to each of the artifact chunk associated with
the file 1n the same artifact store file 1n a forward direction
from first stored to last stored, beginning pointing at the
selected artifact chunk.

In accordance with another aspect of the disclosure a
method 1s provided of reconstructing a file from an artifact
store storing artifact chunks associated with multiple files
extracted from a live stream of network data. The method
includes accessing the artifact store, wherein the artifact
store includes multiple artifact store files. The artifact store
1s configured for forward sequential pointing within an
artifact store file and for reverse sequential pointing between
artifact store files. Starting with an artifact store file that
includes a final artifact chunk that 1s the last artifact chunk
assoclated with the file stored in the artifact store, and
repeating until after an artifact store file having an earliest
first artifact chunk of the file 1s processed, sequentially
pointing 1n the reverse direction to a selected artifact chunk
of each artifact store file storing an artifact chunk associated

US 11,451,569 Bl

3

with the file for processing the artifact store that 1s pointed
at, wherein the artifact store file being pointed to 1s treated
as the current artifact store file. The method further includes

processing the current artifact store file that 1s pointed at by
building a sorted list of artifact chunks 1n the current artifact
store flle by sequentially pointing in the forward direction to
each artifact chunk stored in the current artifact store file,
beginning from the first artifact chunk to the last artifact
chunk stored 1n the current artifact store file, and appending
the sorted list 1n front of the sorted list built for an artifact
store file that was processed immediately prior to processing
the current artifact store file.

In accordance with aspects of the disclosure, a computer
system 1s provided that performs the disclosed method. In
accordance with further aspects of the disclosure a non-
transitory computer readable storage medium and one or
more computer programs embedded therein 1s provided,
which when executed by a computer system, cause the
computer system to perform the disclosed method.

These and other features of the systems and methods of
the subject disclosure will become more readily apparent to
those skilled 1n the art from the following detailed descrip-
tion of the preferred embodiments taken in conjunction with
the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

So that those skilled in the art to which the subject
disclosure appertains will readily understand how to make
and use the devices and methods of the subject disclosure
without undue experimentation, preferred embodiments
thereotf will be described 1n detail herein below with refer-
ence to certain figures, wherein:

FI1G. 1 illustrates a block diagram of an example network
system having a network monitor with an artifact store
engine for extracting files from network data, 1n accordance
with an aspect of the disclosure;

FIG. 2 1s a schematic diagram of an example artifact store
file, including exploded portions of a chunk table section and
an artifact chunk section, 1n accordance with an aspect of the
disclosure:

FIG. 3 1s a schematic diagram of an example portion of an
artifact chunk section and associated artifact chunk infor-
mation showing example ¢ and example inter-artifact store
file linkages, 1n accordance with an aspect of the disclosure;

FIG. 4 illustrates a block, flow diagram of an example
network system having an artifact store reader for recon-
structing extracted files, 1n accordance with an aspect of the
disclosure:

FIG. 5 1s an example flowchart showing an example
method of extracting files from network data, 1in accordance
with an aspect of the disclosure;

FIG. 6 1s an example flowchart showing an example
method of reconstructing files from extracted files, 1n accor-
dance with an aspect of the disclosure; and

FI1G. 7 1llustrates an example computing system that could
be used to implement the artifact store engine shown in FIG.
1 or the artifact store reader shown in FIG. 4, 1n accordance
with an aspect of the disclosure.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1

Reference will now be made to the drawings wherein like
reference numerals 1dentify similar structural features or
aspects of the subject disclosure. For purposes of explana-
tion and 1llustration, and not limitation, a block diagram of

10

15

20

25

30

35

40

45

50

55

60

65

4

an exemplary embodiment of a network monitor system 1n
accordance with the disclosure 1s shown 1n FIG. 1, wherein
the network monitor system 1s designated generally by
reference character 100. Methods associated with monitor-
ing operations for extracting files from network data and
reconstructing files per request associated with a protected
network of the network monitor system 100 1n accordance
with the disclosure, or aspects thereol, are provided 1n FIGS.
2-7, as will be described.

With reference now to FIG. 1, network monitor system
100 includes a network monitor 102 that monitors a network
10 for extracting files that can later be reconstructed e.g.,
upon request, by reconstruction system 120.

Network 10 can include one or more local area networks
(LANSs) and/or one or more wide area networks (WANSs).
Computing devices, such as a server, laptop device, network
clement (such as routers, switches, and firewalls), embedded
computer device that 1s embedded 1n other devices, such as
appliances, tools, vehicles, or consumer electronics, mobile
devices, such as laptops, smartphones, cell phones, and
tablets.

Network monitor 102 includes a network interface card
(NIC) 110, a packet processing module 104, a packet
metadata database 112, and an artifact store 114. While
packet metadata database 112 and artifact store 114 are
shown integrated with network monitor 102, packet meta-
data database 112 and/or artifact store 114 can be disposed
remote from and accessible by network monitor.

Network monitor 102 includes a computing device with a
central processing unit (CPU), random access memory
(RAM), and a storage medium, which can be connected
through buses and used to further support the processing of
the received packets. Programmable instructions can be
stored 1n the storage medium and executed by the CPU to
cause the CPU to perform operations described herein.
Network monitor 102 can be implemented as one or more
physical or virtual devices. Whether implemented as physi-
cal or virtual device(s), network monitor 102 uses a local or
remote hardware processing device that executes software
instructions, which enables performance of the disclosed
functions. In one or more embodiments, portions of network
monitor 102 can be disposed 1n a cloud (e.g., connected to
a remote network and/or the Internet (e.g., via network 10)).
Packet metadata database 112 and artifact store 114 can also
include computing devices with processing capabilities,
such as for managing and querying the associated database.

NIC 110 of network momtor 102 can be configured to
communicate with one or more ntercept devices 20 dis-
posed within or external to network 20 and network monitor
110. Intercept devices 20 can be central or distributed
devices that actively or passively intercept network data,
including packets of network traflic propagating through, to,
and/or from network 10. Intercept devices 20 1nclude soft-
ware, lirmware, and/or hardware components, such as taps,
probes, or port mirrors that can be positioned inline and/or
remote relative to communication links or devices included
within or external to network 10.

Network data received by NIC 110 can be received 1n one
or more parallel threads and passed to packet processing
module 104 1n corresponding parallel threads. The network
data 1s processed using deep packet inspection (DPI) once
by DPI engine 106, during which packet metadata 1s deter-
mined from the network data and stored per file in packet
metadata database 112. The packet metadata includes, for
example layer 2 information, including MAC addresses;
layer 3 information, including protocol, IP addresses, and
packet length; layer 4 information, including protocol ports,

US 11,451,569 Bl

S

and/or layer 5-7 information, including application data,
HTTPS certificates, HI'TP URL, file transport (F'TP) file-
name.

The network data received by NIC 110 and forwarded to
DPI engine 106 includes multiple files, which can be of
varying types corresponding different applications used by
computing devices operating on network 10. The DPI pro-
cess also outputs artifact chunks that are provided to artifact
store engine 108. Each artifact chunk includes a portion of
file content of one of the files included 1n the network data.
DPI engine 106 can be, for example, a DPI engine used by
any of the nGenius™ servers, or any next generation server
available from NetScout Systems™, Inc. of Westiord, Mass.

Artifact store engine 108 receives the artifact chunks. The
term “‘recerve” 1s meant to be interpreted broadly, and can
include receiving via a transmission, accessing, reading a
memory location, or otherwise obtaining. The artifact
chunks can be received in multiple threads. A file can
include multiple chunks that are provided via a single thread.

Artifact store engine 108 accesses artifact store 114 for
storing the artifact chunks in artifact store 114. Artifact store
114 includes at least one artifact store that stores a fixed
number of artifact chunks, and can include a very large
number of artifact store files, such as on the order of
hundreds or thousands of artifact store files.

As DPI engine 106 outputs one or more threads of artifact
chunks, the artifact chunks of each thread are directed to a
different 1nstance of artifact store 114 and are stored linearly
in order 1n an artifact file store of its artifact store instance.
Since each thread output by DPI engine 106 uses a separate
artifact store instance, there 1s no need to use synchroniza-
tion tools, such as locks or mutexes, for managing access to
artifact store 114 by multiple threads.

When a storage capacity of the artifact store file associ-
ated with the thread 1s filled, a new artifact store file of the
artifact store instance 1s provided for storing remammg
artifact chunks of the thread. This can create a series of
artif: Each

act store files for each artifact store instance.
thread output by DPI engine 106 thread may include artifact
chunks for multiple flows. For each artifact store instance,
the artifact chunks associated with each of the flows are
stored linearly i order in the series artifact store files.

Artifact chunks of difh

crent tlows can be interleaved with
one another 1n an artifact store file and throughout the series
of artifact store files of each artifact store instance. However,
the artifact chunks of each flow are stored 1n their respective
artifact store instance in the order in which they were

received from DPI engine 106.

With reference to FIG. 2, an example artifact store file 200
1s shown. Fach artifact store file 200 includes a header
section 210, a chunk table section 220 having artifact chunk
information (ACI) 222 associated with a Chunk ID 224 for
each chunk, and an artifact chunk section 230. The artifact
store files 200 are each configured so that information stored
can be accessed by memory mapping.

Header section 210 stores a header for the artifact store
file 200. The header includes information about the artifact
store file 200, such as a unique 1dentifier of the artifact store
file 200 and the number of entries in a chunk table of the
chunk table section (meaning the number of chunks stored
in the artifact store file 200). The header can be kept small
for being quickly readable during a reconstruction proce-
dure. In one or more embodiments, the header section 210
has a predefined, fixed size.

The 1dentifier of the artifact store file 200 can be its
location, which can be represented as: base_directory/arti-
fact_store/stores_store seed/store asf seed, wherein

5

10 .

15

20

25

30

35

40

45

50

55

60

65

6

base_directory uniquely 1dentifies the directory used to store
one or more artifact stores, although 1n embodiments there
1s only one artifact_store; artifact_store uniquely i1dentifies
the location of the artifact_store 114 within base_directory;
store_storeseed uniquely 1dentifies a store instance directory
within artifact_store, with a separate store instance directory

being assigned to each thread; and store_asi_seed uniquely
identifies the artifact store file 200 within store storeseed.

An example identifier for the artifact_store file 200

1s /xdr/artifact_store/stores 9/store_1565634343388998,
which represents an artifact_store file 200 assigned a
store_storeseed i1dentifier to umiquely i1dentify the
artifact store file 200 within a ninth instance of the
artifact_store 114 (that corresponds to the ninth thread of
network data received from DPI engine 106), wherein the
artifact store 1s named artifact store and 1s located in the
xdr directory of (or accessible to) network monitor 100. In
the example shown, store_storeseed 1s a large number that
uses a file naming convention that indicates a number of
microseconds since a reference time (e.g., and epoch) at
which the artifact store file 200 was created. As 1s discussed
turther below, store_storeseed 1s used for forming a part of
an artifact locator identifier (ALI).

Artifact chunk section 230 stores the content of the actual
artifact chunks. Fach artifact chunk starts at a location that
has a unique 1dentifier Chunk ID 224 for the artifact store file
200. The size of artifact chunk section 230 can vary based
on the size of the stored artifact chunks. Chunk ID 224 can
be used as the i1dentifier for the artifact chunk 1n 1ts associ-
ated ACI 222. A portion of storage area 232 of artifact chunk
section 230 1s shown, 1n which storage of chunk content 234
for the first five chunks are shown (referenced as 234-1,
234-2, 234-3, 234-4, 234-5, respectively. Chunk content
234-3 for the third chunk (labeled Chunk 3 Data) 1s shown
in greater detail.

Chunk table section 220 includes a chunk table 224 that
stores the ACI 222 for each artifact chunk (e.g., chunk 1,
chunk 2, chunk 3, chunk 4, chunk 5, etc.) stored in the
artifact store file 200 In one or more embodiments, the
chunk table section 220 has a predefined, fixed size. The ACI
222 for each artifact chunk includes location information
(e.g., Chunk ID) that can be used to identity the artifact
chunk and locate the artifact chunk within the artifact store
file 200, intra-artifact store file linkage information that can
be used to link artifact chunks together that are located in the
same artifact store file, and inter-artifact store file linkage
information that can be used to link artifact chunks together
that are located in different artifact store file’s when the
artifact chunks of a file span multiple artifact store file’s,
thus enabling future reconstruction of the file to which the
artifact chunk belongs.

In an example, the location information includes a chunk
oflset 222-1 that 1s an offset from a reference location at the
beginning of the artifact chunk section 230 at which the
contents of the actual chunk are stored. Arrow 201 shows the
chunk offset 222-1 of ACI 222 that defines a beginning
location at which the chunk content 234-3 for the third
chunk 1s stored 1n artifacts chunk section 230. This location
1s unique to the third chunk (labeled Chunk 3) within this
artifact store file 200, and therefore can be used as 1denti-
fication Chunk ID for third chunk. The location information
of ACI 222 further includes chunk length 222-2, which
defines a length of the chunk contents 234 stored in the
artifact chunk section 230. The chunk length 222-2 of the

chunk contents 234-3 of the third chunk 1s indicated by
arrow 203.

US 11,451,569 Bl

7

In one or more embodiments, the intra-artifact store file
linkage information uses forward references and includes
next chunk 222-3 to identify a next artifact chunk that
belongs to the same file and 1s stored in the same artifact
store file 200. Next chunk 222-3 can include a location or
identification (e.g., Chunk ID) of the next artifact chunk.
Next chunk 222-3 of the third chunk i1s indicated by arrow
205 and points to the fifth chunk (labeled Chunk 5).

It 1s noted that next chunk 222-3 of the third chunk 1s the
fifth chunk, and not the fourth chunk (labeled Chunk 4). This
1s because the fourth chunk does not belong to a different
flow than the third chunk, and therefore 1s not associated
with the same file. The fifth chunk does belong to the same
flow as third chunk and 1s therefore pointed to by the next
chunk 222-3. This intra-artifact store file linkage informa-
tion will enable reconstruction of the file 1n the future.

In one or more embodiments, the inter-artifact store file
linkage information uses reverse reference, meamng 1t
includes a location or identification (e.g., storeseed) of a
previous artifact store file that was filled immediately prior
to beginning {illing the current artifact store file 200 of the
artifact chunk.

In an example, without limiting the disclosure to this
specific example, 1 order to support the reverse references,
the inter-artifact store file linkage information of each arti-
fact chunk further includes a location or i1dentification (e.g.,
Chunk ID) of a first artifact chunk of its artifact store file 200
and the inter-artifact store file linkage information of the first
artifact chunk of each artifact store file 200 includes the
location or identification (e.g., storeseed) of the previous
artifact store file or alternatively indicates that there i1s no
previous artifact store file 200. The intra-artifact store {ile
linkage information can further include indicators (e.g.,
flags, such as a bitwise set of flags) indicating whether an
artifact chunk 1s the first chunk of the file, the first chunk in
the artifact store, or the last chunk of the file.

With reference to FIG. 3, a portion of artifact store 114 1s
shown 1n a current state at a point of time. In 1ts current state,
artifact store 114 includes artifact store files 200a, 2005,
200c¢, and 2004. Each of artifact store files 200a, 2005, 200¢,
and 2004 1s assigned a unique storeseed that identifies 1t. The
respective storeseeds for artifact store files 200a, 2005,

200c, and 2004 are 155887440005, 155876993335,
155888899345, and 155898834453.

Storage area 232a of artifact store file 200a 1s shown,
including chunk content 234al, 23442, and 23443 related to
artifact chunks stored in storage area 232q that are associ-
ated with a file of interest. Any other chunk content 234
stored 1n storage area 232a 1s not associated with the file of
interest and 1s therefore not shown. Artifact store file 200a’s
ACI 222a 1s listed for chunk content 234 that 1s shown in
storage area 232. Specifically, ACI 222a1 i1s shown with
contents of ACI associated with artifact chunk having chuck
content 234al1. ACI 22242 1s shown with contents of ACI
associated with artifact chunk having chuck content 23442.
ACI 22243 1s shown with contents of ACI associated with
artifact chunk having chuck content 23443.

Storage area 232b of artifact store file 2005 1s shown, but
does not include any chunk content related to artifact chunks
in storage area 232H that are associated with the file of
interest. The contents of storage arca 2325 are apparently
related to files other than the file of interest. ACI 222 for
artifact store file 20056 1s not shown.

Storage area 232c¢ of artifact store file 200c¢ 1s shown,
including chunk content 234¢1 related to an artifact chunk
stored 1n storage area 232c¢ that 1s associated with the file of
interest. Any other chunk content 234 stored 1n storage area

5

10

15

20

25

30

35

40

45

50

55

60

65

8

232¢ 1s not associated with the file of interest and 1s therefore
not shown. Artifact store file 200¢’s ACI 222¢ 1s listed for
chunk content 234 that 1s shown in storage area 232.
Specifically, ACI 222¢1 1s shown with contents of ACI
associated with artifact chunk having chuck content 234c¢1.
Any other chunk content 234 stored in storage area 232c¢ 1s
not associated with the file of interest and 1s therefore not
shown.

Storage area 232d of artifact store file 2004 1s shown,
including chunk content 23441, 23442, and 23443 related to
artifact chunks stored in storage area 232d that are associ-
ated with a file of interest. Any other chunk content 234
stored 1n storage area 232d 1s not associated with the file of
interest and 1s therefore not shown. Artifact store file 2004°s
ACI 222d 1s listed for chunk content 234 that 1s shown 1n
storage area 232. Specifically, ACI 22241 1s shown with
contents of ACI associated with artifact chunk having chuck
content 234d1. ACI 22242 1s shown with contents of ACI
associated with artifact chunk having chuck content 23442.
ACI 222d3 1s shown with contents of ACI associated with
artifact chunk having chuck content 23443. Any other chunk
content 234 stored in storage areca 2324 1s not associated
with the file of interest and 1s therefore not shown.

Intra-artifact store file linkages 304 are shown that are
used for forward referencing from the first to last artifact
chunks (meaning in the order in which they were stored,
which 1s the forward direction) associated with the file of
interest stored in the storage area 232 of each respective
artifact store file 200a. This 1s supported by the ACI 222 of
cach of the artifact chunks, and particularly by ACI entry
Chunk ID (also shown as chunk offset (or Chunk 1D 222-1)
in FIG. 2) and ACI entry Next_Chunk (also shown as next
chunk 222-3 in FIG. 2).

In the example shown in FIG. 3, mtra-artifact store {file
linkages 304 are used to point within artifact store file 200q
from the first chunk (having Chunk ID 3) to the second
chunk (having Chunk ID 4535), and from the second chunk
(having Chunk 1D 4535) to the third chunk (having Chunk I
66422). Intra-artifact store file linkages 304 are also used to
point within artifact store file 2004 from the first chunk
(having Chunk ID 87892) to the second chunk (having
Chunk ID 122445), and from the second chunk (having
Chunk ID 122455) to the third chunk (having Chunk ID
125663).

Inter-artifact store file linkages 306 are shown that are
used for reverse referencing by pointing 1n a reverse direc-
tion opposite the forward direction from an artifact chunk of
one artifact store file 200 to a selected artifact chunk in the
previous artifact store file 200. Thus 1s supported by the ACI
222 of each of the artifact chunks associated with the file of
interest and stored 1n an artifact store file 200, and particu-
larly by ACI entry PreviousStoreSeed, which includes the
storeseed of the immediately previous store file storing
artifact chunks associated with the file of interest if the
artifact chunk 1s the first artifact chunk 1n 1ts artifact store file
200, indicates (by being set to a value of 0 1n this example)
that the artifact chunk 1s not the first artifact chunk 1n its
artifact store file, or indicates (by being set to a value of -1
in this example) that there 1s no immediately previous
artifact store file 200; First_chunk in_store, which, for ACI
associated with any artifact chunk that 1s not the first artifact
chunk 1n the artifact store file 200, includes the Chunk ID of
the first artifact chunk associated with the file of interest of
the same artifact store file 200, and for ACI associated with
any artifact chunk that 1s the first artifact chunk in the artifact
store file 200, includes the Chunk ID of the first artifact

chunk of the immediately previous artifact store file 200;

US 11,451,569 Bl

9

and the flag FIRST_CHUNK_IN_STORE, which indicates
that the artifact chunk is the first artifact chunk in 1its artifact

store file 200.

In the example shown 1 FIG. 3, inter-artifact store file
linkages 306 are used to point 1n the reverse direction from
the first artifact chunk 1n one of the artifact store file 200s to

the first artifact chunk in 1ts immediately preceding artifact
store file 200. Furthermore, the last artifact chunk 1n each
artifact store file 200 points to the first artifact chunk in 1ts
artifact store file 200. This 1s because each artifact chunk that
1s stored in an artifact store file 200 1s potentially the last
artifact chunk 1n that artifact store file 200, that 1s until a next
artifact chunk 1s stored 1n that artifact store file (if any). The
first artifact chunk in the artifact store file includes the

storeseed of the immediately preceding artifact store file 200
and the Chunk ID of the first artifact chunk stored in the
immediately preceding artifact store file 200. In this way,
inter-artifact store file linkages 306 are operational because
the last artifact chunk 1n the artifact store file 200 always
points to the first artifact chunk in that artifact store file 200,
which can then point to the first artifact chunk of the
immediately previous artifact store file 200.

More specifically, an inter-artifact store file linkage 306 1s
used to point from the last chunk 1n artifact store file 2004
(having Chunk ID 125665) to the first artifact chunk 1n
artifact store file 2004 (having Chunk 1D 87892). The next
inter-artifact store file linkage 306 (in reverse order) points
to the first artifact chunk of artifact store file 200¢ (having
Chunk ID 33565). Since the first artifact chunk of artifact
store file 200c¢ 1s also the last chunk of artifact store file 200c¢,
an 1nter-artifact store file linkage 306 1s used to point from
this last artifact chunk of artifact store file 200¢ (also having,
Chunk ID 33565, since it 1s the same as the first artifact
chunk 1n artifact store file 200c¢) to the first artifact chunk of
artifact store file 200a (having Chunk ID 5).

Once all of the artifact chunks of a file of interest are
stored 1n artifact store 114, the file of interest can be
reconstructed using identification of the final artifact chunk
of the file of interest 308 as well as the intra-artifact store file
linkages 304 and the inter-artifact store file linkages 306
until all of the artifact chunks of the file of interest have been
accessed for the reconstruction. This 1s supported by the ACI
222 of each of the artifact chunks, and particularly by flag
ARTIFACT END that indicates an artifact chunk 1s the final
artifact chunk 308 of the file of interest and by flag ARTI-
FACT START that indicates an artifact chunk 1s the initial
artifact chunk 308 of the file of interest.

In order to facilitate handling a request for reconstruction
of a file, wherein the request includes metadata that can be
used to 1dentify the file, an artifact locator identifier (ALI) 1s
created for the file of interest and stored an association with
the file of interest’s metadata 1n packet metadata database
112. The ALI identifies the location of the final artifact
chunk 308 of the file of mterest by including 1dentification
of the artifact store instance in which the final artifact chunk
308 1s stored, the storeseed of the final artifact chunk’s 308
artifact store file 200, and the Chunk ID of the final artifact
chunk 308. In this example, the final artifact chunk 308 (and
the entire file of interest) are stored 1n the ninth artifact store
instance, represented by “9:” and the ALI 1s
9:155898834455:125665.

With reference to FIG. 4, a block flow diagram of example
network monitor system 100 1s shown, mncluding compo-
nents of reconstruction system 120 and flows within recon-
struction system 120 and between components of recon-
struction system 120 for reconstructing a file of interest.

10

15

20

25

30

35

40

45

50

55

60

65

10

Reconstruction system 120 includes an artifact store
reader 402 and a terminal 404, each of which can include a
computing device or share the computing device of another
component of network monitor system 100. At flow 413,
terminal 404 outputs a reconstruction request with an ALI of
one or more respective files of interest that are requested to
be reconstructed. The reconstruction request can be gener-
ated by processor of terminal 404 (e.g., based on an auto-
matic process) or by a user.

The user or processor can enter the ALI and submit the
reconstruction request at flow 413, or can first enter user
selection data that 1s used to submit an ALI request at tlow
413 to packet metadata database 112 to obtain the ALI(s)
needed. The user selection data can be entered via a user
interface 410 of terminal 404. The user interface 410 can
include a graphical user interface (GUI) that enables the user
to enter user selection data based on various criteria, such as
one or more of file type, IP address of a destination or source
of packets 1n the file(s) of interest, time constraints associ-
ated with the file(s) of interest, geolocation of the IP address
ol a destination or source of packets in the file(s) of interest,
without limitation to particular criteria. The user interface
can be provided via a software application that can access
packet metadata database 112, such as a data analytics
application. The selection data 1s used by terminal 404 to
generate metadata that can be used to i1dentily the one or
more files of interest.

An ALI request that includes the metadata generated by
terminal 404 1s sent from terminal 404 to metadata database
112. Packet metadata database 112 includes database man-
agement soltware that can generate a query for selecting
entries 1n packet metadata database 112 that have metadata
that matches the metadata included with the ALI request.
Furthermore, packet metadata database 112 replies to the
ALI request with the ALI that 1s associated with the entries
in packet metadata database 112 that have metadata that
matches the ALI request. The response to the ALI request
can be one ALI when there 1s only one file of interest, or
multiple ALIs that correspond to respective multiple files of
interest. The ALI(s) returned by packet metadata database
112 are included in the reconstruction request.

Artifact store reader 402 receives the reconstruction
request and uses the ALI to reconstruct each file of interest
by copying artifact chunks from artifact store 114 1n a first
process that includes flow 415a by which the artifact chunks
are copied, and writing the copied artifact chunks for each
file of interest to an artifact file 1n a second process that can
be transmitted or stored, e.g., 1n artifact file storage 420 by
flow 415b. At tflow 417, a response to the reconstruction
request can be provided to terminal 404 with access to each
of the artifact files, e.g., with a link that can be used to
download the artifact file(s) from artifact file storage 420.

In the first process performed by artifact store reader 402
for creating a sorted list for reconstructing each of the files
ol interest, a blank sorted list 1s provided with null entries.
The ALI for each file of interest 1dentifies the artifact store
114, and more particularly the artifact store instance, and
more particularly the artifact file store 200, and the Chunk
ID of the final artifact chunk of the file of interest. The
identified artifact file store 200 and final artifact chunk are
accessed using memory mapping.

For each file of interest, the ACI of the final artifact chunk
1s accessed for determining a pointer from the first c-
hunk 1n_store in the ACI of the final artifact chunk. Forward
pointing 1s used to point to each artifact chunk associated
with the file 1n interest 1n the current artifact store file to
access the ACI of the artifact chunk pointed at to 1) add the

US 11,451,569 Bl

11

Chunk ID of the artifact chunk that 1s pointed at to the end
of the sorted list for the artifact store file, 2) point to the next
chunk. When the last artifact chunk 1n the artifact store file
of the current artifact chunk (e.g., when next_chunk==0) 1s
pointed at, its Chunk ID 1s added to the end of the sorted list
for the artifact store file, completing the sorted list for the
artifact store file, and the first artifact chunk of the current
artifact store file provides information for reverse pointing to
the immediately previous artifact store, namely the previ-
ous_store_seed and first_chunk (of the immediately previ-
ous artifact store file), unless there are no more
previous_store_seeds (e.g., when previous_store seed==0),
which ends the first process and creation of the sorted list.

When pointing to the first_chunk of an artifact store file,
a new sorted list 1s started for the artifact store file above the
sorted list that was just completed. By repeating the forward
pointing for each previous artifact store file pointed at, and
then pointing in reverse to the previous_store_seed and its
first_chunk, all of the artifact chunks associated with the file
of imterest are added to the sorted list. The sorted list
includes the Chunk ID for each artifact chunk associated
with the file of interest 1n the correct order. By applying this
method to the example of FIG. 3, the following sorted list 1s
obtained, each entry of the sorted list having a storeseed and
Chunk ID:

1558874400035:5

155887440005:455

155887440005:66422

155888899345:33565

155898834455:87892

155898834455:122445

155898834455:1256635

The sorted list 1s used to reconstruct the file of interest as
tollows. Step 2, using the sorted list reconstruct the artifact.
An artifact file 1s opened as an output file for storing
retrieved artifact chunk content. For each entry in the sorted
list, the artifact store file corresponding to the entry’s
storeseed 1s opened. The ACI for the artifact chunk identified
by the entry’s Chunk ID 1s accessed and the chunk length 1s
determined. The artifact store file for the entry i1s accessed
and the entry’s artifact chunk 1s located and 1ts content
retrieved using the entry’s Chunk ID (which provides the
location 1n terms of offset from a reference location) and the
determined artifact chunk’s length. The retrieved content 1s
written to the artifact file. This 1s repeated until all of the
entrics of the sorted list are processed, after which the
artifact file can be closed and made available to a user or an
application. Note that all accessing of the artifact store file,
including the ACI and the artifact chunks can be performed
using memory mapping.

In one or more embodiments, artifact store reader 402 can
receive a reconstruction request that includes a list of ALISs.
This list can be very large. In the first process, a sorted list
can be generated for the file of interest associated with each
ALIL When performing the second process, the artifact store
files can be accessed sequentially 1n a single pass through
artifact store 114, wherein the artifact chunk content
retrieved 1s written to an artifact file that corresponds to the
ALI for the file of interest to which the artifact file corre-
sponds. This batch method takes advantage of kernel read-
ahead optimizations by doing a single sequential pass
through the artifact store files for reading the artifact chunk
content.

When operating 1n this batch mode, artifact store reader
402 may limit the number of ALIs 1t will process per batch.
This can help limit the number of output artifact files open
simultaneously and avoid errors related to having too many

10

15

20

25

30

35

40

45

50

55

60

65

12

file descriptors open at the same time. Also due to file system
overhead associated with maintaining many files 1n a single
directory, each batch can place its artifact files 1n a separate
directory.

In one or more embodiments, artifact extraction jobs can
be applied, wherein each job performs a different extraction
task based on criteria specified in the job description. The
10b description can be a simple text file. The first line can
include a job identifier (e.g., a UUID) that umiquely 1dent-
fies the job description, followed by a list of artifact locator
identifiers, €.g., one per line. User interface 410 can be used
to generate and track the extraction jobs, e.g., placing the job
description 1n a first line of the job description file.

An extraction job can be created for each probe (e.g.,
network monitor, such as network monitor 110 i FIG. 1)
specifying files of interest that are desired to be extracted
and stored. The probe can include an artifact extraction job
server that uses a directory to watch for extraction jobs, each
10ob having a job description with a job ID (e.g., UUID).
When a job 1s received, the extraction job server retrieves
the job ID from the job description. After all artifact chunks
are extracted, they are zipped into a file having a name based
on the job ID.

The extraction job server can then call artifact store reader
402 with appropriate options and feed the sorted lists of
artifact chunks into for forming the sorted lists of artifact
chunks into artifact files. The artifact files are zipped 1nto the
z1p file as described above.

The completed zip file (or a link for accessing the zip file)
can be transmitted back to user interface 410, e.g., via a
same connection (e.g., a HI'TPS connection) used to trans-
mit metadata from processing, using a header that indicates
the type of content being sent (artifact file vs. metdata).

With reference now to FIGS. 5 and 6, shown are flow-
charts demonstrating implementation of the various exem-
plary embodiments. It 1s noted that the order of operations
shown 1 FIGS. 5 and 6 1s not required, so in principle, the
various operations may be performed out of the illustrated
order. Also certain operations may be skipped, different
operations may be added or substituted, some operations
may be performed 1n parallel 1instead of strictly sequentially,
or selected operations or groups of operations may be
performed 1n a separate application following the embodi-
ments described herein.

Language that refers to the exchange of information 1s not
meant to be limiting. For example, the term “receive” as
used herein refers to obtaining, getting, accessing, retriev-
ing, reading, or getting a transmission. Use of any of these
terms 1s not meant to exclude the other terms. Data that 1s
exchanged between devices or modules can be exchanged
by a transmission between the devices or modules, or can
include one device or module storing the data 1n a location
that can be accessed by the other device or module.

FIG. 5 shows a flowchart 500 an example method of r
extracting file content from a live stream of network data
having multiple files. The operations can be performed while
the network data 1s streaming 1n real time (or near real time),
also referred to as live streaming. At block 502, artifact
chunks are received, wherein each artifact chunk includes a
portion of file content of a file of the multiple files as
identified by deep packet mspection (DPI) at first capture of
the network data. At operation 504, the artifact chunks are
stored 1n an artifact chunk section of an artifact store for
linearly storing the artifact chunks in an order as received.
At operation 506, artifact chunk information (ACI) for each
artifact chunk is stored in a chunk table section of the artifact
store, wherein the ACI 1dentifies the artifact chunk, identifies

US 11,451,569 Bl

13

another artifact chunk of the file, and 1dentifies a location of
the artifact chunk in the artifact chunk section. In the
examples provided, e.g., 1n reference to FIGS. 2 and 3, the
identification and location of the artifact chunk can be the
same, although this 1s not a requirement.

At operation 308, a unique artifact locator identifier (ALI)
that uniquely 1dentifies a storage location within the artifact
store of an artifact chunk associated with file 1s stored,

wherein the ALI and ACI associated with the artifact chunks

are configured with the ability to locate each artifact chunk
associated with the file that 1s stored in the artifact store for
future reconstruction of the file.

In one or more embodiments, the ALI 1s stored 1n asso-
ciation with metadata output by the DPI process when 1t 1s
performed at the first capture of the live stream of the
network data.

In one or more embodiments, the artifact store 1s capable
of including multiple artifact store files. Each artifact store
file has an artifact chunk section and a chunk table section.
Receiving the artifact chunks includes receiving multiple
threads of artifact chunks. Each artifact store file 1s associ-
ated with only one thread of the multiple threads for storing
artifact chunks of the thread into the artifact chunk section
and storing corresponding ACI 1n the chunk table section of
the artifact store file.

In one or more embodiments, when a storage capacity of
the artifact store file associated with the thread 1s filled, a
new artifact store file of the multiple artifact store files 1s
provided for storing remaining artifact chunks of the thread
into the artifact chunk section and storing ACI for remaining
artifact chunks in the chunk table section of the new artifact
store file. The ACI for the remaining artifact chunks asso-
ciated with a file of the thread includes linkage information
tor identifying the ACI for artifact chunks associated with
the file of the thread that are stored in the chunk table of the
artifact store file for the future reconstruction of the file of
the thread.

In one or more embodiments, the ACI for the artifact
chunks associated with the file of the thread that are stored
in the chunk table of the artifact store file 1dentifies a next
artifact chunk of the file that 1s stored 1n the chunk table of
the same artifact store file.

In one or more embodiments, the artifact chunks stored 1n
the artifact chunk section and the ACI stored in the chunk
table section are retrievable by memory mapping.

In one or more embodiments, the ALI identifies a final
artifact chunk of the file.

In one or more embodiments, extraction rules can be
received that specily criteria for output of the DPI for
including or excluding artifact chunks of an entire file from
being stored in the artifact chunk section of the artifact store.

In one or more embodiments, each artifact store file
includes a header that stores identification information that
uniquely 1dentifies the artifact store file. In one or more
embodiments, an artifact store file of the multiple artifact
store files can be deleted based on the i1dentification infor-
mation included 1n the header.

FIG. 6 shows a flowchart 600 of an example method of
reconstructing a {ile from an artifact store, such as artifact
store 114 shown 1n FIG. 1, the artifact store storing artifact
chunks associated with multiple files extracted from a live
stream of network data. At block 602, the artifact store 1s
accessed, wherein the artifact store includes multiple artifact
store files configured for forward sequential pointing within
an artifact store file and for reverse sequential pointing

between artifact store files.

10

15

20

25

30

35

40

45

50

55

60

65

14

At block 604, the method includes starting with an artifact
store file that includes a final artifact chunk that 1s the last
artifact chunk associated with the file stored in the artifact
store and repeating, until after an artifact store file having an
first artifact chunk of the file 1s processed, sequentially
pointing 1n the reverse direction to a selected artifact chunk
of each artifact store {file storing an artifact chunk associated
with the file for processing the artifact store that 1s pointed
at, wherein the artifact store file being pointed to 1s treated
as the current artifact store file.

In one or more embodiments, for a file, the selected
artifact chunk of each artifact store file 1s the first artifact
chunk associated with the file stored in the chunk table of the
artifact store file.

At block 606, the method includes processing the current
artifact store file that 1s pointed at by building a sorted list
of artifact chunks 1n the current artifact store file by sequen-
tially pointing in the forward direction to each artifact chunk
stored 1n the current artifact store file, beginning from the
first artifact chunk to the last artifact chunk stored in the
current artifact store file, and appending the sorted list 1n
front of the sorted list built for an artifact store file that was
processed immediately prior to processing the current arti-
fact store files.

At block 608, metadata 1s received that 1s associated with
a file of the multiple files, wherein the metadata 1s meant to
identify a file that 1s of interest for reconstruction.

At block 610, the metadata 1s associated with a unique
artifact locator 1dentifier (ALI) that enables pointing to the
artifact chunks 1n the artifact store that are associated with
the file of interest for enabling reconstruction of the file.

In one or more embodiments, the ALI i1dentifies the last
artifact chunk associated with the file.

In one or more embodiments, during reconstruction of a
file, a determination 1s made whether an artifact chunk i1s
missing for reconstruction of the file. It 1t 1s determined that
an artifact chunk 1s missing, any artifact chunks identified
during the reconstruction of the file prior to the determina-
tion that the artifact chunk 1s missing are removed.

In one or more embodiments, the method further includes
receiving instructions 1dentifying multiple files to be recon-
structed and creating a sequential list of 1dentification of all
artifact chunks included i each of the multiple files using
the ALI and ACI associated with the artifact chunks stored
in the artifact store for each of the multiple files. The artifact
chunks identified 1n the sequential list are sequentially read
and, as each artifact chunk 1s read, a reconstructed file that
was started for the file to which the artifact chunk 1s
associated 1s i1dentified. A reconstructed file for the file to
which the artifact chunk 1s associated upon the condition
that none were 1dentified 1s started. The artifact chunk 1s
appended to the end of the reconstructed file identified or
that was started 11 none were 1dentified.

In one or more embodiments, the number of multiple files
allowed to be 1dentified 1n the nstructions 1s limited.

Aspects of the present disclosure are described above with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer program instructions.

These computer program 1nstructions may be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which

US 11,451,569 Bl

15

execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including mstructions which
implement the function/act specified 1n the tflowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series ol operational
operations to be performed on the computer, other program-
mable apparatus or other devices to produce a computer
implemented process such that the structions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci-
fied 1n the flowchart and/or block diagram block or blocks.

With reference to FIG. 7, a block diagram of an example
computing system 700 1s shown, which provides an example
configuration of artifact store engine 108 of FIG. 1 or artifact
store reader 402 of FIG. 4 (shown as device Al). Addition-
ally, all or portions of the artifact store engine 108 or artifact
store reader 402 could be configured as software, and
computing system 700 could represent such portions. Com-
puting system 700 1s only one example of a suitable system
and 1s not mtended to suggest any limitation as to the scope
of use or functionality of embodiments of the disclosure
described herein. Computing system 700 can be imple-
mented using hardware, software, and/or firmware. Regard-
less, computing system 700 1s capable of being implemented
and/or performing functionality as set forth 1n the disclosure.

Computing system 700 1s shown 1n the form of a general-
purpose computing device. Computing system 700 includes
a processing device 702, memory 704, an input/output (1/0)
interface (I/F) 706 that can communicate with an internal
component, such as a user interface 710, and optionally an
external component 708.

The processing device 702 can include, for example, a
programmable logic device (PLD), microprocessor, DSP, a
microcontroller, an FPGA, an ASIC, and/or other discrete or
integrated logic circuitry having similar processing capa-
bilities.

The processing device 702 and the memory 704 can be
included 1 components provided in the FPGA, ASIC,
microcontroller, or microprocessor, for example. Memory
704 can 1include, for example, volatile and non-volatile
memory for storing data temporarily or long term, and for
storing programmable instructions executable by the pro-
cessing device 702. Memory 704 can be a removable (e.g.,
portable) memory for storage of program instructions. I/0O
I/F 706 can include an mtertace and/or conductors to couple
to the one or more internal components 710 and/or external
components 708.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function 1n a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including istructions which
implement the function/act specified 1n the flow diagram
and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-

10

15

20

25

30

35

40

45

50

55

60

65

16

ratus, or other devices to cause a series ol operational
operations to be performed on the computer, other program-
mable apparatus or other devices to produce a computer
implemented process such that the instructions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci-
fied 1n the block diagram block or blocks.

Embodiments of the processing components of artifact
store engine 108 or artifact store reader 402 may be 1mple-
mented or executed by one or more computer systems, such
as a microprocessor. Each computer system 700 can be
included within processing components of artifact store
engine 108 or artifact store reader 402, or multiple imnstances
thereof. In various embodiments, computer system 700 may
include one or more of a microprocessor, an FPGA, appli-
cation specific mtegrated circuit (ASIC), microcontroller.
The computer system 700 can be provided as an embedded
device. Portions of the computer system 700 can be provided
externally, such by way of a virtual, centralized, and/or
cloud-based computer.

Computer system 700 1s only one example of a suitable
system and 1s not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the disclo-
sure described herein. Regardless, computer system 700 1s
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

Computer system 700 may be described in the general
context of computer system-executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, pro-
grams, objects, components, logic, data structures, and so on
that perform particular tasks or implement particular abstract
data types.

In the preceding, reference 1s made to various embodi-
ments. However, the scope of the present disclosure 1s not
limited to the specific described embodiments. Instead, any
combination of the described features and elements, whether
related to different embodiments or not, 1s contemplated to
implement and practice contemplated embodiments. Fur-
thermore, although embodiments may achieve advantages
over other possible solutions or over the prior art, whether
or not a particular advantage 1s achieved by a given embodi-
ment 1s not limiting of the scope of the present disclosure.
Thus, the preceding aspects, features, embodiments and
advantages are merely illustrative and are not considered
clements or limitations of the appended claims except where
explicitly recited 1 a claim(s).

The various embodiments disclosed herein may be imple-
mented as a system, method or computer program product.
Accordingly, aspects may take the form of an entirely
hardware embodiment, an entirely software embodiment
(including firmware, resident software, micro-code, etc.) or
an embodiment combining soitware and hardware aspects
that may all generally be referred to herein as a *“circuit,”
“module” or “system.” Furthermore, aspects may take the
form of a computer program product embodied in one or
more computer-readable medium(s) having computer-read-
able program code embodied thereon.

Any combination of one or more computer-readable
medium(s) may be utilized. The computer-readable medium
may be a non-transitory computer-readable medium. A
non-transitory computer-readable medium may be, for
example, but not limited to, an electronic, magnetic, optical,
clectromagnetic, mfrared, or semiconductor system, appa-
ratus, or device, or any suitable combination of the forego-
ing. More specific examples (a non-exhaustive list) of the
non-transitory computer-readable medium can include the

US 11,451,569 Bl

17

following: an electrical connection having one or more
wires, a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an
crasable programmable read-only memory (EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the
foregoing. Program code embodied on a computer-readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, efc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written 1 any
combination of one or more programming languages. More-
over, such computer program code can execute using a
single computer system or by multiple computer systems
communicating with one another (e.g., using a local area
network (LAN), wide area network (WAN), the Internet,
etc.). While various features in the preceding are described
with reference to flowchart i1llustrations and/or block dia-
grams, a person of ordinary skill in the art will understand
that each block of the flowchart illustrations and/or block
diagrams, as well as combinations of blocks 1n the flowchart
illustrations and/or block diagrams, can be implemented by
computer logic (e.g., computer program instructions, hard-
ware logic, a combination of the two, etc.). Generally,
computer program instructions may be provided to a pro-
cessor(s) of a general-purpose computer, special-purpose
computer, or other programmable data processing apparatus.
Moreover, the execution of such computer program instruc-
tions using the processor(s) produces a machine that can
carry out a function(s) or act(s) specified 1n the tlowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality and/or operation of possible
implementations of various embodiments of the present
disclosure. In this regard, each block in the flowchart or
block diagrams may represent a module, segment or portion
ol code, which comprises one or more executable instruc-
tions for implementing the specified logical function(s). It
should also be noted that, in some alternative implementa-
tions, the functions noted in the block may occur out of the
order noted 1n the figures. For example, two blocks shown
in succession may, 1 fact, be executed substantially con-

currently, or the blocks may sometimes be executed 1n the
reverse order, depending upon the functionality imnvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
ol special purpose hardware and computer instructions.

It 1s to be understood that the above description 1s
intended to be 1illustrative, and not restrictive. Many other
implementation examples are apparent upon reading and
understanding the above description. Although the disclo-
sure describes specific examples, 1t 1s recognized that the
systems and methods of the disclosure are not limited to the
examples described herein, but may be practiced with modi-
fications within the scope of the appended claims. Accord-
ingly, the specification and drawings are to be regarded 1n an
illustrative sense rather than a restrictive sense. The scope of
the disclosure should, therefore, be determined with refer-
ence to the appended claims, along with the full scope of
equivalents to which such claims are entitled.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

What 1s claimed 1s:

1. A method of extracting file content from a live stream
of network data streaming multiple files, the method com-
prising;:

recerving artifact chunks, each artifact chunk including a

portion of {ile content of a file of the multiple files as
identified by deep packet nspection (DPI) at first
capture of the network data;

storing the artifact chunks 1n an artifact chunk section of

an artifact store for linearly storing the artifact chunks
in an order as received:

storing artifact chunk information (ACI) for each artifact

chunk 1n a chunk table section of the artifact store, the
ACI 1dentitying the artifact chunk, identifying another
artifact chunk of the file, and identifying a location of
the artifact chunk 1n the artifact chunk section; and
storing a umque artifact locator identifier (ALI) that
uniquely identifies a storage location within the artifact
store of an artifact chunk associated with file, wherein
the ALI and ACI associated with the artifact chunks are
configured with the ability to locate each artifact chunk
associated with the file that 1s stored in the artifact store
for future reconstruction of the file, wherein the artifact
store 1s capable of including multiple artifact store files,
cach artifact store file having an artifact chunk section
and a chunk table section, wherein receiving the artifact
chunks includes receiving multiple threads of artifact
chunks, each artifact store file being associated with
only one thread of the multiple threads for storing
artifact chunks of the thread into the artifact chunk
section and storing corresponding ACI in the chunk
table section of the artifact store file and wherein each
artifact store file includes a header that stores 1dentifi-
cation mformation that uniquely identifies the artifact
store file, and whereby an artifact store file of the
multiple artifact store files 1s deleted based on the
identification information included in the header.

2. The method of claim 1, wherein the ALI 1s stored in
association with metadata output and stored when the DPI 1s
performed at the first capture of the live stream of the
network data.

3. The method of claim 1, wherein when a storage
capacity of the artifact store file associated with the thread
1s filled, a new artifact store file of the multiple artifact store
files 1s provided for storing remaining artifact chunks of the
thread into the artifact chunk section and storing ACI for
remaining artifact chunks in the chunk table section of the
new artifact store file, and the ACI for the remaining artifact
chunks associated with a file of the thread includes linkage
information for identitying the ACI for artifact chunks
associated with the file of the thread that are stored in the
chunk table of the artifact store file for the future recon-
struction of the file of the thread.

4. The method of claim 3, wherein the ACI {for the artifact
chunks associated with the file of the thread that are stored
in the chunk table of the artifact store file 1dentifies a next
artifact chunk of the file that 1s stored 1n the chunk table of
the same artifact store file.

5. The method of claim 1, wherein the artifact chunks
stored 1n the artifact chunk section and the ACI stored 1n the
chunk table section are retrievable by memory mapping.

6. The method of claim 1, wherein the ALI 1dentifies a
final artifact chunk of the file.

7. The method of claim 1, further comprising receiving,
extraction rules speciiying criteria for output of the DPI for
including or excluding artifact chunks of an entire file from
being stored in the artifact chunk section of the artifact store.

US 11,451,569 Bl

19

8. The method of claim 1, further comprising:

creating a sequential list of i1dentification of all artifact
chunks included in the file using the ALI and ACI
associated with the artifact chunks stored in the artifact
store; and

sequentially reading the artifact chunks identified in the
sequential list; and

combining the read artifact chunks into a reconstructed
file that 1s a reconstruction of the file.

9. The method of claim 8, further comprising;:

receiving metadata identitying the file to be reconstructed;
and

obtaining the ALI based on its association with the
metadata received.

10. The method of claim 8, further comprising:

determining whether an artifact chunk 1s missing for
reconstruction of the file,

in response to determining that an artifact chunk 1s

missing, removing any artifact chunks identified during

the reconstruction of the file prior to the determination
that the artifact chunk 1s missing.

10

15

20

20

11. The method of claim 1, further comprising:

recerving instructions identifying multiple files to be
reconstructed:;

creating a sequential list of i1dentification of all artifact
chunks included 1n each of the multiple files using the
ALI and ACI associated with the artifact chunks stored
in the artifact store for each of the multiple files;

sequentially reading the artifact chunks identified in the
sequential list; and

as each artifact chunk 1s read.,

identily a reconstructed file that was started for the file
to which the artifact chunk 1s associated;

start a reconstructed file for the file to which the artifact
chunk 1s associated upon the condition that none
were 1dentified; and

append the artifact chunk to the end of the recon-

structed file identified or that was started 1f none
were 1dentified.

12. The method of claim 11, further comprising limiting

the number of multiple files allowed to be 1dentified 1n the
instructions.

	Front Page
	Drawings
	Specification
	Claims

