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INTEGRATING VOLTERRA SERIES MODEL
AND DEEP NEURAL NETWORKS TO
EQUALIZE NONLINEAR POWER
AMPLIFIERS

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s a Continuation of U.S. patent
application Ser. No. 16/812,229, filed Mar. 6, 2020, now

U.S. Pat. No. 10,985,951, 1ssued Apr. 20, 2021, which
Claims benefit of priority under 35 U.S.C. § 119(e) from,
and 1s a non-provisional of, U.S. Provisional Patent Appli-
cation No. 62/819,054, filed Mar. 15, 2019, the entirety of

which 1s expressly 1incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the field of equalization of
nonlinear radio frequency power amplifiers, and more par-
ticularly to a neural network implementation of radio fre-
quency power amplifier equalization

BACKGROUND OF THE INVENTION

Most modern wireless communication systems, including
the fifth generation (5G) cellular systems, use multi-carrier
or OFDM (orthogonal frequency division multiplexing)
modulations whose signals have extremely high peak to
average power ratio (PAPR). This makes 1t challenging to
enhance the efficiency of power amplifiers (PAs). Signals
with high PAPR need linear power amplifier response 1n
order to reduce distortion. Nevertheless, PAs have the opti-
mal power efficiency only 1n the nonlinear saturated
response region. In practice, the PAs 1n the wireless trans-
ceivers have to work with high output backoff (OBO) 1n
order to suppress non-linear distortions, which unfortunately
results 1 severe reduction of power efficiency [1]. This
problem, originated from the nonlinearity of PAs, has been
one of the major constraints to enhance the power efficiency
of modern communication systems.

Various strategies have been investigated to mitigate this
problem. The first strategy 1s to reduce the PAPR of the
transmitted signals. Many techniques have been developed
for this purpose, such as signal clipping, peak cancellation,
error waveform subtraction [2]. For OFDM signals, pilot
tones and unmodulated subcarriers can be exploited to
reduce PAPR with some special pre-coding techmiques [3].

The second strategy 1s to linearize the PAs at the trans-
mitters. One of the dominating practices today 1s to mnsert a
digital pre-distorter (DPD) before the PA, which distorts the
signals appropriately so as to compensate for the nonlinear
PA response [4] [5] [6]. DPD has been applied widely 1n
many modern transmitters [2].

The third strategy 1s to mitigate the nonlinear PA distor-
tions at the receivers via post-distorter equalization [7] [8]
[9]. The solution presented 1n [10] develops a Bayesian
signal detection algorithm based on the nonlinear response
of the PAs. However, this method works for the simple
“AM-AM AM-PM” nonlinear PA model only. Alternatively,
as a powerful non-linear modeling tool, artificial neural

networks have also been studied for both nonlinear model-
ing of PAs [11] [12] and nonlinear equalization [13] [14]

[15].

One of the major design goals for the 5G systems 1s to
make the communication systems more power efficient. This
needs efficient PAs, which 1s unfortunately more challenging
since 3G signals have much higher PAPR and wider band-
width [16] [17]. This 1s an especially severe problem for cost
and battery limited devices in massive machine-type com-
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2

munications or mternet of things (IoT). Existing nonlinear
PA mitigation strategies may not be sufficient enough. PAPR
can be reduced to some extent only. DPD 1s too complex and
costly for small and low-cost 3G devices. Existing DPD and
equalization techniques have moderate nonlinear distortion
compensation capabilities only.

As a matter of fact, the nonlinear equalization strategy 1s

more attractive to massive MIMQO and millimeter wave
transmissions due to the large number of PAs needed [18]
[19] [20]. Millimeter wave transmissions require much
higher transmission power to compensate for severe signal
attenuation. Considering the extremely high requirement on
PA power efficiency and the large number of PAs 1n a
transmitter, the current practice of using DPD may not be
appropriate due to implementation complexity and cost.

There are various types of intermodulation that can be
found 1n radio systems, see, Rec. ITU-R SM.1446: Type 1
Single channel mtermodulation: where the wanted signal 1s
distorted by virtue of non-linearities 1n the transmitter; Type
2 Multichannel intermodulation: where the wanted signals
of mult1 channels are distorted by virtue of non-linearities 1n
the same transmitter; Type 3 Inter transmitter intermodula-
tion: where one or more transmitters on a site intermodulate,
either within the transmitters themselves or within a non-
linear component on site to produce intermodulation prod-
ucts; Type 4 Intermodulation due to active antennas: the
multicarrier operating mode of an active antenna, along with
the non-linearity of amplifiers, originates spurious emissions
under the form of intermodulation signals; and Type 3
Intermodulation due to passive circuits: where transmitters
share the same radiating element and intermodulation occurs
due to non-linearities of passive circuits. See, Rep. [TU-R-
SM.2021

An amplifier can be characterized by a Taylor series of the
generalized transfer function [32]

itk (€ arHke 7 e e kse o L

where 1, 1s the quiescent output current, k1, k2, etc. are
coefficients and eIN represents the mput signal. When two
sinusoidal frequencies w,=2nf, and ®,=27%f, of the ampli-
tude a,; and a, are applied to the input of the amplifier, the
input signal 1s:

EIN:ﬂl COs (1)1!+r;12 COS mzf

and the output 1,,,,-may be shown to be the sum of the DC
components:

k k
P f(a% ) + g“(&g‘;‘ 11262 + 3a)

fundamental components:

15

3 5 15
3 s —kmm%)m}swlr

3
—I—(klﬂl + —kgi;,'% + —kgillﬂ% + —k5:11% + —k5:t11:‘;12 +

4 2 3 4 3

5,
E}@ a, ag)cmrgwgr

L3 .5 15
—I—(klﬂlg + Zkgﬁlz + Ekgﬂll (12 + gkﬂ;’z + ?

ksaias +

2nd order components:

HVakoa *+Voksa "ok a2 a,2)cos 20t
1 231 4,3 2., 2
+(Vok a5+ ka"Hk,a 70,7 )cos 2004t

ko a4k a4 Yokaa 057 )cos(@, 10,
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3rd order components:

H Vit Y16k, 5+aksa,2a,2)cos 30, ¢

+( lfélkg ﬂ23+5/l EkS ﬂ25+5fﬁk5 l | EQEE)EGE 3(,02f

3., 5. . 15 5
+(zk3a1 a + phsdyap + Ekﬁﬂﬁz]ﬂﬂﬁ(wl *2wz)t O

3 , 5 , 15 4
+(5k3a1 a5 + 4—k5a1 ) + Ekﬂﬁz]@ﬂg(@l = 2wt

4th order components:

+lsk,a,* cos 4@, 1+8k,a," cos 4m,t

+Lhk,a,°a, cos(30 1@, )43k %ay” cos(2m,12m,)tH+
Vok,a s> cos{®@,X3m,)1

and 5th order components:

1 1
+ EkﬂfcnsSmlr + EkﬂgmsSmﬂ

5
+ El@ a‘ir drcos(dw) £ wa)t + ng :‘ZI% a%cas@wl + 2w )t

+ nga%a%mS(le + 3wyt + —ksayascos(wy + 4wyt

16

The series may be expanded further for terms in k.e,,°
etc. 1f desired. All the even order terms produce outputs at
harmonics of the input s1ignal and that the sum and difference
products are well removed 1n frequency far from the input
signal. The odd order products, however, produce signals
near the input frequencies F1+2§2 and F2+2f1. Therefore,
the odd order mntermodulation products cannot be removed
by filtering, only by improvement in linearity.

Assuming class A operation, a;=a, and k,, k. are very
small, the 3rd order intermodulation product IM3 becomes
proportional to a,. That means that the cube of the input
amplitude and the graph of the intermodulation products will
have a slope of 3 1n logarithmic scale while the wanted
signal will have the slope of 1. Second order products IM2
can be similarly calculated, and the graph for these has a
slope of two. The points where these graphs cross are called
3rd order intercept point IP3 and 2nd order intercept point
IP2, respectively. IP3 1s the point where the intermodulation
product 1s equal to the fundamental signal. This 1s a purely
theoretical consideration, but gives a very convenient
method of comparing devices. For example, a device with
intermodulation products of —40 dBm at O dBm input power
1s to be compared with one having intermodulation products
of =70 dBm for 10 dBm 1nput. By reference to the intercept
point, 1t can be seen that the two devices are equal.

The classical description of mtermodulation of analogue
radio systems deals with a two-frequency mput model to a
memoryless non-linear device. This non-linear characteristic
can be described by a function J(x), which yields the
input-output relation of the element device. The function, J,
1s usually expanded 1n a Taylor-series and thus produces the
harmonics and as well the linear combinations of the input
frequencies. This classical model 1s well suited to analogue
modulation schemes with dedicated frequency lines at the
carrier frequencies. The system performance of analogue
systems 1s usually measured mn terms of signal-to-noise
(S/N) ratio, and the distorting intermodulation signal can
adequately be described by a reduction of S/N.
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4

With digital modulation methods, the situation 1s changed
completely. Most digital modulation schemes have a con-
tinuous signal spectrum without preferred lines at the carrier
frequencies. The system degradation due to intermodulation
1s measured 1n terms of bat error ratio (BER) and depends on
a varlety of system parameters, e.g. the special modulation
scheme which 1s employed. For estimation of the system
performance 1n terms of BER a rigorous analysis of non-
linear systems 1s required. There are two classical methods
for the analysis and synthesis of non-linear systems: the first
one carries out the expansion of the signal 1n a Volterra series
[27]. The second due to Wiener uses special base functionals
for the expansion.

Both methods lead to a description of the non-linear
system by higher order transfer functions having n input
variables depending on the order of the non-linearity. Two
data signals x,(t) and x,(t), originated from x(t), are linearly
filtered by the devices with the impulse responses h_(t) and
h,(t) 1n adjacent frequency bands. The composite summed
signal y 1s hereafter distorted by an imperfect square-law
device which might model a transmit-amplifier. The mput-
output relation of the non-linear device 1s given by: z(t)=y

(tHay (1)
The output signal z(t) including the intermodulation noise
1s caused by non-linearities of third order. For this reason,

the imperfect square-law device 1s now replaced by an
imperfect cubic device with the input-output relation:

z(t)=y(t)+ay”(t)
There are several contributions of the intermodulation
noise falling into the used channels near f,.

Linearization of a transmitter system may be accom-
plished by a number of methods:

Feedforward linearization: This technique compares the
amplified signal with an appropriately delayed version
of the mput signal and derives a difference signal,
representing the amplifier distortions. This difference
signal 1s 1n turn amplified, and subtracted from the final
HPA output. The main drawback of the method 1s the
requirement for a 2nd amplifier—the technique can,

however, deliver an increase 1n output power of some
3 dB when used with a TWT.

Feedback linearization: In audio amplifiers, linearization
may readily be achieved by the use of feedback, but this
1s less straightforward at high RF frequencies due to
limitations in the available open-loop amplifier gain. It
1s possible, however, to feedback a demodulated form
of the output, to generate adaptive pre-distortion in the
modulator. It 1s clearly not possible to apply such an
approach 1n a bent-pipe transponder, however, where
the modulator and HPA are rather widely separated.

Predistortion: Rather than using a method that responds to
the actual instantaneous characteristics of the HPA, 1t 1s
common to pre-distort the 1nput signal to the amplifier,
based on a prior1 knowledge of the transfer function.
Such pre-distortion may be implemented at RF, IF or at
baseband. Baseband linearizers, often based on the use
of look-up tables held 1n firmware memory are becom-
ing more common with the ready availability of VLSI

techniques, and can offer a compact solution. Unftil
recently, however, 1t has been easier to generate the
appropriate pre-distortion function with RF or IF cir-

cuitry.
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RF amplifier linearization techniques can be broadly
divided 1nto two main categories:
Open-loop techniques, which have the advantage of being

unconditionally stable, but have the drawback of being
unable to compensate for changes in the amplifier
characteristics.

Closed-loop techniques, which are imherently self-adapt-

ing to changes 1n the amplifier, but can sufler from
stability problems.

Predistortion involves placing a compensating non-linear-

ity into the signal path, ahead of the amplifier to be linear-

1zed. The signal 1s thus predistorted before being applied to
the amplifier. If the predistorter has a non-linearity which 1s
the exact inverse of the amplifier non-linearity, then the

distortion introduced by the amplifier will exactly cancel the
predistortion, leaving a distortionless output. In its simplest
analogue implementation, a practical predistorter can be a
network of resistors and non-linear elements such as diodes
or transistors. Although adaptive predistortion schemes have
been reported, where the non-linearity 1s implemented in
digital signal processing (DSP), they tend to be very com-
putationally or memory intensive, and power hungry.

Feedforward [28] 1s a distortion cancellation technique for
power amplifiers. The error signal generated in the power
amplifier 1s obtained by summing the loosely coupled signal
and a delayed inverted input signal, so that the mput signal
component 1s cancelled. This circuit 1s called the signal
cancelling loop. The error signal 1s amplified by an auxihary
amplifier, and 1s then subtracted from the delayed output
signal of the power amplifier, so that the distortion at the
output 1s cancelled. This circuit 1s called the error cancelling
loop. It 1s necessary to attenuate the input signal component
lower than the error signal at the input of the auxihary
amplifier, so that the residual main signal does not cause
overloading of the auxiliary amplifier, or does not cancel the
main signal 1tself at the equipment output.

Negative feedback [29] 1s a well-known linearization
technique and 1s widely used 1n low frequency amplifiers,
where stability of the feedback loop 1s easy to maintain.
With multi-stage RF amplifiers however, it 1s usually only
possible to apply a few dB of overall feedback before
stability problems become intractable [30]. This 1s mainly
due to the fact that, whereas at low frequency 1t can be
ensured that the open-loop amplifier has a dominant pole 1n
its frequency response (guaranteeing stability), this 1s not
teasible with RF amplifiers because their individual stages
generally have similar bandwidths. Of course, local feed-
back applied to a single RF stage 1s often used, but since the
distortion reduction i1s equal to the gain reduction, the
improvement obtained 1s necessarily small because there 1s
rarely a large excess of open loop gain available.

At a given center frequency, a signal may be completely
defined by its amplitude and phase modulation. Modulation
teedback exploits this fact by applying negative feedback to
the modulation of the signal, rather than to the signal 1tself.
Since the modulation can be represented by baseband sig-
nals, we can successiully apply very large amounts of
teedback to these signals without the stability problems that
beset direct RF feedback. Early applications of modulation

5

10

15

20

25

30

35

40

45

50

55

60

65

6

feedback used amplitude (or envelope) feedback only,
applied to valve amplifiers [31], where amplitude distortion
1s the dominant form of non-linearity. With solid-state
amplifiers however, phase distortion 1s highly significant and
must be corrected 1n addition to the amplitude errors.

For estimation of the system performance in terms of
BER a rigorous analysis of non-linear systems 1s required.
There are two classical methods for the analysis and syn-
thesis of non-linear systems: the first one carries out the
expansion of the signal in a Volterra series [27]. The second
due to Wiener uses special base functionals for the expan-
sion. These are the Wiener G-functionals which are orthogo-
nal 1 white Gaussian noise excites the system. It 1s the
special autocorrelation property of the white Gaussian noise
which makes 1t so attractive for the analysis of non-linear
systems. The filtered version of AWGN, the Browman
movement or the Wiener process, has special features of its
autocorrelation which are governed by the rules for mean
values of the products of jointly normal random variables.

The non-linear system output signal y(t) can be expressed
by a Volterra series:

y(I)ZHD+H1+H2+ - .

where Hi 1s the abbreviated notation of the Volterra operator
operating on the input x(t) of the system. The first three
operators are given 1n the following. The convolution inte-
grals are integrated from -oo, to +co.

Hy[x(0)]=hg
H,[x(0)]=]h, (D)x(t-T)dx

Hy [x(0)[=/1As (v o)X (=t x (-T2 dv, dy

The kernels of the integral operator can be measured by
a variation of the excitation time of input pulses, e.g. for the
second order kernel h,(t,, T,): x(t)=0(t—T,) o(t—T,). A better
method 1s the measurement of the kernel by the cross-
correlation of exciting white Gaussian noise n(t) as mput
signal with the system output y.(t). These equations hold, if:

D,,,(T)=48(t)

1s the autocorrelation function of the mput signal x(t)=n(t)
(white Gaussian noise) where A 1s the noise power spectral
density. The first three kernels are given then by:

ho = yo(D)

1
hi (o) = FeA L)

hp(ory, 072) = myz(f)ﬂ(f— o)l — o)

The overline denotes the expected value, or temporal
mean value for ergodic systems.

The method can be expanded to higher order systems by
using higher order Volterra operators H . However, the
Volterra operators of different order are not orthogonal and,
therefore, some difliculties arise at the expansion of an
unknown system 1n a Volterra series.

These difliculties are circumvented by the Wiener G-func-
tionals, which are orthogonal to all Volterra operators with
lower order, if white Gaussian noise excites the system.
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TABLE 1
Volterra
kernels Direct Fourier Transform
Linear +o0 | |
(1% order) H; = |H (w)| = ‘f hy(7y)-exp(—jwry) - it
Quadratic o oo |
(27 order) Hy = [Hz(w)| = ‘f f h (71, 72)- expl—jew(Ti + 72)] -d71d7T>
CU_biC o0 o0 oo |
(37 order) Hz =[H3(w)| = ‘f f f h3(7y, 72, T3) - exXpl—Jw(T) + T2 + 73)] - d7 d72dT3

See, Panagiev, Oleg. “Adaptive compensation of the
nonlinear distortions 1n optical transmitters using predistor-
tion.” Radioengineering 17, no. 4 (2008): 55.

The first three Wiener G-functionals are:

Golx(2) =k
G [x(@)]=1k (T )x(t—T) ) dt,

G, [-7‘?52] kot (1= )x (2= )dv | dvo—Af k(T ,T5)
1

G5 [x() = k3 (T 1,00, T 3)x (1T X (1-T5)x(1—T3)
dv At dt, -3 A k3 (T T, 15)x(t=1 ) dt  dts

For these functionals hold:

H_[#(D] G, [#(D)]=0 for m<wu

if the mput signal n(t) 1s white Gaussian noise.

The two data signals x,(t) and x,(t), from a single signal
x(t), are linearly filtered by the devices with the impulse
responses h_(t) and h,(t) in adjacent frequency bands. The
composite summed signal y 1s hereafter distorted by an
impertect square-law device which might model a transmiut-
amplifier. The input-output relation of the non-linear device
1s given by:

z()=y(t)+ay* (1)
The output signal z(t) 1s therefore determined by:

z(t)= fgzﬂ}?gr)#z (T x(t-T)dv+a{f[h, (T)+h,(T)]x(t=T)

The first and second order Volterra-operators H, and H,
for this example are accordingly determined by the kernels:

i (T)=h (T)+h(T)
and

15 (0,0 ) =0, (T )[R (0o +, ()[40, (T ) [, (05 + 2, (T5)]

This kernel h,(t,, T,) 1s symmetric, so that:

ho(T1,T5)=ho(T5,Ty)

The second order kernel transtorm H,(w,, ®,) 1s obtained
by the two-dimensional Fourier-transform with respect to t,
and T,, and can be obtained as:

H (w0 ,005)={H (0) [H (02)+H(05) ][ +H(w) [ H,
(W )+H 3 (05)]}

by elementary manipulations. H (w) and H,(w) are the
Fourier-transforms of h_(t) and h,(t). With the transform
X(m) of the mput signal x(t), an artificial two dimensional
transtorm Z.,(w,,m,) 1s obtained:

Z (0 1,05)=H5(0;,0-)X(w ) X(0,)
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Laplace transform

H, (p)=k; - L, (p)

Hy, (p) =k, - L; (2p)

H3 (p) = k3 - L; (3p)

with the two-dimensional mverse Z,(t,, t,). The output
signal z(t) 1s:
z(1)=z)(L,1)

The transform Z(w) of z(t) can be obtained by convolu-
tion:

|
Z(w) = EIZ(Z)(MI-J ( — w1 )dw

where the integration 1s carried out from —co to +oo.

The output z(t) can be as well represented by use of the
Wiener G-functionals:

Z(H)=Go+G+Gor+ . . .
where G, 1s the simplified notation of G [x(t)]. The first
two operators are:

G, [x(D)]=—Af[h_(T)+h,(T) " dr=const

G, [X(O) =/ [A,(0)+h,(T) [x(1=T) v

The operator G, equals H, in this example. For x(t) equal
white Gaussian noise x(t)=n(t): G,[n(t)]h, holds for all h,,
especially:

G,G,=0.

G, [x(D)]=1[h, (v DA (o) +h (T DR (o) 4, (T R (o) 4+,
(T )75(T2)]

X(1=T )x (1= )dv  dvo—Afh (T ) +h(t )] dry

The consequence 1s:

G_zﬁﬂ:kﬂj[ha('ﬁ1)ha(’ﬁz)"‘hg(’ﬁ1)kb(’ﬁz)"‘hb("?l)ka(’ﬁz)"‘k&-(’ﬁl)kb(’ﬁz)]

n(t—t n(t=v,)dv  dv,~hodf[h, (v )+h, (v ) dr,

and

G,h,=0 because of n(t—t)n(t-1,)=40(T-15)
and similarly:

G,H =0 for all H,

This equation mvolves the mean of the product of three
zero mean jointly Gaussian random variables, which 1s zero.
The Wiener kemels can be determined by exciting the
system with white Gaussian noise and taking the average of
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some products of the system output and the exciting noise
process n(t):

ko = z(1)

1
ki(7) = —z(Onlt - 7)

and

ko(T1, T2) = s Aot — 7 )n(t — 77)

2A

For RF-modulated signals the imtermodulation distortion
in the proper frequency band 1s caused by non-linearities of
third order. For this reason, the imperfect square-law device
1s now replaced by an imperfect cubic device with the
input-output relation:

2(D)=y(t)+ay’ (1)

If only the intermodulation term which distorts the signal
in 1ts own frequency band 1s considered, the kernel trans-
torm of the third-order Volterra operator Z;, (0, w,, ;)
becomes then:

3

Zg) (w1, @3, 3) = al | [Ha(w;) + Hy(wp)]X ()
i=1

The intermodulation part 1n the spectrum of z(t) 1s now
given by:

1

A= T

ffzm(iﬂ — M1, Ky — K2, L2)d 1 dus

For a cubic device replacing the squarer, however, there
are several contributions of the intermodulation noise falling
into the used channels near f,,.

See, Amplifier References, inira.

The Volterra series 1s a general technique, and subject to
different expressions of analysis, application, and simplity-
ing presumptions. Below 1s further discussion of the tech-
nique.

A system may have hidden states of input-state-output
models. The state and output equations of any analytic
dynamical system are

X(1)=J(x,1,0)

v(t)=g(x,u,0)+e

x(t) 1s an ordinary differential equation and expresses the
rate of change of the states as a parameterized function of the
states and 1nput. Typically, the mputs u(t) correspond to
designed experimental effects. There 1s a fundamental and
causal relationship (Fliess et al 1983) between the outputs
and the history of the inputs. This relationship conforms to
a Volterra series, which expresses the output y(t) as a
generalized convolution of the 1nput u(t), critically without
reference to the hidden states x(t). This series 1s simply a
functional Taylor expansion of the outputs with respect to

the inputs (Bendat 1990). The reason 1t 1s a functional
expansion 1s that the inputs are a function of time.
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f
!
y(r):Zf...fﬁq(m,...,r:rj-)u(r—a'l),...,u(r—ﬂ'j-)dﬂ'l,...,dcrj-
j 0
0

&' y(1)
du(t—oy), ..., dul(t—o;)

K,‘(D‘l, cee s LTj) —

where K (0, . . . 0,) 1s the 1th order kernel, and the integrals
are restricted to the past (1.e., integrals starting at zero),
rendering the equation causal. This equation 1s simply a
convolution and can be expressed as a GLM. This means
that we can take a realistic model of responses and use it as
an observation model to estimate parameters using observed

data. Here the model 1s parameterized 1n terms of kernels
that have a direct analytic relation to the original parameters

0 of the physical system. The first-order kernel 1s simply the
conventional HRF. High-order kernels correspond to high-
order HRFs and can be estimated using basis functions as
described above. In fact, by choosing basis function accord-
ing to

dk(o),
90,

Al0); =

one can estimate the physical parameters because, to a first
order approximation, 3.=0.. The critical step 1s to start with
a causal dynamic model of how responses are generated and
construct a general linear observation model that allows
estimation and inference about the parameters of that model.
This 1s 1n contrast to the conventional use of the GLM with
design matrices that are not informed by a forward model of
how data are caused.

Dynamic causal models assume the responses are driven
by designed changes in inputs. An important conceptual
aspect of dynamic causal models pertains to how the experi-
mental mputs enter the model and cause responses. Experti-
mental variables can illicit responses 1n one of two ways.
First, they can elicit responses through direct influences on
clements. The second class of 1input exerts 1ts eflect through
a modulation of the coupling among elements. These sorts of
experimental variables would normally be more enduring.
These distinctions are seen most clearly in relation to
particular forms of causal models used for estimation, for
example the bilinear approximation

X(r) = fx, u)
=Ax+ubx+ Cu
y=gx)+e
af & f af
A_ﬁ B_ﬂxﬂu C_ﬁ

This 1s an approximation to any model of how changes 1n
one element x(t), are caused by activity of other elements.
Here the output function g(x) embodies a model. The matrix
A represents the connectivity among the regions in the
absence of mput u(t). Effective connectivity 1s the influence
that one system exerts over another in terms of mnducing a
response ox/0X. This latent connectivity can be thought of as
the intrinsic coupling in the absence of experimental per-
turbations. The matrix B 1s effectively the change 1n latent
coupling induced by the input. It encodes the input-sensitive
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changes 1n A or, equivalently, the modulation of eflfective
connectivity by experimental manipulations. Because B 1s a
second-order derivative 1t 1s referred to as bilinear. Finally,
the matrix C embodies the extrinsic influences of inputs on
activity. The parameters 0={ A, B, C} are the connectivity or
coupling matrices that we wish to identify and define the
functional architecture and interactions among elements. We
can express this as a GLM and estimate the parameters using
EM in the usual way (see Friston et al 2003). Generally,
estimation in the context of highly parameterized models
like DCMs requires constraints 1n the form of priors. These
priors enable conditional inference about the connectivity
estimates.

The central idea, behind dynamic causal modelling
(DCM), 1s to model a physical system as a deterministic
nonlinear dynamic system that i1s subject to inputs and
produces outputs. Eflective connectivity 1s parameterized in
terms of coupling among unobserved states. The objective 1s
to estimate these parameters by perturbing the system and
measuring the response. In these models, there i1s no
designed perturbation and the inputs are treated as unknown
and stochastic. Furthermore, the mnputs are often assumed to
express themselves instantaneously such that, at the point of
observation the change in states will be zero. In the absence
of bilinear eflects we have

=0
= Ax+ Cu
x=-A"1Cu

This 1s the regression equation used in SEM where
A=A'-I and A' contains the ofl-diagonal connections among,
regions. The key point here 1s that A 1s estimated by
assuming u 1s some random innovation with known cova-
riance. This 1s not really tenable for designed experiments
when u represent carefully structured experimental iputs.
Although SEM and related autoregressive techniques are
useiul for establishing dependence among responses, they
are not surrogates for informed causal models based on the
underlying dynamics of these responses.

The Fourier transform pair relates the spectral and tem-
poral domains. We use the same symbol F, although F(t) and
F(w) are different functions:

(e (e

f dwF(w)e ™ F(w) = f drF (ne™”

— D

1
Fit) = 5-

Accordingly, a convolution tegral 1s derived:

s

D) = fdna(n)E(r—n)

—

where D(t), €(t), E(t), are related to D(w), e(—1w), E(w),
respectively. Note that D(t) can be viewed as an integral
operation, acting on E(t) 1s the simplest form of a Volterra
Function Series (VFS). This can also be expressed in the
VDO representation

D{(#)=e(3)E()=e(B)E(T) |,
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The instruction T=>t 1s superfluous in a linear case, but
becomes 1mportant for non-linear systems. For example,
consider a harmonic signal clarifying the role of the VDO:

E() = Eje™

D(1) = Ege™ f dr E(1))e""t = e(—iw)Ege™ = &(d; )Ege ™"

—

In nonlinear systems, the material relations 1nvolve pow-
ers and products of fields, and x(t) can be replaced by a
series involving powers ol E(w), but this leads to inconsis-
tencies.

However, the convolution can be replaced by a “super
convolution”, the Volterra function series (VFS), which can
be considered a Taylor expansion series with memory, given
by:

D) = Z D7)

D(’”)(r):fdrl...fdrmg(’”)(rl,...,rm)E(r—rl)...E(r—rm)

Typically, the VFS contains the products of fields
expected for nonlinear systems, combined with the convo-
lution structure. Various orders of nonlinear interaction are
indicated by m. Theoretically all the orders co-exist (in
practice the series will have to be truncated within some
approximation), and therefore we cannot readily iject a
time harmonic signal. If instead a periodic signal,

E@) = Z E, e imwt

1s provided, we find

D™ (1) =

" —inw, ..., —inyWE, ... E,, o NWt — Z Dye N
N

displaying the essential features of a nonlinear system,
namely, the dependence on a product of amplitudes, and the
creation of new Irequencies as sums (including differences
and harmonic multiples) of the interacting signals frequen-
cies. This function contains the weighting function £“(-
n,m, ..., —1n_m) for each interaction mode.

The extension to the nonlinear VDO 1s given by

DU(0)=e"™(3,,, . .. .3, VE@) . . . E(t),. . 4

In which the instruction t,, . . . , t =t guarantees the
separation of the differential operators, and finally renders
both sides of the equation to become functions of t.

The VFS, including the convolution integral, 1s a global
expression describing D(t) as affected by integration times
extending from —oo to co. Physically this raises questions
about causality, 1.e., how can future times aflect past events.
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In the full-fledged four-dimensional generalization causality
1s associated with the so called “light cone” (Bohm, 1965).
It 1s noted that the VDO representation 1s local, with the
various time variables just serving for book keeping of the
operators, and where this representation 1s justified, causal-
ity problems are not mvoked. In a power amplifier the
physical correlate of this feature 1s that all past activity leads
to a present state of the system, e.g., temperature, while the
current inputs affect future states. In general, the frequency
constraint 1s obtained from the Fourier transtform of the VFS,
having the form

D" (w) =

1 O
2] fdwl fdwm_lg(m}(—iwl,, ooy~ )V E(wy) ... E{w,,)

In which we have m—1 integrations, one less than 1n the
VES form. Consequently, the left and right sides of the
Fourier transform are functions of ®, ®, , respectively. The
additional constraint ®=m,+ . .. +® _ completes the equation
and renders 1t self-consistent.

See, Volterra Series References, infra.

An alternate analysis of the VFS 1s as follows. Let x[n]
and y[n] represent the input and output signals, respectively,
of a discrete-time and causal nonlinear system. The Volterra
series expansion for y[n] using x[n] 1s given by:

yln] = ho + Z hylmy |x[n —my | +
mlz[}
Z Z holmy, molx|n —mylx[n —ma] + .. +> >
ml Zﬂmzzﬂ J J
ml—[} mz—D
Z hplmy, ma, ..., mplx[n—mlx[n—ma] ... x[n—m,] +...)
mpzﬂ
hp[mi, m,, ..., mp] 1s known as the p—the order Volterra

kernel of the system. Without any loss of generality, one can
assume that the Volterra kernels are symmetric, 1.e., hp[mﬁ
m, . .., m,] 1s left unchanged for any of the possible p!
Permutations of the indices m;, m,, . . . m,. One can think
of the Volterra series expansion as a Taylor series expansion
with memory. The limitations of the Volterra series expan-
sion are similar to those of the Taylor series expansion, and
both expansions do not do well when there are discontinui-
fies 1 the system description. Volterra series expansion
exists for systems mvolving such type of nonlinearity. Even
though clearly not applicable 1n all situations, Volterra
system models have been successfully employed 1n a wide

variety of applications.

Among the early works on nonlinear system analysis 1s a
very important contribution by Wiener. His analysis tech-
nique 1nvolved white Gaussian iput signals and used
“(G-functionals™ to characterize nonlinear system behavior.
Following his work, several researchers employed Volterra
series expansion and related representations for estimation
and time-nvariant or time variant nonlinear system identi-
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fication. Since an infinite series expansion 1s not useful n
filtering applications, one must work with truncated Volterra
Series expansions.

The discrete time 1impulse response of a first order (linear)
system with memory span 1s aggregate of all the N most
recent mputs and their nonlinear combinations 1nto one
expanded mput vector as

X (n)=[x(rn)x(n—1), . .. x(n—N+1),
Cxman-1), . . . xXZn-N+D]7

—

Similarly, the expanded filter coefficients vector H(n) 1s

given by

H(m)=[h(0),h,(1), . . . i (N=1),h(0,0),2,(0,1), . . .
ho(N-1, ... N=D]”

The Volterra Filter mnput and output can be compactly
rewritten as

y(m=H"(m)X (n)

The error signal e(n) 1s formed by subtracting y(n) from
the noisy desired response d(n), 1.e.,

e(m)=d(n)—y(m)=d(n)—H" (m)X .(n)

For the LMS algorithm, this may be minimized to
E[e*(m)]=E[d(m)—H ()X (n)]

The LMS update equation for a first order filter 1s
H(n+1)=H(n)+ule(n)| X _(n)

where u 1s small positive constant (referred to as the step
s1ize) that determines the speed of convergence and also
affects the final error of the filter output. The extension of the
LLMS algorithm to higher order (nonlinear) Volterra filters
involves a few simple changes. Firstly, the vector of the
impulse response coefficients becomes the vector of Volterra
kernels coefficients. Also, the mput vector, which for the
linear case contained only a linear combination, for nonlin-
ear time varying Volterra filters, complicates treatment.

The RLS (recursive least squares) algorithm 1s another
algorithm for determining the coefficients of an adaptive
filter. In contrast to the LMS algorithm, the RLS algorithm
uses mformation from all past mput samples (and not only
from the current tap-input samples) to estimate the (1inverse
of the) autocorrelation matrix of the mput vector.

To decrease the influence of mput samples from the far
past, a weighting factor for the influence of each sample 1s
used. The Volterra filter of a fixed order and a fixed memory
adapts to the unknown nonlinear system using one of the
various adaptive algorithms. The use of adaptive techniques
for Volterra kernel estimation has been well studied. Most of
the previous research considers 2nd order Volterra filters and
some consider the 3rd order case.

A simple and commonly used algorithm 1s based on the
LLMS adaptation criterion. Adaptive Volterra filters based on
the LMS adaptation algorithm are computational simple but
suffer from slow and input signal dependent convergence
behavior and hence are not useful 1n many applications. As
in the linear case, the adaptive nonlinear system minimizes
the following cost function at each time:

Jn] = Z&”‘k(d[k] — HT ) X[k])"
k=0

where, H(n) and X(n) are the coefficients and the input
signal vectors, respectively, A is a factor that controls the
memory span of the adaptive filter and d(k) represents the
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desired output. The solution can be obtained by differenti-
ating J[n] with respect to H[n], setting the derivative to zero,
and solving for H[n]. The optimal solution at time n 1s given

by

H[n] = C1[n]P[n] where,

H H

Cln] = ZAH—RX[k]XT [k] and P[n] = Z}’L’T‘kd[k]}{[k]
k=0 k=0

H[n] can be recursively updated by realizing that

C[n]=AC[n—1]+X[n]X*[n] and P[n]=AP[n—1]+d[n]X
[72]

The computational complexity may be simplified by
making use of the matrix mnversion lemma for inverting
C[n]. The derivation 1s similar to that for the RLS linear
adaptive filter.

Clnl=2 1O n—11-A Y [n) X 0] C n—1]

There are a few simple models for basic amplifier non-
linear behavior. A more rigorous model could include the
Volterra series expansion which can model complex non-
linearities such as memory effects. Among the simpler
models are the Rapp model, Saleh model and the Ghorbani
model. Combinations of pure polynomial models and filter
models are also often referred to as fairly simple models,
e.g., the Hammerstein model.

The advantage of the simpler models 1s usually 1n con-
nection to for a need of very few parameters to model the
non-linear behavior. The drawback 1s that such a model only
can be used 1n conjunction with simple architecture ampli-
fiers such as the basic Class A, AB and C amplifiers.
Amplifiers such as the high efficiency Doherty amplifier can
in general not be modelled by one of these simple models.
In addition, to properly capture the PA behavior for the
envisaged large NR bandwidths, 1t 1s essential to use PA
models capturing the memory effects. Such models would
require an extensive set of empirical measurements for
proper parameterization.

The Rapp model has basically two parameters by which
the general envelop distortion may be described. It mimics
the general saturation behavior of an amplifier and lets the
designer set a smoothness of the transition by a P-factor. By
extending this also to model phase distortion, one has 1n total
s1X parameters available. The basic simple model may be
found as:

Vin

[ (w]”“]%
1+

VSEII

This model produces a smooth transition for the envelope
characteristic as the input amplitude approaches saturation.
In the more general model, both AM-AM and AM-PM
distortion can be modelled. In general terms, the model

describes the saturation behavior of a radio amplifier 1n a
good way.

Vﬂm‘ —

(rx
Fap—am = "
( Gx | ]ﬁ
1+
VSEII
AT
L apM-Py = m
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where “x” 1s the envelope of the complex mput signal. If
signal measurements are at hand of the imput/output rela-
tionship, the parameters of the model may be readily found
for a particular amplifier by for example regression tech-
niques. The strength of the Rapp model 1s lies 1n 1ts simple
and compact formulation, and that 1t gives an estimation of
the saturation characteristics of an amplifier. The drawback
of this simple model 1s of course that 1t cannot model higher
order classes of amplifiers such as the Doherty amplifier. It
also lacks the ability to model memory effects of an ampli-
fier.

The Saleh model 1s a similar model to the Rapp model. It
also gives an approximation to the AM-AM and AM-PM
characteristics of an amplifier. It offers a slightly fewer

number of parameters (4) that one can use to mimic the
input/output relationship of the amplifier. The AM-AM
distortion relation and AM-PM distortion relation are found
to be as:

(#) = 2
¥ . —
W) 4 —AM 0 )8& >
¥ . —
AM—PM : /5’:,.::-?"2

where “r” 1s the envelope of the complex signal fed into the
amplifier, and o/ are real-valued parameters that can be
used to tune the model to fit a particular amplifier.

The Ghorbani model also gives expressions similar to the
Saleh model, where AM-AM and AM-PM distortion 1s
modeled. Following Ghorbani, the expressions are sym-
metrically presented:

}{flf‘xz
8 = Tz T
y1772
= +

In the expressions above, g(r) corresponds to AM-AM
distortion, while f(r) corresponds to AM-PM distortion. The
actual scalars x,_, and y,_, have to be extracted from mea-
surements by curve fitting or some sort of regression analy-
S1S.

The next step in the more complex description of the
non-linear behavior of an amplifier 1s to view the charac-
terization as being subject to a simple polynomial expan-
sion. This model has the advantage that 1t 1s mathematically
pleasing 1n that 1t for each coefficient reflects higher order of
inter-modulations. Not only can 1t model third order inter-
modulation, but also fifth/seventh/ninth etc. Mathematically
it can also model the even order intermodulation products as
well, 1t merely 1s a matter of discussion whether these
actually occur 1n a real RF application or not.

y() = aog + a1 x(1) + f;fgx(z‘)z + agx(r)3 + mx(z‘f N § o — \/4:':11 [ 3|as]

Coefficients may be readily expressed in terms of Third
Order Intercept point IP3 and gain, as described above. This
feature makes this model especially suitable in low level
signal simulations, since 1t relates to quantities that usually
are readily available and easily understood amongst RF
engineers.
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The Hammerstein model consists of a combination of a
Linear+Non-Linear block that 1s capable of mimicking a
limited set of a Volterra Series. As the general Volterra series
models a nested series of memory and polynomial repre-
sentations, the Hammerstein model separates these two
defining blocks that can in theory be separately identified

with limited effort. The linear part 1s often modelled as a
linear filter 1n the form of a FIR-filter.

K-1
s(n) = Z b x(n — k)
k=0

The non-linear part 1s then on the other hand simply
modelled as polynomial in the enveloped domain.

yW(O=agta  x(H+ax(O*+ax() +ax(H)" . . ..

The advantage of using a Hammerstein model 1n favor of
the simpler models like Rapp/Saleh or Ghorbani 1s that 1t can
1n a fairly simple way also model memory effects to a certain
degree. Although, the model does not benefit from a clear
relationship to for example [IP3/Gain but one has to employ
some sort of regression technique to derive polynomial
coefficients and FIR filter tap coefficients.

The Wiener model describes like the Hammerstein model
a combination of Non-linear+Linear parts that are cascaded
after each other. The difference to the Hammerstein model
lies 1n the reverse order of non-linear to linear blocks. The
in1tial non-linear block 1s preferably modelled as a polyno-
mial 1n the envelope of the complex input signal. This block
1s the last one 1n the Hammerstein model as described above.
The polynomial coefficients may themselves be complex,
depending on what fits measured data best. See expressions
for non-linear and linear parts under the Hammerstein
section. The second block which 1s linear may be modelled
as an FIR filter with a number of taps that describes the
memory depth of the amplifier.

The state-of-the-art approaches consider the so called
Volterra series, and 1s able to model all weak non-linearity
with fading memory. Common models like, for example, the
memory polynomial can also be seen as a subset of the full
Volterra series and can be very flexible in designing the
model by simply adding or subtracting kernels from the full
series.

The discrete-time Volterra series, limited to causal sys-
tems with symmetrical kernels (which 1s most commonly
used for power amplifier modelling) 1s written as

yla] =

P M M M P
ﬁﬂ“"ZZ Z Z ﬂp;rl;rzj...fpﬂxln_q_jl

pleIZDTEZTI TFZTF_I j1=1

2p—1

1_[ f[” - sz]

j2=p+1

in which P 1s the non-linear order and M 1s the memory-
depth. There are benefits which the Volterra series hold over
other modelling approaches, icluding:

It 1s linear 1n parameters, meaning that the optimal param-
eters may be found through simple linear regression
analysis from measured data. It further captures fre-
quency dependencies through the inclusion of memory

effects which 1s a necessity for wideband communica-
tion.

The set of kernels, or basis functions, best suited for
modelling a particular power amplifier may be selected
using methods which rely on physical insight. This
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makes the model scalable for any device technology
and amplifier operation class.

It can be extended into a multivariate series expansion in
order to include the effects of mutual coupling through
antenna arrays. This enables the studies on more
advanced algornithms for distortion mitigation and pre-
coding.

It may be observed that other models such as stafic
polynomials, memory polynomials and combinations of the
Wiener and Hammerstein models are all subsets of the full
Volterra description. As previously stated, empirical mea-
surements are needed to parameterized PA model based on
Volterra series expansion.

A subset of the Volterra Series 1s the memory polynomaal
with polynomial representations 1n several delay levels. This
1s a simpler form of the general Volterra series. The advan-
tage of this amplifier model 1s 1ts simple form still taking
account of memory effects. The disadvantage 1s that the
parameters have to be empirically solved for the specific
amplifier 1n use.

PA,, ooy =X(D) [agta - XD Has 1x(H1™+ . .. 1+
+x(t—t ) [Dtb - Ix(t—t)l+b, |x(t—t )17+ . . . |+
+x(t—t ) [cqte - Ix(t—t Do Ix(t—t )1*+ ... T+ . ..

The equation above shows an expression for a memory
polynomial representation of an amplifier involving two
memory depth layers. Each delayed version of the signal 1s
assoclated with i1ts own polynomial expressing the non-
linear behavior.

See Filter References, infra.

The purpose of a PA behavioral model 1s to describe the
input-to-output relationship as accurately as possible. State-
of-the-art approaches lean on a fundament of the so called
Volterra series consisting of a sum of multidimensional
convolutions. Volterra series are able to model all weak
nonlinearities with fading memory and thus are feasible to
model conventional PAs aimed for linear modulation
schemes.

The GMP model 1s given by

Yompn) =

> D auxn=Dlxtn =D+ 3" N byx(n = Dlxtn =1 - m)*F

keKy el keKy lely meM

where y.,,»(n) and x(n) represent the complex baseband
equivalent output and mput, respectively, of the model. The
first term represents the double sum of so-called diagonal
terms where the mput signal at time shift 1, x(n—1); le L _, 1s
multiplied by different orders of the time aligned 1nput signal
envelope Ix(n—1)I**; ke K . The triple sum represents cross
terms, 1.e. the input signal at each time shifts 1s multiplied by
different orders of the input signal envelope at different time
shifts. The GMP 1s linear 1n the coefficients, a,; and b,
which provides robust estimation based on input and output
signal waveforms of the PAs to be characterized. As a
complement to the above, also memoryless polynomial
models have been derived based on:

yp(n)= ) apx(mx(m)l®

kEKp

It 1s thus seen that, while the Volterra series has been
considered generally 1n a variety of contexts, and for power
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amplifier lineanization, the particular implementation does
not necessarily follow from broad prescriptions.
See, Volterra Series Patents, infra.

SUMMARY OF THE INVENTION

A deep neural network (DNN)-based equalizer 1s pro-
vided to equalize the PA distorted signals at a radio fre-
quency receiver. This DNN equalizer exploits both the

Volterra series nonlinearity modeling of PAs, to construct
the 1nput features of the DNN, which can help the DNN

converge rapidly to the desired nonlinear response under
limited tramning data and training.

Conventionally, Volterra series and neural networks are
studied as two separate techniques for nonlinear PAs [2].
Volterra series has been a popular choice for constructing the
models of nonlinear power amplifiers. Many digital predis-
torters or nonlinear equalizers have been developed based on
such modeling. Similarly, artificial neural networks have
also been applied to model or equalizer the nonlinear PAs.
By integrating these two techniques together, equalizers may
be more efficient and have low-cost implementation than
conventional digital pre-distorters, and have high perfor-
mance 1n mifigating power amplifier with even severe
nonlinearity.

In particular, conventional shallow feedforward neural
networks using time-delayed 1mputs have only limited per-
formance. The present DNN equalizer has much superior
performance and does not need too much training data.

Nonlinear Power Amphfier Models

The nonlinear response of the power amplifiers are usu-
ally described by the baseband discrete model y(n)=J(x(n)),
where x(n) 1s the input signal and y(n) 1s the output signal.
The function J(x(n)) 1s some nonlinear function.

Consider the baseband discrete model of the PA y(n)=Ff
(x(n), x(n—1), ... ), where x(n) 1s the input signal, y(n) 1s the
output signal, and J(*) is some nonlinear function. The
simplest nonlinear PA model 1s the “AM-AM AM-PM”
model. Let the amplitude of the input signal be Vx=
E[Ix(n)l], where E[*] denotes short-term expectation or
average. The output sample y(n)'s amplitude V =E[y(n)]
and additional phase change Yy =E[/y(n)] depend on V_ in
nonlinear ways as

gV, (1)
Vy = T
[ gVI]ﬁ
1 +
i
alV?
Vy — [ v )q
1+ —
B

where g 1s the linear gain, ¢ the smoothness factor, and c
denotes the saturation magnitude of the PA. Typical
examples of these parameters are g=4:65, 6=0:81, c=0:38,
a=2560, B=0:114, p=2:4, and g=2:3, which are used in the
PA models regulated by IEEE 803.11ad task group (TG)
[10].

More accurate models should take into consideration the
fact that nonlinearity leads to memory effects. In this case,
Volterra series are typically used to model PAs [4] [21]. A
general model 1s [3]

D P (2)
Y = > > brax(n — dlx(n — )

d=0x1=1

with up to P” order nonlinearity and up to D step memory.
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Because higher order nonlinearnity usually has smaller
magnitudes, 1n order to simplify models, many papers have
considered smaller P only, e.g.,

D

y) = ) (Bpx(n —d) + agx(n - d)lx(n — d)I)

d=0

with only the third-order nonlinearity. It can be shown that
only odd-order nonlinearity (1.e., odd k) 1s necessary as
even-order nonlinearity disappears during spectrum analy-
S1S.

It can be shown that only odd-order nonlinearity (1.e., odd
k) 1s necessary because even-order nonlinearity falls outside
of the passband and will be filtered out by the receiver
bandpass filters [2]. To 1llustrate this phenomenon, we can
consider some simple examples where the mput signal x(n)
consists of a few single frequency components only. Omit-
ting the memory effects, if X(n) 1s a single frequency signal,
1.e., x(n)=V, cos(ayg+¢), where a,=21f,n. Then, the output
signal can be written as

w(n)=c, V, cos{agt0+W  H(¥ac; Vo +7c s Vo) cos(ag+
O+ HY5) (3)

+Ll5e ) VDZ‘FE/S Cq VD4 (4)

H(Vae, Vo 24V, Vo (cos(2agt 20+ 2y, +2vs,,) (5)

where the first line (3) 1s the inband response with AM-AM
& AM-PM nonlinear effects, the second line (4) 1s the DC
bias, and the third line (5) includes all the higher frequency
harmonics. At the receiving side, we may just have (3) left
because all the other 1tems will be canceled by bandpass
filtering.

If x(n) consists of two frequencies, 1.e., X(n)=V, cos(a;+
O, HV, cos(a,+0,), where a=2%fn, then the inband
response 1mcludes many more items, such as the first order
items ¢,V cos(a,+0+y,), the third order items c;(V,+V,V *)
cos(a+0+), the fifth order items cs(Vf+ViVj4+ViVj2)cos

(a+0+Y,), for 1,j€{1,2}. There are also intermodulation
items that consist of na;tma; as long as they are within the
passband of the bandpass filter, such as (Vij+Vij3+
V,*V,)cos(2a~aA+20~0+2y,~y,).

There are many other higher order 1tems with frequencies
na; n(a;Fa,), or na+ma, that cannot pass the passband filter.
One of the important observations 1s that the contents that
can pass the passband filter consist of odd-order nonlinearity
only.

If x(n) consists of three or more frequencies, we can have
similar observations, albeit the expressions are more com-
plex. Let the mnput signal x(n) be

; (6)
x(n) = ) Vicos(a),
i=1

a; =21 fn

Based on [22], the nonlinear distorted output response
y(n)=J(x(n)) can be written as

= (7)
y) = > kixi(n)
=1

where k, represents the gain coefficients for the i”* order
components. The 1st order component 1s simply k;x(n). The
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2nd order component includes the DC component, the
sum/difference of beat components, and the second-order
harmonic components. Specifically,

fax*(n) = g2 + g2.1(n) + g2.2(n), (8)

where

3

g20= ) V2 /2m)

i=1

3
g21 = ZZ ViVcos(a; £ aj;)

i=1 j+i

3
gr12 = Z Vicos(2a;) /2.
i—1

The 3rd order component includes the third-order har-
monic components g, ,(n), the third intermodulation beat
components g, ,(n), the triple beat components g, ;(n), the
self-compression/expansion components g, ,(n), and the

Cross-compression/expansion components g <(n).
This gives

5
ks () = ) gsi(n)
i=1

Where
1 3
g31(n) = Z;A§CDS(3QI-)/4
3 3
g3.,2 (H) — ZZZAIEAJCGS(QQI + Qﬂj)

=1 j#i
3 3 3
233(n) = E[HAf]cas[Z(i af)]
i=1 i=1
g34(n) = —ZAL"ms(aI)

ZA AZCDS(H )

Ilj:f:i.’

g35(1) =

The 4th order component includes the DC components
2,0 the fourth-order harmonic components g,,(n), the
fourth intermodulation beat components g, ,(n), the sum/
difference beat components g, ;(n), the second harmonic
components g, s(n). This gives

5
fax* (n) = Zgaf(ﬁ‘)
i—0

where

210 = —ZA4 4ZZA2A2

=1 j¥i

|3
g41 = g;A?CDS(ﬁle)

g12 = —ZZA Ajcos(3a; £ a;) + —ZAZ[HA

=1 j#i JET

o Zean)

JFI
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-continued

§43 =

I o N

3
> cos(a; = amodi1, m[A A g1zt Aird o1z + A Amodiiy + ]_[A
=1 j=1

3 3 3
44 = EZCDS(ZEII)[AEZA?]
i=1 j=1

The 5th order component includes the fifth-order har-
monic components gs ,(n), the fifth intermodulation beat
components g ,(n), the self-compression/expansion com-
ponents gs5(n), the cross-compression/expansion compo-
nents gs,(n), the third harmonic components g5 s(n), the
third intermodulation beat components g5 ((n), and the triple
beat components g, ,(n). This gives

5
ksx*(n) = ) g5:(n)
i=1

Where

1 3
gs1(n) = E;A?m(ﬁaf)

3 3
85,2 (n) = EZZAfAjCDs(af + 4%.) 4

i=1 ji

A7 A3cos(Qa; = 3ay) + 47 Afcos(3a; £ 2a;) + 4] Ajcos(da; + aj)
5 3
§5,3(H) — géA?CDS(Hf)

15 ¢
gs4(n) = 7 CDS(:‘:IJ[Z(A?A? + AI-Aj-) + A:’Hf@]

i=1 JET JFE

3
gs5(n) = ;;CDSGH )[A3ZA2]

j_

83, 6(711) = _ZZCDS(QHI +HJ)X(A3A2 —I—A4 "‘AIZAJHA’%))

= ]. j:f:I kifﬁj

s Sl e S114 S0

i=1 JFi =1 JF

These nonlinear spectrum growth expressions can be
similarly applied 1if the signal x(n) 1s the QAM or OFDM
signal. Especially, the harmonics provides us a way to design
the input signal vectors for DNN equalizers. Note that some
of the spectrums that are deviated too much from the
transmitted signal bandwidth will be attenuated by the
receiver bandpass filters.

DNN-Based Nonlinear Equalization

A. Nonlinear Equalizer Models
To mitigate the PA nonlinear distortions, nonlinear equal-
1zers can be applied at the receivers. Obviously, the Volterra
series model can still be used to analyze the response of
nonlinear equalizers. One of the differences from (2) 1s that
the even order nonlinearity may still be included and may

increase the nonlinear mitigation effects [3].
Consider the system block diagram of nonlinear equal-
1zation shown 1n FIG. 1, which shows a signal x(n) entering
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a nonlinear power amplifier, to produce a distorted signal

y(n), which passes through a channel hy | which produces a
response r(n), which 1s fed to a neural network equalizer to
produce a corrected output z(n).

Let the received signal be

L (9)
r(n) = ) hey(n—0) +v(m),
{=0

where #¢ is the finite-impulse response (FIR) channel coef-
ficients and v(n) 1s additive white Gaussian noise (AWGN).
With the received sample sequence r(n), a nonlinear equal-
1zer will generate z(n) as the estimated symbols.

If the PA has only slight nonlinearity as modeled by the
simple “AM-AM AM-PM” model (1), the received samples
r(n) may be stacked together into M+1 dimensional vectors
r(n)=[r(n), . .., r(b—M)]’, where (*)” denotes transpose, and
write the received samples 1n vector form as

r(n)=HG{n)x(n)+v(n) (10)

where H 1s an (M+1)X(M+L+1) dimensional channel matrix

(11)
H =

and

G(H) = diag{ Vy(n)ejwy(”}  eee s Vn@_M_L)ej,’ﬂry(”_M_L}}

1s an (M+L+1)X(M+L+1) dimensional diagonal matrix
which consists of the nonlinear PA responses, X(n)=
[x(n), . .., x(n—-M-L)]?, and v(n)=[v(n), . . ., v(in—-M)]’. To
equalize the received signal, we apply a nonlinear equalizer
with the form

=G Sy . . . Sl

where [fo, ..., J2JH=[0, ..., 1,...,0]1s to equalize
the propagation channel, and

(12)

G’ (n) ~ e Y yin—d)

Vy(ﬂ—d)

1s to equalize the nonlinear PA response. Let f(n) be the
output of the first linear equalization step. The second
nonlinear equalization step can be implemented as a maxi-
mum likelihood estimation problem, 1.e., z(n)=arg miny,,,
£(n)-V,e’¥x(n)I*. This gives the output

z(n)=f"r(n)=x(n—d)

with certain equalization delay d.

(13)

Both the channel coefficients #¢ and the nonlinear PA
responses V,, ¥, can be estimated via training, as can the
channel equalizer f*. Because the PA nonlinearity is signifi-
cant for large signal amplitude only, we can apply small-
amplitude training signals x(n) first to estimate the channel

¢ and the channel equalizer [f,, . . ., f.,]. We can then
remove the channel H from (10) with the first step linear
channel equalization. Because the matrix G(n) 1s diagonal,
we can easily estimate G(n) with regular training and then
estimate the transmitted symbols as outlined 1n (13).
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For more complex nonlinear PA responses, such as (2), we
can conduct channel equalization similarly as (12). First, we
can still apply small-amplitude training signals to estimate

[fo. - - - » Jas] sO as to equalize the channel Ay . This linear
channel equalization step gives f(n)=y(n). We can then focus
on studying the equalization of nonlinear distortion of the
PA, which can 1n general be conducted with the maximum

likelihood method,

(14)

N
{i‘.‘(n):n =0, ..., N} = arg Hﬁﬂzm(ﬁ) - jf(ﬁ)F:
=0

{I(ﬁ)}n_

where t(n) 1s the sequence after the linear channel equal-
1zation, y(n) 1s the sequence reconstructed by using the
sequence x(n) and the nonlinear PA response parameters b,
based on (2), and N 1s the total number of symbols. The
optimization problem (14) can be solved with the Viterbi
sequence estimation algorithm 1f the memory length of the
PA 1s small enough and the PA nonlinear response 1s known
to the receiver.

In case the PA nonlinear response cannot be estimated, the
equalization of nonlinear PA response 1s challenging. In this
case, one of the ways 1s to use the conventional Volterra
series equalizer, which approximates G'(n) with a Volterra
series model. Similar to (2), this gives

D P (15)
zn)= ) ) grat(n—d)li(n —d)FL.

d=0 k=0

The objective of the Volterra series equalizer design 1s to
design g, , such that z(n)=x(n—{¢) for some equalization
delay £.

Similarly, as the DPD design of [3], based on the Volterra
series model (15), we can estimate the coefficients g, , by
casting the estimation into a least squares problem

N D P Z (16)

min ) |x(n=L)= ), > giafln—d)lit - d)F|
d 1

—0 j=

with tramning symbols x(n) and received samples f(n).
Note that only the coefficients g, , are needed to be esti-
mated, and these coefficients are linear with respect to £(n)
and x(n).

Define the vector a=[gqg, 201 - - - » £pp) - and the vector
x=[x(0); . .., x(N-L)]’. Define the (N—L+1)xDP data matrix

ML) MDA ... ML-DIAL =D (17)

PWN) APV ... N =D =D)L

Then, (16) becomes

min||x — Ba||? (18)

tf

Solution to (18) 1s

a=B"x

(19).
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where B*=(B”B)™'B is the pseudo-inverse of the matrix B.
From (19), we can obtain the Volterra series equalizer
coellicients g, .. One of the major problems for the Volterra
series equalizer 1s that 1t 1s hard to determine the order sizes,
1.e., the values of D and P. Even for a nonlinear PA with
slight nonlinear effects (1.e., small D and P 1n (2)), the length
of D and P for Volterra series equalizer may be extremely
long 1n order for (15) to have suflicient nonlinearity miti-
gation capability.

A potential way to resolve this problem 1s to apply
artificial neural networks to fit the nonlinear equalizer
response (15). Neural networks can {it arbitrary nonlinearity
and can realize this with potentially small sizes. Neverthe-
less, 1n conventional neural network equalizers such as [14]
[15], the mput (features) to the neural networks was simply
a time-delayed vector [r(n), . . . , r(n—M)]. Although neural
networks may have the capability to learn the non-linear
cllects specified 1 (15), in practice the training may not
necessarily converge to the desirable solutions due to local
mimmum and limited training data. In addition, conven-
tional neural network equalizers were all feed-forward net-
works with fully connected layers only, which often sufler
from problems like shallow network architecture and over-
fitting.

It 1s therefore an object to provide a radio recerver,
comprising: an input configured to receive a transmitted
radio frequency signal representing a set of symbols com-
municated through a communication channel; a Volterra
series processor configured to decompose the transmitted
radio frequency signal as a Volterra series expansion; an
equalizer, comprising a deep neural network trained with
respect to channel distortion, receiving the Volterra series
expansion; and an output, configured to present data corre-
sponding to a reduced distortion of the received distorted
transmitted radio frequency signal.

It 1s also an object to provide a radio reception method,
comprising: receiving a transmitted radio frequency signal
representing a set of symbols commumicated through a
communication channel; decomposing the transmitted radio
frequency signal as a Volterra series expansion; equalizing
the Volterra series expansion with a deep neural network
trained with respect to channel distortion, receiving the
Volterra series expansion; and presenting data correspond-
ing to a reduced distortion of the received transmitted radio
frequency signal.

It 15 a further object to provide an equalization method for
a radio signal, comprising: storing parameters for decom-
position of a received radio frequency signal as a Volterra
series expansion; processing the Volterra series expansion in
a deep neural network comprising a plurality of neural
network hidden layers and at least one fully connected
neural network layer, trained with respect to radio frequency
channel distortion; and presenting an output of the deep
neural network. The method may further comprise demodu-
lating the output of the deep neural network, wherein a bit
error rate ol the demodulator 1s reduced with respect to an
input of the received radio frequency signal to the demodu-
lator.

It 1s another object to provide an equalizer for a radio
receiver, comprising: a memory configured to store param-
cters for decomposition of a recerved radio frequency signal
as a Volterra series expansion; a deep neural network com-
prising a plurality of neural network hidden layers and at
least one fully connected neural network layer, trained with
respect to radio frequency channel distortion, receiving the
Volterra series expansion of the receirved radio frequency
signal; and an output configured to present an output of the
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deep neural network. The system may further comprise a
demodulator, configured to demodulate the output, wherein
a bit error rate of the demodulator 1s reduced with respect to
an mput of the received radio frequency signal to the
demodulator.
The Volterra series expansion may comprise at least third
{ifth order terms.
The deep neural network may comprise at least two or
three convolutional network layers. The deep neural net-
work may comprise at least three one-dimensional convo-
lutional network layers. The convolutional layers may be
hidden layers. The deep neural network may comprise at
least three one-dimensional layers, each layer having at least
10 feature maps. The radio receiver may further comprise a
fully connected layer subsequent to the at least three layers.
The distorted transmitted radio frequency signal com-
prises an orthogonal frequency multiplexed (OFDM) signal,
a quadrature amplitude multiplexed (QAM) signal, a QAM-
16 signal, a QAM-64 signal, a QAM-256 signal, a quadra-
ture phase shift keying (QPSK) signal, a 3G signal, a 4G
signal, a 5G signal, a WiF1 (IEEE-802.11 standard family)
signal, a Bluetooth signal, a cable broadcast signal, an
optical transmission signal, a satellite radio signal, etc.
The radio recerver may further comprise a demodulator,

configured to demodulate output as the set of symbols.

or

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a system block diagram with nonlinear
power amplifier and deep neural network equalizer.

FIG. 2 shows a block diagram of DNN equalizer.

FIGS. 3A-3D show constellations of 16 QAM over a
simulated PA. FIG. 3A: recerved signal. FIG. 3B: Volterra
equalizer output. FIG. 3C: time-delayed NN output. FIG.
3D: Volterra+NN output.

FIGS. 4A-4D show constellation of 16 QAM over a real
PA. FIG. 4A: received signal. FIG. 4B: Volterra equalizer
output. FIG. 4C: time-delayed NN output. FIG. 4D: Volt-
erra+INN output.

FIG. 5 shows a comparison of three equalization methods
for 16-QAM under various NLD levels.

FIG. 6: shows a table comparing MSE/SER improvement
in percentage for the three equalization methods.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1

Volterra-Based DNN Equalizer

The present technology therefore employs deep neural
networks to implement the nonlinear equalizer in the
receiver, which can mitigate the nonlinear eflects of the
received signals due to not only PAs but also nonlinear
channels and propagations. The architecture of the DNN
equalizer 1s shown 1n FIG. 2, which shows an input X, which
undergoes a series of three 1-d convolutions, am FC dropout,
to produce the output Y.

Different from [10], multi-layer convolutional neural net-
works (CNNs) are employed. Diflerent from conventional
neural network predistorters proposed in [6], neural net-
works are used as equalizers at the receivers. Diflerent from
conventional neural network equalizers such as those pro-
posed 1n [14] [15], 1n the present DNN equalizer, not only
the linear delayed samples r(n), but also the CNN and the
input features 1 X are used. The Volterra series models are
applied to create mput features.
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We can assume that the linear channel H has already been
equalized by a linear equalizer, whose output signal 1s r(n).
In fact, this equalization 1s not required, but simplifies the
presentation of the analysis.

According to Volterra series representation of nonlinear
functions, the input-output response of the nonlinear equal-
1zer can be written as

k (20)

z(n)-zz Zﬁil 4| |re-do.

k=1d1=0 i=1

One of major problems 1s that the number of coefficients
_____ 4, Increases exponentially with the increase of
memory length D and nonlinearity order P. There are many
different ways to develop more efficient Volterra series
representations with reduced number of coefficients. For
example, [23], exploits the fact that higher-order terms do
not contribute significantly to the memory effects of PAs to
reduce the memory depth d when the nonlinearity order k
Increases.

This technique can drastically reduce the total number of
coefficients. In [24] [25] and [26], a dynamic deviation
model was developed to reduce the full Volterra series model
(20) to the following simplified one:

zZ(n) =

7

z(m) + z4(n) = Zﬁcw’f(mzzﬁ f(n)z Z fii| |ren=do

k=1 j=1 d1=0 di=d;_y  i=1

where z (n) 1s the static term, and z_(n) 1s the dynamic
term that includes all the memory effects. We can see that the
total number of coefficients can be much reduced by con-
trolling the dynamic order j which 1s a selectable parameter.

We construct the mput features of the DNN based on the
model (21). Corresponding to the static term z (n), we
change 1t to:

= Y frormlrmlF .

1=k=PF

The reason that (22) changes r(n) to r(n)lr(n)I*"' is that
only the signal frequency within the valid passband 1s
interested. This means the input feature vector X should
include terms r(n)lr(n)I*'. Similarly, corresponding to the
dynamic term z (n), we need to supply

J
A | |rin—do)
=1

in the features where half of the terms r(n) and r(n—d))
should be conjugated. For simplicity, in the DNN equalizer,
the vector X includes r(n—q)lr(n—q)lk ! for some g and k.

By applying Volterra series components directly as fea-
tures of the input X, the DNN can develop more complex
nonlinear functions with a fewer number of hidden layers
and a fewer number of neurons. This will also make the
training procedure converge much faster with much less
training data.
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In FIG. 2, the input X 1s a tensor formed by the real and
imaginary parts of r(n—q)lr(n—q)/*! with appropriate num-
ber of delays q and nonlinearities k. There are three single
dimension convolutional layers, each with 20 or 10 feature
maps. After a drop-out layer for regularization, this 1s
followed by a fully connected layer with 20 neurons. Finally,
there 1s a fully-connected layer to form the output tensor Y
which has two dimensions. The output Y 1s used to construct
the complex z(n), where z(n)=X(n—d) for some appropriate
delay d. All the convolutional layers and the first fully
connected layer use the sigmoid activation function, while
the output layer uses the linear activation function. The
mean square error loss function L“**=E[Ix(n—d)—z(n)I”] is
used, where z(n) 1s replaced by Y and x(n—d) 1s replaced by
training data labels.

Experiment Evaluations

Experiments are presented on applying the Volterra series
based DNN equalizer (Volterra+NN) for nonlinear PA equal-
1zation. The (Volterra+NN) scheme with the following
equalization methods: a Volterra series-based equalizer (Vol-
terra) and a conventional time-delay neural network equal-

1zer (NN). The performance metrics are mean square error
(MSE)

\,E[|z(n)—x(n—d)|2]/.€[|x(n—d)F]

and symbol error rate (SER).

Both simulated s1ignals and real measurement signals were
employed. To generate simulated signals, a Doherty nonlin-
ear PA model consisting of 3rd and 5th order nonlinearities
was employed. Referring to (2), the coefficients b, , were

bo 0.5=11.0513+0.0904;,—0.068—0.0023;,0.0289—
0.0054;}

bo, 0.5={—0.0542-0.297,0.2234+0.2317},—0.062 1—
0.0932;}

b, 0.5={—0.9657-0.7028/,—0.2451—0.3735;,0.1229+
0.1508;},

which was used 1n [5] to simulate a 5th order dominant
nonlinear distortion denived from PA devices used in the
satellite industry. For real measurement, our measurement
signals were obtained from PA devices used in the cable TV
(CATV) industry, which are typically dominated by 3’ order
nonlinear distortion (NLD). Various levels of nonlinear
distortion, 1n terms of dBc, were generated by adjusting the
PAs.

For the Volterra equalizer, the approximate response of
the nonlinear equalizer with delays including 8 pre- and
post-main taps and with nonlinearities including even and
odd order nonlinearity up to the 5th order was employed. To
determine the values of the Volterra coefficients, N=4; 096
fraining symbols were transmitted through the PA and then
collected the noisy received samples r(n).

For the conventional time-delay NN equalizer, a feedfor-
ward neural network with an 80-dimensional input vector X
and 5 fully-connected hidden layers with 20, 20, 10, 10, 10
neurons, respectively, was applied.

FIG. 3 shows the constellation and MSE of the equalizer’s
outputs. It can be seen that the proposed scheme provides the
best performance.

FIG. 4 shows the constellation of 16 QAM equalization
over the real PA. The corresponding SER were 0.0067,
0.0027, 0.00023, respectively. It can be seen that the Volt-

erra+INN scheme has the best performance.
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FIG. 5 provides MSE measurements for 16-QAM under
various nonlinear distortion level dBc. For each 1 dB
increase i NLD, the resultant MSE 1s shown for the
“Measured”, “Volterra”, “NN”, and the proposed “Volterra+
NN cases. MSE reduction dimimishes appreciably as modu-
lation order increases from QPSK to 64-QAM, but small
improvements i MSE have been observed lead to appre-
ciable SER improvement, especially for more complex
modulation orders. The 4,096 symbol sample sizes have
limited the measurements to a minimum measurable
0.000244 SER, which represents 1 symbol error out o1 4,096
symbols.

FIG. 6 summarizes equalization performance, which
shows the averaged percent reduction/improvement in MSE
and SER from the NLD impaired data for multiple modu-
lation orders. Note that 0% SER improvement for QPSK
was because the received signal’s SER was already very
low.

The nonlinear equalization scheme presented by integrat-
ing the Volterra series non-linear model with deep neural
networks yields superior results over conventional nonlinear
equalization approaches 1 mitigating nonlinear power
amplifier distortions. It finds application for many 5G com-
munication scenarios.

The technology may be implemented as an additional
component 1n a recerver, or within the digital processing
signal chain of a modern radio. A radio 1s described 1n US
20180262217, expressly incorporated herein by reference.

In an implementation, a base station may include a SDR
receiver configured to allow the base station to operate as an
auxiliary receiver. In an example implementation, the base
station may include a wideband receiver bank and a digital
physical/media access control (PHY/MAC) layer receiver.
In this example, the SDR receiver may use a protocol
analyzer to determine the protocol used by the source device
on the uplink to the primary base station, and then configure
the digital PHY/MAC layer recerver for that protocol when
operating as art auxiliary receiver. Also, the digital PHY/
MAC layer receiver may be configured to operate according
to another protocol when operating as a primary base station.
In another example, the base station may include a receiver
hank for a wireless system, for example, a fifth Generation
(5G) recerver bank, and include an additional receiver
having SDR configurable capability. The additional receiver
may be, for example, a digital Wi-Fi receiver configurable to
operate according to various Wi-Fi1 protocols. The base
station may use a protocol analyzer to determine the par-
ticular Wi-F1 protocol used by the source device on the
uplink to the primary base station. The base station may then
configure the additional recerver as the auxiliary receiver for
that Wi-F1 protocol.

Depending on the hardware configuration, a receiver may
be used to flexibly provide uplink support in systems oper-
ating according to one or more protocols such as the various
IEEE 802.11 Wi-Fi protocols, 3™ Generation Cellular (3G),
4™ Generation Cellular (4G) wide band code division mul-
tiple access (WCDMA), Long Term Evolution (LTE) Cel-
lular, and 57 generation cellular (5G).

See, 5G References, inira.

Processing unit may comprise one or more processors, or
other control circuitry or any combination of processors and
control circuitry that provide, overall control according to
the disclosed embodiments. Memory may be implemented
as any type of as any type of computer readable storage
media, including non-volatile and volatile memory.

The example embodiments disclosed herein may be
described in the general context of processor-executable
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code or instructions stored on memory that may comprise
one or more computer readable storage media (e.g., tangible

non-transitory computer-readable storage media such as
memory). As should be readily understood, the terms “com-
puter-readable storage media” or “non-transitory computer-
readable media” include the media for storing of data, code
and program instructions, such as memory, and do not
include portions of the media for storing transitory propa-
gated or modulated data communication signals.

While the functionality disclosed herein has been
described by illustrative example using descriptions of the
various components and devices of embodiments by refer-
ring to functional blocks and processors or processing units,
controllers, and memory 1including instructions and code, the
functions and processes of the embodiments may be 1mple-
mented and performed using any type of processor, circuit,
circuitry or combinations of processors and or circuitry and
code. This may include, at least 1n part, one or more
hardware logic components. For example, and without limi-
tation, 1llustrative types ol hardware logic components that
can be used include field programmable gate arrays (FP-
(G As), application specific integrated circuits (ASICs), appli-
cation specific standard products (ASSPs), system-on-a-chip
systems (SOCs), complex programmable logic devices
(CPLDs), etc. Use of the term processor or processing unit
in this disclosure 1s mean to include all such implementa-
tions.

The disclosed implementations include a receiver, one or
MOre Processors in communication with the receiver, and
memory 1n communication with the one or more processors,
the memory comprising code that, when executed, causes
the one or more processors to control the receiver to 1mple-
ment various features and methods according to the present
technology.

Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example embodi-
ments, 1implementations, and forms of implementing the
claims and these example configurations and arrangements
may be changed significantly without departing from the
scope ol the present disclosure. Moreover, although the
example embodiments have been 1llustrated with reference
to particular elements and operations that facilitate the
processes, these elements, and operations may be combined
with or, be replaced by, any suitable devices, components,
architecture or process that achieves the intended function-
ality of the embodiment. Numerous other changes, substi-
tutions, variations, alterations, and modifications may be
ascertained to one skilled 1n the art and it 1s intended that the
present disclosure encompass all such changes, substitu-
tions, variations, alterations, and modifications a falling
within the scope of the appended claims.
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decompose the distorted signal y(n) as a Volterra series
expansion

D

y(n) = Zme(n - d)lx(n — d)F1;

d=0 k=0

and
implement an equalizer operating on separate terms of
the Volterra series expansion to produce an output
z(n) having reduced distortion with respect to the
distorted signal y(n),
the equalizer comprising a deep neural network com-
prising a plurality of neural network hidden layers
trained with respect to distortion of the channel h to
provide an mput-output response and

i

z(n) = Z Z Zﬁﬁ dk]_[r(n — d;);

k=1d1=0 =1

and
an output port configured to present the output,
wherein:
r(n) 1s a response of the channel h to the nonlinearly
distorted radio frequency signal y(n);
p 1s a respective nonlinearity order;
d 1s a memory depth parameter;

D 1s a total memory length;
P 1s a total nonlinearity order;

k 1s a nonlinear order; and

b, , are nonlinear response parameters.

2. The distortion-compensating processor according to
claim 1, wherein the distorted signal 1s received from aradio
recelver.

3. The distortion-compensating processor according to
claim 1, wherein the distorted signal 1s distorted by ampli-
fication by a radio frequency power amplifier and transmis-
sion through a radio frequency communication channel.

4. The distortion-compensating processor according to
claim 1, wherein:

the undistorted radio frequency signal x(n) 1s distorted by

an analog process to produce the nonlinearly distorted
radio frequency signal y(n), which passes through the
channel h;

L
(1) = th P — )+ v(n)
f=0

1s a response signal sequence, wherein r(n) 1s stacked
together into M+1 dimensional vectors r(n)=[r(n), . . . ,
r(n—-M)]’, where (*)’ denotes transpose, such that r(n)=HG
(n)X(n)H+v(n);

fy is a set of finite-impulse response channel coefficients;

{ 1s an equalization delay;

v(n) 1s an additive white Gaussian noise component signal
sequence;

H 1s an (M+1)X(M+L+1) dimensional channel matrix
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G(n)=diag{V,, e, . Viiarn@ 0} s an
(M+LA+1)X(M+1L+1) dimensional diagonal matrix of
the nonlinear responses,

m)=[x(m), . . . x(n=-M-L)]’, and

v(m)=[v(m), . .. v(in—-M)]";
f'=G'M[f,, . . ., fa,l, where [, . . ., f,JH=[0, . . .,
1, ..., 0] 1s computed by the equalizer to equalize the
channel h;
G (1) = ¢ /Y yn-d)
yn—d)

1s computed by the equalizer to equalize the analog process;
t(n) 1s a resulting sequence after linear channel equaliza-
tion;
z(n)=f" r(n)=x(n—d) represents the output with equaliza-
tion delay d; and

z(n) = ZZgw*(H — )| — )

d=0 p=0

1s a Volterra series model of the equalizer with coefficients
g. . such that z(n)=x(n—{ ) for some equalization delay £,
wherein:
coefficients g, , are determined according to

x(n— L) - Zngn - d)litn - )’

=0i=1

with training symbols x(n) and received samples £(n),
z(n)=arg min,, ., |f(n)-V, e¥*x(n)I* is a maximum likeli-
hood estimation operator for a nonlinear equalization
output signal sequence having reduced distortion,
V,, 1s an amplitude of a signal sequence y(n),
V18 a phase change of the signal sequence y(n); and
the deep neural network equalizer 1s trained to determine

the channel coefficients #, analog process responses

V.. y,, and the channel equalizer f7.
5. The distortion-compensating processor according to

claim 4, wherein:

vector @ = [go0» Qo1» .-+ » &PD)" >
vector x = [x(0); ... , x(N — L)]T:
AL

" (L) ML —DIWWIL-D) L

vector B = , and

AN) PP ... PN =DMV -D)

2
~ min||x — Bd|*,

£

=)= Zzgmn - d)li(n - )

d=0#x1=1

=]

Nl o
HME

3

having solution a=B*x, where B*=(B”B)™'B is the pseudo-
inverse of the matrix B.

6. The distortion-compensating processor according to
claim 1, wherein the Volterra series expansion comprises at
least fifth order terms, and the deep neural network com-
prises at least two convolutional network layers.
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7. The distortion-compensating processor according to
claim 1, wherein the deep neural network comprises at least
three one-dimensional layers, each layer having at least 10
feature maps, and a fully connected layer subsequent to the
at least three layers.

8. The distortion-compensating processor according to
claim 1, wherein the distorted signal comprises a transmitted
orthogonal frequency multiplexed radio frequency signal.

9. The distortion-compensating processor according to
claiam 1, further comprising a demodulator, configured to
demodulate the output as the set of symbols representing the
information.

10. A method of compensating for a distortion, compris-
Ing:

rece1ving a distorted signal y(n) representing information

x(n) distorted and communicated through a channel h;
decomposing the distorted signal y(n) with a Volterra

processor to produce a Volterra series expansion of

form
I
NOEDY me(n - d)lx(n — d)*;
d=0k=0

and
equalizing the distorted signal y(n) with an automated
nonlinear equalizer, comprising a deep neural network
having a plurality of neural network hidden layers
trained with respect to distortion of the channel h to
have an mput-output response

z(n)_yy Zﬁfl

k=1dy=0  dy=0

which receives the Volterra series expansion, and produces
an output z(n) having reduced distortion with respect to the
distorted signal y(n),
wherein:
r(n) 1s a response of channel h to the nonlinearly distorted
radio frequency signal y(n);
p 1s a respective nonlinearity order;
d 1s a memory depth parameter;
D 1s a total memory length;
P 1s a total nonlinearity order;
k 1s a nonlinear order; and
b, , are nonlinear response parameters.
11. The method according to claim 10, wherein the 1mnput
comprises a radio frequency orthogonal frequency multi-
plexed signal amplified and distorted by a radio frequency
power amplifier, received though a radio receiver.
12. The method according to claim 10, further compris-
Ing:
computing a maximum likelithood estimation for a non-
linear equali zation z(n)=arg mlnw(n) |(F(n)—
Vye’“’?’x(n) to produce the output z(n)=f" r(n)=x(n—
d), with eq_uahzatlon delay d;

training the deep neural network to determine the channel

coefficients ¢ of the channel h, having a channel
amplitude response V,, a channel phase response .,
and a channel equallzatlon response f

approximating G'(n) with a Volterra series model

b

z(n) = Zzgkd?‘(ﬁ —d)|Hn - d) !,

d=0#%=0

10

15

20

25

30

35

40

45

50

35

60

65

44

with coefficients g, , designed such that z(n)=x(n—{) for
equalization delay ¢, and estimated according to

x(n— L) - ZZgw(n - Al - d) |

=0i=1

with training symbols x(n) and received samples £(n);
wherein:
channel h, produces response

L
r(n) = thy(n — )+ v(n)
f=0

from y(n);

Ny is a set of finite-impulse response channel coefficients;

¢ 1s an equalization delay;

v(n) 1s an additive white Gaussian noise component;

r(n) 1s stacked together into M+1 dimensional vectors
r(n)=[r(n), ..., r(n—M)]’, where (*)* denotes transpose,
such that r(n)=HG(m)X(nHv(n);

H 1s an (M+1)X(M+L+1) dimensional channel matrix

G(n)=diag{V,,,&"", . . ., Vuqar,@ "0} is an
(M+L+1)X(M+L+1) dimensional diagonal matrix

which consists of the nonlinear responses, X(n)=
[(x(n), ..., x(n—M-L)]", and v(n)=[v(n), . . ., v(n—M)]";
f'=G'()[fa. . . .. fasls where [fo, . . .. faJH=[O, . . ..

1, ..., 0] represents a channel equalization;

G (1) = ¢V yin—d)

Vy(ﬂ—a‘)

represents an analog processor equalization; and
t(n) 1s a linearized representation of r(n).
13. The method according to claim 12, wherein:

vector a = [goo> Qo1» --- » €PD]"

2

vector x = [x(0); ... , x(W=DL)]’.

ML) AL)IAL) ML -DIML-D) T

vector B = , and

AN) AP ... PNV =D =D

N
minz x(n—-1L)— Zngdr(n — D - d)F?

d=0#x1=1

2

~ min||x — Bd|*,
£

having solution a=B*x, where B*=(B”B)™'B is the pseudo-
inverse of the matrix B.
14. The method according to claim 10, wherein:
the Volterra series expansion comprises at least fifth order
terms; and
the deep neural network comprises at least three layers,
each layer having at least 10 feature maps, and a fully
connected layer subsequent to the at least three layers.
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15. The method according to claim 10, further comprising
demodulating the output z(n) as the set of mmformation
symbols.

16. A non-linear distortion-compensating processor,

comprising:

an 1nput configured to receive a non-linearly distorted

radio frequency signal r(n) representing information

X(n) distorted by a radio frequency communication

system to produce a distorted signal y(n) communi-

cated through a channel h;

at least one automated processor, configured to:

decompose the non-linearly distorted radio frequency
signal r(n) received from the channel h as a Volterra
series expansion

D

y(n) = ZZbkdx(n - d)lx(n — d)F;

d=0 k=0

process the Volterra series expansion with a deep neural
network comprising a plurality of neural network
hidden layers trained with respect to the distortion of
the radio frequency communication system compris-
ing the non-linear distortion and channel distortion,
to equalize the distortion, the process having an
input-output response

k

g | |- d;

i=1

() = 7 e

k=1d1=0

b
D Sy
dp. =0

and
demodulate z(n) to extract the information x(n) modu-
lated 1n the non-linearly distorted radio frequency
signal r(n),
wherein:
p 1s a respective nonlinearity order;
d 1s a memory depth parameter;

D 1s a total memory length;

P 1s a total nonlinearity order;

k 1s a nonlinear order; and

b, , are nonlinear response parameters.

17. The non-linear distortion-compensating processor
according to claam 16, wherein the non-linearly distorted
radio frequency signal 1s an orthogonal frequency mulfi-
plexed signal which 1s distorted by amplification by a power
amplifier and transmission over the communication channel
h.

18. The non-linear distortion-compensating processor
according to claim 16, wherein the deep neural network
comprises at least three convolutional network layers, each
layer having at least 10 feature maps, and a fully connected
layer subsequent to the at least three layers.

19. The non-linear distortion-compensating processor
according to claim 16, wherein the deep neural network 1s
trained with data comprising symbol-specific pairs of the
information x(n) and the corresponding non-linearly dis-
torted radio frequency signal r(n) representing the non-

linearly distorted information y(n) communicated through
the channel h.

10

15

20

25

30

35

40

45

50

35

60

46

20. The non-linear distortion-compensating processor
according to claim 16, wherein the response r(n) of the
channel h 1s

L
r(m) = ) hey(n =) +v(n);
=0

and

the at least one automated processor 1s further configured
to:

compute a maximum likelihood estimation for a nonlinear
equalization z(n)=arg mlnw o T(M)—V &’ Yy x(n)l°, t
produce output z(n)=F" r(n)=x(n—d), w1th equahzatlon
delay d;

train the deep neural network equalizer to determine a set

of finite-impulse response channel coefficients ¢ of
the channel h, having a channel amplitude response V ,
a channel phase response ,, and a channel equahza—

tion response f'; and
approximate G'(n) w1th a Volterra series model

D P
)= ) > geabln = Al —d)F,
d=0 k=0

with g, , designed such that z(n)=x(n—¢ ) for equalization
delay ¢, and coefficients g, , estimated according to

x(n— L) - ZZgw(n - it - a7

=0i=1

with training symbols x(n) and received samples £(n);
wherein:
¢ 1s an equalization delay;
v(n) 1s an additive white GGaussian noise component;
r(n) 1s stacked together into M+1 dimensional vectors
r(n)=[r(n), ..., r(h—M)]*, where (*)* denotes transpose,
such that r(n)=HGm)X(nHv(n);

H 1s an (M+1)X(M+L+1) dimensional channel matrix
h, ... by
H — *
ho . hr
G(n)=diag {V,,e ™. - VH@_M_L)e]‘”}’(”mL?} 1S an

(M+L—|—1)><(M+L+1) almensmnal diagonal matrix

which consists of the nonlinear responses, X(n)=
[X(n), ..., x(n—M-L)]?, and v(n)=[v(n), ..., v(n—-M)]*;

'=G'M)[fo . . ., Fa,l, where [fo, . . .. fr,JH=[O, . . ..
1, ..., 0] represents a channel equalization, and

G’ (n) ~ e Y yin—d)

Vy(ﬂ—d)

represents an analog processor equalization; and
f(n) 1s a linearized representation of r(n).

* s * s kK
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