US011443232B1

a2 United States Patent 10) Patent No.: US 11,443,232 B1

Rahman et al. 45) Date of Patent: Sep. 13, 2022
(54) ACTIVE LEARNING-BASED DATA USPC ..., 707/609, 640, 737, 602, 736
LABELING SERVICE USING AN See application file for complete search history.
AUGMENTED MANIFEST
_ _ (56) References Cited
(71) Applicant: Amazon Technologies, Inc., Secattle,
WA (US) U.S. PATENT DOCUMENTS
(72) Inventors: Zahid Rahman, Livermore, CA (US); 7,792,353 B2 9/2010 Forman et al.
Wei Xiao, Bellevue, WA (US): Stefano 2011/0088011 AL* 4/2011 Ouali ..oocooeerrrvrrrrnnnne GOGF 8/10
Stefani, Issaquah, WA (US); Rahul 7177103

2012/0269436 Al 10/2012 Mensink et al.

Sharma, San Jose, CA (US); Siddharth (Continued)

Joshi, Seattle, WA (US)

(73) Assignee: Amazon Technologies, Inc., Seattle, OTHER PUBLICATIONS
WA (US)

Non Final Oflice Action, U.S. Appl. No. 16/370,706, dated Sep. 1,

(*) Notice: Subject to any disclaimer, the term of this 2020, 8 pages. |
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 418 days.

Primary Examiner — Md 1 Uddin
(21) Appl. No.: 16/370,733 (74) Attorney, Agent, or Firm — Nicholson De Vos

Webster & Elliott LLP
(22) Filed: Mar. 29, 2019 ebster i0

Related U.S. Application Data (57) ABSTRACT

(60) Provisional application No. 62/770,882, filed on Nov. lechmiques for active learning-based data labeling are
23, 2018. described. An active learning-based data labeling service
ecnables a user to build and manage large, high accuracy

(51) Imt. CL datasets for use i1n various machine learning systems.
GO6F 7/00 (2006.01) Machine learning may be used to automate annotation and
GO6N 20/00 (2019.01) management of the datasets, increasing ethciency ot label-
GO6F 16/335 (2019.01) ing tasks and reducing the time required to perform labeling.

GO6F 16/383 (2019.01) Embodiments utilize active learning techniques to reduce
HO4I 67/10 (2022.01) the amount of a dataset that requires manual labeling. As
GO6E 40/40 (2020.01) subsets of the dataset are labeled, this label data 1s used to

(52) U.S. CL train a model which can then i1dentify additional objects in
CPC . GO6N 20/00 (2019.01); GO6F 16/335 the dataset without manual intervention. The label data can

(2019.01); GO6F 16/383 (2019.01); GO6F be added to an augmented manifest, the augmented manifest
40/40 (2020.01); HO4L 67/10 (2013.01) can be used to filter the dataset to perform further labeling

(58) TField of Classification Search j0bs on the same or different subsets of the dataset.
CPC GO6F 16/152; GO6F 16/1377; GO6F 16/184;
GO6F 16/335; GO6F 16/383; GO6F 40/40 20 Claims, 10 Drawing Sheets
FROVIBER NETWORK 100
DaTA LABELING SERVICE 108
Mtz [savee e [(-

|
é @ WORKFORCE
» INTERFACE |«
CORE ENGINE 110 SERVICE 138
O ?
CP

DATASET SERVICE
> 115
®
[ANNOTATION CONSOLIDATION
SERVIGE 122
A
USER INTERFACE 0 OUTPUT
194 LOGATION
F 9
__'-""--..--"'"".——— _""'--...,_"____.__ ——
INTERMEDIATE
NETWORK(S) 108
—— e R _-—-.""r—‘_.—-
O —

ELECTRONIC ARNOTATING
DEVICES) 182 SERVICE 128

US 11,443,232 Bl

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2017/0039038 Al1* 2/2017 Huber GO6F 11/3072

2017/0315979 Al 11/2017 Boucher et al.

2018/0052891 Al 2/2018 Shuster et al.

2019/0028431 Al 1/2019 Keller et al.

2019/0294881 Al 0/2019 Polak et al.

2020/0226431 Al 7/2020 Zeiler et al.

2020/0401851 Al 12/2020 Mau et al.

OTHER PUBLICATIONS

Requirement for Restriction/Election, U.S. Appl. No. 16/370,723,

dated Aug. 10, 2020, 7 pages.

Non-Final Rejection U.S. Appl. No. 16/370,723, dated Feb. 5, 2021,
9 pages.

Notice of Allowance, U.S. Appl. No. 16/370,706, dated Mar. 2,
2021, 10 pages.

* cited by examiner

U.S. Patent Sep. 13, 2022 Sheet 1 of 10 US 11,443,232 B1
PROVIDER NETWORK 100
DATA LABELING SERVICE 148
ACTIVE LEARNING MACHINE ANNOTATION o
SERVICE 112 ° SERVICE 114

CORE ENGINE 110

WORKFORCE
INTERFACE
SERVICE 118

DATASET SERVICE
116

ANNOTATION CONSOLIDATION
SERVICE 122

UUSER INTERFACE TO QUTPUT
164 | OCATION
INTERMEDIATE
NETWORK(S) 106

EL ECTRONIC ANNOTATING
DEVICE(S) 102 SERVICE 120

FIG. 1

U.S. Patent Sep. 13, 2022 Sheet 2 of 10 US 11,443,232 B1

PROVIDER NETWORK 100
202 DATA LABELING
R SERVICE 108
Y L

: | INPUT OUTPUT |

USER INTERFACE

104

INTERMEDIATE
NETWORK(S) 106

ELECTRONIC CUSTOMER

DEVICE(S) 102 DATA STOR
200

FiIG. 2

U.S. Patent Sep. 13, 2022 Sheet 3 of 10 US 11,443,232 B1

ANNOTATING SERVICE 120

ANNOTATING TEAM EXTERNAL ANNOTATING SERVICE
INTERFACE 304 INTERFACE 300

PROVIDER NETWORK
100

DATA LABELING SERVICE
108

ACTIVE LEARNING |
SERVICE 112 o e

DATASET

ANNOTATION
o CONSOLIDATION
SERVICE 122

/am .| DATASET ANNOTATION l '
COREENGINE L0 =98)2 157300 MANAGER 302 °

WORKFORCE INTERFACE SERVICE 118

OUTPUT
2U6

_
)
i1l
Al
pred
]
] I
A
T
i
<)
(Tl
Iwm
o
r’-ihﬁ-_-ﬂﬂﬁﬂﬂﬂﬁﬁ

INTERMEDIATE
NETWORK(S) 106

ELECTRONIC
DEVICE(S) 102

FIG. 3

US 11,443,232 Bl

Sheet 4 of 10

Sep. 13, 2022

U.S. Patent

¢Cl A0INYIS

NOILVQIOSNOO NOILVLONNY

v "Il

J401LS
148V

gt

70l

FOVAHILINI 4361

FOAHSS 13SVIVQE

811 30INYES
SOV4831LN| 3040 H30M

0Z1 30INH3S
ONLLVLONNY

301 FDIAHFS ONIMZEYT VIV(

0} AHOMLIN 330IAOdd

Zl1 30INH3S
ONINYVZT JAILOV

L1 ANIONZ 48500

g Ol

US 11,443,232 Bl

{{,,uonedyisse-adew/Ynipunoid,;, 3dAl,‘ 0EE0LE LS TTTOLTT-ZT-8T0T. ,21Ep-u0Nedld, / SBA 1 pajejouue
-uewny, ’ S9PIYaA,: sweu-ssep, 15102[qo-peos-sauadsiaadis/qof-8uysgel, :, dweu-qof, ‘s6 0, 2ouapiyuod, 1 eiepeiaw

— ~15129{0~-pr0I-saUBISIBALIS , (1, TSI9IQO-PLrOI-SBUBISIBBALS,, , Od[£0000EASS/SouUdIsIDalIs /s1aseiep/pel-jw-snpiud/ /¢S, | §84-804N0S, }
o
S
.m {{ ,uonoalep-1aigo/yingpunossd ;,8dAy, | 6T60TL ST:OV:8TLLI-CT-810Z, 2ep-uoneand, ‘[{60°0:,20uUspyuod,} {60°0:,92udpHuoa, }
- {60°0:,,20uspyuod } {60 0:, 0ouapiuod,} {60°0: ,03uapiuod, } |1 5109[go , /,SaA [paiejouue-uewny, { J4e3,:,0,}: , dew-ssep, ‘ zsolqo
5 -peOoJ-SauddsIaalls/qof-duljage] ., sweu-gol, } ;| elepeiaul-zsidalqo-peol-sauadsisanls, {[{096:,1u819Y,,¢: ,Uidap,, 082 T: ,UIpim }]: 22is aseuwl,,
7 T{£95, 421,067, 34813Y,,"TL$:,,401, DSE UIPIM,, 02, Pt SSe0,} (P2 S, W91, €, 4diny, '08D:,,d01, 65, UIPIM,'0: Pt Ssep, }
{269,491, €, 18y, 687,03, "S9:, UIPIM, 0!, P ssep,} {0Sh: 131, €S0, 348I8Y, ‘05, d03,, ‘58! YIpIMm, 0 Pt sseja,)
116¢:, 43|, v, AUs18Y,, ‘061,401, QL. UIpim, 0: pt ssejd,} i, suaneiouue }: zsialqo-peoi-sausisinans,
3 { uonesyissejo-adewnt/yinnpunoud, ;. adAy, ‘€960 7 YT 0 T0LZT-2T-8107,:,,21ep-uoiieald ‘ S94A,: pajejouue
=\ -URLUNY .’ SOIIIUBA . Sweu-ssed ‘ T1513afqo-peos-sauadsiaalis/qol-guljaqey, : aweu-gof ‘g6 0:, 9ousapijuod }: elepelaul
”., -T5309{g0-pr0I-SaURIS18841S,, Q- , TSI108[(O-peoi-sauadsiaalls, ‘ Odl z00008asS/Souadslaasls/sl1oselep/pel-ju-snpiud//igs, . 324-90Un0s, }
o
S, {{,uonesiissep-adewt/yinapunois,: 8dAY, €961V vT:0€ T0LTT-CT-8T0T, BIBp-uoiieatd, ‘ sah, 1 paiejouue
73 -Uewny,‘ S9dIyaA,:, awieu-sse), ’ 1s138lqo-peoi-sauadsianiis/qoi-duljaqge), : 2weu-qof ‘g6°(: ,83Uspiuod }: elepeiaw

-15109[q0-peoJ-SBURISIFVLIS,, 0! T5109[q0~-proI-sauaI5192415 ./, DdI TO0008ASS/S2UdIS198415 /5195818 P/PRI-JUl-SNPIud//1€5, 1 Jad-82unos,)

1,94 0000080SS/SoUdds1a041s/519581ep/Pei-jW~SNPIud//:¢5,,1,,184-224N0S , }

004

U.S. Patent

U.S. Patent Sep. 13, 2022 Sheet 6 of 10 US 11,443,232 B1

600

002
CreatelabelingJdob

Creates and starts a labelainc
1 S

604

et

Returng LabelingJob status, progress and audit
parameters that were used fo ‘ ‘ '
a

telds. Algse returns ail
L naJo) used

&
lelds bhack into the

606
ListLabelingJdobsForWorkTeam

Lists labeling Sobs for a specific workteam

008
ListLabelingJobs

r
ListTrainingJobs, ListHPOJOLs eto.

610
StopLabelingJob

Stops a LabelingJdcek. The Job transitions to “Stopping” state, followed
by “Stopped” state. Stopped or Jtopping Sobs cannct be restarted. The
j7o0b will export the current Vstate” and a new Job can Le started that

prcks up tftrom that state.

L

FIG. 6

U.S. Patent

{00 \

Sep. 13, 2022

Sheet 7 of 10 US 11,443,232 B1

OBTAINING A PLURALITY OF OBJECTS USING A REFERENCE 10 A

DATA S

TORE /02

OBTAINING AN AUGMENTED MANIFEST FOR THE PLURALITY OF

OBJ:

IDENTIFYING A SUBSET OF THE PLURALITY OF OBJECTS TO B

—CTS,

—ACH

OBJECT CORR:

ESPONDING 1O A SEPARATE LINE

iIN THE AUGMENTED MANIFEST 704

LABELED 706

EXECUTING A LABELING JOB ON THE SUBSET OF THE PLURALITY

OF OBJECTS, THE LABEL

LABELS ASSOCIATED WitH Th
OBJECTS 708

UPDATING THE A
OF LABELS 1DEN

TOALINEOFT
WIiTH AN OBJECT FROM THE
OBJECTS CORRESPONDING
MANIFES:

NG JOB IDENTIFYING A PLURALITY OF

= SUBSET OF THE PLURALITY OF

JGMENTED MA

NIFEST BASED ON THE PLURALITY

HFIED IN THE LABELING JOB, EACH LABEL ADDED

E AUGMENTED MANIFEST THAT 1S ASSOCIATED

SUBSET OF THE PLURALITY OF

O THE LABEL, THE AUGMENTED
- TO BeE USED AS INPUT TO A SECOND LABELING JOB 710

FIG. 7

U.S. Patent Sep. 13, 2022 Sheet 8 of 10 US 11,443,232 B1

-y o
L

= INSTANCES 812

LOCAL 1P

PUBLIC-TO- ADDRESS{ES) 816
PROVIDER EC}CAL —_—
oo
e MAPPING PUBLIC P
ADDRESS(ES) 814
VIRTUALIZATION
SERVICE(S) 810
OTHER
NETWORK
ENTITIES
820
INTERMEDIATE
NETWORK
840
“
d N
d .
d ",
/ . 8
’ N
f/f \\\
! ~
L E T
..-...,-’-"'" ""-v-"'" "x-"‘"""m%- ____ff --..V.-f \,.---....,_
i«.. CUSTOMER ;‘ i\h CUSTOMER ;
4 NE TWORK N 1~ NETWORK <
N e 8508 / _ 8500 }
\ = 1 -
K“"--""f\--.. #f___‘“___b.--" \H“H’\HH #;HH##‘
ESS\Z}%&;EKR CUSTOMER
350A DEVICE(S) 892

FIG. 8

U.S. Patent Sep. 13, 2022 Sheet 9 of

.-
¥
.
]
'II
[
]
"

N>
918A
PROVIDER |
NETWORK | S
800

STORAGE SERVIC

(VIRTUALIZED) DATA STORE 916 ;

STORAGE | 998 | STORAGE

i

———y

INTERMEDIATE
NETWORK
940

CUSTOMER
DEVICE{S) 890

-

G18N

HARDWAR

10 US 11,443,232 Bl

COMPUTATION
RESOURCES 824

- VIRTUALIZATION

SE

NETWORK
956

CUSTOMER NETWORK 830

FIG. 9

RVICE 920

" "N
A i
'LOCAL (VIRTUALIZED)
| STORAGE
| 998

,'r N .. — I Iy

o ;

VIRTUAL |
COMPUTING :
SYSTEM(S) 992 |

U.S. Patent Sep. 13, 2022 Sheet 10 of 10 US 11,443,232 B1

COMPUTER SYSTEM 1000

PROCESSOR | PROCESSOR | ‘oo | PROCESSOR |
1010A : 10108 | : 1010N |
.____+____' .____*____'

SYSTEM MEMORY 1020

NETWORK
1025 1026

NETWORK(S)
1050

ELECTRONIC DEVICE(S)

1060

FIG. 10

US 11,443,232 Bl

1

ACTIVE LEARNING-BASED DATA
LABELING SERVICE USING AN
AUGMENTED MANIFEST

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/770,882, filed Nov. 23, 2018, which 1s
hereby incorporated by reference.

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing,
systems being co-located (e.g., as part of a local network) or
instead located 1n multiple distinct geographical locations
(e.g., connected via one or more private or public interme-
diate networks). For example, data centers housing signifi-
cant numbers of interconnected computing systems have
become commonplace, such as private data centers that are
operated by and on behalf of a single organization, and
public data centers that are operated by entities as businesses
to provide computing resources to customers. Some public
data center operators provide network access, power, and
secure 1nstallation facilities for hardware owned by various
customers, while other public data center operators provide
“full service” facilities that also include hardware resources
made available for use by their customers. However, as the
scale and scope of typical data centers has increased, the
tasks of provisioning, administering, and managing the
physical computing resources have become increasingly
complicated.

The advent of virtualization technologies for commodity
hardware has provided benefits with respect to managing,
large-scale computing resources for many customers with
diverse needs, allowing various computing resources to be
ciliciently and securely shared by multiple customers. For
example, virtualization technologies may allow a single
physical computing machine to be shared among multiple
users by providing each user with one or more virtual
machines hosted by the single physical computing machine,
with each such virtual machine being a software simulation
acting as a distinct logical computing system that provides
users with the 1llusion that they are the sole operators and
administrators of a given hardware computing resource,
while also providing application 1solation and security
among the various virtual machines. Furthermore, some
virtualization technologies are capable of providing virtual
resources that span two or more physical resources, such as
a single virtual machine with multiple virtual processors that
spans multiple distinct physical computing systems. As
another example, virtualization technologies may allow data
storage hardware to be shared among multiple users by
providing each user with a virtualized data store which may
be distributed across multiple data storage devices, with
cach such virtualized data store acting as a distinct logical
data store that provides users with the 1llusion that they are
the sole operators and administrators of the data storage
resource.

BRIEF DESCRIPTION OF DRAWINGS

Various embodiments 1n accordance with the present
disclosure will be described with reference to the drawings,

in which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 1s a diagram 1llustrating an environment for active
learning-based data labeling according to some embodi-

ments.

FIG. 2 1s a diagram 1illustrating an environment for
providing data sets to an active learming-based data labeling
service and receiving outputs of the active learning-based
data labeling service according to some embodiments.

FIG. 3 1s a diagram 1llustrating an environment for active
learning-based data labeling using external workiorces
according to some embodiments.

FIG. 4 1s a diagram 1llustrating labeling of a dataset using
an augmented manifest according to some embodiments.

FIG. § shows an example augmented manifest according,
to some embodiments.

FIG. 6 1s a diagram 1illustrating example application
programming 1interfaces (APIs) for active learning-based
data labeling according to some embodiments.

FIG. 7 1s a flow diagram illustrating operations of a
method for active learning-based data labeling using an
augmented manifest according to some embodiments.

FIG. 8 illustrates an example provider network environ-
ment according to some embodiments.

FIG. 9 1s a block diagram of an example provider network
that provides a storage service and a hardware virtualization
service to customers according to some embodiments.

FIG. 10 1s a block diagram 1llustrating an example com-
puter system that may be used 1mn some embodiments.

DETAILED DESCRIPTION

Various embodiments of methods, apparatus, systems,
and non-transitory computer-readable storage media for
active learning-based data labeling are described. According
to some embodiments, an active learming-based data label-
ing service enables a user to build and manage large, high
accuracy datasets for use 1 various machine learning sys-
tems. In various embodiments, machine learning may be
used to automate annotation and management of the data-
sets, increasing efliciency of labeling tasks and reducing the
time required to perform labeling. In the past, labeling has
been performed through the brute force efforts of human
labelers who are given a dataset to label and return labels
(e.g., a description of objects 1n the dataset, words spoken,
bounding boxes around objects, etc.). Embodiments utilize
active learning systems to reduce the amount of a dataset
that requires manual labeling. As subsets of the dataset are
labeled, this label data 1s used to train a model which can
then 1dentify additional objects in the dataset without
manual intervention. The process may continue iteratively
until the model converges (e.g., identifies objects within an
accuracy threshold). This enables a dataset to be labeled
without requiring each i1tem in the data set (e.g., image,
video frame, video file, audio files, audio tokens, etc.) to be
individually and manually labeled by human labelers.

FIG. 1 1s a diagram 1llustrating an environment for active
learning-based data labeling according to some embodi-
ments. A provider network 100 provides users with the
ability to utilize one or more of a variety of types of
computing-related resources such as compute resources
(e.g., executing virtual machine (VM) mnstances and/or con-
tainers, executing batch jobs, executing code without pro-
visioning servers), data/storage resources (e.g., object stor-
age, block-level storage, data archival storage, databases and
database tables, etc.), network-related resources (e.g., con-
figuring virtual networks including groups of compute
resources, content delivery networks (CDNs), Domain
Name Service (DNS)), application resources (e.g., data-

US 11,443,232 Bl

3

bases, application build/deployment services), access poli-
cies or roles, i1dentity policies or roles, machine images,
routers and other data processing resources, etc. These and
other computing resources may be provided as services,
such as a hardware virtualization service that can execute
compute instances, a storage service that can store data
objects, etc. The users (or “customers”) of provider net-
works 100 may utilize one or more user accounts that are
associated with a customer account, though these terms may
be used somewhat interchangeably depending upon the
context of use. Users may interact with a provider network
100 across one or more mtermediate networks 106 (e.g., the
internet) via one or more ntertace(s) 104, such as through
use of application programming interface (API) calls, via a
console implemented as a website or application, etc. The
interface(s) 104 may be part of, or serve as a front-end to, a
control plane of the provider network 100 that includes
“backend” services supporting and enabling the services that
may be more directly offered to customers.

To provide these and other computing resource services,
provider networks 100 often rely upon virtualization tech-
niques. For example, virtualization technologies may be
used to provide users the ability to control or utilize compute
instances (e.g., a VM using a guest operating system (O/S)
that operates using a hypervisor that may or may not further
operate on top ol an underlying host /S, a container that
may or may not operate n a VM, an instance that can
execute on “bare metal” hardware without an underlying
hypervisor), where one or multiple compute instances can be
implemented using a single electronic device. Thus, a user
may directly utilize a compute instance hosted by the
provider network to perform a variety of computing tasks, or
may indirectly utilize a compute instance by submitting code
to be executed by the provider network, which i1n turn
utilizes a compute 1nstance to execute the code (typically
without the user having any control of or knowledge of the
underlying compute nstance(s) imvolved).

As shown 1 FIG. 1, at numeral 1, a customer using
clectronic device 102 can provide access to a dataset through
user 1nterface 104. As discussed, the user interface 104 can
be an API, console, or other interface. For example, the user
interface 104 may be a front-end interface for data labeling
service 108. Each dataset can be a collection of homoge-
neous pieces of data (such as image data, video data, comma
separated values (CSV) files, etc.). A dataset may be a raw
unlabeled dataset, a partially labeled dataset, a gold standard
dataset, or a training dataset. As used herein, a gold standard
dataset may refer to a dataset that has been verified as being
accurately labeled. In some embodiments, the dataset may
be stored 1n a customer-owned data store, such as an object
store, database, or other data store. The customer can
provide credentials to access the dataset (e.g., username and
password, keys, etc.) and a location of the dataset (e.g., a
Uniform Resource Locator (URL) of the dataset or another
identifier of a storage location of the dataset). In some
embodiments, at numeral 1, the customer may also specily
one or more of a gold standard dataset, a target label space,
a desired quality threshold, and an annotation budget.

Labels may be attributes of objects in a dataset. For
example, labels may include a region including an object
(e.g., a bounding box surrounding a particular object), the
species of an animal 1n a picture, the words 1n an utterance,
ctc. Labels are the outputs of annotations after the annota-
tions have been consolidated and have achieved a quality
score above a given threshold. As such, as used herein, a
label refers to the true underlying object property, while

10

15

20

25

30

35

40

45

50

55

60

65

4

annotations refer to the tags or other outputs by a labeling
task (e.g., by a human labeler or machine annotation).

The label space may be a sub-graph of the overall graph
ol predefined labels that can be used for annotations for
specific dataset objects. For example, for a machine learning
model to recognize species of birds, the label space includes
labels (and associated label classes) for various species of
birds. These labels can be either predefined (e.g., a closed
label space) or incrementally defined by annotators (e.g., an
open label space)

In some embodiments, the customer can specily a work-
flow to be used for labeling. The worktlow may be provided
by the active learning-based labeling service or may be a
custom worktlow specified by the user. Each workilow can
be a nested workiflow comprising a series of steps corre-
sponding to one or more of active learning, machine anno-
tating, manual annotating, annotation consolidation and
quality score computation, model training, and then output-
ting of training datasets and/or models.

At numeral 2, the various properties described above that
are recerved from the customer may be provided to the core
engine 110. The core engine 110 drives the overall worktlow
definition, execution, monitoring, and orchestration behind
the execution of multiple concurrent labeling workflows
executed by the data labeling service 108. The core engine
110 1s responsible for triggering/calling functions, activities
and tasks on multiple different microservices as part of the
overall execution of a workiflow. The core engine may also
maintain the state (in a multi-tenanted manner) related to the
execution of worktlows and associated annotation tasks for
multiple customers.

At numeral 3, when the workflow 1s started, the dataset
specified by the customer can be provided to active learning
service 112 (“ALS”). ALS 112 may implement one or more
active learning techniques as are known 1n the art. In some
embodiments, the active learming techmique used may
depend on the type of data in the dataset (e.g., image data,
audio data, video data, etc.). Additionally, the active learning
techniques used may be specified by the customer in a
custom workflow or may be built-in as part of data labeling
service 108. The ALS 112 manages the selection of dataset
objects that are to be auto-labeled and the selection of
dataset objects that are to be manually labeled.

Active learning 1s a machine learning procedure that can
be usetul 1n reducing the amount of annotated data required
to achieve a target performance. Active learning starts by
incrementally traiming a model with a small, labeled dataset
and then applying this model to the unlabeled data. For each
unlabeled sample, ALS 112 estimates whether this sample
includes information that has not been learned by the model.
An example of an active learning technique 1s to train an
object detection model that takes an image as input and
outputs a set of bounding boxes. To train such an object
detection model, the training and validation images of the
detector are annotated with a bounding box per object and 1ts
category. Such a technique may start with a small training
set of annotated 1mages to train a baseline object detector. In
order to improve the detector by training with more 1images,
this techmique continues to collect 1images to annotate.
Rather than annotating all newly collected images, based on
different characteristics of the current detector, the ALS 112
can select a subset of the images to be manually labeled.
Once annotated, these selected images are added to the
training set to incrementally train the object detection
model. The entire process continues to collect more 1mages,
select a subset with respect to the object detector, annotate
the selected ones with humans, incrementally train the

US 11,443,232 Bl

S

detector and so on. Other data, such as video data, audio
data, etc. may also be used 1n such a system.

ALS 112 can perform active learning for unlabeled or
partially unlabeled datasets and use machine learnming to
cvaluate unlabeled raw datasets and provide input into the
data labeling process by identifying a subset of the input data
to be labeled by manual labelers. In some embodiments,
ALS 112 randomly selects a sample of the mput dataset for
labeling. In some embodiments, ALS 112 selects the subset
of the dataset using uncertainty sampling. In this example, a
model used by the ALS 112 preferentially selects examples
for which the model produces a low confidence of 1dentifi-
cation. Other approaches may include representativeness-
based sampling where the model selects a diverse set that
represent the mput dataset while limiting redundancy among,
the subset.

Once a subset of the input dataset 1s i1dentified to be
auto-labeled, the subset may be annotated. For example, 1n
some embodiments, the subset may be sent to machine
annotation service 114, as shown at numeral 4. Machine
annotation service 114 may use an existing model that has
been trained on the same or similar labelspace which 1s
selected for the input dataset. These machine annotations
may be output to a dataset service 116 at numeral 5. In some
embodiments, dataset service 116 can communicate with
WIS 118, machine annotation service 114, and core engine
110 to manage the tlow of data to be labeled by data labeling
service 108 and to manage the resulting labels for the data
generated by data labeling service 108. Additionally, or
alternatively, at numeral 6, the subset 1dentified by the ALS
112 to be manually annotated can be sent to a workforce
interface service 118 (“WIS™). The WIS 118 can interface
with various manual annotators including crowdsource
annotators, private (e.g., in-house) annotators, and/or anno-
tating service providers (collectively annotating service
120). The type and/or variety of labelers may be selected by
the customer when starting a new labeling workilow, as
discussed above. WIS 118 can present the subset of the input
dataset to the selected annotating service 120 at numeral 7.
The subset may then be annotated by the selected annotators
and the annotations may be returned to WIS 118. These
annotations may be stored in dataset service 116 at numeral

8.

Once annotations have been recerved from the WIS 118
and optionally from machine annotation service 114, the
annotations can be consolidated into labels by annotation
consolidation service 122, as shown at numeral 9. Annota-
tion consolidation may refer to the process of taking anno-
tations from multiple annotators (e.g., humans and/or
machines) and consolidating these together (e.g., using
majority-consensus heuristics, removing bias or low-quality
annotators, using probabilistic distribution that mimimizes a
risk Tunction for observed, predicted and true labels, or other
techniques). For example, based on each annotators’ accu-
racy history, their annotations can be weighted. If one
annotator has a 50% accurate history, their annotations may
have a lower weight than another annotator with a 100%
accurate history.

In some embodiments, the annotation consolidation ser-
vice 122 can maintain a label score and a worker score when
performing annotation consolidation. During consolidation,
annotation consolidation service 122 can fetch current label
scores for each piece of data in the dataset (e.g., image,
video frame, audio utterance, etc.) and current worker scores
tor the annotator who provided the annotations on that piece
of data. A new label score and worker scores can be
computed for the piece of data based on previous state and

10

15

20

25

30

35

40

45

50

55

60

65

6

currently received new annotation. The label score can be
compared to a specified threshold. I the label score 1s higher
than the threshold then no additional annotations are
required. If the label score 1s lower than the threshold then
the data may be passed to additional annotators to be further
annotated by annotating service 120. At numeral 10, once
the label score 1s higher than the threshold, then the core
engine 110 can be updated to indicate that the subset of the
input dataset has been labeled. The active learning loop may
continue to execute with the core engine imnvoking the active
learning service 112 to label a new subset of the input dataset
that 1s still unlabeled or partially labeled. The annotation
consolidation service can output the labeled subset of the
input dataset to an output location, as discussed further
below.

In some embodiments, the labeled subset of the input
dataset can be used to train the active learning service
model. As shown at numeral 11, the labeled subset of the
iput dataset can be provided to the machine annotation
service 114. The machine annotation service 114 may
include a training service that can generate a new model, or
update the previously used model, using the labeled subset
of the mput dataset. In some embodiments, a separate
training service (not shown) may obtain the labeled subset of
the mput dataset from the annotation consolidation service
and may use the labeled subset of the input dataset to further
train the model maintained by the machine annotation
service 114. The above described process may then be
repeated using the updated model. For example, if the
updated model has converged, then the remainder of the
input dataset can be accurately identified. If the updated
model has not converged, then a new subset of the input
dataset can be 1dentified for further labeling according to the
process described above. In some embodiments, the data
labeling service 108 can output one or more of the con-
verged model or the labeled dataset, as described further
below.

In some embodiments, the data labeling service 108 may
also output various performance metrics, such as perfor-
mance against the annotation budget, quality score of anno-
tated labels and performance against the defined quality
threshold, logs and metrics 1n a monitoring dashboard,
and/or an audit trail of annotations tasks as performed by
annotators. The quality score can be a numerically computed
value to measure the quality of consolidated labels. This
score 1s compared to a desired quality threshold (which may
be a default value or may be provided by the customer as an
input) to determine whether consolidated labels have
achieved the desired quality level and hence are considered
trained labels. This quality score can be expressed as an
output of a risk function on a probability distribution for
real, true and predicted labels.

In various embodiments, a customer can provide an
unlabeled dataset which they would like to label. They might
also bring a pre-trained supervised machine learning model,
as well as some data which has already been labeled 1n the
past. These mputs are fed into the data labeling service. The
first step of the service 1s to prepare for the main loop. The
preparation produces a validation dataset, a first pre-trained
machine learning model, and first estimates of the quality of
every worker in the pool. Then the main loop runs, and
produces the final model, as well as the fully labeled dataset,
with labels for every object of the original unlabeled data, as
well as final worker quality estimates.

Before starting the loop, the data labeling service can
prepare data for 1t. The preparation step returns validation
data, pretrained model, and worker quality estimate. First, a

US 11,443,232 Bl

7

random subset of the unlabeled dataset i1s selected for
validation and sent to human annotators. During all of the
human annotation processes, worker quality 1s estimated.
There are a few options for the start of the loop. If the
customer brings a pre-trained model, 1t can be passed along
to the main loop. If there 1s no pretrained model, but there
1s some prelabeled data, this data 1s used to train a default
model for the selected modality. Even 11 the labels are not
very reliable, prelabeled data can be used to train the model,
as training can oiten be resilient to some noise 1n the data.
It 1s not assumed that the prelabeled data 1s representative of
the unlabeled dataset, and thus the data labeling service still
constructs the validation set. Prelabeled data might have
very reliable labels, 1n which case 1t can be 1dentified as a
Gold Standard dataset, representing true labels and which
can be used to help estimate the quality of the human
annotations, and individual worker accuracy.

The main loop starts by running inference with the model
on the validation dataset. After that, every object 1s given a
confidence level. For example, for image classification, a
confidence level can be the probability that the model
predicts for the most confident class. A threshold 1s found,
such that for the objects whose model confidence 1s above
the threshold, the expected quality of the label provided by
the model exceeds a required quality value provided by the
customer. Then, the inference on the unlabeled data 1s
performed, and the threshold 1s applied on the resulting
inferences. All objects with the confidence larger than the
threshold get auto-annotated and put into the labeled dataset.
For the rest of the objects, active learning 1s performed to
identify a subset of the objects which potentially benefit the
model most. Active learning may be executed 1n a separate
active learning loop that iteratively labels portions of the
unlabeled dataset and trains the model to better auto-label
the dataset, as described herein. This batch of objects 1s sent
for human annotation. During human annotation, previ-
ously-found worker quality parameters are used, and
adjusted with the new information from their annotations of
he new objects. Human labels for these objects are fed into
e labeled dataset. All previously human-labeled objects are
nen used to train a new version of the supervised model, and
he loop repeats until all the data 1s labeled. Then, the labeled
ataset 1s returned to the customer, along with the last model
which was trained.

FIG. 2 1s a diagram illustrating an environment for
providing datasets to an active learning-based data labeling
service and receiving outputs of the active learning-based

data labeling service according to some embodiments. As
shown 1n FIG. 2, a customer can maintain their own cus-
tomer data store 200 which includes one or more customer
datasets. These may include unlabeled or partially labeled
datasets to be provided to data labeling service 108. At
numeral 1, the customer (via one or more electronic devices
102) can upload an mmput dataset to mput data store 204.
Input data store 204 and output data store 206 may be
virtualized data stores 202 provided by a storage service in
provider network 100. The storage service may provide
object storage, block storage, database storage, or other
virtualized storage services. At numeral 2, as discussed
above, the customer can provide access mformation and/or
credentials for the mput dataset in mput data store 204
through a user iterface 104. This may include providing a
URL for mput data store 204 and credentials for accessing,
the data store. In some embodiments, the customer may
establish permissions to allow the data labeling service 108
to access the mput dataset. The user interface 104 can pass
the information to data labeling service 108 at numeral 3.

10

15

20

25

30

35

40

45

50

55

60

65

8

At numeral 4, data labeling service 108 can retrieve the
input dataset from the input data store 204 and perform
active learming-based labeling, as discussed above with
respect to FIG. 1. Data labeling service 108 can perform the
above described worktlow 1n nested fashion until the active
learning model converges. The resulting labeled dataset
and/or the converged model can then be output to output
data store 206, at numeral 5. Both input and output data
stores 204, 206 may be owned by the customer. Any
intermediate state data generated for the input dataset by
data labeling service 108 can be destroyed, with no durable
copies of the labels or input dataset maintained by the data
labeling service 108. Thus, the customer’s data 1s labeled
and ownership of the dataset and labels 1s retained by the
customer. In some embodiments, the user can access the
output data store 206 via user interface 104. For example,
the user can send a request to view, download, transfer, etc.
the labeled dataset 1n output data store 206 to user interface
104 at numeral 6. The user interface 104 can obtain the
requested labeled dataset or portion thereof at numeral 7 and
provide the requested labeled dataset to the user. In some
embodiments, the user may access the output data store 206
through a separate user interface (e.g., provided by a storage
service that 1s providing the output data store 206, a local file
system, or other interface based on the implementation of
the output data store).

In some embodiments, the dataset may include a manifest
file which describes dataset properties and records. A record
may include named attributes, imncluding metadata such as
image size, or labels such as “dog™ or “cat”. Other attributes
may 1nclude raw data which needs labeling, such as 1image
or sentences 1n natural language processing (NLP). In some
embodiments, a manifest file for a dataset may be generated
automatically by extracting metadata from files 1n the mput
data store 204 and generating the manifest file based on the
metadata. In some embodiments, the output dataset stored in
output data store 206 may be an updated version of the input
dataset, which has been updated by combining the nput
dataset with the generated labels as a new dataset.

FIG. 3 1s a diagram 1llustrating an environment for active
learning-based data labeling using external workforces
according to some embodiments. As shown in FIG. 3, a
customer can create a new labeling job at numeral 1 by
sending job details (e.g., input dataset information, creden-
tials, quality threshold, etc.) to user interface 104. At
numeral 2, user mterface 104 can submit the new labeling
10b to the core engine 110. In some embodiments, the new
labeling job can be submitted to the core engine 110 when
the customer submits a start worktlow command to the user
interface. As described above, the core engine 110 can
orchestrate the workiflow across various components of data
labeling service 108. For example, at numeral 3A, the core
engine 110 can provide the mput dataset to active learning
service 112. Active learning service 112, as described above,
can determine a subset of the input dataset to be labeled,
either manually or by a machine annotation service. Option-
ally, 1in some embodiments, the core engine 110 may provide
all or a portion of the mput dataset to the workforce interface
service as shown at 3B. For example, the active learning
service 112 can be bypassed on a first iteration of the active
learning loop and a random sample of the mnput dataset can
be provided to the workiorce interface service 118 to be
labeled. In subsequent iterations, all or a portion of the
remaining unlabeled input dataset can be passed to the active
learning service 112 to use active learning to increase the
speed at which the input dataset 1s labeled.

US 11,443,232 Bl

9

At numeral 4, the active learning service 112 can pass the
subset 1dentified by the active learning service 112 to be
manually annotated to WIS 118. As shown, WIS 118 may
include a dataset list 300, which includes each object of the
dataset (e.g., image file, text file, video file, video frame,
audio utterance, etc.). For each object of the dataset, an
annotation manager 302 can create a workflow for annotat-
ing service 120 to perform and pass the subset to the
annotation service at numeral 5. Annotating service 120, as
described above, may enable various workiorces to perform
annotation of the dataset. For example, annotating service
120 may include an annotating team interface 304, which
provides the dataset for annotation to an internal team of
annotators, and an external annotating service interface 306,
which provides the dataset for annotation to an external
annotation team or service such as a third-party annotation
vendor. In various embodiments, the dataset may be
encrypted prior to 1t being submitted to an annotation team
or service, to protect the dataset while 1n transit.

The annotated datasets may be returned from the anno-
tators to the annotation manager 302. The annotation man-
ager 302 can output the annotated datasets to dataset service
116 at numeral 6. As discussed above, dataset service 116
can store annotated datasets received from manually anno-
tators and auto-annotated datasets annotated by a machine
annotator. At numeral 7, annotation consolidation service
122 can perform annotation consolidation on the annotated
datasets. The annotation consolidation service 122 can deter-
mine a consolidated annotation (e.g., label) and quality score
for each annotated object 1n the annotated datasets. If the
annotation threshold has been reached, the annotation con-
solidation service 122 can store the resulting labels to output
data store 206 at numeral 8.

If the threshold has not been reached, then at numeral 9,
the annotation consolidation service can send a request to
the annotation manager 302 can extend the annotation
workilow execution. This may include requesting a config-
urable number of additional annotators annotate the dataset.
The number of additional annotators may be determined
based on the difference between the desired quality thresh-
old and the current threshold. This may continue to loop
(e.g., operations depicted as numerals 5-7) for each object of
the dataset until all objects of the dataset have been anno-
tated and determined to have a quality score higher than the
threshold value.

Auvgmented Manifest Used for Streaming Datasets for
Live Training

FI1G. 4 1s a diagram 1llustrating labeling of a dataset using
an augmented manifest according to some embodiments. As
shown 1 FIG. 4, a request to start a labeling job can be
received through user interface 104. The request can include
an augmented data manifest and/or a storage location where
data objects are stored to be labeled. In some embodiments,
the data to be labeled can be streamed 1n from a streaming,
source or can be processed from a static source (e.g., a
storage location with a fixed number of data items) in
batches. Core engine 110 can instruct dataset service 116
read the user’s data to be labeled. If an augmented manifest
1s received with the request, then there 1s a fixed dataset size
based on the manifest. If the dataset 1s being streamed, then
there 1s no fixed size, but the dataset service can wait to start
a job until a minimum number of objects have been 1den-
tified (e.g., 10, 20, 1000) depending on user preferences.

When the dataset service has read the user’s data, it can
output counter values to the core engine 110. The counter
values can indicate a total size of the dataset (e.g., X number
of objects), a number of labeled objects 1n the dataset, and

10

15

20

25

30

35

40

45

50

55

60

65

10

a number of unlabeled objects 1n the dataset. In the stream-
ing use case, the counters might indicate a number of objects
that are ready to be labeled and a number of objects that are
still being processed by the dataset service. In some embodi-
ments, the input dataset may be partially labeled. For
example, the customer may provide labels for some objects
in the dataset with other objects in the dataset being unla-
beled. The dataset service 116 can identily which are labeled
and which are not labeled based on the manifest during the
initial intake. The dataset service can then process only the
unlabeled data. This preserves the preexisting labels pro-
vided by the customer. If active learning mode 1s selected by
the user, then the core engine can initiate a training mode
using the workiorce intertface service 118.

To begin the labeling job, a batch of data needs to be
labeled using the WIS 118. In some embodiments, the WIS
does not interface with the dataset service 116 directly,
instead it 1s orchestrated by the core engine. Core engine 110
can send query criteria to the dataset service to obtain the
batch to be labeled. The augmented manifest facilitates that
query since the metadata for each object are in-line with the
objects 1n the manifest itself. This enables a single query to
select the batch of data to be labeled, rather than requiring
multiple sources to be queried. In some embodiments, the
batch of data can be queried using the query criteria or a
random sample of the input dataset can be selected. The
dataset service 116 sends the batch to the WIS 118 and then
core engine 110 instructs WIS to proceed. As discussed
above, WIS 118 can send the batch to annotating service 120
to have the data annotated by one or more types of manual
annotators. WIS 118 can then send the resulting annotations
to annotation consolidation service 122 to have the annota-
tions consolidated into labels. WIS 118 can provide the
labels to the dataset service 116 to update the augmented
manifest with the new labels. In some embodiments, the
dataset service 116 can maintain a queue to which new labels
are added betfore the augmented manifest 1s updated (e.g.,
alter the number of new labels enqueued has exceeded a
threshold number of labels), or the dataset service can
stream 1n the new labels to the augmented manifest. When
the dataset service first reads the manifest file, the dataset
service can index the manifest file (e.g., using byte oflsets)
to 1dentily each line of the manifest file that corresponds to
a different object. This enables the dataset service to ran-
domly access the manifest file by a particular line, allowing
the dataset service to read from and write to particular lines
of the manifest file as needed (e.g., to add new labels to an
object, etc.).

Once the mitial batch has been labeled, and the aug-
mented manifest updated with the new labels, the dataset
service can update the counter values maintained by the core
engine 110. Next, active learning can be used on the remain-
ing unlabeled data of the dataset. Once the counter value
associated with the number of labeled objects exceeds a
threshold value, the core engine can initiate training. The
core engine can instruct dataset service 116 to prepare data
for training and send 1t to the active learning service 112.
Dataset service 116 can select which data 1s to be used for
training. The training data has to be labeled, needs a con-
fidence score above a threshold, etc. The dataset service can
select the training data using the manifest and sends the data
to the active learning service. The dataset service can send
a message to the core engine indicating that training data has
been sent and the core engine can struct the active learning
service to mitiate training. In some embodiments, the data
sent to the active learning can include traiming data and a
validation dataset. The validation dataset needs to be rep-

US 11,443,232 Bl

11

resentative of the mput dataset as a whole. In some embodi-
ments, reservoir sampling, or other large dataset sampling
techniques can be used to sample the input dataset to identify
a random and representative validation set. The augmented
manifest can be updated to add a marker to each object 5
included 1n the validation dataset. In some embodiments, as
the labeling loop iterates, the validation dataset provided
mitially may no longer be representative of the remaining
portion of the dataset to be labeled. The active learming
service 112 can send feedback on the validation dataset to 10
the dataset service to remove particular objects from the
validation dataset. The dataset service can then unmark the
specific items to be removed from the validation dataset.
When training 1s done active learming service 112 can
indicate to core engine 110 that 1t 1s ready for inference. 15

Core engine 110 can then instruct dataset service to send
unlabeled data to the active learning service. Dataset service
116 sends unlabeled data to the active learning service (or
data that 1s labeled below confidence score, or labeled data
that 1s to be relabeled, etc.). All or a portion of the remaining 20
unlabeled data can then be sent to the active learning service
112. The active learning service, as discussed, can output
two sets of data: labeled data with high confidence scores;
and labeled data with low confidence scores. The output
datasets are sent back to the dataset service 116 where the 25
labels can be added to the augmented manifest. The data
with low confidence score labels can be sampled and sent to
WIS 118 for additional manual annotating, and the process
can iterate until the input dataset has been completely
labeled. The dataset service can continue to update the 30
counters 1n the core engine as more data 1s streamed in or
made available.

In some embodiments, a user can prepare their data stored
in a customer data store and output a dataset of objects with
an augmented manifest. The customer data can be stored 1n 35
a variety of data formats. Such data can include wvideo,
image, multi-dimensional vectors, sentences, paragraphs,
human-generated labels, and other types of data. The data
can 1clude associations between data and labels. In some
embodiments, the data format can be CSV, JSON, or others. 40
Large pieces of data, such as images, can be stored as
individual objects 1n a storage service. Many small pieces of
data such as sentences in NLP applications may be stored
together 1n one object. The augmented manifest may be
organized such that each line of the manifest references a 45
different object 1n the dataset. Each line can be augmented
to include labels from each iteration of the active learning
loop. For example, each labeling job generates new labels
and metadata for data objects, such as bounding boxes for
images. The manifest can be updated to include these new 50
labels and metadata and then used as mput for another
labeling job and/or another iteration of a current labeling
10b.

In some embodiments, the labeling working can include
the customer performing ETL and/or data preparation on 55
their data 1n their datastore to create a dataset of objects and
a manifest. The customer places the manifest file and dataset
objects 1 a storage location 1n a storage service. The
customer can set up permissions to allow data access to the
data and manifest. In some embodiments, the customer can 60
provide credentials that provide, e.g., read access to the data
and the manifest 1n the data store. The customer can select
or filter their data to create the dataset with the manifest file
to be labeled. For example, a query may be executed using,
the manifest to 1dentily a subset of the dataset to be selected 65
(e.g., using a SELECT statement in SQL, or other filtering
condition). The customer starts the labeling job on the

12

selected dataset. The labeling job stores intermediate results,
such as job stats, annotations from human workers, labels,
worker states, and dataset object metadata, 1n a database or
other data store. After the labeling job 1s finished, dataset
objects and labels can be combined 1into a new output dataset
in an output storage location associated with the customer.
The intermediate job states are deleted when the labeling job
finishes. The customer can use the output dataset for another
labeling job, prep/transform dataset for training a machine
learning model, or store labels to any data store the customer
OWIS.

FIG. 5 shows an example augmented mamifest according,
to some embodiments. A record 500 includes named attri-
butes. Some attributes are metadata such as 1image size, or
labels such as “dog” “cat”. Other attributes are raw data
which needs labeling, such as an 1mage or sentences 1n NLP.
As shown 1n FIG. 3, attributes can be large, represented as
references to objects stored 1n a storage service, or small,
represented mline In some embodiments, attributes can be
complex JSON objects.

In some embodiments, a user can create a dataset without
using any E'TL tool to create a manifest first. A workflow can
crawl over a folder 1n the customer’s data store and look for
JPEG files, text files, or other file formats corresponding to
a supported data type. It extracts metadata automatically
from the files which conforms to a specific format. It
generates a dataset manifest in the customer’s data store at
a specified location.

In some embodiments, at the end of a labeling job, the
manifest can be updated by combining the input dataset and
labels generated by the job as a new dataset. The new dataset
(with new manifest file) 1s stored at a location specified 1n
the customer’s data store. In some embodiments, the mani-
fest of a new dataset may include only the delta (e.g., diff)
and a reference to the old dataset. In some embodiments,
labels of a dataset can be edited 1n the console.

In some embodiments, the dataset can be filtered using
queries on the augmented manifest file using common data
types such as string, number, dates, JSON. In some embodi-
ments, the queries may be filtering expressions similar to
WHERE clause in SQL.

Embodiments can track data lineage by tracking change
history of dataset and relationship between trained models
and dataset. Embodiments can also run a labeling job on a
random sampling of dataset. Customers may provide param-
cters to random sampling to have distinct sub-groups of data
samples. In some embodiments, labels may be hierarchical
(for example, person: boy, girl).

The manifest enables datasets to be streamed into the
active learning pipeline for labeling and live training. The
manifest does not require the user to separate out the data
source and label in separate files or data structures, as the
manifest can be augmented to include the labels in-line with
the data or a reference to the data. The dataset 1s also
designed so that the user does not have to define where
records begin or end using a specific preamble or post-script.
Instead, each record corresponds to one line of the manifest,
without requiring explicitly declared boundaries. For
example, a dataset may have been labeled with “object” or
“no object” indicating that a particular object either has been
detected or not detected 1n an 1image. The dataset may be
filtered to run an additional label job (e.g., to add a bounding
box, add additional labels, etc.) on just those pieces of data
in the dataset that include the label “object”.

FIG. 6 1s a diagram 1illustrating example application
programming 1nterfaces (APIs) 600 for active learning-
based data labeling according to some embodiments. As

US 11,443,232 Bl

13

shown 1n FIG. 6, the example APIs 600 may include a
CreateLabelinglob 602 command which may receive a
dataset URL or other i1dentifier, a dataset type (e.g., raw,
partially labeled, gold standard, etc.), a quality threshold,
and an annotation budget. The CreateLabelingJob command
can cause a new labeling project to be created and coordi-
nated by the core engine of the training dataset management
service. The API 600 may further include a DescribelLabel-
ingJob command 604 which may receive a customer ID and
return projects associated with that customer ID. The prog-
ects may include currently pending projects and/or com-
pleted projects. The API 600 may further include a ListLa-
belingJobsForWorkTeam command 606 which may return
all labeling jobs associated with a workteam identifier. In
some embodiments, the API 600 may further include a
ListLabelinglobs command 608 that may return objects
representing current labeling jobs (e.g., pending labeling
1obs). In some embodiments, the API 600 may further
include a StopLabelingJob command 610 that may receive
an 1dentifier associated with a labeling job and stops execu-
tion of the labeling job. In some embodiments, the API 600
may also include a start labeling job command that may
cause the core engine to start a labeling worktlow for a given
project.

In some embodiments, the API 600 may also include
vartous other commands, such as a GetWorktflowOutput
command, which can receive a wortlow ID and return the
output of the workflow including a training dataset and
labels (e.g., the labeled 1nput dataset for that worktlow) or a
trained model. The API 600 may also include a GetLabels-
ForDatasetObject command which receives an object ID and
returns all labels associated with that object. For example, an
image file ID (e.g., a file name or other i1dentifier) may be
received by this command and all labels for that image may
be returned. Similarly, a GetDatasetObjectsiorLLabel com-
mand can receive a label and return a list of all objects 1n the
dataset that are associated with that specific label.

FIG. 7 1s a flow diagram illustrating operations of a
method 700 for active learning-based data labeling accord-
ing to some embodiments. Some or all of the operations 700
(or other processes described herein, or variations, and/or

combinations thereol) are performed under the control of

one or more computer systems configured with executable
instructions and are implemented as code (e.g., executable
instructions, one or more computer programs, Or one or
more applications) executing collectively on one or more
processors, by hardware or combinations thereof. The code
1s stored on a computer-readable storage medium, for
example, in the form of a computer program comprising
instructions executable by one or more processors. The
computer-readable storage medium 1s non-transitory. In
some embodiments, one or more (or all) of the operations
700 are performed by data labeling service 108 of the other
figures.

The operations 700 include, at block 702, obtaining a
plurality of objects using a reference to a data store. In some
embodiments, receiving a reference can include receiving
credentials to read the plurality of objects and the augmented
manifest. The operations 700 include, at block 704, obtain-
ing an augmented manifest for the plurality of objects, each
object corresponding to a separate line in the augmented
manifest. In some embodiments, the plurality of objects
include a reference to at least one of a video, an 1mage, a
multi-dimensional vector, text data, or a human-generated
label. In some embodiments, obtaining an augmented mani-
test for the plurality of objects, each object corresponding to
a separate line i the augmented manifest further comprises:

10

15

20

25

30

35

40

45

50

55

60

65

14

reading the augmented manifest from the data store, and
indexing each line of the augmented manifest.

The operations 700 include, at block 706, identifying a
subset of the plurality of objects to be labeled. In some
embodiments, obtaining the augmented manifest may
include identifying a plurality of files of a data type 1n the
data store, the plurality of files associated with the plurality
ol objects, extracting metadata from the plurality of files,
and generating the augmented manifest 1in the data store
based on the metadata. In some embodiments, identifying a
subset of the plurality of objects to be labeled further
comprises executing a query on the augmented manifest to
identify the subset, wherein the query includes a filtering
condition executed on the augmented manifest to filter the
plurality of objects. In some embodiments, identifying a
subset of the plurality of objects to be labeled turther
comprises randomly sampling the plurality of objects using
a large dataset sampling technique.

The operations 700 include, at block 708, executing a
labeling job on the subset of the plurality of objects, the
labeling job 1dentifying a plurality of labels associated with
the subset of the plurality of objects. In some embodiments,
the query includes a select statement executed on the aug-
mented manifest to filter the plurality of objects.

The operations 700 include, at block 710, updating the
augmented manifest based on the plurality of labels 1denti-
fied 1n the labeling job, each label added to a line of the
augmented manifest that 1s associated with an object from
the subset of the plurality of objects corresponding to the
label, the augmented manifest to be used as mput to a second
labeling job. In some embodiments, each object 1s defined 1n
the augmented manifest without using a preamble or post-
script to define boundaries of the object 1n the augmented
manifest. In some embodiments, updating the augmented
manifest based on the plurality of labels identified 1n the
labeling job, further comprises identifying a line of the
augmented manifest corresponding to a first label from the
plurality of labels, and writing the first label to the line of the
augmented manifest using the byte oflset indexed for that
line.

In some embodiments, the operations may turther include
storing intermediate results of the labeling job, the interme-
diate results including at least one of job statistics, annota-
tions obtained during the labeling job, labels, worker states,
or object metadata. In some embodiments, the operations
may further include combining the plurality of objects and
the plurality of labels into a new output dataset, and storing
the new output dataset and a new augmented manifest in an
output data store. In some embodiments, the new augmented
manifest includes changes corresponding to the labeling job
and a reference to the plurality of objects.

In some embodiments, the operations may include recerv-
ing a reference to a data store and credentials to access the
data store, 1dentifying text data 1n the data store, the text data
including a plurality of objects, obtaining an augmented
manifest for the text data, each object from the plurality of
objects corresponding to a separate line 1n the augmented
manifest, executing a labeling job on a subset of the plurality
of objects, the subset of the plurality of objects 1identified by
running a query on the augmented manifest, the labeling job
identifying a plurality of labels associated with the subset of
the plurality of objects, adding the plurality of labels to the
augmented manifest to generate a new augmented manifest,
cach label added in-line with its corresponding object, the
augmented manifest to be used as input to a second labeling
job, and storing an output dataset and the new augmented
manifest 1n an output data store.

US 11,443,232 Bl

15

FIG. 8 illustrates an example provider network (or *“ser-
vice provider system”) environment according to some
embodiments. A provider network 800 may provide resource
virtualization to customers via one or more virtualization
services 810 that allow customers to purchase, rent, or
otherwise obtain instances 812 of wvirtualized resources,
including but not limited to computation and storage
resources, implemented on devices within the provider net-
work or networks 1n one or more data centers. Local Internet
Protocol (IP) addresses 816 may be associated with the
resource 1instances 812; the local IP addresses are the internal
network addresses of the resource instances 812 on the
provider network 800. In some embodiments, the provider
network 800 may also provide public IP addresses 814
and/or public IP address ranges (e.g., Internet Protocol
version 4 (IPv4) or Internet Protocol version 8 (IPv6)
addresses) that customers may obtain from the provider 800.

Conventionally, the provider network 800, via the virtu-
alization services 810, may allow a customer of the service
provider (e.g., a customer that operates one or more client
networks 850A-850C including one or more customer
device(s) 852) to dynamically associate at least some public
IP addresses 814 assigned or allocated to the customer with
particular resource mstances 812 assigned to the customer.
The provider network 800 may also allow the customer to
remap a public IP address 814, previously mapped to one
virtualized computing resource mstance 812 allocated to the
customer, to another wvirtualized computing resource
instance 812 that 1s also allocated to the customer. Using the
virtualized computing resource mstances 812 and public IP
addresses 814 provided by the service provider, a customer
of the service provider such as the operator of customer
network(s) 850A-850C may, for example, implement cus-
tomer-specific applications and present the customer’s appli-
cations on an intermediate network 840, such as the Internet.
Other network entities 820 on the intermediate network 840
may then generate traflic to a destination public IP address
814 pubhshed by the customer network(s) 850A-850C; the
traflic 1s routed to the service provider data center, and at the
data center 1s routed, via a network substrate, to the local 1P
address 816 of the virtualized computing resource instance
812 currently mapped to the destination public IP address
814. Similarly, response traflic from the virtualized comput-
ing resource mnstance 812 may be routed via the network
substrate back onto the intermediate network 840 to the
source entity 820.

Local IP addresses, as used herein, refer to the internal or
“private” network addresses, for example, of resource
instances 1 a provider network. Local IP addresses can be
within address blocks reserved by Internet Engineering Task
Force (IETF) Request for Comments (RFC) 1918 and/or of
an address format specified by IETF RFC 4193, and may be
mutable within the provider network. Network traflic origi-
nating outside the provider network 1s not directly routed to
local IP addresses; instead, the ftraflic uses public IP
addresses that are mapped to the local IP addresses of the
resource instances. The provider network may include net-
working devices or appliances that provide network address
translation (NAT) or similar functionality to perform the
mapping from public IP addresses to local IP addresses and
vICEe versa.

Public IP addresses are Internet mutable network
addresses that are assigned to resource instances, either by
the service provider or by the customer. Traflic routed to a
public IP address is translated, for example via 1:1 NAT, and
torwarded to the respective local IP address of a resource
instance.

10

15

20

25

30

35

40

45

50

55

60

65

16

Some public IP addresses may be assigned by the provider
network infrastructure to particular resource instances; these
public IP addresses may be referred to as standard public IP
addresses, or simply standard IP addresses. In some embodi-
ments, the mapping of a standard IP address to a local IP
address of a resource instance 1s the default launch configu-
ration for all resource instance types.

At least some public IP addresses may be allocated to or
obtained by customers of the provider network 800; a
customer may then assign their allocated public IP addresses
to particular resource instances allocated to the customer.
These public IP addresses may be referred to as customer
public IP addresses, or simply customer IP addresses.
Instead of being assigned by the provider network 800 to
resource instances as in the case of standard IP addresses,
customer IP addresses may be assigned to resource instances
by the customers, for example via an API provided by the
service provider. Unlike standard IP addresses, customer IP
addresses are allocated to customer accounts and can be
remapped to other resource instances by the respective
customers as necessary or desired. A customer IP address 1s
associated with a customer’s account, not a particular
resource instance, and the customer controls that IP address
until the customer chooses to release 1t. Unlike conventional
static IP addresses, customer IP addresses allow the cus-
tomer to mask resource instance or availability zone failures
by remapping the customer’s public IP addresses to any
resource 1nstance associated with the customer’s account.
The customer IP addresses, for example, enable a customer
to engineer around problems with the customer’s resource
instances or software by remapping customer IP addresses to
replacement resource 1nstances.

FIG. 9 1s a block diagram of an example provider network
that provides a storage service and a hardware virtualization
service to customers, according to some embodiments.
Hardware virtualization service 920 provides multiple com-
putation resources 924 (e.g., VMs) to customers. The com-
putation resources 924 may, for example, be rented or leased
to customers of the provider network 900 (e.g., to a customer
that implements customer network 950). Each computation
resource 924 may be provided with one or more local IP
addresses. Provider network 900 may be configured to route
packets from the local IP addresses of the computation
resources 924 to public Internet destinations, and from
public Internet sources to the local IP addresses of compu-
tation resources 924.

Provider network 900 may provide a customer network
950, for example coupled to mtermediate network 940 via
local network 956, the ability to implement virtual comput-
ing systems 992 via hardware virtualization service 920
coupled to intermediate network 940 and to provider net-
work 900. In some embodiments, hardware virtualization
service 920 may provide one or more APIs 902, for example
a web services interface, via which a customer network 950
may access functionality provided by the hardware virtual-
1zation service 920, for example via a console 994 (e.g., a
web-based application, standalone application, mobile
application, etc.). In some embodiments, at the provider
network 900, each virtual computing system 992 at cus-
tomer network 950 may correspond to a computation
resource 924 that is leased, rented, or otherwise provided to
customer network 9350.

From an instance of a virtual computing system 992
and/or another customer device 990 (e.g., via console 994),
the customer may access the functionality of storage service
910, for example via one or more APIs 902, to access data
from and store data to storage resources 918A-918N of a

US 11,443,232 Bl

17

virtual data store 916 (e.g., a folder or “bucket”, a virtualized
volume, a database, etc.) provided by the provider network
900. In some embodiments, a virtualized data store gateway
(not shown) may be provided at the customer network 950
that may locally cache at least some data, for example
frequently-accessed or critical data, and that may commu-
nicate with storage service 910 via one or more communi-
cations channels to upload new or modified data from a local
cache so that the primary store of data (virtualized data store
916) 1s maintained. In some embodiments, a user, via a
virtual computing system 992 and/or on another customer
device 990, may mount and access virtual data store 916
volumes via storage service 910 acting as a storage virtu-
alization service, and these volumes may appear to the user
as local (virtualized) storage 998.

While not shown 1n FIG. 9, the virtualization service(s)
may also be accessed from resource instances within the
provider network 900 wvia API(s) 902. For example, a
customer, appliance service provider, or other entity may
access a virtualization service from within a respective
virtual network on the provider network 900 via an API 902
to request allocation of one or more resource instances
within the virtual network or within another virtual network.
[llustrative System

In some embodiments, a system that implements a portion
or all of the techmiques for active learning-based data
labeling as described herein may include a general-purpose
computer system that includes or 1s configured to access one
or more computer-accessible media, such as computer sys-
tem 1000 illustrated 1n FIG. 10. In the illustrated embodi-
ment, computer system 1000 includes one or more proces-
sors 1010 coupled to a system memory 1020 via an input/
output (I/O) interface 1030. Computer system 1000 further
includes a network interface 1040 coupled to 1I/O interface
1030. While FIG. 10 shows computer system 1000 as a
single computing device, i various embodiments a com-
puter system 1000 may include one computing device or any
number of computing devices configured to work together as
a single computer system 1000.

In various embodiments, computer system 1000 may be a
uniprocessor system including one processor 1010, or a
multiprocessor system including several processors 1010
(e.g., two, four, eight, or another suitable number). Proces-
sors 1010 may be any suitable processors capable of execut-
ing instructions. For example, in various embodiments,
processors 1010 may be general-purpose or embedded pro-
cessors 1implementing any ol a variety of instruction set
architectures (ISAs), such as the x86, ARM, PowerPC,
SPARC, or MIPS ISAs, or any other suitable ISA. In
multiprocessor systems, each of processors 1010 may com-
monly, but not necessarily, implement the same ISA.

System memory 1020 may store instructions and data
accessible by processor(s) 1010. In various embodiments,
system memory 1020 may be implemented using any suit-
able memory technology, such as random-access memory
(RAM), static RAM (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other
type of memory. In the illustrated embodiment, program
instructions and data implementing one or more desired
functions, such as those methods, techniques, and data
described above are shown stored within system memory
1020 as code 1025 and data 1026.

In one embodiment, I/O nterface 1030 may be configured
to coordinate I/O traflic between processor 1010, system
memory 1020, and any peripheral devices in the device,
including network interface 1040 or other peripheral inter-
faces. In some embodiments, I/0O nterface 1030 may per-

10

15

20

25

30

35

40

45

50

55

60

65

18

form any necessary protocol, timing or other data transior-
mations to convert data signals from one component (e.g.,
system memory 1020) mto a format suitable for use by
another component (e.g., processor 1010). In some embodi-
ments, 1/0 mterface 1030 may include support for devices
attached through various types of peripheral buses, such as
a variant of the Peripheral Component Interconnect (PCI)
bus standard or the Umversal Serial Bus (USB) standard, for
example. In some embodiments, the function of I/O inter-
face 1030 may be split into two or more separate compo-
nents, such as a north bridge and a south bridge, for example.
Also, 1n some embodiments some or all of the functionality
of I/O interface 1030, such as an mterface to system memory
1020, may be incorporated directly into processor 1010.

Network interface 1040 may be configured to allow data
to be exchanged between computer system 1000 and other
devices 1060 attached to a network or networks 1050, such
as other computer systems or devices as 1illustrated 1n FIG.
1, for example. In various embodiments, network interface
1040 may support communication via any suitable wired or
wireless general data networks, such as types of Ethernet
network, for example. Additionally, network interface 1040
may support communication via telecommunications/tele-
phony networks such as analog voice networks or digital
fiber communications networks, via storage area networks
(SANSs) such as Fibre Channel SANs, or via I/O any other
suitable type of network and/or protocol.

In some embodiments, a computer system 1000 includes
one or more oflload cards 1070 (including one or more
processors 1075, and possibly including the one or more
network interfaces 1040) that are connected using an 1/O
interface 1030 (e.g., a bus implementing a version of the
Peripheral Component Interconnect-Express (PCI-E) stan-
dard, or another interconnect such as a QuickPath intercon-
nect (QPI) or UltraPath interconnect (UPI)). For example, in
some embodiments the computer system 1000 may act as a
host electronic device (e.g., operating as part of a hardware
virtualization service) that hosts compute 1nstances, and the
one or more oifload cards 1070 execute a virtualization
manager that can manage compute instances that execute on
the host electronic device. As an example, 1n some embodi-
ments the offload card(s) 1070 can perform compute
instance management operations such as pausing and/or
un-pausing compute mstances, launching and/or terminating
compute instances, performing memory transier/copying
operations, etc. These management operations may, 1n some
embodiments, be performed by the offload card(s) 1070 1n
coordination with a hypervisor (e.g., upon a request from a
hypervisor) that 1s executed by the other processors 1010A -
1010N of the computer system 1000. However, 1n some
embodiments the virtualization manager implemented by
the offload card(s) 1070 can accommodate requests from
other entities (e.g., from compute instances themselves), and
may not coordinate with (or service) any separate hypervi-
SOF.

In some embodiments, system memory 1020 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described above.
However, 1n other embodiments, program instructions and/
or data may be received, sent or stored upon different types
of computer-accessible media. Generally speaking, a com-
puter-accessible medium may include non-transitory storage
media or memory media such as magnetic or optical media,
e.g., disk or DVD/CD coupled to computer system 1000 via
I/O interface 1030. A non-transitory computer-accessible
storage medium may also include any volatile or non-

volatile media such as RAM (e.g., SDRAM, double data rate

US 11,443,232 Bl

19

(DDR) SDRAM, SRAM, etc.), read only memory (ROM),
etc., that may be included 1n some embodiments of computer
system 1000 as system memory 1020 or another type of
memory. Further, a computer-accessible medium may
include transmission media or signals such as electrical,
clectromagnetic, or digital signals, conveyed via a commu-
nication medium such as a network and/or a wireless link,
such as may be implemented via network interface 1040.

Various embodiments discussed or suggested herein can
be mmplemented 1n a wide variety of operating environ-
ments, which 1n some cases can include one or more user
computers, computing devices, or processing devices which
can be used to operate any of a number of applications. User
or client devices can include any of a number of general
purpose personal computers, such as desktop or laptop
computers running a standard operating system, as well as
cellular, wireless, and handheld devices running mobile
software and capable of supporting a number of networking
and messaging protocols. Such a system also can include a
number ol workstations running any of a variety of com-
mercially-available operating systems and other known
applications for purposes such as development and database
management. These devices also can include other elec-
tronic devices, such as dummy terminals, thin-clients, gam-
ing systems, and/or other devices capable of communicating
via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled 1n the art for supporting com-
munications using any of a variety of commercially-avail-
able protocols, such as Transmission Control Protocol/In-

ternet Protocol (TCP/IP), File Transfer Protocol (FTP),
Universal Plug and Play (UPnP), Network File System
(NFS), Common Internet File System (CIFS), Extensible
Messaging and Presence Protocol (XMPP), AppleTalk, etc.
The network(s) can include, for example, a local area
network (LAN), a wide-area network (WAN), a wvirtual
private network (VPN), the Internet, an intranet, an extranet,
a public switched telephone network (PSTN), an infrared
network, a wireless network, and any combination thereof.

In embodiments utilizing a web server, the web server can
run any ol a variety of server or mid-tier applications,
including HTTP servers, File Transier Protocol (FTP) serv-
ers, Common Gateway Interface (CGI) servers, data servers,
Java servers, business application servers, etc. The server(s)
also may be capable of executing programs or scripts 1n
response requests from user devices, such as by executing
one or more Web applications that may be implemented as
one or more scripts or programs written 1n any programming
language, such as Java®, C, C# or C++, or any scripting
language, such as Perl, Python, PHP, or TCL, as well as
combinations thereof. The server(s) may also include data-
base servers, imncluding without limitation those commer-
cially available from Oracle®, Microsoft®, Sybase®,
IBM®, etc. The database servers may be relational or
non-relational (e.g., “NoSQL”), distributed or non-distrib-
uted, etc.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside 1n a variety of locations, such as on a storage
medium local to (and/or resident 1n) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the nfor-
mation may reside 1n a storage-area network (SAN) familiar
to those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, serv-
ers, or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-

10

15

20

25

30

35

40

45

50

55

60

65

20

erized devices, each such device can include hardware
clements that may be electrically coupled via a bus, the
clements including, for example, at least one central pro-
cessing unmt (CPU), at least one 1nput device (e.g., a mouse,
keyboard, controller, touch screen, or keypad), and/or at
least one output device (e.g., a display device, printer, or
speaker). Such a system may also include one or more
storage devices, such as disk drives, optical storage devices,
and solid-state storage devices such as random-access
memory (RAM) or read-only memory (ROM), as well as
removable media devices, memory cards, flash cards, eftc.

Such devices also can include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device, etc.), and working memory as described
above. The computer-readable storage media reader can be
connected with, or configured to receive, a computer-read-
able storage medium, representing remote, local, fixed,
and/or removable storage devices as well as storage media
for temporarily and/or more permanently containing, stor-
ing, transmitting, and retrieving computer-readable informa-
tion. The system and various devices also typically will
include a number of software applications, modules, ser-
vices, or other elements located within at least one working,
memory device, including an operating system and appli-
cation programs, such as a client application or web browser.
It should be appreciated that alternate embodiments may
have numerous variations from that described above. For
example, customized hardware might also be used and/or
particular elements might be implemented in hardware,
software (including portable software, such as applets), or
both. Further, connection to other computing devices such as
network mput/output devices may be employed.

Storage media and computer readable media for contain-
ing code, or portions ol code, can include any appropriate
media known or used 1n the art, including storage media and
communication media, such as but not limited to volatile and
non-volatile, removable and non-removable media 1mple-
mented 1 any method or technology for storage and/or
transmission of information such as computer readable
instructions, data structures, program modules, or other data,
including RAM, ROM, Electrically Erasable Programmable
Read-Only Memory (EEPROM), tlash memory or other
memory technology, Compact Disc-Read Only Memory
(CD-ROM), Dagital Versatile Disk (DVD) or other optical
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by a system device. Based on the
disclosure and teachings provided herein, a person of ordi-
nary skill in the art will appreciate other ways and/or
methods to implement the various embodiments.

In the preceding description, various embodiments are
described. For purposes of explanation, specific configura-
tions and details are set forth 1n order to provide a thorough
understanding of the embodiments. However, 1t will also be
apparent to one skilled 1n the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified 1n order not to
obscure the embodiment being described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) are used herein to
illustrate optional operations that add additional features to
some embodiments. However, such notation should not be
taken to mean that these are the only options or optional
operations, and/or that blocks with solid borders are not
optional 1n certain embodiments.

US 11,443,232 Bl

21

Reference numerals with suflix letters may be used to
indicate that there can be one or multiple instances of the
referenced entity 1n various embodiments, and when there
are multiple instances, each does not need to be 1dentical but
may 1instead share some general traits or act in common
ways. Further, the particular suflixes used are not meant to
imply that a particular amount of the entity exists unless
specifically indicated to the contrary. Thus, two entities
using the same or different sutlix letters may or may not have
the same number of instances 1n various embodiments.

References to “one embodiment,” “an embodiment,” “an
example embodiment,” etc., indicate that the embodiment
described may include a particular feature, structure, or
characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic.
Moreover, such phrases are not necessarily referring to the
same embodiment. Further, when a particular feature, struc-
ture, or characteristic 1s described 1n connection with an
embodiment, 1t 1s submitted that 1t 1s within the knowledge
of one skilled in the art to afect such feature, structure, or
characteristic 1n connection with other embodiments
whether or not explicitly described.

Moreover, 1n the various embodiments described above,
unless specifically noted otherwise, disjunctive language
such as the phrase “at least one of A, B, or C” 1s intended to
be understood to mean either A, B, or C, or any combination
thereot (e.g., A, B, and/or C). As such, disjunctive language
1s not intended to, nor should it be understood to, imply that
a given embodiment requires at least one of A, at least one
of B, or at least one of C to each be present.

The specification and drawings are, accordingly, to be
regarded 1n an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the disclosure as set forth in the
claims.

What 1s claimed 1s:

1. A computer-implemented method comprising:

receiving a reference to a data store and credentials to

access the data store;

receiving text data from the data store, the text data

including a plurality of objects;
receiving an augmented manifest for the text data, each
object from the plurality of objects corresponding to a
separate line 1n the augmented manifest, by:
receiving a plurality of files of a data type from the data
store, the plurality of files associated with the plu-
rality of objects;
extracting metadata from the plurality of files; and
generating the augmented mamifest 1n the data store
based on the metadata;
executing a labeling job on a subset of the plurality of
objects, the subset of the plurality of objects 1dentified
by running a query on the augmented manifest, the
labeling job 1dentifying a plurality of labels associated
with the subset of the plurality of objects;
adding the plurality of labels to the augmented manifest to
generate a new augmented manifest, each label added
in-line with 1ts corresponding object, the augmented
manifest to be used as mput to a second labeling job;

storing an output dataset and the new augmented manifest
in an output data store; and

incrementally training an active learning service model

using the output dataset, wherein the active learming
service 1ncludes a validation dataset, and sends feed-
back on the validation dataset to a dataset service to
remove particular objects from the validation dataset.

10

15

20

25

30

35

40

45

50

55

60

65

22

2. The computer-implemented method of claim 1,
wherein the new augmented manifest includes the plurality
ol labels associated with the labeling job and a reference to
the plurality of objects 1n the output data store.

3. The computer-implemented method of claim 1,
wherein each object from the plurality of objects 1s defined
in the augmented manifest without using a preamble or
post-script to define boundaries of the object 1n the aug-
mented manifest.

4. A computer-implemented method comprising:

recerving a plurality of objects using a reference to a data

store;
recerving an augmented manifest for the plurality of
objects, each object from the plurality of objects cor-
responding to a separate line 1n the augmented mani-
fest, by:
receiving a plurality of files of a data type 1n the data
store, the plurality of files associated with the plu-
rality of objects;
extracting metadata from the plurality of files; and
generating the augmented manifest 1n the data store
based on the metadata:
receiving a subset of the plurality of objects to be labeled;
executing a labeling job on the subset of the plurality of
objects, the labeling job 1dentifying a plurality of labels
associated with the subset of the plurality of objects and
generating a labeled subset of the plurality of objects;

updating the augmented manifest based on the plurality of
labels 1dentified 1n the labeling job, each label added to
a line of the augmented manifest that 1s associated with
an object from the subset of the plurality of objects
corresponding to the label, the augmented manifest to
be used as mput to a second labeling job; and

incrementally training an active learming service model
using the labeled subset of the plurality of objects,
wherein the active learming service includes a valida-
tion dataset, and sends feedback on the wvalidation
dataset to a dataset service to remove particular objects
from the validation dataset.

5. The computer-implemented method of claim 4,
wherein receiving a reference to a data store further com-
Prises:

recerving credentials to read the plurality of objects and

the augmented manifest, wherein the obtaining of the
augmented manifest 1s based on use of the credentials.

6. The computer-implemented method of claim 4,
wherein recerving a subset of the plurality of objects to be
labeled turther comprises:

executing a query on the augmented manifest to identily

the subset, wherein the query includes a filtering con-
dition executed on the augmented manifest to filter the
plurality of objects.

7. The computer-implemented method of claim 4,
wherein receiving a subset of the plurality of objects to be
labeled further comprises:

randomly sampling the plurality of objects using a large

dataset sampling technique.

8. The computer-implemented method of claim 7, further
comprising;

combining the plurality of objects and the plurality of

labels mto a new output dataset; and

storing the new output dataset and a new augmented

manifest 1 an output data store.

9. The computer-implemented method of claim 4, further
comprising imndexing each line of the augmented manifest.

US 11,443,232 Bl

23

10. The computer-implemented method of claim 9,
wherein updating the augmented manifest based on the
plurality of labels identified i1n the labeling job, further
COmMprises:

identifying a line of the augmented manifest correspond-
ing to a first label from the plurality of labels; and

writing the first label to the line of the augmented manifest
corresponding to the first label using a byte offset
indexed for the line of the augmented manifest corre-
sponding to the first label.

11. The computer-implemented method of claim 4,
wherein each object from the plurality of objects 1s defined
in the augmented manifest without using a preamble or
post-script to define boundaries of the object 1n the aug-
mented manifest.

12. The computer-implemented method of claim 4,
wherein the plurality of objects includes a reference to at
least one of a video, an 1mage, a multi-dimensional vector,
text data, or a human-generated label.

13. A system comprising:

a data labeling service implemented by a second one or
more e¢lectronic devices, the data labeling service
including instructions that upon execution cause the
data labeling service to:
receive a plurality of objects using a reference to a data

store;
receive an augmented manifest for the plurality of
objects, each object from the plurality of objects
corresponding to a separate line in the augmented
manifest, by:
recerving a plurality of files of a data type from the
data store, the plurality of files associated with the
plurality of objects;
extracting metadata from the plurality of files; and
generating the augmented manifest 1n the data store
based on the metadata;
receive a subset of the plurality of objects to be labeled;
execute a labeling job on the subset of the plurality of
objects, the labeling job identifying a plurality of
labels associated with the subset of the plurality of
objects and generating a labeled subset of the plu-
rality of objects;
update the augmented manifest based on the plurality
of labels identified in the labeling job, each label
added to a line of the augmented manifest that 1s
assoclated with an object from the subset of the
plurality of objects corresponding to the label, the
augmented manifest to be used as mput to a second
labeling job; and

10

15

20

25

30

35

40

45

24

incrementally train an active learning service model
using the labeled subset of the plurality of objects,
wherein the active learning service includes a vali-
dation dataset, and sends feedback on the validation
dataset to a dataset service to remove particular
objects from the validation dataset.

14. The system of claim 13, wherein to wherein a subset
of the plurality of objects to be labeled, the instructions,
when executed, further cause the data labeling service to:

execute a query on the augmented manifest to identity the
subset, wherein the query includes a filtering condition

executed on the augmented manifest to filter the plu-
rality of objects.

15. The system of claim 13, wherein to receive a subset
of the plurality of objects to be labeled, the instructions,
when executed, further cause the data labeling service to:

randomly sample the plurality of objects using a large
dataset sampling technique.

16. The system of claim 15, wherein the instructions,
when executed, further cause the data labeling service to:

combine the plurality of objects and the plurality of labels
into a new output dataset; and

store the new output dataset and a new augmented mani-
fest 1n an output data store.

17. The system of claim 13, wherein the instructions,
when executed, further cause the data labeling service to:
index each line of the augmented manifest.

18. The system of claim 17, wherein to update the
augmented manifest based on the plurality of labels 1dent-
fied 1n the labeling job, the istructions, when executed,
further cause the data labeling service to:

identily a line of the augmented manifest corresponding,
to a first label from the plurality of labels; and

write the first label to the line of the augmented manifest
corresponding to the first label using a byte offset
indexed for the line of the augmented manifest corre-
sponding to the first label.

19. The system of claim 13, wherein each object from the
plurality of objects 1s defined 1n the augmented manifest
without using a preamble or post-script to define boundaries
of the object 1n the augmented manifest.

20. The system of claim 13, wherein the plurality of
objects includes a reference to at least one of a video, an
image, a multi-dimensional vector, text data, or a human-
generated label.

	Front Page
	Drawings
	Specification
	Claims

