12 United States Patent

US0114356045B2

(10) Patent No.: US 11,436,045 B2

Agarwal et al. 45) Date of Patent: Sep. 6, 2022
(54) REDUCTION OF A NUMBER OF STAGES OF (52) U.S. CL.
A GRAPH STREAMING PROCESSOR CPC ... GO6F 9/4881 (2013.01); GO6F 9/3851

(71) Applicant: ThinCI, Inc., El Dorado Hills, CA (US)

(72) Inventors: Lokesh Agarwal, Hyderabad (IN);
Sarvendra Govindammagari,
Hyderabad (IN); Venkata Ganapathi

Puppala, Hyderabad (IN); Satyaki
Koneru, Folsom, CA (US)

(73) Assignee: Blaize, Inc., El Dorado Hills, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

(21) Appl. No.: 16/398,567
(22) Filed: Apr. 30, 2019

(65) Prior Publication Data
US 2019/0258512 Al Aug. 22, 2019

Related U.S. Application Data

(63) Continuation-in-part of application No. 16/270,766,

filed on Feb. 8, 2019, now Pat. No. 11,150,961, which
1s a continuation-in-part of application No.
15/164,848, filed on May 25, 2016, now Pat. No.

10,437,637.

(60) Provisional application No. 62/166,507, filed on May

(2013.01); GO6F 9/3885 (2013.01); GO6F
169024 (2019.01); GO6T 1/20 (2013.01)

(58) Field of Classification Search
CPC GO6F 9/4881; GO6F 9/3851; GO6F 9/3883;
GO6F 16/9024; GO6T 1/20; GO6T 15/005
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,140,019 B2 11/2006 May et al.

7,856,544 B2 12/2010 Schenfeld et al.

8,094,158 Bl 1/2012 Allen et al.

8,291,006 B2 10/2012 Andrade et al.

9,032,165 B1* 5/2015 Brooker GO6F 13/10

711/154
9,367,658 B2 6/2016 Pell et al.

(Continued)

Primary Examiner — Jennifer Mehmood
Assistant Examiner — Donna J. Ricks
(74) Attorney, Agent, or Firm — Brian R. Short

(57) ABSTRACT

Methods, systems and apparatuses for graph streaming
processing system are disclosed. One system includes a
plurality of graph streaming processors operative to process
a plurality of threads, wherein the plurality of threads 1is
organized as nodes. The system further includes a scheduler
that includes a plurality of stages. Each stage includes a
command parser operative to interpret commands within a
corresponding mput command butler, an alternate command
bufler, and a thread generator coupled to the command

26, 2015. parser. The thread generator 1s operative to generate the
S Tut. Cl plurality of threads, and dispatch the plurality of threads,
(51) Int. CI. H where the processing ot the plurality of thread tor each stage
GO6F 9/48 (2006'();) includes storing write commands 1n the corresponding out-
Goor 16/901 (2019.01) put command buffer or in the alternate command bufler.
GOoF 9/38 (2018.01)
GOo6T 1720 (2006.01) 20 Claims, 8 Drawing Sheets
Inpnt Command Buffer
411 RP l
! Butt
R i [1
l Write Commanis o |
'I'l:uu&fﬂ:hudulﬂ
L |
L4
Crutput Buffer Allocator and Intializer
433
Thread
Processor(s)
1030
Y
Outpat Command Buffer
Wﬂtan:;IUDdﬂtﬂ
Stage 410
| WP Oul;l:lutCunm:n:IEuE'u _. Write Commands to Output Fuffer

US 11,436,045 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
9,639,589 B1* 5/2017 Themmer GO6F 11/3006
10,423,558 Bl 9/2019 Fukamu et al.
2005/0060518 Al 3/2005 Augsburg et al.
2006/0149938 Al 7/2006 Jiang et al.
2011/0072211 Al 3/2011 Duluk, Jr. et al.
2011/0072245 Al1* 3/2011 Duluk, Jr. GO6F 9/461
712/220
2011/0087864 Al 4/2011 Duluk, Jr. et al.
2011/0289507 Al 11/2011 Khan et al.
2013/0013898 Al 1/2013 Merten et al.
2013/0036409 Al 2/2013 Auerbach et al.
2013/0212341 Al 8/2013 Tardif et al.
2013/0305258 Al 11/2013 Durant
2014/0082118 Al1* 3/2014 Chan HO4L 49/9094
709/212
2014/0130023 Al 5/2014 Chen et al.
2014/0176588 Al 6/2014 Dulak, Jr. et al.
2014/0181806 Al 6/2014 Abiezzi et al.
2014/0208074 Al1* 7/2014 Babayan GOG6F 9/3838
712/206
2014/0282601 Al 9/2014 Abdallah et al.
2015/0205590 Al1* 7/2015 Sabne GOOF 8/456
717/149
2015/0347509 Al1l* 12/2015 Ahmed GO6F 9/5033
707/718
2016/0246599 Al 8/2016 Johnson
2016/0291982 Al 10/2016 Mizrahi et al.
2017/0329643 Al* 11/2017 Wangoooovnn.e. GO6F 9/505
2018/0300933 Al 10/2018 Burke et al.
2018/0308195 A1 10/2018 Vembu et al.

* cited by examiner

U.S. Patent Sep. 6, 2022 Sheet 1 of 8 US 11,436,045 B2

Complex
Dependent
Graph

100

120

FIGURE 1

U.S.

\/

US 11,436,045 B2

Patent Sep. 6, 2022 Sheet 2 of 8
Node 1
Stage 1 (single thread)
Node 2
Node 4
Stage 2
Node 3
Node 5
Stage 3 (five threads)
Node 6
Stage 4 (three threads)
Node 7
single thread
Stage 5 (sing)
Time
(Time Sequence of
Stages)

FIGURE 2

U.S. Patent

Sep. 6, 2022

Sheet 3 of 8

US 11,436,045 B2

GSP 310

Thread Manager

320

Command Buffer
311

| Stage 312
v gC 214

T2 T1 TO (Threads for execution on the thread processors)

Data Buffers
360

313
A
Alternate Command -
Buffer 311
- T1
12
kP
Conmmand Buffer |
314
Stage 315
 / g 21D
-

T0 Spawned Write Command
(Mode 2 Nodes) — sequence
Of nodes merged into

A smgle stage

31

!

Alternate Command
Buffer 317

A RIFA AR IR R R e

T2 T1 Spawned
Write Command
Mode 1 Nodes

Thread Processor(s)
330

FIGURE 3

U.S. Patent Sep. 6, 2022 Sheet 4 of 8 US 11,436,045 B2

Inﬁmt Command Buffer
411 |

Y Data

___ Buffers
Command Parser Alternate Command 1060

421 - I Buffer422 @

A

Wrte Commands to |
Alternate Buffer

Y

Thread Generator
423

Thread Scheduler
435 |

1
1
1
1
1
1
1
]
R - v - ;
1 1
1
1
1
1

Output Buffer Allocator and Intializer
| 42>

Thread

Processor(s)
1030

Y

Output Command Buffer | }
Write Pointer Update |
429

Stage 410 |

Y
WP Output Command Buffer L Write Commands to Output Buffer
E

412

——

|

FIGURE 4

U.S. Patent Sep. 6, 2022 Sheet 5 of 8 US 11,436,045 B2

—_————

Nodes
Stage O Node1 Merged
503 into single
\ Stage
S 5&5

FIGURE 5

U.S. Patent Sep. 6, 2022 Sheet 6 of 8 US 11,436,045 B2

Root Node
e
Stage 1 601 |
hﬁ\ﬁ; e %ﬂ\ ﬁﬁﬁﬁﬁﬁ h ~
Pt \ww
Nodes
Stage 2 (Merged 503 Merged 504
Nodes) Into single Master
Master Stage Node E
| Node 692 |
Stage 2 (Merged / |
Nodes) 605

N

Stage 3 (Mode 1), 607

Master

I
f
[
t
[
r
!
e t
t
f
Node r
f
.f
£
g t
£
3
i
{
i
7
i
4

Nodes Merged
Into single Stage
694

o
Stage 4 (Mode 2)

—
. .
- — ——
- _—
.- —
- —_
—_———]
e —_—
u e o e aue asar kA
I T PP

FIGURE 6

U.S. Patent Sep. 6, 2022 Sheet 7 of 8 US 11,436,045 B2

Input Command Buffer
711

e — R

\ A Data
| Buffers

760

Command Parser < i Alternate Command
121 | Buffer 711

A

Write Commandgs to
Alternate Buffer

Y

Thread Generator
723

I]

Iterator Thread Scheduler
795 735

— i ‘

SLELLLEE)

Output Buffer Allocator and Intializer
| 7125

Thread

Processor(s)
£30

\/

Output Command Buffer
Write Pointer Update
129

Stage 710 |

Y
Output Command Buffer | Write Commands to Output Buffer

112

v

el
{Mmmh&!mmlm

FIGURE 7

U.S. Patent Sep. 6, 2022 Sheet 8 of 8 US 11,436,045 B2

Processing, by a plurality of graph streaming processors, a plurality of threads, wherein each of
the plurality of threads include a set of instructions operating on the plurality of graph streaming
processors, wherein the plurality of threads are organized as nodes, wherein each node includes
one or more of the plurality of threads with each thread of the node running the same code-
block but on input data and producing output data than other threads of the node
810

¢

Interpreting, by a command parser of each of a plurality of stages of a scheduler of the graph
streaming processing system, commands within a corresponding input command buffer,
wherein each of the plurality of stages includes, an input command bufter and an output

command buffer, wherein each of the stage includes physical hardware implemented using
digital logic gates
820

i e ' U L e T L P P O P 0 P e . e AAEArArAarmne

Generating, by a thread generator coupled to the command parser, the plurality of threads
830

¢

streaming processors;
840

| oy

Storing write commands 1n the corresponding output command buffer when a first node of the
plurality of threads of the stage writes greater than a threshold number of write commands for at

least one node of a next stage
850

R

Storing the write commands in the alternate command bufter of the stage when a second node of
the stage writes less the threshold number of write commands for at least one other node of the
stage

860

FIGURE 8

US 11,436,045 B2

1

REDUCTION OF A NUMBER OF STAGES OF
A GRAPH STREAMING PROCESSOR

RELATED APPLICATIONS

This patent application 1s a continuation-in-part (CIP) of

U.S. patent application Ser. No. 16/270,766, filed Feb. 8,
2019, which 1s a continuation-in-part (CIP) of U.S. patent

application Ser. No. 15/164,848, filed May 23, 2016, which
claims priority to provisional patent application 62/166,507,

filed May 26, 2015, which are all herein incorporated by
reference.

FIELD OF THE EMBODIMENTS

The described embodiments relate generally to graph
stream processing. More particularly, the described embodi-
ments relate to methods, apparatuses and systems for reduc-
tion of the number of stages of a graph streaming processor.

BACKGROUND

The onset of computation heavy applications 1s causing a
paradigm shift from centralized computing to parallel and
distributed computing. Parallel computing includes distrib-
uting computing jobs to the various computing resources.
These resources include several central processing units
(CPU), memory, storage, and support for networking.

Centralized computing works well 1n many applications,
but falls short in the execution of computation rich appli-
cations, which are increasingly popular. Programs can be
executed 1n a senial fashion or distributed to be executed on
multiple processors. When programs are executed 1n a serial
tashion, only one processor can be utilized and hence the
throughput 1s limited to the speed of the processor. Such
systems with one processor are adequate for many applica-
tions but not for compute intensive applications. Code can
be executed 1n parallel 1n multi-processor systems leading to
higher throughput. Multi-processor systems entail breaking
of code into smaller code blocks and efliciently managing
the execution of code. In order for the processors to execute
in parallel, data to each of the processors has to be 1nde-
pendent. Instances of a same code block can be executed on
several processors simultaneously to improve the through-
put.

It 1s desirable to have a method, apparatus and system for
improving the processing of threads of a multi-thread pro-
cessing system.

SUMMARY

One embodiment includes a graph streaming processing
system. The system 1ncludes a plurality of graph streaming
processors operative to process a plurality of threads,
wherein each of the plurality of threads mclude a set of
instructions operating on the plurality of graph streaming
processors, wherein the plurality of threads are organized as
nodes, wherein each node includes one or more of the
plurality of threads with each thread of the node running the
same code block operating on a set of mput data and
producing (possibly diflerent) output data than other threads
of the node. The system further includes a scheduler that
includes a plurality of stages, wherein each of the plurality
of stages includes; an mput command bufler and an output
command bufler, wherein each of the stage includes physical
hardware implemented using digital logic gates, and opera-
tive to schedule each of the threads. Each stage includes a

10

15

20

25

30

35

40

45

50

55

60

65

2

command parser operative to interpret commands within a
corresponding imput command butler, an alternate command
bufler, and a thread generator coupled to the command
parser. The thread generator 1s operative to generate the
plurality of threads, and dispatch the plurality of threads for
operating on the plurality of graph streaming processors,
where the processing of the plurality of thread for each stage
includes storing write commands 1n the corresponding out-
put command bufler when a first node of the plurality of
threads of the stage writes greater than a threshold number
of write commands for at least one node of a next stage, and
storing the write commands 1n the alternate command butler
of the stage when a second node of the stage writes less the
threshold number of write commands for at least one other
node of the stage.

Another embodiment includes a method of graph stream-
ing processing system. The method includes processing, by
a plurality of graph streaming processors, a plurality of
threads, wherein each of the plurality of threads include a set
ol instructions operating on the plurality of graph streaming
processors, wherein the plurality of threads are organized as
nodes, wherein each node includes one or more of the
plurality of threads with each thread of the node running the
same code block operating on a set of mput data and
producing (possibly diflerent) output data than other threads
of the node. The method further interpreting, by a command
parser ol each of a plurality of stages of a scheduler of the
graph streaming processing system, commands within a
corresponding input command bufler, wherein each of the
plurality of stages includes; an mput command builer and an
output command bufler, wherein each of the stage includes
physical hardware implemented using digital logic gates,
generating, by a thread generator coupled to the command
parser, the plurality of threads, and dispatching, by a thread
manager, the plurality of threads for operating on the plu-
rality of graph streaming processors. The processing of the
plurality of thread for each stage includes storing write
commands 1n the corresponding output command builler
when a first node of the plurality of threads of the stage
writes greater than a threshold number of write commands
for at least one node of a next stage, and storing the write
commands in the alternate command bufler of the stage
when a second node of the stage writes less the threshold
number of write commands for at least one other node of the
stage.

Other aspects and advantages of the described embodi-
ments will become apparent from the following detailed
description, taken in conjunction with the accompanying

drawings, 1llustrating by way of example the principles of
the described embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a complex dependent graph, according to an
embodiment.

FIG. 2 shows a representation of multiple stages of graph
stream processing including multiple threads, according to
an embodiment.

FIG. 3 1s a block diagram of a graph streaming processor,
according to an embodiment.

FIG. 4 15 a block diagram showing a hardware implemen-
tation of a stage ol a graph streaming processor, according
to an embodiment.

FIG. 5 shows a complex dependent graph that includes
merging of nodes 1nto a stage, according to an embodiment.

US 11,436,045 B2

3

FIG. 6 shows another complex dependent graph that
includes merging of nodes 1nto a stage, according to an

embodiment.

FIG. 7 1s another block diagram showing a hardware
implementation of a stage of a graph streaming processor,
according to an embodiment.

FIG. 8 1s a flow chart that includes steps of a method of
reduced stage graph processing, according to an embodi-
ment.

DETAILED DESCRIPTION

The described embodiments are embodied 1n methods,
apparatuses and systems for reducing the number of stages
used for graph stream processing. For an embodiment, the
graph stream processing enables processing applications 1n
a streaming fashion. At least some embodiments 1nclude
node-at-a-time execution 1s eflectively includes processing
of single node graphs which results 1n coarse-grained data-
flow between the graphs. That 1s, an entire node 1s run to
completion and outputs of the nodes are generated before
scheduling and execution of the next node.

For at least some embodiments, hardware-managed
scheduling and processing of multi-node graphs allows for
fine-grained scheduling and data movement between the
nodes within the graph. In Graph Streaming Processors
(GSP), there 1s a fimte amount of scheduling hardware
which limits the depth of the graphs that can be executed. As
a result, graphs have to be split into sub-graphs. At least
some of the described embodiments include virtual staging
which helps to execute larger graphs, resulting in better
performance. Neural networks are a prime example of
applications with graphs of considerable depth which benefit
from these enhancements.

For at least some embodiments, threads of graph stream
processing can be represented by a complex dependent
graph. FIG. 1 shows a complex dependent graph 100,
according to an embodiment. For an embodiment, nodes
101-113 represent a part or portion of application processing
1solated into a kernel. For an embodiment, a node or task
includes a code-block along with the inputs, and outputs. For
an embodiment, a node includes one or more threads with
cach thread running the same code-block operating on a set
of input data and producing (possibly) different output data.

Each of the nodes 101-113 may be processed 1n parallel
with multiple threads, wherein each thread may or may not
be dependent on the processing of one or more other threads.
As shown 1n the complex dependent graph 100, the nodes
101-113 are connected through arcs (for example, arc 120)
which retlect the dependencies between the nodes 101-113.
A thread may be dependent on data generated by other
threads of the same node, and/or data generated by threads
of other nodes. For an embodiment, each node 1s processed
at a depth, which can be represented by an acyclic graph. For
an acyclic graph as represented by the complex dependent
graph 100, a node 1s dependent only on nodes at a lower (that
1s, dispatched earlier in time from a previous stage) or same
depth (dispatched earlier in time but from the same stage).

For an embodiment, applications running on a graph
streaming processor can be represented as a graph of nodes.
Often, the applications can be fragmented and the graph is
composed ol multiple nodes which are connected to each
other via data dependencies. For an embodiment, each node
includes a code block and represents a kernel. It this code
block 1s 1nside a loop, multiple instances of this node would
need to be run. The kernels are capable of 1ssuing commands
for scheduling thread instances for the downstream depen-

10

15

20

25

30

35

40

45

50

55

60

65

4

dent nodes. As described, for at least some embodiments, the
graph streaming processor includes a scheduler that 1is
responsible for generating and managing these thread
instances of different nodes of the graph. The scheduler 1s
composed of physical hardware stages each of which sched-
ules the threads for all the nodes at a particular depth 1n the
graph.

For at least some embodiments, the graph streaming
processor processes the graph which 1s constructed with
nodes. For an embodiment, each node denotes a kernel to
execute. For an embodiment, the kernel 1s a set of instruc-
tions. For an embodiment, once a thread of a node com-
pletes, the thread generates new thread of a bottom node
with “Emit” instruction. Once the processor hits this instruc-
tion 1t generates a new thread by sending this information to
the scheduler which 1n turn dispatches 1t. All the internode
communication ol commands happens through command
bufler, which stores the information needed to create and
dispatch new threads. For an embodiment of a graph stream-
ing processor, each physical stage 1s associated with unique
stage ID. For an embodiment, each thread generated by that
stage carries 1ts stage ID.

At least some embodiments of graph streaming process-
ing 1nclude limitations on the depth of the graph of the
application being processed by the graph streaming process-
ing. The depth of the graph 1s limited by the number of
physical stages and command buflers available. If an appli-
cation has more number of nodes (depth wise 1.e. more than
number of physical stages) then the application 1s divided
into multiple graphs which severely hampers the perfor-
mance. The described embodiments which include merging
nodes 1nto stages address the performance issues.

For an embodiment, a thread includes a set of instructions
operating on 1put data and producing output data. A node
can include multiple threads wherein all threads run the
same set of mstructions operating on a set of input data and
producing (possibly) different output data. For an embodi-
ment, the threads are executed on a plurality of thread
processors. For at least some embodiments, the uncle/s,
cousin/s and sibling/s are always older in the dispatch
sequence relative to the child thread.

For at least some embodiments, each stage includes an
input command bufler parser, wherein the input command
bufler parser generates the threads of the stage based upon
commands of a command bufler located between the stage
and the previous stage.

FIG. 2 shows a representation of multiple stages of graph
stream processing including multiple threads, according to
an embodiment. As shown, the multiple stages include, for
example, a stage 1, a stage 2, a stage 3, a stage 4, and a stage
5. As shown, each of the stages includes one or more nodes,
wherein each node includes one or more streams. For an
embodiment, a stream includes a code-block operating on
the one or more processors of the graph streaming processor.
Further, as previously described, each stage of the graph
streaming processor includes a physical piece of hardware 1n
a thread manager which 1s responsible for scheduling the
threads corresponding to the node/s at a particular depth (as
determined by timing of the stage relative to other stages) 1in
the graph. For an embodiment, the stage includes an input
command bufler parser, wherein the input command bufler
parser generates the threads of the stage based upon com-
mands of a command bufler located between the stage and
the previous stage. Further, as described, a node includes one
or more code blocks that operate as the stream(s) when
executed on the plurality of processors of the graph stream-
INg Processor.

US 11,436,045 B2

S

As shown m FIG. 2, the stage 1 includes a single node
(Node 1) that includes, for example, a single thread oper-
ating on the plurality of processors. The stage 2 includes a
plurality of nodes (Node 2, Node 3, Node 4), wherein the
Node 2 includes 5 threads operating on the plurality of
processors, the Node 3 includes 5 threads operating on the
plurality of processors, and the Node 4 include 3 threads
operating on the plurality of processors. Note that the
threads of Nodes 2, 3, 4 start and end at different times
within the stage 2. The stage 3 includes Node 5 that include
S5 threads, stage 4 includes Node 6 that includes 2 threads,
and stage 5 includes Node 7 that includes a single thread.

FIG. 3 1s a block diagram of a graph streaming processor
310, according to an embodiment. As described, for an
embodiment, the graph streaming processor 310 operates to
process a plurality of threads of a plurality of thread pro-
cessors 330. As previously described, each thread includes a
set of 1nstructions operating on the plurality of thread
processors 330 and operating on a set of input data and
producing (possibly) different output data.

The graph streaming processor 310 includes a thread
manager 320, wherein the thread manager 320 includes
stages 312, 315, wherein each of the stages include an
interface to a command butler 311, 314 of a previous stage
to an input command bufler parser 313, 316 of the stages
312, 315. As previously described, for an embodiment, each
stage 312, 315 of the graph streaming processor includes a
physical piece of hardware 1n the thread manager which 1s
responsible for scheduling the threads. For an embodiment,
cach stage 312, 315 includes the mput command bufler
parser 313, 316, wherein the command bufler parser 313,
316 generates the threads of the stage 312, 315 based upon
commands of a command buffer 311, 314 located between
the stage and the previous stage. The command builers have
commands written 1nto them that provides parallel process-
ing and trigger threads for later occurring stages.

Further, for at least some embodiments, the stages 312,
315 include an alternate command buffer 311, 317. As will
be described, the alternate command buflers 311, 317 pro-
vide the thread manager 320 with the capability to merge
nodes 1nto stages, which allows for a reduction 1n the total
number of stages required to perform the graph streaming
processing. The merging of stages reduces the circuitry
required to perform the graph streaming processing.

As previously described, the plurality of threads run on
the plurality of thread processors 1030. For an embodiment,
scheduling of a thread on the thread processors 1030 1s based
on availability of resources including a thread slot on a
thread processor of the plurality of thread processors 1030,
adequate space 1 the register file, space in the output
command builer for writing the commands produced by the
spawn 1nstructions. Further, each of the plurality of threads
include a set of instructions operating on the plurality of
graph streaming processors, wherein the plurality of threads
are organized as nodes, wherein each node includes one or
more of the plurality of threads with each thread of the node
running the same code-block operating on a set of input data
and producing (possibly) different output data than other
threads of the node.

As described, the plurality of threads 1s dispatched by the
thread manager 320 for operating on the plurality of graph
streaming processors 330. For an embodiment, the process-
ing of the plurality of threads for each stage (such as, stage
312) includes storing write commands 1n the corresponding
output command bufler (such as, command bufler 314)
when a first node of the plurality of threads of the stage (312)
writes greater than a threshold number of write commands

5

10

15

20

25

30

35

40

45

50

55

60

65

6

for at least one node of a next stage (stage 315), and storing
the write commands 1n the alternate command bufler 311 of
the stage 312 when a second node of the stage 312 writes
less the threshold number of write commands for at least one
other node of the stage 312. Accordingly, when the second
node of the stage 312 writes less the threshold number of
write commands for at least one other node of the stage 312,
then the second node 1s merged into the stage 312, rather
than being a part of a subsequent stage.

As shown, for example, the stage 312 provides threads
10, T1, T2 to the thread processors 330 for processing.
During processing of the threads TO0, T1, T3 write
command(s) are spawned which are written into the alter-
nate command builer 311, and the output command buitler
314. Note that the stage 312 includes a write pointer (WP)
for the output command builer 314. For an embodiment, the
write pointer (WP) updates 1n a dispatch order. That 1s, for
example, the write pointer (WP) updates when the thread T1
spawned commands are written, even i1f the thread T1
spawned commands are written aiter the T2 spawned com-
mands are written. Note that while the command bufler 314
1s the output command buifler for the stage 312, the com-
mand bufler 314 1s the mput command butler for the stage
315.

During processing of the threads by the thread processors
330, data 1s generated and stored and retrieved in data
bullers 360, and data 1s retrieved from the data buflers 360.

Further, as described, the compiler splits up an 1nitial
program 1nto code-blocks to enable/optimize task parallel-
ism of the processing. Each of these code-blocks 1s a set of
instructions and along with 1ts inputs and outputs, 1dentifies
a stage for which one or more threads can be managed and
run on the thread processors. The thread 1s a code-block
which 1s scheduled for operation on the plurality of thread
processors. As previously described, each thread 1s a physi-
cal mstance of a set of mstructions (kernel/program/code-
block) runming on a set of input data and producing (possi-
bly) different output data. A kernel/program can be a code
block of a larger program. For an embodiment, the compiler
program splits up the program into code-blocks at points
where the vector-ness/width of the code changes to enable/
optimize task parallelism. The vector-ness/width indicates
the degree of parallel processing.

For an embodiment, a node/task 1s the code-block along
with the mputs and outputs. A node can be split up 1nto one
or more threads with each thread running the same code-
block operating on a set of 1nput data and producing (pos-
sibly) different output data. More than one node can be
included within a stage. A graph can provide a wvisual
dependency relationship between the nodes. For an embodi-
ment, a stage 1s a physical piece of hardware 1n the thread
manager which 1s responsible for scheduling the threads
corresponding to the node/s at a particular depth (relative
timing of the nodes) 1n the graph. The stage includes an input
command bufler parser. The node generates threads based on
the commands 1n the command bufler.

For an embodiment, the threads running on the thread
processors have instructions embedded by the compiler to
spawn/create downstream threads. The execution of these
instructions results 1n commands which are placed in the
output command bufler of the stage which 1n turn becomes
the input command bufler for the next (later) stage.

For an embodiment, the locations of the command buflers
between the stages and the hardware implementation of the
stages allows for substantial performance advantages over
software 1mplementations of the command buflers and
schedulers (stages). For an embodiment, each stage runs

US 11,436,045 B2

7

concurrently and independently of the actual threads running
(be processed) on the processors. These processes and
streaming controls implemented in soiftware rather than
hardware would require each stage to be a thread which 1s
doing a tremendous amount of work to manage the com-
mand buflers, schedule and track the threads. Such a soft-
ware implementation would kill the whole potential benefit
of representing and running an application as a graph of
nodes.

For at least some embodiments, each of the plurality of
thread processors operates to provide processing updates to
the thread manager 320. For an embodiment, the processing,
update of each thread 1s specified by commands stored
within memory. That 1s, operational software 1s programmed
and stored 1n memory that includes a sequence of instruc-
tions that instruct each of the threads to provide the pro-
cessing updates to the thread manager 320. That 1s, for an
embodiment, the dependencies are known a prionn and the
dependent threads know to provide the response when the
response (dependency) has been satisfied. The scorecard
provides a way that the dependent thread can determine
whether the dependency has been satisfied.

For at least some embodiments, each of the thread pro-
cessors further operate to provide a completion of execution
indicator to the thread manager upon completing execution
of the thread of the thread processor.

As previously described, for at least some embodiments,
the thread manager continues to dispatch threads as long as
at least one of the plurality of thread processors 1s available
regardless of whether dependencies of the dispatched
threads have been resolved.

FI1G. 4 15 a block diagram showing a hardware implemen-
tation of a stage 410 of a graph streaming processor,
according to an embodiment. The stage receives commands
from an input command bufiler 411. A command parser 421
parses the command/s from the mput command bufler 411.
Further, the command parser 421 parses the command/s
from the alternate command bufler 422.

A thread generator 423 receives the parsed command/s
and generates threads which are provided to the thread
processors 1030. A thread scheduler 435 schedules process-
ing of the threads by the thread processors 1030. An output
builer allocator and 1nitializer 423 allocates an upper bound
on space needed within the output command builer for the
output commands generated by the thread processors 1030
during processing of the threads. A thread tracker 427
(which can include the previously described scorecard)
provide dependency checking of the threads, and provides a
dependency response for the threads during processing. An
output command bufler write pointer update control 429
provides updates to the write pointer (WP) of the output
command bufler 412 and the commands for the output
command builer 412 are generated by the thread processors
during processing of the threads.

For an embodiment, each of the functional blocks 421,
422, 423, 425, 429, 435 are implemented in hardware
utilizing digital logic gates. That 1s, the functional blocks are
implemented with sequential and combinatorial logic to
realize the functionality of the functional blocks 421, 422,
423, 425, 429, 435. As previously described, the implemen-
tation of these functional blocks 1n hardware provides sub-
stantial benefits over a soltware implementation of such
functional blocks. For example, each stage commences
operation after completion of at least one thread of a
previous stage. Accordingly, a plurality of stages that each
include processing of a plurality of threads can be simulta-
neously (in parallel) processing threads of each of the stages.

10

15

20

25

30

35

40

45

50

55

60

65

8

In summary, for at least some embodiments, each of the
stages 1n the thread manager 320 is responsible for sched-
uling threads for all the nodes at a particular depth (stage) in
a corresponding graph. The scheduling 1s done by parsing an
input command buller which was written into by threads
scheduled by the upstream (previous) stage, or parsing
commands written 1nto the alternate command builer by the
same stage. For an embodiment, the hardware management
of the command bufler 1n each stage includes the forwarding
of mnformation required by every stage from the input
command bufler to the output command bufler, allocation of
the required amount of memory (for the output thread-spawn
commands) in the output command bufler before scheduling
a thread, clearing the allocated memory with dummy entries,
writing the thread-spawn command/s initiated from the
thread/s running on the thread processor/s into the output
command bufler, and managing the write, completion and
read pointers mto the command builers.

The write pointer into the command buifer moves during,
the clearing of the allocated memory with dummy entries
betore thread dispatch. The write pointer after the comple-
tion of the dummy entry writes becomes the future comple-
tion pointer for the next stage. The completion pointer 1s
updated after thread completion but in an 1n-order fashion
1.e. the completion pointer updates sequentially 1n the same
temporal order as the dispatch.

FIG. § shows a complex dependent graph that includes
merging of nodes into a stage, according to an embodiment.
The complex dependent graph includes nodes 504, 503, 505
which are merged into a single stage (stage 0) 595. As
previously described, each stage 1s implemented in hardware
as shown, for example, mn FIGS. 3, 4. The stages are
included within a thread manager that manages the process-
ing of the threads of the nodes on the plurality of processors.
Processing advantages are realized by merging nodes into a
single stage. As previously described, for an embodiment,
the processing of the plurality of thread for each stage
includes storing write commands 1n the corresponding out-
put command bufler when a first node of the plurality of
threads of the stage writes greater than a threshold number
of write commands for at least one node of a next stage, and
storing the write commands 1n the alternate command butler

of the stage when a second node of the stage writes less the
threshold number of write commands for at least one other
node of the stage.

The nodes 504, 503 each write less that the threshold

number of write command to corresponding stages 503, 505.
For an embodiment, the threshold number or write com-
mand 1s one write command. That 1s, when the nodes 504,
503 each write one write command to corresponding stages
503, 5035, then the corresponding plurality of threads oper-
ating on the plurality of processors write the one write
command into the alternate command bufler, and the nodes
are merged to one stage (stage 0). However, when the
nodes 504, 503 each write more than the one write command
to corresponding stages 503, 505, then the corresponding
plurality of threads operating on the plurality of processors
write the more than one write command into the alternate
command bufler. As shown, the nodes 504, 503, 505 are
merged 1nto the single stage O.

Further, as shown, the node 505 writes more than the
threshold number of write commands to the nodes 508, 509,
510. Accordingly, the threads corresponding to the node 505
write the greater than the threshold number of write com-
mands for the nodes 508, 509, 510 into the output command
bufler of the stage (stage 0) of the node 505. Note that the

US 11,436,045 B2

9

output command bufler of the stage (stage 0) of the node 505
1s the mput command bufler of the stage (stage 1) of the
nodes 508, 509, 510.

FIG. 6 shows another complex dependent graph that
includes merging of nodes 1nto a stage, according to an
embodiment. FIG. 6 shows that for at least some embodi-
ment, the number of write commands generated by the
threads ol a node determines whether nodes are merged 1nto
a common stage.

A first node 601 writes greater than a threshold number of
write commands for the nodes 602, 603, 604. Theretore, the
processing ol the threads of the node 601 managed by its
own stage (stage 1). The node 601 of stage 1 writes
commands 1nto the mput command bufler of the stage 2.

The stage 2 of FIG. 6 shows that for at least some
embodiments, nodes are designated as master nodes. For
example, nodes 602, 604 are designated as master nodes. For
an embodiment, a node 1s designated as a master node when
that node 1s the only node generating write commands for a
subsequent node. For example, node 602 generates write
command for the node 605. Nodes 603, 604 do not generate
write commands for the nodes 605. The nodes 603, 604 only
generate data for the node 605.

Further, as shown, the node 603 1s merged into stage 2
because the node 602 writes less than the threshold number
of write command for the node 605. Accordingly, the threads
of the node 602 write the write command(s) into an alternate
command bufler of the stage 2. The command parser of the
stage 2 then parses the commands written into the alternate
command bufller of the stage 2 for generating additional
threads for the processing of the stage 2.

Further, as shown, the node 606 1s merged into stage 2
because the master node 604 writes less than the threshold
number of write command for the node 606. Accordingly,
the threads of the node 604 write the write command(s) 1nto
an alternate command bufler of the stage 2. The command
parser of the stage 2 then parses the commands written 1nto
the alternate command bufler of the stage 2 for generating,
additional threads for the processing of the stage 2.

As shown, the nodes 605, 606 write more than the
threshold number of write commands for the nodes 607, 608
ol the stage 3. Therefore, these write commands are written
into the output command bufler of the stage 2, which 1s the
input command builer for stage 3.

As shown, the nodes 607, 608 write more than the
threshold number of write commands for the nodes 610,
609, 611 of the stage 4. Therefore, these write commands are
written 1nto the output command bufler of the stage 3, which
1s the mput command buller for stage 4.

Further, as shown, the nodes 610, 609, 611 write fewer
than the threshold number of write commands to the node
612. Here, node 609 1s designated as the master node which
writes the command for the node 612. The nodes 610, 611
only generate data for the node 612. Accordingly, the node
612 1s merged 694 1nto the same stage (stage 4) as the nodes
610, 609, 611. Accordingly, these write commands are
written into the alternate command bufller of the stage 4,
rather than to, for example, the input command bufler of a
stage J.

The nodes of FIG. 6 have been designated as operating in
a 1irst mode when the nodes of a stage write only into the
output command bufler of the stage rather than also writing
to the alternate command bufler. The nodes have been
designates as operating 1n a second mode when the nodes of
the stage write into both the output command builer of the
stage and also write 1nto the alternate command bufler of the
stage.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

With the described embodiments for merging nodes into
stages, depth limitation of the graph streaming processing
can be mitigated. An embodiment includes a new emit mode
added to an EMIT instruction called EMIT Immediate. For
an embodiment, instead of storing the imformation (write
commands) 1n the output command bufler of an operating
stage, the information (write commands) are stored 1n the
alternate command bulifer.

For an embodiment, once a parent thread 1s completed (no
more instructions to process for that thread) the thread 1s
removed from the alternate command bufler and a new
thread 1s created for the next node and dispatched 1immedi-
ately. from the same stage.

Owing to the fact that the new thread 1s dispatched from
the same stage, the described embodiments provide infinite
graph depth. All the nodes can be accumulated and pro-
cessed within the same stage. As same stage 1s being used
virtually, no new physical stage 1s involved. The processing
of the threads progressed to a next stage only when there are
multiple child nodes and one thread create multiple child
threads, which can be referred to as “forking”. In such cases,
the output command bufler i1s used.

For this described embodiment, the new thread 1s imme-
diately dispatched for processing (that 1s, 1n the next clock
cycle). Theretore, this provides better cache hits, as there 1s
higher probability that previous node’s data will be available
in cache, as the previous node’s processed data will act as
input for the next node. In other words, the data 1s stream-
lined better, as the threads are immediately dispatched.
Hence the processing speed i1s faster and offers higher
performance.

Since the storage of the write commands 1s 1n the alternate
command bufler and there 1s no output command buller
involved, storage space 1s also saved. This provides the
ability to reduce the cache size.

On-chip cache 1 ASIC (application specific integrated
circuits) 1s very expensive. The smaller the cache, the
smaller the area on the ASIC and less the consumed power.
Further, the latency to store and fetch the data in/from cache
can be avoided. This results i1n better performance by
lowering execution time.

The described embodiments that include the virtual stag-
ing (merging of nodes 1nto stages) ofler better performance
of processing. Resources are utilized efliciently and there are
fewer unnecessary stalls, unnecessary idles, and resource
underutilization.

FIG. 7 1s another block diagram showing a hardware
implementation of a stage of a graph streaming processor,
according to an embodiment. This embodiment further
includes an iterator 795. That 1s, the scheduler further
includes an 1iterator, the iterator operative to generate a
plurality of threads of a next stage based on the write
commands stored in the corresponding output command
buller. For at least some embodiments, write commands
written into the alternate command bufler are not frag-
mented into another plurality of threads by the iterator. For
at least some embodiments, write commands written 1into the
corresponding output command builer are fragmented into
the plurality of threads of the next stage by the iterator.

For an embodiment, each command has an index and a
size. Further, for an embodiment, the command also
includes the desired dispatch size of each thread which 1s
used by the iterator to break down (fragment) the command
into multiple threads.

FIG. 8 1s a flow chart that includes steps of a method of
reduced stage graph streaming processing, according to an
embodiment. A first step 810 includes processing, by a

US 11,436,045 B2

11

plurality of graph streaming processors, a plurality of
threads, wherein each of the plurality of threads include a set
of 1nstructions operating on the plurality of graph streaming
processors, wherein the plurality of threads are organized as
nodes, wherein each node includes one or more of the

plurality of threads with each thread of the node running the
same code-block but on mput data and producing output

data than other threads of the node. A second step 820
includes interpreting, by a command parser of each of a
plurality of stages of a scheduler of the graph streaming
processing system, commands within a corresponding input
command buller, wherein each of the plurality of stages
includes, an iput command bufler and an output command
builer, wherein each of the stage includes physical hardware
implemented using digital logic gates. A third step 830
includes generating, by a thread generator coupled to the
command parser, the plurality of threads. A fourth step 840
includes dispatching, by a thread manager, the plurality of
threads for operating on the plurality of graph streaming
processors. The processing of the plurality of thread for each
stage 1includes a fifth step 850 of Storlng write commands 1n
the corresponding output command bufler when a first node
of the plurality of threads of the stage writes greater than a
threshold number of write commands for at least one node
of a next stage, and sixth step 860 of storing the write
commands in the alternate command bufler of the stage
when a second node of the stage writes less the threshold
number of write commands for at least one other node of the
stage.

At least some embodiments further include interpreting,
by the command parser, the write commands stored 1n the
alternate command builer of the stage. At least some
embodiments further include interpreting, by the command
parser, the write commands stored within the alternate
command bufler and the mput write commands stored 1n the
input command buflers.

At least some embodiments further include designating at
least one node of each stage as a master node, and gener-
ating, by the master node, a write command for another
node. For an embodiment, the other node 1s of the next stage
when the at least one node of each stage of the plurality of
threads of the stage writes greater than a threshold number
of write commands to an input command bufler for the next
stage. For an embodiment, the other node 1s of a same stage
as the at least one node of cach stage when the at least one
node of the plurality of threads of the stage writes less than
a threshold number of write commands to the alternate
command bufler of the stage of the other node.

At least some embodiments further include generating, by
an 1terator of the scheduler, a plurality of threads of a next
stage based on the write commands stored 1n the correspond-
ing output command bufler. For an embodiment, write
commands written into the alternate command bufler are not
fragmented 1nto another plurality of threads by the iterator.
For at least some embodiments, write command written 1nto
the corresponding output command bufler are fragmented
into the plurality of threads of the next stage by the iterator.

For an embodiment, the output command builer of a stage
operates as the input command bufler of a subsequent stage.

Although specific embodiments have been described and
illustrated, the described embodiments are not to be limited
to the specific forms or arrangements of parts so described
and 1llustrated. The embodiments are limited only by the
appended claims.

What 1s claimed:

1. A graph streaming processing system, comprising:

a plurality of graph streaming processors operative to
process a plurality of threads, wherein each of the

10

15

20

25

30

35

40

45

50

55

60

65

12

plurality of threads include a set of instructions oper-
ating on the plurality of graph streaming processors,
wherein the plurality of threads are organized as nodes,
wherein each node includes one or more of the plurality
of threads with each thread of the node running the
same code-block operating on a set of mput data and
producing output data;

a scheduler comprising a plurality of stages, wherein each
of the plurality of stages includes, an mput command
bufler and an output command buliler;
wherein each of the stages includes physical hardware
implemented using digital logic gates, and operative
to schedule each of the threads, each stage compris-
ng:

a command parser operative to interpret commands
within a corresponding mput command bufler;

an alternate command bufler;

a thread generator coupled to the command parser
operative to:
generate the plurality of threads;
dispatch the plurality of threads for operating on the

plurality of graph streaming processors;

where the processing of the plurality of threads for each
stage includes storing write commands 1n the corre-
sponding output command bufler when a first node
of the plurality of threads of the stage writes greater
than a threshold number of write commands for at
least one node of a next stage, and storing the write
commands in the alternate command bufler of the
stage when a second node of the stage writes less
than the threshold number of write commands for at
least one other node of the stage.

2. The graph streaming processor of claim 1, wherein the
command parser 1s further operative to interpret the write
commands stored in the alternate command bufler of the
stage.

3. The graph streaming processor of claim 1, wherein at
least one node of each stage 1s designated as a master node,
wherein the master node generates a write command for
another node.

4. The graph streaming processor of claim 3, wherein the
other node 1s of the next stage when the at least one node of
cach stage of the plurality of threads of the stage writes
greater than a threshold number of write commands for the
other stage.

5. The graph streaming processor of claim 3, wherein the
other node 1s of a same stage as the at least one node of each
stage when the at least one node of the stage of the plurality
of threads of the stage writes less than a threshold number
of write commands for the other node.

6. The graph streaming processor of claim 1, wherein the
scheduler turther comprises an 1terator, the iterator operative
to generate a plurality of threads of a next stage based on the

write commands stored in the corresponding output com-
mand bufler.

7. The graph streaming processor of claim 6, wherein
write commands written 1nto the alternate command bufler
are not fragmented 1nto another plurality of threads by the
iterator.

8. The graph streaming processor ol claim 6, wherein
write commands written mto the corresponding output com-
mand bufler are fragmented into the plurality of threads of
the next stage by the iterator.

9. The graph streaming processor of claim 1, wherein the
output command bufler of a stage operates as the put
command bufler of a subsequent stage.

US 11,436,045 B2

13

10. The graph streaming processor of claim 1, wherein the
command parser 1s further operative to interpret the write
commands stored within the alternate command bufler and
input write commands stored 1n the mput command bufler.

11. A method of graph streaming processing, comprising:

processing, by a plurality of graph streaming processors,

a plurality of threads, wherein each of the plurality of
threads include a set of instructions operating on the
plurality of graph streaming processors, wherein the
plurality of threads are organized as nodes, wherein
cach node includes one or more of the plurality of
threads with each thread of the node running the same
code-block operating on a set of input data and pro-
ducing output data;

interpreting, by a command parser of each of a plurality

of stages of a scheduler of the graph streaming pro-
cessing system, commands within a corresponding
input command bufler, wherein each of the plurality of
stages 1ncludes, an input command bufler and an output
command bufler, wherein each of the stages includes
physical hardware implemented using digital logic
gates;

generating, by a thread generator coupled to the command

parser, the plurality of threads;

dispatching, by a thread manager, the plurality of threads

for operating on the plurality of graph streaming pro-
CESSOrS;

wherein the processing of the plurality of threads for each

stage comprises:

storing write commands in the corresponding output

command bufler when a first node of the plurality of
threads of the stage writes greater than a threshold
number of write commands for at least one node of a
next stage; and

storing the write commands in the alternate command

bufler of the stage when a second node of the stage
writes less than the threshold number of write com-
mands for at least one other node of the stage.

12. The method of claim 11, further comprising interpret-
ing, by the command parser, the write commands stored 1n
the alternate command bufler of the stage.

13. The method of claim 11, further comprising designat-
ing at least one node of each stage as a master node, and
generating, by the master node, a write command for another
node.

14. The method of claim 13, wherein the other node 1s of
the next stage when the at least one node of each stage of the
plurality of threads of the stage writes greater than a thresh-
old number of write commands for the other stage.

15. The method of claim 13, wherein the other node 1s of
a same stage as the at least one node of each stage when the
at least one node of the stage of the plurality of threads of
the stage writes less than a threshold number of write
commands for the other node.

16. The method of claim 11, further comprising generat-
ing, by an 1terator of the scheduler, a plurality of threads of

5

10

15

20

25

30

35

40

45

50

55

14

a next stage based on the write commands stored in the
corresponding output command buitler.

17. The method of claim 16, wherein write commands
written into the alternate command bufler are not frag-
mented 1nto another plurality of threads by the iterator.

18. The method of claim 16, wherein write commands

written mto the corresponding output command bufler are
fragmented 1nto the plurality of threads of the next stage by
the 1terator.

19. The method of claim 11, wherein the output command
bufler of a stage operates as the mput command bufler of a
subsequent stage.

20. The method of claim 11, further comprising interpret-
ing, by the command parser, the write commands stored
within the alternate command builer and the mput write

il

commands stored 1n the input command buflers,
a plurality of graph streaming processors, wherein each of
the graph streaming processor comprises:
a processor array including a plurality of processors;
a thread manager, the thread manager comprising a
plurality of stages and a plurality of command bui-
fers located between each of the plurality of stages,
wherein each stage includes physical hardware
operative to schedule each of a plurality of threads of
the stage for processing on the processor array,
including an mput command buller parser operative
to interpret commands within a corresponding input
command bufler and generate the plurality of

threads;

the cascade of graph streaming processors further com-

prising;

one or more shared command buflers located between
cach of the plurality of graph streaming processors,
wherein each shared command buffer includes a
bufler address, a write pointer, and a read pointer;
wherein

for each of the shared command buflers a first graph
streaming processor of the plurality of graph stream-
Ing processors operates to write commands to the
shared command bufler as indicated by the write
pointer of the shared command bufler and a second
graph streaming processor of the plurality of graph
streaming processors operates to read commands
from the shared command builer as indicated by the
read pointer by interpreting commands of the shared
command builer by an mnput command bufler parser
of a first stage of the second graph streaming pro-
CESSOr;

wherein for each one of the shared command buflers, at
least one graph streaming processor scheduler oper-
ates to manage the write pointer and the read pointer
to avoid overwriting unused commands of the shared
command bufler.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

