12 United States Patent
Hulick, Jr.

US0114356030B2

US 11,436,030 B2
Sep. 6, 2022

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

MODULAR JAVA MANAGER PERFORMING
CAPTURING AND OVERRIDING OF
ACCESS CHECK FAILURES FOR
INTER-MODULE OPERATIONS BETWEEN
JAVA MODULLES BY AN AGENT USING
INSERTED INSTRUMENTATION

Applicant: Cisco Technology, Inc., San Jose, CA

(US)

Inventor: Walter Theodore Hulick, Jr., Pearland,
TX (US)

Assignee: Cisco Technology, Inc., San Jose, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 205 days.

Appl. No.: 16/788,041
Filed: Feb. 11, 2020

Prior Publication Data

US 2021/02477992 Al Aug. 12, 2021

Int. CIL.

GO6F 9/455 (2018.01)

GO6F 9/445 (2018.01)

U.S. CL

CPC GO6F 9/45529 (2013.01); GO6F 9/44589

(2013.01); GO6F 9/45558 (2013.01); GO6F
2009/45583 (2013.01); GOOE 2009/45595

(2013.01)

Field of Classification Search
CPC GO6F 9/45529: GO6F 9/44589; GO6F
9/45558; GO6F 2009/45583; GO6F
2009/45595

See application file for complete search history.

START

(56) References Cited

U.S. PATENT DOCUMENTS

7,668,953 B1* 2/2010 Sinclair HO4L 41/16
709/224

2007/0180439 Al* 8/2007 Sundararajan GOO6F 11/3644
717/158

2007/0233869 Al* 10/2007 Jodhcccovvvniinnns, HO4L 63/10
709/226

2011/0078388 Al* 3/2011 Gyuris GOO6F 12/1027
711/E12.001

2015/0178057 Al* 6/2015 Miadowicz GO6F 9/4552
717/151

2018/0268158 Al* 9/2018 Bateman GOO6F 21/6218
2021/0247966 Al* 82021 Hulick, Jr. GO6F 11/3409

OTHER PUBLICAITONS

Deitel, Paul,“Understanding Java 9 Modules”, online: https://www.
oracle.com/corporate/features/understanding-java-9-modules .html, Sep.
2017, 9 pages, Oracle.com.

(Continued)

Primary Examiner — Michael W Ayers

(74) Attorney, Agent, or Firm — Behmke Innovation
Group LLC; James M. Behmke; Jonathon P. Western

(57) ABSTRACT

In one embodiment, an agent inserts instrumentation nto a
Java Platform Module System in which a plurality of Java
modules of an application 1s executed. The agent captures,
using the instrumentation, an access check failure for an
inter-module operation between the Java modules. The agent
overrides, using the instrumentation, the access check fail-
ure. The agent reports the captured access check failure to a
user interface.

20 Claims, 16 Drawing Sheets

9035

INSERT INSTRUMENTATION

[i iyl

CAPTURE ACCESS CHECK FAILURE

\[\ 920

OVERRIDE FAILURE

END

REPORT FAILURE

930

US 11,436,030 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Parlog, Nicolai, “Five Command LineOptions to Hack the Java
Module System”, online: https://blog.codetx.org/java/five-command-
line-options-hack-java-module-system/, 2017, 16 pages, Blog.
CodeFX.org.

Sheasha, Dalia Abo, “Migration to Java 11 Made Easy”, online:
https://developer.ibm.com/tutorials/migration-to-java-11-made-

easy/, Feb. 26, 2019, 8 pages, IBM.com.

“Class Module (Java SE 9 & JDK 9)”, online: https://docs.oracle.
com/javase/9/docs/apl/java/lang/Module.html, Sep. 21, 2017, 13
pages, Oracle.com.

“Java Platform Module System”, online: https://en.wikipedia.org/
wiki/Java Platform Module System, Apr. 2019, 3 pages, WikiMedia
Foundation, Inc.

“Java Platform, Standard Edition Tools Reference”, online: https://

docs.oracle.com/javase/9/tools/jdeps htm#ISWOR690, Release 9,
Oct. 2017, 6 pages, Oracle.com.

* cited by examiner

U.S. Patent Sep. 6, 2022 Sheet 1 of 16 US 11,436,030 B2

~

100

130
FIG. 1A

BACKBONE

US 11,436,030 B2

Sheet 2 of 16

Sep. 6, 2022

U.S. Patent

001 \,

31

I
S

122!

43!

V)

9l

d1 DId

,\ AHOMLHN "TVDIO]

ﬁomﬁ

ANOTO/ddLNHD V.LVAd

0€1
ANOEIOVE

091
AHOMLAN TVOO1

SO0 D)

US 11,436,030 B2

Sheet 3 of 16

Sep. 6, 2022

U.S. Patent

¢ DIA

0SZ SNg
YT SHe
SSHDOYUd STINLONYLS
ONIIO.LINOW vivd “
NOLLVOI'TddV
e
T IWHLSAS
VT DONILVIAJO
SSADOUd
TVNOLLONNA -
0vC AJOWAN

00¢ HAQON/HOIAHA I\,

01T
(S)HOVLAALNI
STHOMLAN

02T
(SHOSSADOUd

US 11,436,030 B2

Sheet 4 of 16

Sep. 6, 2022

U.S. Patent

00¢ |\,

3
HOIAHA INAITD

t DId

0S€
WHLSAS

0z€
YA TTIOYLNOD

NOLLVZI'TVIISIA

01€
[INHOV

US 11,436,030 B2

Sheet 5 of 16

Sep. 6, 2022

U.S. Patent

S8
TIOLSV.LVA |

L1

0S¥
JIAYAS ddV

YISMOYUY
AHOMLHEN

6¥
HOIAHA
INAITD

Sly
ADIAAA HTIHOW

96¥

WHLSAS
Zop NOLLVZI'ITVIISIA e
YINA — [INA
06+
355 HATIOHEINOD 555
HAAEAS ddV HHAYAS ddV

08¥
HYOLSY.LvVd

oV 0TF

> NOLLOHTTIOD HISMOUH
VLV RROMLEN

007V \,

US 11,436,030 B2

Sheet 6 of 16

Sep. 6, 2022

U.S. Patent

00§ |\,

08¢

(SYTVYAHJINIAd

0LS
(S)INHLSAS
AVIdSIA

09¢S
(S)ADIAAA
LNdNI

0SS
(S)dDIAAA
1NdLNO

¢ DIA

06S
(X.1/X¥9)

SNOLLVOINNININOD

665 \,

0¥S
(S)ADVHOLS

HLOWHY
/HTdV.LI0d

0€S
(S)AOVIOLS
SSVIN

0ZS
(SATNAON
AJOWAN

01S
(S)IOSSADOUd

US 11,436,030 B2

Sheet 7 of 16

Sep. 6, 2022

U.S. Patent

009 \\,

019
111

INOd4/0.L

S

9 DIA

309 909

HALNHWITHLSNI

HNIDNH
ADI'TOd

09 (NIIN) YADVNVIN VAV IV INAOW

V19
NOLLV.LNHW/TY.LSNI

19

SA TNAON
VAVI

709
(SINdl) WHLSAS 3 TNAONW
IWIOALV1d VAVS

US 11,436,030 B2

Sheet 8 of 16

Sep. 6, 2022

U.S. Patent

00L |\,

VL DIA

(p1:eael 1ddy)urewr 1ddy 1dde/emmpowidde e

(6S: ARl 1ddy)10SIs9 1ddy [dde/emnpouwr [dde je

(0L 1:eAelp1a1)a1qissadoy1as prot 1091 sue| eael/aseq-eael je
(9L1

'BAR[PIOL])O]qQISSA00V1QUBD)NIYD PIoL] 1091)o1 Suel eAel/aseq eael je
(P8z-eAB[102Iq(09]qIss00Y)

OIQISSANIYIASUBNOAYD103[g()[qISSa00V '109]Jo1 Sue| BARI/asRq BARI 1B
(b€ eAR[199[ORIqISS00Y)

A[QISSAVIYIAICUB)NIAYD 102 ()a[qIs$a00V "103Ja1 Sue| vARl/aseq ARl 1R
drpow
[dde arnpowr 03 , [bs eAel suado,, j0u so0p [bs eAel onpowr :91qISSIO0E INLIA FO]

"JOSRURIAIOALI(T [bs ARl IdIp UL O1'BARI O]11R[0A O1)R]S d)RALId P[A1] e O}

arqeun) :uondaoxmioalgOarqissasorur1oapjarsuereAel urewr,, peany ur uondaoxy
aS[BJ ona) any :SuoISSTuIdd AMPON 10OS
[bs ARl S[NpOW SI WU S[NPOUI SIDALI(]

60LEPFIT® €$suonoo[o) [N eAel o1e SIOALI(]
gsS INQOUILA UL $OINY P) JOSBUBNAILIB[NPOJABAR[:XSO-YO1[NT)

US 11,436,030 B2

Sheet 9 of 16

Sep. 6, 2022

U.S. Patent

o:\,

d. DId

[[NU ST JDLIA 30] J0J oEm.wm
NI} NI} ONI) SUOISSIWIdJ IMPOIN TOS
bs-eael ainpow SI SWRU INPOW SIDALI(]

QECBIOJY L@ cEsuonoaqo) TN eAel a1e s1oAtI(
USRI UL/ $OINY PO} IOFBUBAAIIB[NPOJATBA RS XSO-3OI[NT]]

V38 DId

[INU § HCEoaR 1A ToINPON - SueyeAr! grypl

US 11,436,030 B2

JOot h&ﬂm@m@ﬁ\mOAmmmﬁUgﬂﬁwMm%m.uﬁmuﬁﬁﬁm mﬁﬂu.uaﬁwﬁﬁ.ﬁﬁﬁﬂuﬂm.vﬁﬁﬂ 749 m@u@ﬁ.h@%mgﬁmﬁﬁﬂz.wﬁwﬂ\mﬁwM Sﬂﬁﬂﬁmuﬁﬁ.vﬂmu.—.

[[U | pCEooor-IARToNPO Suey eAR(ouwdeueurypl

&
o
-
-
—
o
~
_.mﬂ...w [T | HCegoar AR TompoN sueeael glruowaseurwypl
79,
& [nu 1Axoxd-ypl
—
e
V-
%UD._,.I JOPROT-SSB[)-IUOT Y RAR[ISISRAR[SUON Axoxdypl

;L;

e sddy BEE

O« M\W so[npouwsegeurwsnpow/000g:1soyresof (P x) & -

U.S. Patent

US 11,436,030 B2

Sheet 11 of 16

Sep. 6, 2022

U.S. Patent

013 \,

<<

[S

d8 DId

OPLIDAQAOIIO | NSy E SUWIBNOIBOR] opusdOempon | Furuadpompo |

(ampow
JOour 0} UOT)OI[JAI BIA S[JV [I® sas0dx9) suad() 10] Arewrung Yooy) UOISSIIdJ I[NPON pPayoe))

sddy B8

N /L kdw syoayouadogageuewanpow/ppog:Isoyedo] ()) x) € >

US 11,436,030 B2

Sheet 12 of 16

Sep. 6, 2022

U.S. Patent

0C3 \,

D8 DId

as|ej onxy QUON bs-eael

ampowjdde

os[e] onx) Al QUON aseq-eAel(1A1sdygpl

=5[E] S1LI) SUON

aseq-eael ampowmrjdde

as[ey an) DUON aseq eAel [bseael

--

os[ej] o1LI) QUON aseq-eAael

s eurUreAR!

SPLLBAQADT[O] EE oweNoSeyorg | PROYRHURDIMPON | Surpeoysnpo

(oym-onpotu ul $aImMbog
AWIIIUNI ® 0] JUS[RAINDY - S|V Pouodxo asn 0} SMO[[R) Speoy 10J Arewing Yoo) UOISSIUIdJ S[NPON PaydL))

<< sddy HE8

CS | W4 M«w sy0ayopeal;sadeurwsnpow;/)008:1soyredo] (F) x) €

US 11,436,030 B2

Sheet 13 of 16

Sep. 6, 2022

U.S. Patent

ds DId

LEI ids juowageuet uns L JuowodeureAe!
o] ew] s Swrewl | wewsewwed oot
 em] o) @] opowrBurid brossf | osqwel
 vw] o] 7] oowdwpuel] ompowndds | amwel
B Sunpoasf | owoshwpwpl | ol
o8IR] H! B-obﬁ.mﬁﬂ.ﬂwﬁ. oseq eas| _
 om| ew) of owwwrdwrwel | oueshwnf| owq
!EH onpowrdueyeael | IOPROTISSBIDIUDEY é

OPLLIDAQADNO0] EE Surpodxgompon

(ornpow Joyjoue 0] S[JV d1qnd sasodxo) s1rodxiy 107 Arewuins 399U UOISSIULIDJ S[NPON Payose)

JuSwaseuBII RAR[

sweNodeyoed | ol Suniodxa[npoA

sddy BB

M«w syoayouodxs tageurwsnpow/0g:1soyeso] (P D) €2

US 11,436,030 B2

Sheet 14 of 16

Sep. 6, 2022

U.S. Patent

<<

[S

Ov3 \,

-
K
T
Ko

T

O

0 lemnpoursuereas!

E! snpowrsueyeae!
E! s[npowr sue|eae!
E! anpowrsue[eael
H! arnpowr sueyeAel

s[npoursueyeael

amnpouwr dueyeae!

*

ajoAurgueyeael

ajjoAurgueear!

48 DIA

JDPROTSSE[)IUAS Y é pajIodxFsI

IPROISSBIHIUAE Y aseqeael papodxiyst

610C LAD 6v-6L-01 €0 [N 20],

610¢ .LAD 6v-6L-01 €0 [T 21]

610¢ 14D 6%-6¢-01 O [Nf =2N]
610C LD 6¥-6¢-01 <O [Af S0
6107 1D 6v-6£-01 €0 [T 20,
610C LA 6%-6¢-01 ¢O [N =0],
6107 ,HQU m_u mm 01 No EH oM,

ﬁm@m:mu

woAzsdyyypl

e I

oseq eael

$H00Y) UOISSTULIOJ S[NPOJA Payoe))

610¢ HQU wm 2 ¢l mo _E. ol],

610¢ LAD E-L1-t1 ¢O [T 20,
610C LAD v -L1-£1 O [=0L
610 1AOD vL-L1-£1 TO [N °N L

sddy

BEG

caag

S30aYdpayYdedIogeurwiompowt/900g:1soyeoo] () x) & -

US 11,436,030 B2

Sheet 15 of 16

Sep. 6, 2022

U.S. Patent

063 \,

A8 DI

srnpour | dde=|bs-eael/bs-eAel suado-ppe --
[[nu=1dsjuawodeuew uns/judwagdeurwr-eAel syupodxd-ppe --

:Ao110d y3 Ajdde 01 uI'T puBWILIO) BAR[9U) 0) Pappe 2Q OS[e ULd SPpUBWitiod SUIMO[[0] YL

sddy HeE

saxIIpueUILIOd Jogeurwd[npour/00g:1soy[edo] (P)) €& -

U.S. Patent Sep. 6, 2022 Sheet 16 of 16 US 11,436,030 B2

;\ 905
910

915
CAPTURE ACCESS CHECK FAILURE
920
OVERRIDE FAILURE
925
REPORT FAILURE

;‘\ 930

FI1G. 9

US 11,436,030 B2

1

MODULAR JAVA MANAGER PERFORMING
CAPTURING AND OVERRIDING OF
ACCESS CHECK FAILURES FOR
INTER-MODULE OPERATIONS BETWEEN
JAVA MODULES BY AN AGENT USING
INSERTED INSTRUMENTATION

TECHNICAL FIELD

The present disclosure relates generally to computer sys-
tems, and, more particularly, to a modular Java manager.

BACKGROUND

Many applications today rely on the Java programming
language, due to 1ts platform independence, application
programming interface (API) support, multithreading capa-
bilities, and the like. Java version 9 (Jigsaw) 1ntroduced the
concept of a “module,” which 1s essentially a named group-
ings of related Java packages (e.g., code) and resources (e.g.,
images, XML files, etc.) that 1s responsible for a particular
functionality/service within an application. A Java module
may also share dependencies with other Java modules,
which are defined as part of the module.

A key feature of Java modules 1s the ability to restrict
access between modules. Indeed, 1n Java version 8 and prior,
the Retlection API could be used to access all classes 1n a
package, including its private classes, regardless of the
access specilier used. With Java modules, classes 1n pack-
ages within a module need to have permission to access a
class and to perform reflection on a class. This 1s done by a
module “exporting” 1tsell and certain packages to another
module that “reads™ that module and 1ts exported packages.
In addition, a module can “open” 1itself to another module,
to allow reflection.

Despite the advantages of the changes introduced 1n Java
version 9, the overwhelming majority of applications still
rely on Java version 8 or prior. This 1s primarily due to
concerns about adding even more complexity to already
complex applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments herein may be better understood by
referring to the following description in conjunction with the
accompanying drawings in which like reference numerals
indicate identically or functionally similar elements, of
which:

FIGS. 1A-1B illustrate an example computer network;

FIG. 2 1illustrates an example computing device/node;

FIG. 3 illustrates an example application intelligence
platform;

FIG. 4 1llustrates an example system for implementing the
example application intelligence platiorm:;

FIG. § illustrates an example computing system imple-
menting the disclosed technology;

FIG. 6 illustrates an example architecture for a modular
Java manager (MJM) 1n accordance with one or more
embodiments described herein;

FIGS. 7TA-7TB illustrate example screen captures of the
execution of a test application with and without the use of an
MIM 1n accordance with one or more embodiments
described herein;

FIGS. 8A-8F 1illustrate example screen captures of the
outputs of a prototype MIM system in accordance with one
or more embodiments described herein; and

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 9 illustrates an example simplified procedure for
assessing Java 9+ compliance in accordance with one or
more embodiments described herein.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

According to one or more embodiments of the disclosure,
an agent inserts instrumentation ito a Java Platform Module
System 1n which a plurality of Java-based modules of an
application 1s executed. The agent captures, using the 1nstru-
mentation, an access check {failure for an inter-module
operation between the Java modules. The agent overrides,
using the instrumentation, the access check failure. The
agent reports the captured access check failure to a user
interface.

Other embodiments are described below, and this over-
view 1s not meant to limait the scope of the present disclosure.

DESCRIPTION

A computer network 1s a geographically distributed col-
lection of nodes interconnected by communication links and
segments for transporting data between end nodes, such as
personal computers and workstations, or other devices, such
as sensors, etc. Many types ol networks are available,
ranging from local area networks (LLANs) to wide area
networks (WANs). LANs typically connect the nodes over
dedicated private communications links located in the same
general physical location, such as a building or campus.
WANSs, on the other hand, typically connect geographically
dispersed nodes over long-distance communications links,
such as common carrier telephone lines, optical lightpaths,
synchronous optical networks (SONET), synchronous digi-
tal hierarchy (SDH) links, or Powerline Communications
(PLC), and others. The Internet 1s an example of a WAN that
connects disparate networks throughout the world, provid-
ing global communication between nodes on various net-
works. Other types of networks, such as field area networks
(FANSs), neighborhood area networks (NANSs), personal area
networks (PANs), enterprise networks, etc. may also make
up the components of any given computer network.

The nodes typically communicate over the network by
exchanging discrete frames or packets of data according to
predefined protocols, such as the Transmission Control
Protocol/Internet Protocol (TCP/IP). In this context, a pro-
tocol consists of a set of rules defimng how the nodes
interact with each other. Computer networks may be further
interconnected by an mtermediate network node, such as a
router, to extend the eflective “size” of each network.

Smart object networks, such as sensor networks, in par-
ticular, are a specific type of network having spatially
distributed autonomous devices such as sensors, actuators,
etc., that cooperatively monitor physical or environmental
conditions at different locations, such as, e€.g., energy/power
consumption, resource consumption (e.g., water/gas/etc. for
advanced metering infrastructure or “AMI” applications)
temperature, pressure, vibration, sound, radiation, motion,
pollutants, etc. Other types of smart objects mclude actua-
tors, €.g., responsible for turning on/ofl an engine or perform
any other actions. Sensor networks, a type of smart object
network, are typically shared-media networks, such as wire-
less or power-line communication networks. That 1s, 1n
addition to one or more sensors, €ach sensor device (node)
in a sensor network may generally be equipped with a radio

transceiver or other commumnication port, a microcontroller,

US 11,436,030 B2

3

and an energy source, such as a battery. Generally, size and
cost constraints on smart object nodes (e.g., sensors) result
in corresponding constraints on resources such as energy,
memory, computational speed and bandwidth.

FIG. 1A 1s a schematic block diagram of an example
computer network 100 1illustratively comprising nodes/de-
vices, such as a plurality of routers/devices iterconnected
by links or networks, as shown. For example, customer edge
(CE) routers 110 may be mterconnected with provider edge
(PE) routers 120 (e.g., PE-1, PE-2, and PE-3) 1n order to
communicate across a core network, such as an 1llustrative
network backbone 130. For example, routers 110, 120 may
be imterconnected by the public Internet, a multiprotocol
label switching (MPLS) virtual private network (VPN), or
the like. Data packets 140 (e.g., traflic/messages) may be
exchanged among the nodes/devices of the computer net-
work 100 over links using predefined network communica-
tion protocols such as the Transmission Control Protocol/
Internet Protocol (TCP/IP), User Datagram Protocol (UDP),
Asynchronous Transier Mode (ATM) protocol, Frame Relay
protocol, or any other suitable protocol. Those skilled 1n the
art will understand that any number of nodes, devices, links,
etc. may be used in the computer network, and that the view
shown herein 1s for simplicity.

In some implementations, a router or a set of routers may
be connected to a private network (e.g., dedicated leased
lines, an optical network, etc.) or a virtual private network
(VPN), such as an MPLS VPN thanks to a carrier network,
via one or more links exhibiting very different network and
service level agreement characteristics.

FIG. 1B 1llustrates an example of network 100 in greater
detail, according to various embodiments. As shown, net-
work backbone 130 may provide connectivity between
devices located in different geographical areas and/or dii-
ferent types of local networks. For example, network 100
may comprise local/branch networks 160, 162 that include
devices/nodes 10-16 and devices/nodes 18-20, respectively,
as well as a data center/cloud environment 150 that includes
servers 152-154. Notably, local networks 160-162 and data
center/cloud environment 150 may be located in different
geographic locations. Servers 152-154 may include, 1n vari-
ous embodiments, any number of suitable servers or other
cloud-based resources. As would be appreciated, network
100 may include any number of local networks, data centers,
cloud environments, devices/nodes, servers, etc.

In some embodiments, the techniques herein may be
applied to other network topologies and configurations. For
example, the techniques herein may be applied to peering
points with high-speed links, data centers, etc. Furthermore,
in various embodiments, network 100 may include one or
more mesh networks, such as an Internet of Things network.
Loosely, the term “Internet of Things” or “loT” refers to
uniquely 1dentifiable objects (things) and their virtual rep-
resentations in a network-based architecture. In particular,
the next frontier in the evolution of the Internet 1s the ability
to connect more than just computers and communications
devices, but rather the ability to connect “objects” 1n gen-
eral, such as lights, appliances, vehicles, heating, ventilating,
and air-conditioning (HVAC), windows and window shades
and blinds, doors, locks, etc. The “Internet of Things™ thus
generally refers to the interconnection of objects (e.g., smart
objects), such as sensors and actuators, over a computer
network (e.g., via IP), which may be the public Internet or
a private network.

Notably, shared-media mesh networks, such as wireless
networks, are often on what is referred to as Low-Power and
Lossy Networks (LLNs), which are a class of network 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

which both the routers and their interconnect are con-
strained: LLN routers typically operate with constraints,
¢.g., processing power, memory, and/or energy (battery), and
their interconnects are characterized by, illustratively, high
loss rates, low data rates, and/or instability. LLNs are
comprised of anything from a few dozen to thousands or
even millions of LLN routers, and support point-to-point
traflic (between devices mside the LLN), point-to-multipoint
tratlic (from a central control point such at the root node to
a subset of devices inside the LLN), and multipoint-to-point
traflic (from devices iside the LLN towards a central
control point). Often, an IoT network 1s implemented with
an LLN-like architecture. For example, as shown, local
network 160 may be an LLN 1n which CE-2 operates as a
root node for nodes/devices 10-16 1n the local mesh, 1n some
embodiments.

FIG. 2 1s a schematic block diagram of an example
computing device (e.g., apparatus) 200 that may be used
with one or more embodiments described herein, e.g., as any
of the devices shown 1n FIGS. 1A-1B above, and particu-
larly as specific devices as described further below. The
device may comprise one or more network interfaces 210
(e.g., wired, wireless, etc.), at least one processor 220, and
a memory 240 interconnected by a system bus 250, as well
as a power supply 260 (e.g., battery, plug-in, etc.).

The network interface(s) 210 contain the mechanical,
clectrical, and signaling circuitry for communicating data
over links coupled to the network 100, e.g., providing a data
connection between device 200 and the data network, such
as the Internet. The network interfaces may be configured to
transmit and/or receive data using a variety of different
communication protocols. For example, interfaces 210 may
include wired transceivers, wireless transceivers, cellular
transceivers, or the like, each to allow device 200 to com-
municate information to and from a remote computing
device or server over an appropriate network. The same
network interfaces 210 also allow communities of multiple
devices 200 to interconnect among themselves, either peer-
to-peer, or up and down a hierarchy. Note, further, that the
nodes may have two different types of network connections
210, e.g., wireless and wired/physical connections, and that
the view herein 1s merely for illustration. Also, while the
network interface 210 1s shown separately from power
supply 260, for devices using powerline communication
(PLC) or Power over Ethernet (PoE), the network interface
210 may communicate through the power supply 260, or
may be an integral component of the power supply.

The memory 240 comprises a plurality of storage loca-
tions that are addressable by the processor 220 and the
network interfaces 210 for storing soiftware programs and
data structures associated with the embodiments described
herein. The processor 220 may comprise hardware elements
or hardware logic adapted to execute the software programs
and manipulate the data structures 245. An operating system
242, portions of which are typically resident in memory 240
and executed by the processor, functionally organizes the
device by, among other things, invoking operations i sup-
port of soitware processes and/or services executing on the
device. These software processes and/or services may coms-
prise one or more functional processes 246, and on certain
devices, an illustrative “web application security communi-
cation” process 248, as described herein. Notably, functional
processes 246, when executed by processor(s) 220, cause
cach particular device 200 to perform the various functions
corresponding to the particular device’s purpose and general
configuration. For example, a router would be configured to
operate as a router, a server would be configured to operate

US 11,436,030 B2

S

as a server, an access point (or gateway) would be config-
ured to operate as an access point (or gateway), a client

device would be configured to operate as a client device, and
SO On.

It will be apparent to those skilled in the art that other
processor and memory types, including various computer-
readable media, may be used to store and execute program
instructions pertaining to the techniques described herein.
Also, while the description illustrates various processes, 1t 1s
expressly contemplated that various processes may be
embodied as modules configured to operate 1n accordance
with the techniques herein (e.g., according to the function-
ality of a similar process). Further, while the processes have
been shown separately, those skilled 1 the art will appre-
ciate that processes may be routines or modules within other
Processes.

Application Intelligence Platform

The embodiments herein relate to an application intelli-
gence platform for application performance management. In
one aspect, as discussed with respect to FIGS. 3-5 below,
performance within a networking environment may be
monitored, specifically by momtoring applications and enti-
ties (e.g., transactions, tiers, nodes, and machines) in the
networking environment using agents installed at individual
machines at the entities. As an example, applications may be
configured to run on one or more machines (e.g., a customer
will typically run one or more nodes on a machine, where an
application consists of one or more tiers, and a tier consists
of one or more nodes). The agents collect data associated
with the applications of interest and associated nodes and
machines where the applications are being operated.
Examples of the collected data may include performance
data (e.g., metrics, metadata, etc.) and topology data (e.g.,
indicating relationship information). The agent-collected
data may then be provided to one or more servers or
controllers to analyze the data.

FIG. 3 1s a block diagram of an example application
intelligence platform 300 that can implement one or more
aspects ol the technmiques herein. The application intelli-
gence platform 1s a system that monitors and collects metrics
ol performance data for an application environment being
monitored. At the simplest structure, the application intelli-
gence platform includes one or more agents 310 and one or
more servers/controllers 320. Note that while FIG. 3 shows
four agents (e.g., Agent 1 through Agent 4) communica-
tively linked to a single controller, the total number of agents
and controllers can vary based on a number of factors
including the number of applications monitored, how dis-
tributed the application environment 1s, the level of moni-
toring desired, the level of user experience desired, and so
on.

The controller 320 1s the central processing and admin-
1stration server for the application intelligence platform. The
controller 320 serves a browser-based user interface (UI)
330 that 1s the primary interface for monitoring, analyzing,
and troubleshooting the monitored environment. The con-
troller 320 can control and manage monitoring of business
transactions (described below) distributed over application
servers. Specifically, the controller 320 can receive runtime
data from agents 310 (and/or other coordinator devices),
associate portions of business transaction data, communicate
with agents to configure collection of runtime data, and
provide performance data and reporting through the inter-
tace 330. The interface 330 may be viewed as a web-based
interface viewable by a client device 340. In some 1mple-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

mentations, a client device 340 can directly communicate
with controller 320 to view an interface for monitoring data.
The controller 320 can include a visualization system 350
for displaying the reports and dashboards related to the
disclosed technology. In some implementations, the visual-
ization system 3350 can be implemented 1 a separate
machine (e.g., a server) diflerent from the one hosting the
controller 320.

Notably, 1 an 1illustrative Software as a Service (SaaS)
implementation, a controller instance 320 may be hosted
remotely by a provider of the application intelligence plat-
form 300. In an 1illustrative on-premises (On-Prem) 1imple-
mentation, a controller instance 320 may be mstalled locally
and self-administered.

The controllers 320 receive data from different agents 310
(e.g., Agents 1-4) deployed to monitor applications, data-
bases and database servers, servers, and end user clients for
the monitored environment. Any of the agents 310 can be
implemented as different types of agents with specific moni-
toring duties. For example, application agents may be
installed on each server that hosts applications to be moni-
tored. Instrumenting an agent adds an application agent into
the runtime process of the application.

Database agents, for example, may be software (e.g., a
Java program) installed on a machine that has network
access to the momitored databases and the controller. Data-
base agents query the monitored databases 1n order to collect
metrics and pass those metrics along for display 1n a metric
browser (e.g., for database monitoring and analysis within
databases pages of the controller’s UI 330). Multiple data-
base agents can report to the same controller. Additional
database agents can be implemented as backup database
agents to take over for the primary database agents during a
failure or planned machine downtime. The additional data-
base agents can run on the same machine as the primary
agents or on different machines. A database agent can be
deployed 1n each distinct network of the monitored envi-
ronment. Multiple database agents can run under different
user accounts on the same machine.

Standalone machine agents, on the other hand, may be
standalone programs (e.g., standalone Java programs) that
collect hardware-related performance statistics from the
servers (or other suitable devices) i the momitored envi-
ronment. The standalone machine agents can be deployed on
machines that host application servers, database servers,
messaging servers, Web servers, etc. A standalone machine
agent has an extensible architecture (e.g., designed to
accommodate changes).

End user monitoring (EUM) may be performed using
browser agents and mobile agents to provide performance
information from the point of view of the client, such as a
web browser or a mobile native application. Through EUM,
web use, mobile use, or combinations thereof (e.g., by real
users or synthetic agents) can be monitored based on the
monitoring needs. Notably, browser agents (e.g., agents 310)
can include Reporters that report monitored data to the
controller.

Monitoring through browser agents and mobile agents are
generally unlike monitoring through application agents,
database agents, and standalone machine agents that are on
the server. In particular, browser agents may generally be
embodied as small files using web-based technologies, such
as JavaScript agents injected into each instrumented web
page (e.g., as close to the top as possible) as the web page
1s served, and are configured to collect data. Once the web
page has completed loading, the collected data may be
bundled into a beacon and sent to an EUM process/cloud for

"y

US 11,436,030 B2

7

processing and made ready for retrieval by the controller.
Browser real user monitoring (Browser RUM) provides
insights mto the performance of a web application from the
point of view of a real or synthetic end user. For example,
Browser RUM can determine how specific Ajax or iframe
calls are slowing down page load time and how server
performance 1mpact end user experience 1n aggregate or in
individual cases.

A mobile agent, on the other hand, may be a small piece
of highly performant code that gets added to the source of
the mobile application. Mobile RUM provides information
on the native mobile application (e.g., 10S or Android
applications) as the end users actually use the mobile
application. Mobile RUM provides visibility into the func-
tioming of the mobile application itself and the mobile
application’s interaction with the network used and any
server-side applications with which the mobile application
communicates.

Application Intelligence Monitoring: The disclosed tech-
nology can provide application intelligence data by moni-
toring an application environment that includes various
services such as web applications served from an application
server (e.g., Java virtual machine (JVM), Internet Informa-
tion Services (IIS), Hypertext Preprocessor (PHP) Web
server, etc.), databases or other data stores, and remote
services such as message queues and caches. The services 1n
the application environment can interact 1n various ways to
provide a set of cohesive user interactions with the appli-
cation, such as a set of user services applicable to end user
customers.

Application Intelligence Modeling: Entities 1n the appli-
cation environment (such as the JBoss service, MQSeries
modules, and databases) and the services provided by the
entities (such as a login transaction, service or product
search, or purchase transaction) may be mapped to an
application intelligence model. In the application ntelli-
gence model, a business transaction represents a particular
service provided by the monitored environment. For
example, mm an e-commerce application, particular real-
world services can 1nclude a user logging 1n, searching for
items, or adding items to the cart. In a content portal,
particular real-world services can include user requests for
content such as sports, business, or entertainment news. In
a stock trading application, particular real-world services
can 1nclude operations such as receiving a stock quote,
buying, or selling stocks.

Business Transactions: A business transaction represen-
tation of the particular service provided by the monitored
environment provides a view on performance data in the
context of the various tiers that participate 1 processing a
particular request. A business transaction, which may each
be 1dentified by a unique business transaction identification
(ID), represents the end-to-end processing path used to
tulfill a service request 1n the monitored environment (e.g.,
adding items to a shopping cart, storing information in a
database, purchasing an item online, etc.). Thus, a business
transaction 1s a type of user-initiated action in the monitored
environment defined by an entry point and a processing path
across application servers, databases, and potentially many
other infrastructure components. Each instance of a business
transaction 1s an execution of that transaction in response to
a particular user request (e.g., a socket call, illustratively
associated with the TCP layer). A business transaction can be
created by detecting incoming requests at an entry point and
tracking the activity associated with request at the originat-
ing tier and across distributed components in the application
environment (e.g., associating the business transaction with

10

15

20

25

30

35

40

45

50

55

60

65

8

a 4-tuple of a source IP address, source port, destination IP
address, and destination port). A flow map can be generated
for a business transaction that shows the touch points for the
business transaction 1n the application environment. In one
embodiment, a specific tag may be added to packets by
application specific agents for identifying business transac-
tions (e.g., a custom header field attached to a hypertext
transter protocol (HTTP) payload by an application agent, or
by a network agent when an application makes a remote
socket call), such that packets can be examined by network
agents to identify the business transaction identifier (ID)

(e.g., a Globally Umque Identifier (GUID) or Umversally
Unique Identifier (UUID)).

Performance monitoring can be oriented by business
transaction to focus on the performance of the services 1n the
application environment from the perspective of end users.
Performance monitoring based on business transactions can
provide miformation on whether a service 1s available (e.g.,
users can log 1n, check out, or view their data), response
times for users, and the cause of problems when the prob-
lems occur.

A business application 1s the top-level container in the
application intelligence model. A business application con-
tains a set of related services and business transactions. In
some 1implementations, a single business application may be
needed to model the environment. In some implementations,
the application intelligence model of the application envi-
ronment can be divided into several business applications.
Business applications can be organized differently based on
the specifics of the application environment. One consider-
ation 1s to organize the business applications 1n a way that
reflects work teams 1n a particular organization, since role-
based access controls 1n the Controller Ul are oriented by
business application.

A node 1n the application 1ntelligence model corresponds
to a monitored server or JVM 1n the application environ-
ment. A node 1s the smallest unit of the modeled environ-
ment. In general, a node corresponds to an individual
application server, JVM, or Common Language Runtime
(CLR) on which a monitoring Agent 1s installed. Each node
identifies itself 1n the application intelligence model. The
Agent 1nstalled at the node 1s configured to specity the name
of the node, tier, and business application under which the
Agent reports data to the Controller.

Business applications contain tiers, the unit in the appli-
cation intelligence model that includes one or more nodes.
Each node represents an instrumented service (such as a web
application). While a node can be a distinct application in the
application environment, in the application intelligence
model, a node 1s a member of a tier, which, along with
possibly many other tiers, make up the overall logical
business application.

Tiers can be organized in the application intelligence
model depending on a mental model of the monitored
application environment. For example, 1dentical nodes can
be grouped 1nto a single tier (such as a cluster of redundant
servers). In some implementations, any set of nodes, 1den-
tical or not, can be grouped for the purpose of treating
certain performance metrics as a umt ito a single tier.

The traflic 1n a business application tlows among tiers and
can be visualized 1n a flow map using lines among tiers. In
addition, the lines indicating the traflic flows among tiers can
be annotated with performance metrics. In the application
intelligence model, there may not be any interaction among
nodes within a single tier. Also, 1n some implementations, an
application agent node cannot belong to more than one tier.

US 11,436,030 B2

9

Similarly, a machine agent cannot belong to more than one
tier. However, more than one machine agent can be installed
on a machine.

A backend 1s a component that participates in the pro-
cessing ol a business transaction instance. A backend 1s not
istrumented by an agent. A backend may be a web server,
database, message queue, or other type of service. The agent
recognizes calls to these backend services from instru-
mented code (called exit calls). When a service 1s not
instrumented and cannot continue the transaction context of
the call, the agent determines that the service 1s a backend
component. The agent picks up the transaction context at the
response at the backend and continues to follow the context
of the transaction from there.

Performance information 1s available for the backend call.
For detailed transaction analysis for the leg of a transaction
processed by the backend, the database, web service, or
other application need to be instrumented.

The application intelligence platform uses both seli-
learned baselines and configurable thresholds to help 1den-
tify application 1ssues. A complex distributed application has
a large number of performance metrics and each metric 1s
important in one or more contexts. In such environments, 1t
1s difhicult to determine the values or ranges that are normal
for a particular metric; set meaningiul thresholds on which
to base and receive relevant alerts; and determine what 1s a
“normal” metric when the application or infrastructure
undergoes change. For these reasons, the disclosed applica-
tion 1intelligence platform can perform anomaly detection
based on dynamic baselines or thresholds.

The disclosed application intelligence platform automati-
cally calculates dynamic baselines for the monitored met-
rics, defimng what 1s “normal” for each metric based on
actual usage. The application intelligence platform uses
these baselines to 1dentily subsequent metrics whose values
fall out of this normal range. Static thresholds that are
tedious to set up and, 1n rapidly changing application envi-
ronments, error-prone, are no longer needed.

The disclosed application intelligence platform can use
configurable thresholds to maintain service level agreements
(SLAs) and ensure optimum performance levels for system
by detecting slow, very slow, and stalled transactions. Con-
figurable thresholds provide a flexible way to associate the
right business context with a slow request to 1solate the root
cause.

In addition, health rules can be set up with conditions that
use the dynamically generated baselines to trigger alerts or
initiate other types of remedial actions when performance
problems are occurring or may be about to occur.

For example, dynamic baselines can be used to automati-
cally establish what 1s considered normal behavior for a
particular application. Policies and health rules can be used
against baselines or other health indicators for a particular
application to detect and troubleshoot problems before users
are aflected. Health rules can be used to define metric
conditions to monitor, such as when the “average response
time 1s four times slower than the baseline”. The health rules
can be created and modified based on the monitored appli-
cation environment.

Examples of health rules for testing business transaction
performance can include business transaction response time
and business transaction error rate. For example, health rule
that tests whether the business transaction response time 1s
much higher than normal can define a critical condition as
the combination of an average response time greater than the
default baseline by 3 standard deviations and a load greater
than 350 calls per minute. In some 1mplementations, this

10

15

20

25

30

35

40

45

50

55

60

65

10

health rule can define a warning condition as the combina-
tion of an average response time greater than the default
baseline by 2 standard deviations and a load greater than 100
calls per minute. In some implementations, the health rule
that tests whether the business transaction error rate 1s much
higher than normal can define a critical condition as the
combination of an error rate greater than the default baseline
by 3 standard deviations and an error rate greater than 10
errors per minute and a load greater than 50 calls per minute.
In some implementations, this health rule can define a
warning condition as the combination of an error rate greater
than the default baseline by 2 standard deviations and an
error rate greater than 5 errors per minute and a load greater
than 50 calls per minute. These are non-exhaustive and
non-limiting examples of health rules and other health rules
can be defined as desired by the user.

Policies can be configured to trigger actions when a health
rule 1s violated or when any event occurs. Triggered actions
can include notifications, diagnostic actions, auto-scaling
capacity, running remediation scripts.

Most of the metrics relate to the overall performance of
the application or business transaction (e.g., load, average
response time, error rate, etc.) or of the application server
infrastructure (e.g., percentage CPU busy, percentage of
memory used, etc.). The Metric Browser 1n the controller Ul
can be used to view all of the metrics that the agents report
to the controller.

In addition, special metrics called information points can
be created to report on how a given business (as opposed to
a given application) 1s performing. For example, the perfor-
mance of the total revenue for a certain product or set of
products can be monitored. Also, information points can be
used to report on how a given code 1s performing, for
example how many times a specific method 1s called and
how long 1t 1s taking to execute. Moreover, extensions that
use the machine agent can be created to report user defined
custom metrics. These custom metrics are base-lined and
reported 1n the controller, just like the built-in metrics.

All metrics can be accessed programmatically using a
Representational State Transier (REST) API that returns
either the JavaScript Object Notation (JSON) or the eXten-
sible Markup Language (XML) format. Also, the REST API
can be used to query and manipulate the application envi-
ronment.

Snapshots provide a detailed picture of a given applica-
tion at a certain point 1n time. Snapshots usually include call
graphs that allow that enables drilling down to the line of
code that may be causing performance problems. The most
common snapshots are transaction snapshots.

FIG. 4 illustrates an example application intelligence
platform (system) 400 for performing one or more aspects of
the techniques herein. The system 400 1n FIG. 4 includes
client device 405 and 492, mobile device 415, network 420,
network server 425, application servers 430, 440, 450, and
460, asynchronous network machine 470, data stores 480
and 485, controller 490, and data collection server 495. The
controller 490 can include visualization system 496 for
providing displaying of the report generated for performing
the field name recommendations for field extraction as
disclosed in the present disclosure. In some implementa-
tions, the visualization system 496 can be implemented in a
separate machine (e.g., a server) different from the one
hosting the controller 490.

Client device 405 may include network browser 410 and
be implemented as a computing device, such as for example
a laptop, desktop, workstation, or some other computing
device. Network browser 410 may be a client application for

US 11,436,030 B2

11

viewing content provided by an application server, such as
application server 430 via network server 425 over network
420.

Network browser 410 may include agent 412. Agent 412
may be installed on network browser 410 and/or client 405
as a network browser add-on, downloading the application
to the server, or in some other manner. Agent 412 may be
executed to monitor network browser 410, the operating
system of client 405, and any other application, API, or
another component of client 405. Agent 412 may determine
network browser navigation timing metrics, access browser
cookies, monitor code, and transmit data to data collection
495, controller 490, or another device. Agent 412 may
perform other operations related to monitoring a request or
a network at client 405 as discussed herein including report
generating.

Mobile device 415 1s connected to network 420 and may
be implemented as a portable device suitable for sending and
receiving content over a network, such as for example a
mobile phone, smart phone, tablet computer, or other por-
table device. Both client device 4035 and mobile device 415
may include hardware and/or software configured to access
a web service provided by network server 423.

Mobile device 415 may include network browser 417 and
an agent 419. Mobile device may also include client appli-
cations and other code that may be monitored by agent 419.
Agent 419 may reside 1n and/or communicate with network
browser 417, as well as communicate with other applica-
tions, an operating system, APIs and other hardware and
soltware on mobile device 415. Agent 419 may have similar
functionality as that described herein for agent 412 on client
405, and may report data to data collection server 495 and/or
controller 490.

Network 420 may {facilitate communication of data
among different servers, devices and machines of system
400 (some connections shown with lines to network 420,
some not shown). The network may be implemented as a
private network, public network, intranet, the Internet, a
cellular network, Wi-F1 network, VoIP network, or a com-
bination of one or more of these networks. The network 420
may include one or more machines such as load balance
machines and other machines.

Network server 4235 1s connected to network 420 and may
receive and process requests received over network 420.
Network server 425 may be implemented as one or more
servers implementing a network service, and may be imple-
mented on the same machine as application server 430 or
one or more separate machines. When network 420 the
Internet, network server 425 may be implemented as a web
Server.

Application server 430 communicates with network
server 425, application servers 440 and 4350, and controller
490. Application server 450 may also communicate with
other machines and devices (not illustrated in FIG. 4).
Application server 430 may host an application or portions
of a distributed application. The host application 432 may be
in one ol many platforms, such as including a Java, PHP,
Net, and Node.JS, be implemented as a Java virtual
machine, or include some other host type. Application server
430 may also include one or more agents 434 (i.e., “mod-
ules”), including a language agent, machine agent, and
network agent, and other software modules. Application
server 430 may be implemented as one server or multiple
servers as 1llustrated 1n FIG. 4.

Application 432 and other software on application server
430 may be mstrumented using byte code 1nsertion, or byte
code mstrumentation (BCI), to modify the object code of the

5

10

15

20

25

30

35

40

45

50

55

60

65

12

application or other software. The instrumented object code
may include code used to detect calls received by applica-
tion 432, calls sent by application 432, and communicate
with agent 434 during execution of the application. BCI may
also be used to momitor one or more sockets of the appli-
cation and/or application server in order to monitor the
socket and capture packets coming over the socket.

In some embodiments, server 430 may include applica-
tions and/or code other than a virtual machine. For example,
servers 430, 440, 450, and 460 may each include Java code,
Net code, PHP code, Ruby code, C code, C++ or other
binary code to implement applications and process requests
received from a remote source. References to a virtual
machine with respect to an application server are intended to
be for exemplary purposes only.

Agents 434 on application server 430 may be 1nstalled,
downloaded, embedded, or otherwise provided on applica-
tion server 430. For example, agents 434 may be provided
in server 430 by mstrumentation of object code, download-
ing the agents to the server, or 1n some other manner. Agent
434 may be executed to monitor application server 430,
monitor code running in a virtual machine 432 (or other
program language, such as a PHP, Net, or C program),
machine resources, network layer data, and communicate
with byte mstrumented code on application server 430 and
one or more applications on application server 430.

Each of agents 434, 444, 454, and 464 may include one
or more agents, such as language agents, machine agents,
and network agents. A language agent may be a type of agent
that 1s suitable to run on a particular host. Examples of
language agents include a Java agent, .Net agent, PHP agent,
and other agents. The machine agent may collect data from
a particular machine on which 1t i1s installed. A network
agent may capture network information, such as data col-
lected from a socket.

Agent 434 may detect operations such as receiving calls
and sending requests by application server 430, resource
usage, and mcoming packets. Agent 434 may receive data,
process the data, for example by aggregating data into
metrics, and transmit the data and/or metrics to controller
490. Agent 434 may perform other operations related to
monitoring applications and application server 430 as dis-
cussed herein. For example, agent 434 may i1dentify other
applications, share business transaction data, aggregate
detected runtime data, and other operations.

An agent may operate to monitor a node, tier of nodes, or
other entity. A node may be a software program or a
hardware component (e.g., memory, processor, and so on). A
tier of nodes may include a plurality of nodes which may
process a similar business transaction, may be located on the
same server, may be associated with each other 1n some
other way, or may not be associated with each other.

A language agent may be an agent suitable to istrument
or modily, collect data from, and reside on a host. The host
may be a Java, PHP, .Net, Node.IS, or other type of platiorm.
Language agents may collect flow data as well as data
associated with the execution of a particular application. The
language agent may instrument the lowest level of the
application to gather the flow data. The flow data may
indicate which tier 1s communicating with which tier and on
which port. In some instances, the flow data collected from
the language agent includes a source IP, a source port, a
destination IP, and a destination port. The language agent
may report the application data and call chain data to a
controller. The language agent may report the collected tlow
data associated with a particular application to a network
agent.

US 11,436,030 B2

13

A network agent may be a standalone agent that resides on
the host and collects network flow group data. The network
flow group data may include a source IP, destination port,
destination IP, and protocol information for network tlow
received by an application on which network agent 1s
installed. The network agent may collect data by intercept-
ing and performing packet capture on packets coming 1n
from one or more network interfaces (e.g., so that data
generated/recerved by all the applications using sockets can
be 1ntercepted). The network agent may recerve flow data
from a language agent that 1s associated with applications to
be monitored. For flows 1n the flow group data that match
flow data provided by the language agent, the network agent
rolls up the flow data to determine metrics such as TCP
throughput, TCP loss, latency, and bandwidth. The network
agent may then report the metrics, flow group data, and call
chain data to a controller. The network agent may also make
system calls at an application server to determine system
information, such as for example a host status check, a
network status check, socket status, and other information.

A machine agent, which may be referred to as an inira-
structure agent, may reside on the host and collect informa-
tion regarding the machine which implements the host. A
machine agent may collect and generate metrics from 1nfor-
mation such as processor usage, memory usage, and other
hardware information.

Each of the language agent, network agent, and machine
agent may report data to the controller. Controller 490 may
be implemented as a remote server that communicates with
agents located on one or more servers or machines. The
controller may receive metrics, call chain data and other
data, correlate the received data as part of a distributed
transaction, and report the correlated data in the context of
a distributed application implemented by one or more moni-
tored applications and occurring over one or more monitored
networks. The controller may provide reports, one or more
user interfaces, and other information for a user.

Agent 434 may create a request identifier for a request
received by server 430 (for example, a request received by
a client 405 or 415 associated with a user or another source).
The request 1dentifier may be sent to client 405 or mobile
device 415, whichever device sent the request. In embodi-
ments, the request i1dentifier may be created when data 1s
collected and analyzed for a particular business transaction.

Each of application servers 440, 450, and 460 may
include an application and agents. Each application may run
on the corresponding application server. Fach of applica-
tions 442, 452, and 462 on application servers 440-460 may
operate similarly to application 432 and perform at least a
portion of a distributed business transaction. Agents 444,
454, and 464 may monitor applications 442-462, collect and
process data at runtime, and communicate with controller
490. The applications 432, 442, 452, and 462 may commu-
nicate with each other as part of performing a distributed
transaction. Each application may call any application or
method of another virtual machine.

Asynchronous network machine 470 may engage 1n asyn-
chronous communications with one or more application
servers, such as application server 450 and 460. For
example, application server 450 may transmit several calls
or messages to an asynchronous network machine. Rather
than communicate back to application server 450, the asyn-
chronous network machine may process the messages and
eventually provide a response, such as a processed message,
to application server 460. Because there 1s no return message

10

15

20

25

30

35

40

45

50

55

60

65

14

from the asynchronous network machine to application
server 450, the communications among them are asynchro-
nous.

Data stores 480 and 485 may each be accessed by
application servers such as application server 460. Data store
485 may also be accessed by application server 450. Each of
data stores 480 and 485 may store data, process data, and
return queries received from an application server. Each of
data stores 480 and 485 may or may not include an agent.

Controller 490 may control and manage monitoring of
business transactions distributed over application servers
430-460. In some embodiments, controller 490 may receive
application data, including data associated with monitoring
client requests at client 405 and mobile device 415, from
data collection server 495. In some embodiments, controller
490 may receive application monitoring data and network
data from each of agents 412, 419, 434, 444, and 454 (also
referred to herein as “application monitoring agents™). Con-
troller 490 may associate portions of business transaction
data, communicate with agents to configure collection of
data, and provide performance data and reporting through an
interface. The interface may be viewed as a web-based
interface viewable by client device 492, which may be a
mobile device, client device, or any other platform for
viewing an interface provided by controller 490. In some
embodiments, a client device 492 may directly communicate
with controller 490 to view an interface for monitoring data.

Client device 492 may include any computing device,
including a mobile device or a client computer such as a
desktop, work station or other computing device. Client
computer 492 may communicate with controller 490 to
create and view a custom interface. In some embodiments,
controller 490 provides an interface for creating and viewing
the custom interface as a content page, €.g., a web page,
which may be provided to and rendered through a network
browser application on client device 492.

Applications 432, 442, 452, and 462 may be any of
several types of applications. Examples of applications that
may implement applications 432-462 include a Java, PHP,
Net, Node.IS, and other applications.

FIG. 5 1s a block diagram of a computer system 500 for
implementing the present technology, which 1s a specific
implementation of device 200 of FIG. 2 above. System 500
of FIG. 5 may be implemented in the contexts of the likes
of clients 405, 492, network server 425, servers 430, 440,
450, 460, asynchronous network machine 470, and control-
ler 490 of FIG. 4. (Note that the specifically configured
system 500 of FIG. 5 and the customized device 200 of FIG.
2 are not meant to be mutually exclusive, and the techniques
herein may be performed by any suitably configured com-
puting device.)

The computing system 500 of FIG. 5 includes one or more
processors 310 and memory 520. Main memory 3520 stores,
in part, instructions and data for execution by processor 510.
Main memory 520 can store the executable code when 1n
operation. The system 500 of FIG. 5 further includes a mass
storage device 530, portable storage medium drive(s) 540,
output devices 550, user mput devices 560, a graphics
display 570, and peripheral devices 580.

The components shown 1n FIG. § are depicted as being
connected via a single bus 390. However, the components
may be connected through one or more data transport means.
For example, processor unit 310 and main memory 520 may
be connected via a local microprocessor bus, and the mass
storage device 530, peripheral device(s) 580, portable or
remote storage device 540, and display system 570 may be
connected via one or more mput/output (I/0O) buses.

US 11,436,030 B2

15

Mass storage device 530, which may be implemented
with a magnetic disk drive or an optical disk drive, 1s a
non-volatile storage device for storing data and instructions
for use by processor unit 510. Mass storage device 330 can
store the system software for implementing embodiments of
the present disclosure for purposes of loading that software
into main memory 3520.

Portable storage device 540 operates 1n conjunction with
a portable non-volatile storage medium, such as a compact
disk, digital video disk, magnetic disk, flash storage, etc. to
input and output data and code to and from the computer
system 500 of FIG. 5. The system software for implementing
embodiments of the present disclosure may be stored on
such a portable medium and input to the computer system
500 via the portable storage device 540.

Input devices 560 provide a portion of a user interface.
Input devices 560 may include an alpha-numeric keypad,
such as a keyboard, for mputting alpha-numeric and other
information, or a pointing device, such as a mouse, a
trackball, stylus, or cursor direction keys. Additionally, the
system 300 as shown 1n FIG. 5 includes output devices 350.
Examples of suitable output devices include speakers, print-
ers, network interfaces, and monitors.

Display system 370 may include a liquid crystal display
(LCD) or other suitable display device. Display system 370
receives textual and graphical information, and processes
the information for output to the display device.

Peripherals 580 may include any type of computer sup-
port device to add additional functionality to the computer
system. For example, peripheral device(s) 580 may include
a modem or a router.

The components contained 1n the computer system 500 of
FIG. 5 can include a personal computer, hand held comput-
ing device, telephone, mobile computing device, worksta-
tion, server, minicomputer, mainirame computer, or any
other computing device. The computer can also include
different bus configurations, networked platforms, multi-
processor platforms, etc. Various operating systems can be
used including Unix, Linux, Windows, Apple OS, and other
suitable operating systems, including mobile versions.

When implementing a mobile device such as smart phone
or tablet computer, the computer system 500 of FIG. § may
include one or more antennas, radios, and other circuitry for
communicating over wireless signals, such as for example
communication using Wi-Fi, cellular, or other wireless sig-
nals.

As noted above, many applications today rely on the Java
programming language, due to 1ts platform independence,
application programming interface (API) support, multi-
threading capabilities, and the like. Java version 9 (Jigsaw)
introduced the concept of a “module,” which 1s essentially
a named groupings of related Java packages (e.g., code) and
resources (e.g., images, XML files, etc.) that 1s responsible
for a particular functionality/service within an application. A
Java module may also share dependencies with other Java
modules, which are defined as part of the module.

A key feature of Java modules 1s the ability to restrict
access between modules. Indeed, 1n Java version 8 and prior,
the Retlection API could be used to access all classes 1n a
package, including its private classes, regardless of the
access specilier used. With Java modules, classes 1n pack-
ages within a module need to have permission to access a
class and to perform reflection on a class. This 1s done by a
module “exporting” 1tsellf and certain packages to another
module that “reads™ that module and 1ts exported packages.
In addition, a module can “open” 1itself to another module,
to allow reflection.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

Despite the advantages of the changes introduced 1n Java
version 9, the overwhelming majority of applications still
rely on Java version 8 or prior. This 1s primanly due to
concerns about adding even more complexity to already
complex applications.

Modular Java Manager

The techniques herein introduce a Modular Java Manager
(MJIM) that 1s designed to help application developers and
stakeholders migrate a Java application to Java version 9 or
greater (collectively referred to herein as “Java 9+7), 1n a
simplified manner. In some aspects, the MIM may operate as
a Java agent that provides an audit trail of changes that need
to be made to a Java application to become compliant with
Java 9+. The MJM 1s able to do so 1n a manner that does not
require the application to fail to obtain the full list of
changes. This 1s 1n contrast to approaches that identily
changes, one failure at a time. In further aspects, the MIM

Iso provides the ability to “script” an easy to use policy, or
build i1t automatically, as a substitute for the Oracle module-
info.java files and/or the command line arguments. This can
be setup to monitor the module activities 1n production and
prevent production failures due to module permission rejec-
tions (1.e., an access check failure), while also generating
notifications of any problems that arise.

FIG. 6 illustrates an example architecture 600 for a
modular Java manager (MJM), 1n accordance with one or
more embodiments described herein. At the core of archi-
tecture 600 1s MJIM 604 that interacts with a Java Platform
Module System 602, to implement the techniques herein. In
addition, MJM 604 may communicate with a user interface
(UI) 610, such as a display or the like, to convey information
to a user and receive parameters and other control com-
mands therefrom.

As would be appreciated, Java Platform Module System
(JPMS) 602 15 a platform introduced 1n Java 9 and used 1n
all subsequent versions to date, to support the use of Java
modules within an application, such as Java modules 612. In
general, a Java module 612 may include the following
information as part of a module descriptor:

A name that umiquely 1dentifies the module.

A set of dependencies between that module and those on

which 1t depends.

A listing of the packages that it makes available to other

modules via export. Note that this must be done explic-

itly and that a package 1s implicitly unavailable to other
modules, by default.

T'he services that are offered by the module.

T'he services that the module consumes.

I'he other modules that are allowed to use reflection with
the module.

In addition to the module descriptor, each Java module
612 may include any number of related packages (e.g., code)
and, potentially, other resources (e.g., images, XML, etc.), as
well.

More specifically, a module descriptor for a Java module
612 may utilize any or all of the following directives:

exports—this directive specifies the packages of the mod-

ule that are accessible by other modules.

uses—this directive specifies which service(s) are used by

the module. In general, a service 1s an object for a class
that implements an interface or extends the abstract
class specified 1n this directive.

US 11,436,030 B2

17

provides—this directive specifies that a module provides
a particular service (e.g., the interface or abstract class
from the uses directive), as well as the service provider
class that implements it.

opens—this directive specifies the package(s) of the mod-

ule that are accessible to other modules. Depending on
its use, this directive can be used to allow all packages
in the module to be accessed during runtime or used to
limit runtime access by specified modules to certain
modules.

According to various embodiments, MIM 604 may
include any or all of the following components: an instru-
menter 606 responsible for inserting instrumentation 614
into JPMS 602 and a policy engine 608 responsible for the
implementation of a module policy. As would be appreci-
ated, the functionalities of components 606-608 may be
combined, omitted, or implemented 1n a distributed manner,
as desired.

5

10

15

18

According to various embodiments, MJM 604 may also
include a policy engine 608 that allows a user of Ul 610 to
define or adjust a module policy. In turn, MIM 604 may
compare the information logged by instrumentation 614 to
the module policy, to determine what action, 1f any should
be taken. More specifically, the policy may control whether
a given decision within JPMS 602 should be overridden and,
if so, allow the operation. For example, if any of the methods
in Table 1 return a value of ‘false,” the instrumentation 614
inserted into JPMS 602 may change that value to ‘true,’
according to the policy enforced by policy engine 608.
Doing so allows the failure to be logged by MIM 604, while
still allowing the application to execute without actually
failing.

An example module policy that may be enforced by
policy engine 608 1s as follows:

module-policy-settings:
- module-name: “name” // Module requesting
other-module-name: “name” // Optional: Other Module (may be absent)

Imaod
Imaodg

Imaod

11
L1

0]

le-operation: “operation” // Request type: openlreadlexport
e-packages: [“package”,“package”. etc.] // Optional: List of packages
e-loader-name: “classloadermame™ // Optional: Class Loader associated

witﬂ Mﬂdule
module-action: allow // Action: allow|default (either allow the operation or let
the JVM decide)

During execution, MJM 604 may operate in conjunction 30

with JPMS 602 to provide any or all of the following:

The ability to audit and ‘pass’ all module requests
between Java modules 612 that would have ‘failed.,’
which could be used 1n testing, scoping, etc.

The abaility to script a module policy that goes far beyond
what 1s provided by Java 1itself (e.g., the use of wild-
cards, regular expressions, etc.).

The ability to ‘build’ corrective command line arguments
that can be used to correct module requests that have
failed.

In other words, MIM 604 may eflectively act as an agent
for JPMS 602 that alters decisions made by JPMS 602. To
do so, instrumenter 606 of MJM 604 may insert instrumen-
tation 614 into the portion of JPMS 602 that checks the
“linkage” between Java modules 612 1n terms of their
exports, reads, and opens. These checks are found the
“Module” Class under the following methods:

TABLE 1

boolean canRead(Module other) Indicates whether this module
reads the given module.

boolean isExported(String pn) Returns true if this module exports
the given package unconditionally

boolean isExported(String pn, Returns true if this module exports

Module other) the given package to at least the

given module.

boolean 1sOpen(String pn) Returns true if this module has
opened a package unconditionally.

boolean 1sOpen(String pn, Returns true if this module has

Module other) opened a package to at least the

given module.

When any of these methods are called within JPMS 602,
the instrumentation 614 inserted by MIM 604 logs the Java
modules 612 1involved, the operation requested, the package
(s) involved, and/or the decision made within JPMS 602 1n
terms of whether or not the module has the permission to
successiully open, export, and/or read (e.g., the three key
permissions for modules).

35

40

45

50

55

60

65

In various embodiments, the module policy may also
support the use of wildcards and/or expressions. For
example, 11 the policy field 1s omitted, 1t may be the same as
“*” Also, the module policy may also support the specifi-
cation of “unnamed modules™ using, ¢.g., the module name
“Unnamed(@ClassLoaderName”.

For example, the following “enableall.policy” will enable
all module operations for purposes of testing and assessing
the application:

module-policy-settings:

module-name: “*”

other-module-name:

module-operation: *“*”
module-packages:
module-loader-name:
module-action: allow

Once MIM 604 has logged information regarding Java
modules 612, their open check calls, read check calls, export
check calls, cached check calls, etc., MIM 604 may provide
such information to the user via UI 610 (e.g., as one or more
reports). In various embodiments, MIM 604 may be further
configured to provide any command line fixes to UI 610 for
any of the failures detected. This allows the user to quickly
and easily address these fixes within Java modules 612 of the
application.

A prototype system was implemented, to demonstrate the
ellicacy of the techmques herein. To do so, the MIM was
built using the following build command:

gradlew clean build

In terms of compilation, the compiler (javac) also imple-
ments the module system and was setup with the MJM.
However, the -javaagent switch cannot be used 1n this case
and the use of the JAVA_TOOL_OPTIONS env symbol 1s
recommended, as follows:

set JAVA_TOOL_OPTIONS-javaagent:prod/lib/

javaagent.jar=agentConfig.yml

Then, the application can be run by attaching the
javaagent to the application as follows:

ala?

capla?

e e

US 11,436,030 B2

19

-1avaagent:prod/lib/javaagent.jar=agentConfig.yml
The core configuration file, ModularHandler.properties,
was set as follows:

operation.cache.size=100 // how many operations to cache for display
module.policy.file=enableall.policy //which policy to use

As a simple test, the demo application included the
method call shown below, which accesses the java.sql
module. By default, it would have successiully read and
exported. However, 1t would not be open to the module

being passed 1n (e.g., a named module), so the reflection call
would fail without the MJIM.

private static void testSQL(Module modulel) throws Exception

{

Enumeration<Driver> drivers=java.sql.DriverManager. getDrivers();
System.out.println(**Drivers are “+drivers);

Module sqlModule=java.sql.DriverManager.class.getModule();
System.out.println(**Drivers module name 1s “+sqlModule);
boolean 1sExported=sqlModule.isExported(*java.sql”,modulel);

boolean canRead=modulel.canRead(sqlModule);

boolean 1sOpen=sqlModule.1sOpen(“java.sql”,modulel);
System.out.println(*SQL Module Permissions: “+1sExported+
“+1sOpen);

Field f=java.sql.DriverManager.class.getDeclaredField(“logWriter”);
f.setAccessible(true);

System.out.println(*Value for logWriter 1s ”+f.get(null));

e 70

FIGS. 7A-7B illustrate example screen captures of the
execution of a test application with and without the use of an
MIM 1n accordance with one or more embodiments
described herein. As shown 1n FIG. 7A, screen capture 700
illustrates the execution of the test code above without the
prototype MIM. From this, 1t can be seen that open 1s “false’
in the permissions for the java.sql module, resulting 1n the
reflection call failing.

Conversely, screen capture 710 1llustrates the execution of
the same test code above with the prototype MIM. Here, the
MJIM has altered the permission for open to be ‘true’ in the
permissions for the java.sgl module, 1n accordance with its
module policy. As a result, the reflection call succeeds. This
allows the application to continue to execute, while still
allowing the MJM to record information about the failure.
Doing so provides the user with a series of diagnostics that
can be leveraged to easily correct the application for Java 9+
compliance.

FIGS. 8A-8F 1illustrate example screen captures of the
outputs of a prototype MIM system in accordance with one
or more embodiments described herein. As noted above, the

MIM may output various diagnostics captured during the
execution of the application as one or more reports. Accord-
ingly, the prototype MIM used a local, built-in web server to
display a help screen with the following options:

Show Modules
now Open Check Calls

now Read Check Calls
now Export Check Calls
now Cached Checks

Print Module Command Line Fixes

FIG. 8A illustrates a screen capture 800 of the prototype
system when the ‘Show Modules’ option 1s selected. This
option shows all of the modules executed by the application
and their information. For example, the resulting report may
include various module mformation like its name, layer
within the application, loader, opens (if applicable), required
info, etc.

S|
S|
S|
S|

10

+canRead+"

30

35

40

45

50

55

60

65

20

FIG. 8B illustrates a screen capture 810 of the prototype
system when the “Show Open Check Calls” option 1s
selected. This option shows all open check calls 1n a
summarized manner. For example, the resulting report may
list a summary of all module access checks for ‘open’
operations and indicate the openming module, the module to
which 1t’s opening, the package name, the number of calls,
the results of the opens, and whether any override was made
via policy by the MIM.

FIG. 8C 1llustrates a screen capture 820 of the prototype
system when the “Show Read Check Calls” option 1s
selected. This option shows all read check calls 1n summa-
rized manner. For example, the resulting report may list a
summary of all module access checks for ‘read’ operations

and indicate the reading module, the module that 1t can read,
the package name, the number of calls, the results of the
reads, and whether any override was made via policy by the

MJIM.

FIG. 8D illustrates a screen capture 830 of the prototype
system when the “Show Export Check Calls” option 1s
selected. This option shows all export check calls 1 a
summarized manner. For example, the resulting report may
list a summary of all module access checks for ‘export’
operations and indicate the exporting module, the module to
which it 1s exported, the package name, the number of calls,
the results of the exports, and whether any override was
made via policy by the MIM.

FIG. 8E illustrates a screen capture 840 of the prototype
system when the “Show Cached Checks” option 1s selected.
This option shows all cached check instances 1n a summa-
rized manner. For example, the resulting report may, for a
given cached module access check, indicate a timestamp,
type (e.g., 1sExported, canRead, etc.), module, other module,
package name, result, etc.

FIG. 8F 1illustrates a screen capture 830 of the prototype
system when the “Print Module Command Line Fixes”
option 1s selected. This option shows the correct command
line policies that can be added to the Java command line, to
apply the module policy.

In closing, FIG. 9 illustrates an example simplified pro-
cedure for assessing Java 9+ compliance 1n accordance with
one or more embodiments described herein. For example, a
non-generic, specifically configured device (e.g., device
200) may perform procedure 900 by executing stored
istructions (e.g., process 248, such as an “agent” process).
The procedure 900 may start at step 905, and continues to
step 910, where, as described 1n greater detail above, the
agent may insert instrumentation 1nto a Java Platform Mod-
ule System 1n which a plurality of Java modules of an
application 1s executed.

US 11,436,030 B2

21

At step 915, as detailed above, the agent may capture,
using the instrumentation, an access check failure for an
inter-module operation between the Java modules. For
example, such an inter-module operation may comprise a
read, open, export, or cache action attempted by one of the
modules with respect to another. In such a case, the nstru-
mentation may capture information about the operation such
as the modules 1mvolved, the operation itself, the package(s)
involved, and the like.

At step 920, the agent may override, using the instrumen-
tation, the access check failure, as described in greater detail
above. For example, the instrumentation may override an
output of a canRead method, an 1sExported method, or an
1sOpen method of a Module Class used 1n the Java Platiorm
Module System. In various embodiments, the agent may
override the access check failure according to a predefined
policy that specifies whether a particular operation should be
overridden on failure.

At step 925, as detailed above, the agent may report the
captured access check failure to a user interface. For
example, the agent may provide any or all of the information
captured by the instrumentation about the access check
failure to the user interface such as the modules involved,
the failed inter-module operation, the package involved, etc.

The simplified procedure 900 may then end in step 935,
notably with the ability to continue ingesting and assessing,
data. Other steps may also be included generally within
procedure 900.

It should be noted that while certain steps within proce-
dure 900 may be optional as described above, the steps
shown 1 FIG. 9 are merely examples for illustration, and
certain other steps may be included or excluded as desired.
Further, while a particular order of the steps 1s shown, this
ordering 1s merely illustrative, and any suitable arrangement
of the steps may be utilized without departing from the scope
of the embodiments herein.

The techniques described herein, therefore, provide for a
modular Java management agent that can aid application
developers and stakeholders migrate applications to Java+
and provides important features throughout the entire appli-
cation lifecycle. In various aspects, the MJM implements an
casier to use system for module configuration using regex,
etc., instead of what 1s provided 1n base Java. In addition, the
MIM i1ncludes a test mode that allows all 1ssues to be
detected at one, without having to repeatedly test the appli-
cation and identity a failure. Further, the MIM provides a
diagnostic panel that allows the user to review the inter-
module calls and any failures that would have occurred.

Indeed, the techniques herein can guarantee that module
restrictions will not impact the application runtime. In
addition, the techniques herein can apply a policy to the
configuration of modules in a single file that allows the use
of wildcards and regex expressions. Further, the techniques
herein can autogenerate commands to add to the command
line and provide a complete audit of all module operations
(e.g., opens, exports, and reads).

Specifically, according to various embodiments, an agent
inserts instrumentation into a Java Platform Module System
in which a plurality of Java-based modules of an application
1s executed. The agent captures, using the mstrumentation,
an access check failure for an inter-module operation
between the Java modules. The agent overrides, using the
instrumentation, the access check failure. The agent reports
the captured access check failure to a user interface.

[lustratively, the techniques described herein may be
performed by hardware, software, and/or firmware, such as
in accordance with the illustrative agent profiler process

10

15

20

25

30

35

40

45

50

55

60

65

22

248, which may include computer executable instructions
executed by the processor 220 to perform functions relating
to the techniques described herein, e.g., in conjunction with
corresponding processes ol other devices 1in the computer
network as described herein (e.g., on network agents, con-
trollers, computing devices, servers, etc.).

According to the embodiments herein, a method herein
may comprise: inserting, by an agent, instrumentation 1nto a
Java Platform Module System in which a plurality of Java
modules of an application i1s executed; capturing, by the
agent and using the mstrumentation, an access check failure
for an inter-module operation between the Java modules;
overriding, by the agent and using the instrumentation, the
access check failure; and reporting, by the agent, the cap-
tured access check failure to a user interface.

In one embodiment, the inter-module operation comprises
at least one of: an open, read, export, or cache action. In
another embodiment, overriding the access check failure
comprises overriding an output of a canRead method, an
1sExported method, or an 1sOpen method of a Module Class
used 1n the Java Plattorm Module System. In a further
embodiment, reporting the captured access check failure to
the user interface comprises sending report data to the user
interface that 1s indicative of the module attempting the
inter-module operation, a target module for the operation,
and a package associated with the attempted operation. In
yet another embodiment, the agent overrides the access
check failure according to a predefined policy. In a further
embodiment, the agent also provides data to the user inter-
face that 1s 1indicative ol one or more command line com-
mands that would correct the access check failure. In another
embodiment, the application continues to execute as a result
of the access check failure being overridden.

According to the embodiments herein, a tangible, non-
transitory, computer-readable medium herein may have
computer-executable instructions stored thereon that, when
executed by a processor on a computer, may cause an agent
to perform a method comprising: inserting, by the agent,
instrumentation mto a Java Platform Module System 1n
which a plurality of Java modules of an application 1s
executed; capturing, by the agent and using the instrumen-
tation, an access check failure for an inter-module operation
between the Java modules; overnding, by the agent and
using the imstrumentation, the access check failure; and
reporting, by the agent, the captured access check failure to
a user interface.

Further, according to the embodiments herein an appara-
tus herein may comprise: one or more network interfaces to
communicate with a network; a processor coupled to the
network interfaces and configured to execute one or more
processes; and a memory configured to store a process
executable by the processor, the process, when executed,
configured to: insert mstrumentation into a Java Platform
Module System 1n which a plurality of Java modules of an
application 1s executed; capture, using the instrumentation,
an access check failure for an inter-module operation
between the Java modules; override, using the mstrumenta-
tion, the access check failure; and report the captured access
check failure to a user interface.

While there have been shown and described illustrative
embodiments above, it 1s to be understood that various other
adaptations and modifications may be made within the scope
of the embodiments herein. For example, while certain
embodiments are described herein with respect to certain
types of networks in particular, the techniques are not
limited as such and may be used with any computer network,
generally, 1n other embodiments. Moreover, while specific

US 11,436,030 B2

23

technologies, protocols, and associated devices have been
shown, such as Java, TCP, IP, and so on, other suitable
technologies, protocols, and associated devices may be used
in accordance with the techmques described above. In
addition, while certain devices are shown, and with certain
functionality being performed on certain devices, other
suitable devices and process locations may be used, accord-
ingly. That 1s, the embodiments have been shown and
described herein with relation to specific network configu-
rations (orientations, topologies, protocols, terminology,
processing locations, etc.). However, the embodiments in
their broader sense are not as limited, and may, in fact, be
used with other types of networks, protocols, and configu-
rations.

Moreover, while the present disclosure contains many
other specifics, these should not be construed as limitations
on the scope of any embodiment or of what may be claimed,
but rather as descriptions of features that may be specific to
particular embodiments of particular embodiments. Certain
teatures that are described in this document in the context of
separate embodiments can also be implemented 1n combi-
nation 1n a single embodiment. Conversely, various features
that are described 1n the context of a single embodiment can
also be implemented 1n multiple embodiments separately or
in any suitable sub-combination. Further, although features
may be described above as acting in certain combinations
and even 1nitially claimed as such, one or more features from
a claimed combination can in some cases be excised from
the combination, and the claimed combination may be
directed to a sub-combination or varnation of a sub-combi-
nation.

For instance, while certain aspects of the present disclo-
sure are described in terms of being performed “by a server”
or “by a controller”, those skilled 1n the art will appreciate
that agents of the application intelligence platiform (e.g.,
application agents, network agents, language agents, etc.)
may be considered to be extensions of the server (or con-
troller) operation, and as such, any process step performed
“by a server” need not be limited to local processing on a
specific server device, unless otherwise specifically noted as
such. Furthermore, while certain aspects are described as
being performed “by an agent” or by particular types of
agents (e.g., application agents, network agents, etc.), the
techniques may be generally applied to any suitable soft-
ware/hardware configuration (libraries, modules, etc.) as
part of an apparatus or otherwise.

Similarly, while operations are depicted in the drawings 1n
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or 1n sequential order, or that all 1llustrated operations
be performed, to achieve desirable results. Moreover, the
separation of various system components in the embodi-
ments described in the present disclosure should not be
understood as requiring such separation 1n all embodiments.

The foregoing description has been directed to specific
embodiments. It will be apparent, however, that other varia-
tions and modifications may be made to the described
embodiments, with the attainment of some or all of their
advantages. For instance, 1t 1s expressly contemplated that
the components and/or elements described herein can be
implemented as software being stored on a tangible (non-
transitory) computer-readable medium (e.g., disks/CDs/
RAM/EEPROM/etc.) having program instructions execut-
ing on a computer, hardware, firmware, or a combination
thereol. Accordingly, this description 1s to be taken only by
way of example and not to otherwise limit the scope of the
embodiments herein. Therefore, 1t 1s the object of the

5

10

15

20

25

30

35

40

45

50

55

60

65

24

appended claims to cover all such varnations and modifica-
tions as come within the true itent and scope of the
embodiments herein.

What 15 claimed 1s:

1. A method, comprising:

inserting, by an agent, mstrumentation nto a Java Plat-

form Module System in which a plurality of Java
modules of an application 1s executed;

capturing, by the agent and using the mstrumentation, an

access check failure for an inter-module operation
between the Java modules:

overriding, by the agent and using the instrumentation, the

access check failure; and

reporting, by the agent, the captured access check failure

to a user 1nterface.

2. A method as 1n claam 1, wherein the inter-module
operation comprises at least one of: an open, read, export, or
cache action.

3. A method as 1n claim 1, wherein overriding the access
check failure comprises:

overriding an output of a canRead method, an 1sExported

method, or an 1sOpen method of a Module Class used
in the Java Platform Module System.

4. A method as 1n claim 1, wherein reporting the captured
access check failure to the user interface comprises:

sending report data to the user interface that 1s indicative

of the module attempting the inter-module operation, a
target module for the operation, and a package associ-
ated with the attempted operation.

5. Amethod as 1n claim 1, wherein the agent overrides the
access check failure according to a predefined policy.

6. A method as 1n claim 1, further comprising:

providing data to the user interface that 1s indicative of

one or more command line commands that would
correct the access check failure.

7. A method as 1n claim 1, wherein the application
continues to execute as a result of the access check failure
being overridden.

8. A tangible, non-transitory, computer-readable medium
having computer-executable mstructions stored thereon that,
when executed by a processor on a computer, cause an agent
to perform a method comprising:

inserting, by the agent, instrumentation into a Java Plat-

form Module System 1in which a plurality of Java
modules of an application 1s executed;

capturing, by the agent and using the mstrumentation, an

access check failure for an inter-module operation
between the Java modules:

overriding, by the agent and using the instrumentation, the

access check failure; and

reporting, by the agent, the captured access check failure

to a user 1nteriace.

9. The computer-readable medium as in claim 8, wherein
the inter-module operation comprises an open, read, export,
or cache action.

10. The computer-readable medium as 1n claim 8, wherein
overriding the access check failure comprises:

overriding an output of a canRead method, an 1sExported

method, or an 1sOpen method of a Module Class used
in the Java Platform Module System.

11. The computer-readable medium as 1n claim 8, wherein
reporting the captured access check failure to the user
interface comprises:

sending report data to the user interface that 1s indicative

of the module attempting the inter-module operation, a
target module for the operation, and a package associ-
ated with the attempted operation.

US 11,436,030 B2

25

12. The computer-readable medium as in claim 8, wherein
the agent overrides the access check failure according to a
predefined policy.

13. The computer-readable medium as in claim 8, wherein
the method further comprises:

providing data to the user interface that i1s indicative of

one or more command line commands that would
correct the access check failure.

14. The computer-readable medium as 1n claim 8, wherein
the application continues to execute as a result of the access
check failure being overridden.

15. An apparatus, comprising;

one or more network interfaces to communicate with a

network;

a processor coupled to the network interfaces and con-

figured to execute one or more processes; and

a memory configured to store a process executable by the

processor, the process, when executed, configured to:

insert instrumentation mmto a Java Platform Module
System 1n which a plurality of Java modules of an
application 1s executed;

capture, using the instrumentation, an access check
faillure for an inter-module operation between the
Java modules;

override, using the instrumentation, the access check
failure: and

5

10

15

20

25

26

report the captured access check failure to a user
interface.

16. The apparatus as in claim 15, wherein the inter-
module operation comprises at least one of: an open, read,
export, or cache action.

17. The apparatus as 1n claim 15, wherein the apparatus
overrides the access check failure by:

overriding an output of a canRead method, an 1sExported

method, or an 1sOpen method of a Module Class used
in the Java Platform Module System.

18. The apparatus as 1n claim 15, wherein the apparatus
reports the captured access check failure to the user interface
by:

sending report data to the user interface that 1s indicative

of the module attempting the inter-module operation, a
target module for the operation, and a package associ-
ated with the attempted operation.

19. A apparatus as in claim 15, wherein the apparatus
overrides the access check failure according to a predefined
policy.

20. The apparatus as 1n claim 15, wherein the process
when executed 1s further configured to:

provide data to the user interface that 1s indicative of one

or more command line commands that would correct
the access check failure.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,436,030 B2 Page 1 of 1
APPLICATIONNO. : 16/788041

DATED : September 6, 2022
INVENTOR(S) . Walter Theodore Hulick, Jr.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Column 11, Line 48, please amend as shown:
one or more separate machines. When network 420 1s the

Signed and Sealed this

Sixth Day of December, 2022

Katherine Kelly Vidal
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

