12 United States Patent

Gupta et al.

US011429419B2

US 11,429,419 B2
Aug. 30, 2022

(10) Patent No.:
45) Date of Patent:

(54) SECURE ACCESS OF VIRTUAL MACHINE
MEMORY SUITABLE FOR Al ASSISTED
AUTOMOTIVE APPLICATIONS

(71) Applicant: NVIDIA Corporation, San Jose, CA
(US)

(72) Inventors: Ajay Kumar Gupta, Milpitas, CA
(US); Venkat Tammineedi, San Jose,
CA (US); David Lim, Cupertino, CA
(US); Ashutosh Jha, Sunnyvale, CA
(US)

(73) Assignee: NVIDIA Corporation, San Jose, CA
(US)

( *) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 60 days.

(21) Appl. No.: 16/530,323
(22) Filed: Aug. 2, 2019

(65) Prior Publication Data
US 2020/0042341 Al Feb. 6, 2020

Related U.S. Application Data
(60) Provisional application No. 62/714,634, filed on Aug.

3, 2018.
(51) Int. CL
GO6F 9/455 (2018.01)
GO6I 3/06 (2006.01)
G05D 1/00 (2006.01)
(52) U.S. CL
CPC ....... GO6IF 9/45558 (2013.01); GOSD 1/0088
(2013.01); GO6F 3/0622 (2013.01);
(Continued)

400

(38) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,627,112 B2* 1/2014 Chaturvedi ............. GO6F 21/53

713/193

9,058,183 B2* 6/2015 Woller ............... GO6F 9/45545
(Continued)

OTHER PUBLICATIONS

Perez et al. “Virtualization and Hardware-Based Security”, 2008
IEEE, pp. 24-31.%

(Continued)

Primary Lxaminer — Van H Nguyen

(74) Attorney, Agent, or Firm — Taylor English Duma
LLP

(57) ABSTRACT

In various examples, access to VM memory by virtualization
software 1s secured using a trusted firmware of a host
controller to validate one or more of a command to read a
VM’s memory and/or the data read from VM memory in
order to protect against improper access to data n VM
memory. If validation fails, the firmware may refrain from
reading the data and/or from providing the virtualization
soltware with access to the data. The data may include a
request command from a VM regarding establishing or
moditying a connection using the host controller to another
entity, such as another device within or outside of the
virtualization environment. The virtualization software may
use the request command to facilitate the connection. The
host controller may provide an eXtensible Host Controller
Interface (xHCI) or a different type of interface for the
connection.

20 Claims, 6 Drawing Sheets

RECEVE A COMMAND INDICATING A MEMORY
ADDRESS OF A VIRTUAL MACH INE

RaQ2

!

VALIDATE THE COMMAND
B404

READ DATA FROM THE MEMORY ADDRESS

B406

!

PROVIDE A VMM WITH ACCESS TO THE DATA
B408

SEND A COMMAND COMPLETION EVENT

B410




US 11,429,419 B2
Page 2

(52) U.S. CL
CPC ... GOGF 3/0659 (2013.01); GO6F 3/0662
(2013.01); GO6F 3/067 (2013.01); GO6F
2009/45595 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

9,262,197 B2* 2/201
9,753,867 B2* 9/201
9,753,868 B2* 9/201
10,503,922 B2* 12/201
10,713,074 B2* 7/202
2012/0254993 Al 10/201
2017/0206104 Al 7/201
2017/0329625 Al* 11/201

Chawla ............... GO6F 12/0875
Hashimoto ............. GO6F 21/79
Yamada .................. GO6F 21/64
Iyer oo, GO6F 21/6218
L et ee e e aane GO6F 12/109

] =1 e O ND D =1 O
—
[

Shiwa et al.
| IS ETUTOUTUOTTOTT GO6F 12/1009

OTHER PUBLICATIONS

Champagne et al. “Scalable Architectural Support for Trusted

Software”, 2009 IEEE, 12 pages.*

EXtensible Host Controller Interface for Universal Serial Bus
(xHCI), Requirements Specification, May 2019, Revision 1.2, Intel
Corporation, pp. 56-65. https://www.intel.com/content/dam/www/
public/us/en/documents/technical-specifications/extensible-host-
controler-interface-usb-xhci.pdf.

International Search Report and Written Opinion dated Nov. 27,
2019 1n International Patent Application No. PCT/US2019/044858.
13 pages.

International Preliminary Report on Patentability received for PC'T
Application No. PCT/US2019/044858, dated Feb. 18, 2021, 9

pages.

* cited by examiner



US 11,429,419 B2

Sheet 1 of 6

Aug. 30, 2022

U.S. Patent

+ ++ + F+ *++ + 1T+ +h RSNttt

{S}30IAE0]

TN X

LU S B AN D BN B B L I B B L I I L I B I B L B B O I B P R B I D I BN R AR B B N B B N N B B R B I B B B B A B I B I DR N B R R D D B B R B D DR R B BN A B B N O B DR O D B R D DR D R B I R A R R B D O A AN B N B B N D D DR L B D O B D R DR N B D N BN B

+*
-
1

.—.._.

r}+-l-}+1l-}+a++1+-l+-+-+-+Ji+-l+-+.l*.+-i+-i+-+-l.-+-l+1+:+al+1+-++-+-}+-+J}+.i+-+-++J+.ih-++-+-i+-.—.-.-..—.-.—.+.-.+I+-.r+-i.-.-.—.-.-..—.-Ial.—.-l-l.—.-.—..—.I.—.-.-.r-.—..—..—..—.I..I+.+.i.—.-.—.-i+Jl.i+-l+-+-i+-++l+1++-+-i+-+-l+-l+-+.+-:Jl+1+-jh-+-i+-bi-+-+f-+a-+.++-+-l+-+-.-.—.-i.—.-.—.-l-.—..—..i.—...—.-l.—..l

=" m 2 = § 2 F 5 73 4 W R B 2 § W E E WA S 5 E 52 AL E EE N L E AS A SN SEAE S ELEFITLYERL

" . 3 B E T AL E &2 S P AR S 25 8 AL 8 2N 2L E S FE TS SAFE 2§ W L 8 PR E AN N ELE EE E L E 2 S 2 WY A LS W YA F ST ALELETEALESEETYLE S SLSE 2 2L S 28 2L E S F S TLTWTLETALEALSESELESESESLSESEEP L NS F E AL R A LESEEK§ W LESALWLET

:
m
| AHOWTIAL INA M L AHONTIN A | | AHOWIININA | 1 AHONIIALINA
L s S
STT ANONIIA
P EOYNYA I _

“ pel | JOVIHI LN
(= =y F T
i o L oET m
W BEREEET) HOSSI00U | | HIOVNYA AMOWIN |
W | ANOWIN WNOD | | 30VHMIIN| WINA |
| . e oo o

+*
=
4+

200 (SINTISAR IS0OH

O T o L T N T T T Tk o e o I I T T o T e T o e o T o R T R R N e N e N L e

a'n m e m L m m kA A e L e m e g L e n me e e o m o m ko om oW oEoE aE oE m o m A o w e o w r R E A E W R g AN W om oE L E W oE E EE & EE aE mE R W R A TR W oA E g R E L E o R oL Ep R m N A E N AN A E A g a o oaea ey mh R kR

L
+

+*
+
+

= & } B 4 & Fp &4 W 4 E N 4 ® 4 4 W &4 4 ¥ & ¥ 4 B B 4 N & 4 ¥ 4 & ¥ 4 N 4 4 N 4 W 2 R N & R FER E W E S S R W RS A RS L 5 A2 R A =W 4 5 &2 R F 4 % } RS 4 R W E S 4 8 4 F N & 4 B 4 % 4 B P ¥ 4 4 N 4 4 & 4 B WE S L B 4 8§ 4 4 A 4 8 B B N 4 B2 4 B f 8 L 4 W 4 4 g} R A B EE LA L 8 & 4 B &L W A 4L N & B & 4 B & 4 Fp 4 ¥ 4 & B L N 4 4 N & F f 4 8 B 4 ¥ 4 N & 4 B 4 B F & N 4 4 N 4 B N 4 N 4 B F 4 B & 4 N L N 4L 4 N 4 N & &

Q0L



US 11,429,419 B2

Sheet 2 of 6

Aug. 30, 2022

U.S. Patent

b+
B~ il EF BN LN Rl EF LN DN R KX EE K- GE IF EX I3 R EE KR LN ¥ KL XN LE- CEURUR

YOLE

R AR

x::!i:wi;aij (SIONYINOTY

B S R Tf o =+Y.
w AMOW A Em ;;;;;;;;
A i

AHLON

(SIONYVINO D

&G

QUc



U.S. Patent Aug. 30, 2022 Sheet 3 of 6 US 11,429,419 B2

300

%

iy o iy

HRECEIVE A COMMAND INDICATING A MEMORY
ADRDRESS OF A VIRTUAL MACHING

Ba07

READ DATA FROM THE MEMORY ADDRESS

3a04

VALIDATE THE DATA READ FROM THE
MEMORY ADDRESS

B300

| FROVIDE A VIVIM WITH ACCESS TO
THE DATA

+ LI}
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SEND A COMMAND COMPLETION EVENT
B30




U.S. Patent Aug. 30, 2022 Sheet 4 of 6 US 11,429,419 B2

400

b

HECEIVE A COMMAND INDICATING A MEMORY
ADDREDSS OF A VIKTUAL MAUHINE
2402

TR TR TR TR TR T

VALIDATE THE COMMAND
2404

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

-
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SEND A COMMAND COMPLETION EVENT

2414




U.S. Patent Aug. 30, 2022 Sheet 5 of 6 US 11,429,419 B2

a0

R

SEND A COMMAND INDICATING A MEMORY ADDRESS OF
A VIRTUAL MACHINE 5

Balld

RECEIVE A COMMAND COMPLETION EVENT
INDICATING A VALIDATION OF ONE OR MORE OF DATA |
READ FROM THE MEMORY ADDRESS OR THE COMMAND |

B4 5

Pl ol i, Rl il . A Pl

HEAD THE DATA READ FROM THE
MEMORY ADDRESS

2olo




US 11,429,419 B2

Sheet 6 of 6

Aug. 30, 2022

U.S. Patent

6500

) .

— = > Zw
) 1 3 {1 e
;._..m...u.,...\ = £l p
. - < Z
WZ m.w 7 _MN
0. © 2 © i g
| T

O (J M ke
O X 0 O

+* + F ¥ F F F FFFFFFFFFFFEFFEAFEFFEFEFEFEFEFEFEFEFEFEFFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEFFEFEFEFEFEFEFEFEFEFEEFFEFEFEFEFEFFEFEFEFEFEFEFEEFFEEFEFEFFEFEEFEFEEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFFFFFF
L N R N N N N N I N R N N N N T N N I N N I I N O N L N N N B O N N T O N I I I I I N N N R N N N I I I I N N N N N T N N O I I I I O N N N R I I I N R N N N N O I I N I N I N N N N R A I A B I I B T N N N N N O N I B I N N N N N N R R I N I I N N O N N N N
+ + + + + + + + + + + + + + + + +FF+F ettt ottt e+ttt ettt ottt ottt ottt ottt ottt ettt ottt sttt ottt ottt ettt ottt sttt ottt sttt ottty ++

COMM. INTERFACE




US 11,429,419 B2

1

SECURE ACCESS OF VIRTUAL MACHINE
MEMORY SUITABLE FOR Al ASSISTED
AUTOMOTIVE APPLICATIONS

CLAIM OF PRIORITY

This application claims priority to and the benefit of U.S.
patent application Ser. No. 62/714,634 filed on Aug. 3, 2018,
which 1s incorporated herein by reference in its entirety.

BACKGROUND

Virtualization allows multiple Virtual Machine (VMs)—
often used to host Operating System Instances (OSI)—to run
concurrently within a single host system. A default interface
(without virtualization of the interface) presented by a host
controller to the host system may include a Physical Func-
tion (PF), or host controller interface. Examples of host
controller itertaces include those used for Universal Serial
Bus (USB), FireWire, Bluetooth, Ethernet, Peripheral Com-
ponent Interconnect (PCI), or other types of communica-
tions. For example, an eXtensible Host Controller Interface
(xHCI) may be used to support USB communications.
Virtualization of the host controller interface enables mul-
tiple Virtual Functions (VF) to share a PF. To minimize
hardware requirements, the physical interface presented by
a VF typically includes only a subset of that presented by the
corresponding PF and relies on virtualization soitware to
emulate portions of the VF interface to {ill in the gaps.

Conventionally, the virtualization software may be used
to facilitate a connection between a VM and another entity
using a VE, such as another entity within the host system
(e.g., another VM), or an entity external to the host system
(e.g., a hardware device). For example, the virtualization
software may assist the VM 1n establishing a connection
using the VF, or modilying an existing connection using the
VF. To facilitate the connection, the virtualization software
may read data from the memory of the VM which indicates
information requested by the VM, such as connection prop-
erties. In the example of xHCI, the data may be Command
Transter Request Block (TRB) data used to request device
properties of a newly connected device. This poses a secu-
rity risk in that i the wvirtualization software becomes
compromised, it may be possible for a malicious actor to
read the memory allocated to any VM through the host
controller interface. For example, a component of the vir-
tualization soitware responsible for mapping VM memory
may manipulate the mapping to access unauthorized loca-
tions 1 memory.

SUMMARY

The present disclosure relates, in part, to securing access
to VM memory by virtualization software to facilitate a
connection between a VM and another entity using a VE. In
contrast to conventional approaches, a trusted firmware of a
host controller may validate one or more of a command to
read a VM’s memory and/or the data read from VM memory
in order to protect against improper access to data in VM
memory. IT validation fails, the firmware may refrain from
reading the data and/or from providing the virtualization
software with access to the data. Thus, if virtualization
soltware becomes compromised, a malicious actor may be
prevented from arbitrarily accessing VM memory.

To read the data, one or more virtual machine managers
(VMMs) of the virtualization software may send a read
command to trusted firmware of the host controller that

10

15

20

25

30

35

40

45

50

55

60

65

2

indicates memory locations to read in order to access the
data. The host controller firmware may validate the read
command and/or the data read from VM memory. For
example, the host controller firmware may confirm that the
read command matches a doorbell event for a corresponding
VM’s command ring, confirm that i1t sent a doorbell event to
the VMM prior to receiving the read command, and/or check
that a memory size specified by command 1s valid. As
further examples, the host controller firmware may read the
data and confirm the data 1s of a proper format and/or
includes proper information or parameters. The host con-
troller may refrain from providing the VMM to access the
data 11 the command and/or the data 1s not validated (e.g.,
determined to be invalid).

BRIEF DESCRIPTION OF THE DRAWINGS

The present systems and methods for secure access of
virtual machine memory 1s described 1n detail below with
reference to the attached drawing figures, wherein:

FIG. 1 1s a diagram of an example of an operational
environment for validating access by virtualization software
to data in memory, 1n accordance with some embodiments of
the present disclosure;

FIG. 2 1s a flow diagram of an example of a process for
validating access by virtualization software to data in
memory, in accordance with some embodiments of the
present disclosure;

FIG. 3 1s a flow diagram of an example of a method for
validating data read from VM memory in response to a read
command from virtualization software, in accordance with
some embodiments of the present disclosure;

FIG. 4 1s a flow diagram of an example of a method for
validating a command from virtualization software to read
VM memory, 1 accordance with some embodiments of the
present disclosure;

FIG. 5 1s a flow diagram of an example of a method for
virtualization software to read data from VM memory using
a host controller firmware, 1n accordance with some embodi-
ments of the present disclosure; and

FIG. 6 1s a block diagram of an example computing
environment suitable for validating access by virtualization
solftware to data in memory, in accordance with some
embodiments of the present disclosure.

DETAILED DESCRIPTION

Systems and methods are disclosed related to using
trusted firmware of a host controller to validate one or more
of a command to read a VM’s memory (e.g., system memory
dedicated or allocated to a VM) and/or the data read from
VM memory 1n order to protect against improper access 1o
data 1n system memory. As a result, if virtualization software
becomes compromised, a malicious actor may be prevented
from arbitrarily accessing VM memory.

In various embodiments, one or more virtual machine
managers (VMM(s)) of virtualization software and a VF
may be used to facilitate a connection between a VM and
another entity (e.g., an external VM, an external device),
such as another entity within the host system (e.g., another
VM), or an enfity external to the host system. The VMM(s)
may or may not iclude a hypervisor of a host system. To
facilitate the connection, the VM may receive a notification
from the VMM regarding the entity. For example, a user
may connect a USB device to an xHCI controller, and the
xHCI controller may notity the VMM of the new device,
which 1n turn notifies the appropriate VM. In response to the



US 11,429,419 B2

3

notification, the VM may provide a command intended for
the VMM that 1t stores as data in the memory of the
underlying system or device designated for the VM. To read
the data, the VMM may send a read command to the trusted
firmware of the host controller that indicates memory loca-
tions to read in order to access the data.

In some aspects of the present disclosure, the host con-
troller firmware may validate the read command. For
example, the host controller firmware may confirm that the
read command matches a doorbell event for a corresponding,
VM’s command ring. As another example, the host control-
ler firmware may confirm that 1t sent a doorbell event to the
VMM (e.g., to indicate to the VMM to help process com-
mands 1 the VM’s command ring) prior to receiving the
command. As another example, the host controller firmware
may check that a memory size specified by a command 1s
valid (e.g., a TRB may be 16 bytes and a larger or smaller
s1ze may indicate an invalid command). If the command 1s
not validated, the host controller firmware may refrain from
reading the memory locations and/or from providing the
VMM(s) with access to data read from the memory loca-
tions.

In further aspects of the present disclosure, 1n addition to
or instead of the host controller firmware validating the
command, the host controller firmware may validate data
read from the memory locations. For example, the host
controller firmware may read the data and confirm the data
1s of a proper format and/or includes proper information or
parameters. This may include checking that a request type
field has a valid value, one or more reserved fields has an
expected value, a Slot Identifier (ID) 1s within a predeter-
mined range, and/or the data 1s 1n a predefined format. In the
example of an xHCI interface, this may include checking
that a TRB type field 1s within a valid range, one or more
reserved fields are equal to zero, the Slot 1D 1s within a
predetermined range, and/or the data 1s 1n a TRB format. IT
the data that 1s read i1s not validated, the host controller
firmware may refrain from providing the VMM(s) with
access to data read from the memory locations.

In any example, 11 the command and/or the data 1s not
validated (e.g., determined to be invalid), the firmware may
provide a command completion event (e.g., CCode=0) to the
VMM(s) indicating a failure of the command. If the com-
mand and/or the data 1s validated, the host controller firm-
ware may provide the VMM(s) with access to the data, such
as by copying the data to VMM memory. Further, the host
controller firmware may provide a command completion
event (e.g., CCode=1) to the VMM(s) mndicating a success
of the command. This may indicate to the VMM that 1t may
read the data from the VMM memory.

Now referring to FIG. 1, FIG. 1 1s a diagram of an
example of an operational environment 100 for validating
access by virtualization software to data in memory, 1n
accordance with some embodiments of the present disclo-
sure. It should be understood that this and other arrange-
ments described herein are set forth only as examples. Other
arrangements and elements (e.g., machines, interfaces, func-
tions, orders, groupings ol functions, etc.) may be used in
addition to or instead of those shown, and some elements
may be omitted altogether. Further, many of the elements
described herein are functional entities that may be imple-
mented as discrete or distributed components or 1n conjunc-
tion with other components, and 1n any suitable combination
and location. Various functions described herein as being
performed by enftities may be carried out by hardware,

10

15

20

25

30

35

40

45

50

55

60

65

4

firmware, and/or software. For instance, various functions
may be carried out by a processor executing instructions
stored 1n memory.

The operational environment 100 may include among
other things, a host system(s) 102, and an external device(s)
130. The operational environment 100 may, for example, be
implemented using one or more computing devices 600 of
FIG. 6. The host system 102 may include a VMM 104, a host
controller firmware/hardware 106 (also referred as “host
controller 106 or “host controller firmware 106”), a VM
108, a VM 110, a VM 114, a VM 116, and a memory 118.
The VMM 104 may include a VMM memory 134, an
interface manager 136, a communications processor 138,
and a memory mapper 140. The host controller firmware 106
may 1nclude a validator 142, a communications processor
144, and an interface manager 146. The memory 118 may
include a VM memory 120, a VM memory 122, a VM
memory 124, and a VM memory 126.

The host system(s) 102 may be configured to host one or
more virtualized environments. The virtualized environ-
ments may be managed by virtualization software, an
example of which may include the one or more VMMs 104.
The VMM(s) 104 may or may not include a hypervisor of
the host system 102. The hypervisor may create and run any
number of VMs, such as the VMs 108, 110, 114, or 116 (e.g.,
guest VMs), and/or virtualization services (e.g., the VMM
104) of the virtual environment(s).

The VMM 104 may, amongst other potential functionali-
ties, be configured to facilitate (e.g., using an xHCI com-
pliant server) a connection between any of the VMs, such as
the VM 108, and another entity via the host controller 106
using a VF. Examples of the other entity include an entity
within the host system 102 (e.g., the VM 116), or an enfity
external to the host system (e.g., the external device 130).
The interface manager 136 of the VMM 104 may be
configured to manage communications to and from the
VMM 104. The communications processor 138 of the VMM
104 may be configured to generate communications, such as
read commands to read VM memory, and/or to process
received communications, such as doorbell events or request
commands m the VMM memory 134 from VMs. The
memory mapper 140 of the VMM 104 may be configured to
map data corresponding to a VF or VM to a corresponding
memory address 1n the memory 118 (e.g., the VM memory
120 for the VM 108) for a read command to read data from
the VM’s memory.

The host controller 106, amongst other potential func-
tionalities, may be configured to provide an interface for the
connections between VMs and other entities, as well as
validate the reads commands from the VMM 104 and/or data
read from VM memory. For example, the interface manager
146 of the host controller 106 may be configured to manage
communications to and from the host controller 106. The
communications processor 144 of the host controller 106
may be configured to process received communications,
such as doorbell events from VMs, the read commands from
the VMM 104, and/or data read from VM memory based on
the read commands, such as request commands from VMs.
The communications processor 144 of the host controller
106 may also be configured to generate communications,
such as doorbell events for the VMM 104. At least some of
the processing performed by the communications processor
144 may use the validator 142 of the host controller 106 to
validate a read command and/or the data read from VM
memory of a VM, as described herein. Once validated, the
interface manager 146 of the host controller 106 may
provide the data to the VMM memory 134 for use in




US 11,429,419 B2

S

establishing and/or modifying a connection between the VM
and another entity. The interface manager 146 may then
communicate directly with the VM and the other entity to
host the connection without requiring use of the VMM 104
(e.g., for data transier related work).

The host system 102 may be implemented on one or more
Integrated Circuits (ICs) that may include, but 1s not limited
to, one or more System-on-Chip (SoCs) and/or Graphics
Processing Units (GPUs). The host system 102 may gener-
ally be used 1n any application in which a VM communicates
with another entity using a host controller interface. In some
examples, the host system 102 may form at least a portion
of an embedded system, such as an Electronic Control Unait
(ECU). The host system 102 may be incorporated into, for
example, non-autonomous vehicles, semi-autonomous
vehicles (e.g., 1n one or more advanced driver assistance
systems (ADAS)), robots, warchouse vehicles, ofl-road
vehicles, flying vessels, boats, and/or other vehicle types.
The host system 102 may use the VM 108, 110, 114, or 116,
for example, to determine and/or convey (e.g., using the host
controller 106) controls for accelerators, braking, and/or
functions of one or more devices. This may be used for
ADAS, robotics (e.g., path planning for a robot), aerial
systems (e.g., path planming for a drone or other aerial
vehicle), boating systems (e.g., path planning for a boat or
other water vessel), and/or other technologies.

Each of the VMs 108, 110, 114, and 116 of the host system
102 may be a virtual computing device. Each of the VMs
108, 110, 114, and 116 may have separate capabilities and
operational address spaces 1n the memory 118. For example,
the VMs 108, 110, 114, and 116 may have respective address
spaces that correspond to the VM memory 120, the VM
memory 122, the VM memory 124, and the VM memory
126 respectively. The memory 118 may refer to one or more
physical memory devices and the hypervisor and/or the
VMM 104 may be responsible for supporting the ability of
the VMs 108, 110, 114, and 116 to share the physical
device(s) while enforcing the distinct address spaces. In

some examples, each VM 1s on a different partition sup-
ported by the hypervisor and/or the VMM 104.

One or more of the VMs 108, 110, 114, or 116 may
receive and provide communications with pernipheral
devices (e.g., the external device 130) and components via
the host controller 106. Examples of the external device 130
include any device capable of communicating with a VM
over a host controller interface, such as an ECU, a USB
drive, a camera, a smartphone, a VM, a laptop, a personal
computer, a network device, a peripheral device, a client
device, etc. Fach VM may comprise an OS], such as a guest
OS, examples of which include deployments of Linux,
Android, GENIVI, QNX, etc. As a specific example for
autonomous driving implementations, one of the guest OSes
may control an In-Vehicle Infotainment (IVI) system,
another a vehicle cluster, another a Heads-Up-Display
(HUD) system, and yet another an ADAS and/or autono-
mous driving system. Any number of communications used
to implement this functionality may be provided over the
interface provided by the host controller 106.

In various examples, each of the VMs 108, 110, 114, and
116 may have a command ring to which the VM may
provide any number of commands. Each VM may provide
the commands 1n the VM’s memory (e.g., address space) in
the memory 118. For example, the VM 108 may provide a
command to the VM memory 120 that 1s assigned to the VM
108. An example of such a command includes a request
command, which a VM may use to request imnformation
regarding a connection and/or device capabilities (e.g., of

10

15

20

25

30

35

40

45

50

55

60

65

6

the external device 130) 1n order to establish and/or modily
a connection to another device, such as the external device
130 or another VM or logical device or component. The
VMM 104 and/or the hypervisor may use the request
command to modily and/or establish the connection. As an
example, 1f the external device 130 1s a digital camera, a
request command may indicate what formats or transiers the
digital camera supports.

The request command may be in different formats and/or
may contain ditferent types of information depending on the
controller interface implemented by the host controller 106
and/or other connection criteria. For example, where the
controller interface 1s based on xHCI, the command may
include TRB data. The TRB data may be in the form of a
data structure constructed in the memory and be represen-
tative of such information as a TRB type field, one or more
reserved fields, and a Slot ID. Each VF (and VM) may be
assigned a slot using a slot ID. The slot may have a slot
context address including a slot context data structure con-
taining information that relates to a device as a whole or
aflects all endpoints of a device. The VMM 104 may read
this slot context address and program 1n PFs 1n a slot context.

For enhanced security, the VMM 104 and/or the hyper-
visor may not have the capablhty to directly read the VM’s
memory for command ring handling. For example, 1f the
virtualization software becomes compromised, the VMM
104 could be able to read from an arbitrary location in the
memory 118 and/or within a particular VM’s memory.
Instead, to read a request command from a VM, the interface
manager 136 of the VMM 104 may provide a read command
to the host controller 106 and the interface manager 146 of
the host controller 106 may receive the read command, and
in response use one or more controller direct memory
accesses (DMASs) to read the data from the VM memory. The
interface manager 146 of the host controller 106 may further
provide the VMM 104 with access to the data, such as by
providing (e.g., writing) the data to the VMM memory 134,
which can be read by the interface manager 136 of the VMM
104. The VMM 104 may then use the communications
processor 138 to process the command and {facilitate the
connection. The VMM memory 134 1s shown as within the
VMM 104 but may be external to the VMM 104. Further the
VMM memory 134 may be included in the memory 118
and/or 1n various other components of the host system 102.
The VMM memory 134 may generally refer to memory
locations that are accessible to the interface manager 136 of
the VMM 104.

The VMM 104 may be configured to provide at least some
virtualization services to each of the VMs 108, 110, 114, and
116. This may include the VMM 104 trapping the capabili-

ties and operational register space of each of the VMs 108,
110, 114, and 116. In some embodiments, the VMM 104 1s

configured to perform root port level virtualization of the
VMs 108, 110, 114, and 116, where all devices may be
connected to one root port and may be assigned to one guest
operating system therein. The VMM 104 may also manage
the physical function and the command ring of each of the
VMs 108, 110, 114, and 116. In some embodiments, the
VMM 104 may get notlﬁed via the interface manager 136
whenever a VF 1s trying to access capabilities and opera-
tional register space of the host controller 106. PF command
and event rings of the VMM 104 may be configured to
process VF commands using the communications processor
138 and to receive event TRBs from the host controller 106
using the interface manager 136. The interface manager 136
of the VMM 104 may also recerve pad interrupts for all ports
associated with the host controller 106 which the interface




US 11,429,419 B2

7

manager 136 may then forward to a respective VM i the
form of an Inter VM Communications (IVC) message.

The host controller firmware 106 may be a trusted entity
of the host system 102 that 1s signed and authenticated when
loaded by the host system 102 through the system’s chain of
trust. The host controller firmware 106 may support any of
a variety ol host controller interfaces, such as those used for
Universal Serial Bus (USB), FireWire, Bluetooth, Ethernet,
Peripheral Component Interconnect (PCI), Near-Field Com-
munication (NFC), Vehicle-to-everything (V2X), Car2Car,
Cellular, Wireless Fidelity (WiF1), or other types of com-
munications.

The host controller firmware 106 may determine what to
access 1n the memory 118, how to do it securely, and how the
results are made available to other components of the host
system 102. To this eflect, the host controller 106 may use
the validator 142 to validate the read commands from the
VMM 104 and/or data read from the memory 118 in
response to the read commands 1n order to regulate access to
the data. To validate a read command from the VM, the
validator 142 may confirm that the read command matches
a doorbell event for a corresponding VM’s command ring.
For example, when the VM 108 writes a request command
to the VM memory 120, it may provide a doorbell event that
1s received by the interface manager 146 of the host con-
troller firmware 106. If such a doorbell event was not
received from the VM 108, but the interface manager 146 of
the host controller firmware 106 has received a read com-
mand that requests that the host controller firmware 106 read
from the VM memory 120, the validator 142 may determine
that the read command 1s invalid.

As another example, the validator 142 may confirm that
the interface manager 146 of the host controller 106 sent a
doorbell event to the VMM 104 prior to recerving the read
command. For example, in some embodiments, 1in response
to receiving the doorbell event from the VM 108, the
interface manager 146 of the host controller firmware 106
may provide a corresponding doorbell event to the VMM
104. The doorbell event to the VMM 104 may indicate to the
VMM 104 to use the memory mapper 140 to determine a
memory address for the VM 108 and provide the memory
address or other indicator of one or more memory locations
in the read command to the host controller 106. If such a
doorbell event was not provided by the interface manager
146 of the host controller 106 to the VMM 104, but a read
command 1s received that requests that the host controller
firmware 106 read from the VM memory 120, the validator
142 may determine that the read command 1s mvalid.

In any example, the validator 142 of the host controller
106 may use information in the read command to determine
whether the read command 1s valid. For example, the read
command may comprise one or more of a slot ID, a VF 1D,
a memory address to read from, or a memory size to read.
In some examples, the validator 142 of the host controller
106 may determine that a read command 1s 1nvalid 1f the VF
ID does not match the ID of a VF provided to the host
controller firmware 106 by the VM 108 in the doorbell
event. Also 1n some examples, the validator 142 of the host
controller 106 may determine that a read command 1s invalid
if the slot ID does not match the ID of a slot provided to the
host controller firmware 106 by the VM 108 1n the doorbell
event.

As another example, the validator 142 of the host con-
troller 106 may validate the read command based on the
memory size specified by the read command. This may
include determining that the memory size 1s within a pre-
determined range and/or 1s of a predetermined size (which

5

10

15

20

25

30

35

40

45

50

55

60

65

8

may vary based on other factors). For example, a TRB may
be 16 bytes and a larger or smaller size may indicate an
invalid command. Thus, 1f the validator 142 determines the
memory size 1s not equal to 16 bytes, the validator 142 may
determine the read command 1s invalid. If the read command
1s not validated by the validator 142, the host controller
firmware 106 may refrain from using the interface manager
146 to read the memory locations indicated by the read
command and/or from providing the VMM 104 with access
to data read from the memory locations.

In addition to or instead of the validator 142 of the host
controller 106 validating the read command, the validator
142 may validate the data read from the memory locations
indicated by a read command. For example, the validator
142 may read the data and confirm the data 1s of a proper
format and/or includes proper information or parameters.
This may include the validator 142 checking that a request
type field has a valid value, one or more reserved fields has
an expected value, a Slot ID 1s within a predetermined range,
and/or the data 1s 1n a predefined format. The expected value
and/or the predetermined range may have static values or
may be dynamically generated. Further, either may be
predetermined or defined by the host controller firmware
106 such as coded to the host controller firmware 106. For
example, any of the values may be hard-coded or computed
by code at run-time and/or predetermined by the host
controller firmware 106. In the example of an xHCI inter-
face, this may include checking that a TRB type field is
within a valid range, one or more reserved fields are equal
to zero, the Slot ID 1s within a predetermined range, and/or
the data 1s 1n a TRB format. If the validator 142 does not
validate the data (e.g., determines the data 1s mvalid), the
interface manager 146 of the host controller firmware 106
may refrain from providing the VMM 104 with access to
data read from the memory locations.

Referring now to FIG. 2, FIG. 2 depicts a flow diagram of
an example of a process 200 for validating access by
virtualization soiftware to data in memory, 1 accordance
with some embodiments of the present disclosure. The
example process 200 1s 1llustrated using the VM 108 and the
VM memory 120 of FIG. 1, by way of example. However,
the process 200 may similarly be formed for the VMs and
VM memory, such as the VMs 110, 114, or VM 116 of FIG.
1 and the VM memornies 122, 124, or 126. The specific
arrangement and make up of components from FIG. 1 are
not intended to be limited by FIG. 2, and may vary in some
embodiments. Although the process 200 1s depicted with
blocks and arrows, this 1s not intended to limit all embodi-
ments of the process 200 to a particular order, or to particular
operations.

At 202 of the process 200, the interface manager 136 of
the VMM 104 may send a notification to the VM 108 of a
connection related event. The notification may, for example,
indicate to the VM 108 that a logical or physical device/
entity (e.g., the external device 130) has connected to a port
(e.g., a root port) and/or the device/entity 1s requesting a new
or modified connection to the VM 108. For example, prior
to the process 200, the VMM 104 may optionally detect the
connection related event over a VF (e.g., based on a request
from the entity and/or peripheral device). In some embodi-
ments, this may include the interface manager 136 of the
VMM 104 receiving a pad iterrupt for the port associated
with the VM 108. The imterface manager 136 of the VMM
104 may then forward the notification comprising corre-
sponding information (e.g., interrupt information) to the VM
108 at 202 in the form of an Inter VM Communications

(IVC) message.




US 11,429,419 B2

9

Based on receiving the notification at 202, the VM 108
may, at 204A, the VM 108 write a request command to the
VM memory 120. For example, the VM 108 may write the
request command to the command ring of the VM 108. The
request command may be based on the notification and may
include, for example, a request for connection and/or device
properties (e.g., for the connected device). While a request
command 1s described the request command may corre-
spond to any number of commands (e.g., multiple request
commands).

Also based on receiving the notification at 202, the VM
108 may, at 204B, notily the host controller firmware 106
about the command stored at 204A. For example, after,
during, or prior to 204A, the VM 108 may send a doorbell
event to the host controller firmware 106 to ring the doorbell
of the host controller firmware 106. The interface manager
146 of the host controller firmware 106 may receive the
notification and at 206 may send a request to the VMM 104
based on receiving the notification at 204B. In some
examples, this includes forwarding the doorbell event to the
VMM 104. In some examples, the communications proces-
sor 144 records information regarding the notification from
the VM 108, which the validator 142 may use to validate
read requests recerved from the VMM 104. This may
include, for example, a number of notifications received
from the VM 108 and/or any VM, a number of requests sent
to the VMM 104 based on notifications received from the
VM 108 and/or any VM, and/or a VM ID (e.g., VF ID) of
the VM 108.

The request (e.g., a forwarded doorbell event) may be
received by the interface manager 136 of the VMM 104 and
indicate to the VMM 104 to help process the request
command(s) in the VM memory 120 (e.g., to help process
one or more commands 1 the command ring of the VM
108). The communications processor 144 of the VMM 104
may process the request from 206 and use the memory
mapper 140 to map the request to one or more memory
locations. The communications processor 144 may use the
one or more memory locations to generate a read command
and the interface manager 136 of the VMM 104 may provide
the read command to the host controller 106 at 208. As
discussed herein, the read command may indicate the one or
more memory locations for the host controller firmware 106
to read, such as using a memory address 1n the memory 118
and a memory size for the read. The read command may also
include a slot ID or VF ID of the VM 108.

The interface manager 146 of the host controller firmware
106 may receive the read command(s) from the VMM 104
and the communications processor 144 may use information
in the read command(s) to read the request command(s)
(e.g., command TRB data) at 210A that were stored to the
VM memory 120 by the VM 108 at 204A. For example, the
communications processor 144 may use the slot ID or VF ID
to determine the unique stream ID for the VM 108. The
interface manager 146 of the host controller firmware 106
may use the stream ID, the memory address, and the
memory size to read from the VM memory 120. In the host
system 102, stream IDs may be separately programmed 1n
another hardware register by the hypervisor and used for
memory access security with different stream IDs being
assigned to different VFs/VMs.

Prior to, during, and/or after 210A, the communications
processor 144 may use the validator 142 to validate one or
more of the read command(s) from 208 and/or the data read
at 210A. For example, in some embodiments, 11 the validator
142 determines the read command 1s invalid, 210A may not
be performed. In other examples, the validator 142 may still

10

15

20

25

30

35

40

45

50

55

60

65

10

read the data at 210A even 11 the read command 1s found to
be mvalid. Also, the validator 142 may or may not analyze
the data to determine 11 the data 1s valid. In some examples,
the validator 142 will always read the data without valida-
tion, if possible, then perform the validation on the data.
After the data 1s read at 210A, the interface manager 146
of the host controller firmware 106 may provide the data
and/or information represented by the data to the VMM 104.
In the example shown, the interface manager 146 may do so

by storing the information (e.g., the command TRB data) in
the VMM memory 134 at 210B. Also, at 212, the interface

manager 146 of the host controller firmware 106
may provide a notification(s) to the VMM 104. The notifi-
cation(s) may indicate to the VMM 104 that the information

from 210B 1s in the VMM memory 134, the read
command(s) from 208 were found valid by the validator
142, and/or the data read at 210A was found valid by the
validator 142. The notification may be referred to, for
example, as a command completion event. In some embodi-
ments, the command completion event may include a
CCode=1 1ndicating a success in validating the data and/or
the read command. Had the data and/or the read command
not been found valid by the validator 142, the command
completion event (e.g., CCode) may indicate that one or
more of the data and/or the read command were found to be
invalid. For example, the command completion event may
include a CCode=0, indicating a failure 1n validating the data
and/or the read command. Further, the information may not
have been stored to the VMM memory 134 at 210B were
one or more of the data and/or the read command were found
to be mvalid.

The interface manager 136 of the VMM 104 may receive
the notification from 212 from the host controller firmware
106 and based on the notification, read the information from
the VMM memory 134. For example, the communications
processor 144 may determine that the read command from
208 succeeded (e.g., by i1dentifying CCode=1 1n the com-
mand completion event) and based on the determination,
read the information at 214. Had the read command failed,
the VMM 104 may not attempt to read the information, and
may optionally perform some other action. For example, the
VMM 104 may notity the VM 108 regarding the failure.
Where the VMM 104 successiully recerves the information
regarding the request command from the VM 108 at 214, the
communications processor 138 may process the information
and send the results (e.g., the requested information) to the
VM 108 (e.g. in a command completion event TRB).
Subsequently, the connection to the device/entity may be
established and/or modified based on the results.

Now referring to FIGS. 3-5, each block of methods 300,
400, and 500, described herein, comprises a computing
process that may be performed using any combination of
hardware, firmware, and/or software. For instance, various
functions may be carried out by a processor executing
instructions stored in memory. The methods 300, 400, and
500 may also be embodied as computer-usable instructions
stored on computer storage media. The methods 300, 400,
and 500 may be provided by a standalone application, a
service or hosted service (standalone or in combination with
another hosted service), or a plug-in to another product, to
name a few non-limiting examples. In addition, methods
300, 400, and 500 are described, by way of example, with
respect to the host system 102 of FIG. 1. However, these
methods 300, 400, and 500 may additionally or alternatively
be executed by any one system, or any combination of
systems, 1ncluding, but not limited to, those described




US 11,429,419 B2

11

herein. Further, the methods 300, 400, or 500 may or may
not correspond to the process 200 of FIG. 2.

Referring now to FIG. 3, FIG. 3 depicts a flow diagram of
an example of a method for validating data read from VM
memory 1n response to a read command from virtualization
software, 1n accordance with some embodiments of the

present disclosure. The method 300, at block B302, includes
receiving a command indicating a memory address of a
virtual machine. For example, the interface manager 146 of
the host controller firmware 106 of FIG. 1 may receive a
command (e.g., a read command) from the VMM 104. The
command may indicate a memory address of the VM 108.

The method 300, at block B304, includes reading data
from the memory address. For example, the interface man-
ager 146 of the host controller firmware 106 may read data
from the memory address 1n the VM memory 120 based on
the receiving of the command.

The method 300, at block B306, includes validating the

data read from the memory address. For example, the
validator 142 of the host controller firmware 106 may

validate the data read from the memory address.

The method 300, at block B308, includes providing a
VMM with access to the data read. For example, the
interface manager 146 of the host controller firmware 106
may provide the VMM 104 with access to the data read from
the memory address based on the validation (e.g., via the
VMM memory 134).

The method 300, at block B310, includes sending a
command completion event. For example, the interface
manager 146 of the host controller firmware 106 may send
a command completion event to the VMM 104 1ndicating
the data read from the memory address 1s validated.

Had the data not be validated at block B306, at least block
B308 may not be performed. Also, in some embodiments,
had the data not be validated at block B306, the command
completion event at block B310 may indicate the data was
not validated (e.g., found to be 1mnvalid).

Referring to FIG. 4, FIG. 4 depicts 1s a tlow diagram of
an example of a method 400 for validating a command from
virtualization software to read VM memory, in accordance
with some embodiments of the present disclosure. In some
examples, the method 400 may be incorporated into the
method 300. In other examples, the method 400 and the
method 300 may be mndependent from one another.

The method 400, at block B402, includes receiving a
command indicating a memory address of a virtual machine.
For example, the interface manager 146 of the host control-
ler firmware 106 of FIG. 1 may recerve a command (e.g., a
read command) from the VMM 104. The command may
indicate a memory address of the VM 108.

The method 400 at block B404 may include validating the
command. For example, the communications processor 144
may use the validator 142 to validate the command received
from the VMM 104.

The method 400 at block B406 includes reading data from
the memory address. For example, the interface manager
146 of the host controller firmware 106 may read data from
the memory address 1 the VM memory 120 based on the
receiving of the command. In some embodiments, the read-
ing of the data from the memory address may be based on
the wvalidator 142 wvalidating the command. In other
examples, the data may be read regardless of whether the
command 1s determined to be valid.

The method 400, at block B408, includes providing a
VMM with access to the data read. For example, the
interface manager 146 of the host controller firmware 106

5

10

15

20

25

30

35

40

45

50

55

60

65

12

may provide the VMM 104 with access to the data read from
the memory address based on the validation (e.g., via the
VMM memory 134).

The method 400, at block B410, includes sending a
command completion event. For example, the interface
manager 146 of the host controller firmware 106 may send
a command completion event to the VMM 104 indicating
the data read from the memory address 1s validated.

Had the command not been validated at block B404, at
least block B408 may not be performed. Also, in some
embodiments, had the data not been validated at block B404,
the command completion event at block B410 may indicate
the command was not validated (e.g., found to be nvalid)
and/or block B406 may not be performed. Further in some
cases, block B406 may be performed prior to block B404.

Referring to FIG. 5, FIG. 5 depicts 1s a flow diagram of
an example of a method 500 for virtualization software to
read data from VM memory using a host controller firm-
ware, 1n accordance with some embodiments of the present
disclosure. In some examples, the method 500 may be
incorporated into one or more of the method 300 or the
method 400. For example, the method 500 may correspond
to the method 300 and/or the method 400 from a perspective
of a VMM. In other examples, the method 500 and the
method 300 or the method 400 may be independent from one
another.

The method 500, at block B3502, includes sending a
command indicating a memory address of a virtual machine.
For example, the interface manager 136 of the VMM 104 of
FIG. 1 may send a command (e.g., a read command) to the
host controller firmware 106. The command may indicate a
memory address of the VM 108. In some embodiments,
block B502 may be based on the interface manager 136 of
the VMM 104 receiving a doorbell event from the host
controller 106, as described herein.

The method 500, at block B504, includes receiving a
command completion event indicating a validation of the
data read from the memory address, the command, or both.
For example, the interface manager 136 of the VMM 104
may recerve a command completion event from the host
controller firmware 106. The command completion event
may indicate (e.g., via a CCode as described herein) a
validation, by the host controller firmware 106, of the
command, the data read from the memory address based on
the command, or both.

The method 500, at block B506, includes reading the data
read from the memory address. For example, interface
manager 136 of the VMM 104 may read the data read from
the memory address.

FIG. 6 1s a block diagram of an example computing
environment suitable for validating access by virtualization
software to data in memory in some 1implementations of the
present application. Computing device 600 may include a
bus 602 that directly or indirectly couples the following
devices: memory 604, one or more central processing units
(CPU) 606, one or more graphics processing units (GPU)
608, a communication interface 610, input/output (I/O) ports
612, input/output components 614, a power supply 616, and
one or more presentation components 618 (e.g., display(s)).

Although the various blocks of FIG. 6 are shown as
connected via the bus 602 with lines, this 1s not intended to
be limiting and 1s for clarity only. For example, 1n some
embodiments, a presentation components 618, such as a
display device, may be considered an I/O component 614
(e.g., 1f the display 1s a touch screen). As another example,
the CPU(s) 606 and/or GPU(s) 608 may include memory

(e.g., the memory 604 may be representative of a storage




US 11,429,419 B2

13

device 1n addition to the memory of the GPU(s) 608, the
CPU(s) 606, and/or other components). In other words, the
computing device of FIG. 6 1s merely 1illustrative. Distinc-
tion 1s not made between such categories as “workstation,”
“server,” “laptop,” “desktop,” “tablet,” “client device,”
“mobile device,” “hand-held device,” “game console,”
“electronic control unit (ECU),” “virtual reality system,”
and/or other device or system types, as all are contemplated
within the scope of the computing device of FIG. 6.

The bus 602 may represent one or more busses, such as
an address bus, a data bus, a control bus, or a combination
thereol. The bus 602 may include one or more bus types,
such as an industry standard architecture (ISA) bus, an
extended industry standard architecture (EISA) bus, a video
clectronics standards association (VESA) bus, a peripheral
component interconnect (PCI) bus, a peripheral component
interconnect express (PCle) bus, and/or another type of bus.

The memory 604 may include any of a variety of com-
puter-readable media. The computer-readable media may be
any available media that may be accessed by the computing
device 600. The computer-readable media may include both
volatile and nonvolatile media, and removable and non-
removable media. By way of example, and not limitation,
the computer-readable media may comprise computer-stor-
age media and communication media.

The computer-storage media may include both volatile
and nonvolatile media and/or removable and non-removable
media implemented 1n any method or technology for storage
ol mmformation such as computer-readable instructions, data
structures, program applications, and/or other data types.
For example, the memory 604 may store computer-readable
instructions (e.g., that represent a program(s) and/or a pro-
gram e¢lement(s), such as an operating system. Computer-

storage media may include, but 1s not limited to, RAM,
ROM, EEPROM, flash memory or other memory technol-

ogy, CD-ROM, digital versatile disks (DVD) or other optical
disk storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which may be used to store the desired information
and which may be accessed by computing device 600. As
used herein, computer storage media does not comprise
signals per se.

The communication media may embody computer-read-
able 1nstructions, data structures, program applications, and/
or other data types 1n a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” may refer to a signal that has one or more of its
characteristics set or changed 1n such a manner as to encode
information in the signal. By way of example, and not
limitation, the communication media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should
also be included within the scope of computer-readable
media.

The CPU(s) 606 may be configured to execute the com-
puter-readable instructions to control one or more compo-
nents of the computing device 600 to perform one or more
of the methods and/or processes described heremn. The
CPU(s) 606 may each include one or more cores (e.g., one,
two, four, eight, twenty-eight, seventy-two, etc.) that are
capable of handling a multitude of software threads simul-
taneously. The CPU(s) 606 may include any type of pro-
cessor, and may include different types of processors
depending on the type of computing device 600 imple-
mented (e.g., processors with fewer cores for mobile devices

10

15

20

25

30

35

40

45

50

55

60

65

14

and processors with more cores for servers). For example,
depending on the type of computing device 600, the pro-
cessor may be an ARM processor implemented using
Reduced Instruction Set Computing (RISC) or an x86 pro-
cessor 1mplemented using Complex Instruction Set Com-
puting (CISC). The computing device 600 may include one
or more CPU(s) 606 1n addition to one or more micropro-
cessors or supplementary co-processors, such as math co-
Processors.

The GPU(s) 608 may be used by the computing device
600 to render graphics (e.g., 3D graphics). The GPU(s) 608
may 1nclude hundreds or thousands of cores that are capable
of handling hundreds or thousands of software threads
simultaneously. The GPU(s) 608 may generate pixel data for
output 1mages 1n response to rendering commands (e.g.,
rendering commands from the CPU(s) 606 received via a
host 1interface). The GPU(s) 608 may include graphics
memory, such as display memory, for storing pixel data. The
display memory may be included as part of the memory 604.
The GPU(s) 608 may include two or more GPU(s) operating
in parallel (e.g., via a link). When combined together, each
GPU 608 may generate pixel data for different portions of an
output 1mage or for different output images (e.g., a first GPU
for a first image and a second GPU for a second image).
Each GPU may include its own memory, or may share
memory with other GPUs.

In examples where the computing device 600 does not
include the GPU(s) 608, the CPU(s) 606 may be used to
render graphics and/or process data.

The communication interface 610 may include one or
more receivers, transmitters, and/or transceivers that enable
the computing device 600 to commumicate with other com-
puting devices via an electronic communication network,
included wired and/or wireless communications. The com-
munication interface 610 may include components and
functionality to enable communication over any of a number
of different networks, such as wireless networks (e.g., Wi-Fi,
/-Wave, Bluetooth, Bluetooth LE, ZigBee, etc.), wired
networks (e.g., communicating over Ethernet), low-power
wide-area networks (e.g., LoRaWAN, SigFox, etc.), and/or
the Internet.

The I/O ports 612 may enable the computing device 600
to be logically coupled to other devices including the 1/0
components 614, the presentation component(s) 618, and/or
other components, some of which may be built 1 to (e.g.,
integrated 1n) the computing device 600. Illustrative 1/0O
components 614 include a microphone, mouse, keyboard,
joystick, game pad, game controller, satellite dish, scanner,
printer, wireless device, etc. The I/O components 614 may
provide a natural user interface (NUI) that processes air
gestures, voice, or other physiological inputs generated by a
user. In some 1nstances, inputs may be transmitted to an
appropriate network element for further processing. A NUI
may implement any combination of speech recognition,
stylus recognition, facial recognition, biometric recognition,
gesture recognition both on screen and adjacent to the
screen, air gestures, head and eye tracking, and touch
recognition (as described in more detail below) associated
with a display of the computing device 600. The computing
device 600 may be include depth cameras, such as stereo-
sCopic camera systems, inirared camera systems, RGB cam-
era systems, touchscreen technology, and combinations of
these, for gesture detection and recogmtion. Additionally,
the computing device 600 may include accelerometers or
gyroscopes (e.g., as part ol an inertia measurement unit
(IMU)) that enable detection of motion. In some examples,
the output of the accelerometers or gyroscopes may be used




US 11,429,419 B2

15

by the computing device 600 to render immersive aug-
mented reality or virtual reality.

The power supply 616 may include a hard-wired power
supply, a battery power supply, or a combination thereof.
The power supply 616 may provide power to the computing
device 600 to enable the components of the computing
device 600 to operate.

The presentation component(s) 618 may include a display
(c.g., a monitor, a touch screen, a television screen, a
heads-up-display (HUD), other display types, or a combi-
nation thereot), speakers, and/or other presentation compo-
nents. The presentation component(s) 618 may recerve data
from other components (e.g., the GPU(s) 608, the CPU(s)
606, ctc.), and output the data (e.g., as an 1mage, video,
sound, etc.).

The disclosure may be described 1n the general context of
computer code or machine-useable 1nstructions, including
computer-executable 1nstructions such as program applica-
tions, being executed by a computer or other machine, such
as a personal data assistant or other handheld device. Gen-
erally, program applications including routines, programs,
objects, components, data structures, etc., refer to code that
perform particular tasks or implement particular abstract
data types. The disclosure may be practiced in a variety of
system configurations, including hand-held devices, con-
sumer electronics, general-purpose computers, more spe-
cialty computing devices, etc. The disclosure may also be
practiced in distributed computing environments where
tasks are performed by remote-processing devices that are
linked through a communications network.

As used herein, a recitation of “and/or” with respect to
two or more elements should be interpreted to mean only
one ¢lement, or a combination of elements. For example,
“element A, element B, and/or element C” may include only
clement A, only element B, only element C, element A and
element B, element A and element C, element B and element
C, or elements A, B, and C. In addition, “at least one of
clement A or element B” may include at least one of element
A, at least one of element B, or at least one of element A and
at least one of element B.

The subject matter of the present disclosure 1s described
with specificity herein to meet statutory requirements. How-
ever, the description itself 1s not intended to limait the scope
of this disclosure. Rather, the imnventors have contemplated
that the claimed subject matter might also be embodied in
other ways, to include different steps or combinations of
steps similar to the ones described in this document, 1n
conjunction with other present or future technologies. More-
over, although the terms *““step” and/or “block” may be used
herein to connote diflerent elements of methods employed,
the terms should not be interpreted as implying any particu-
lar order among or between various steps herein disclosed
unless and except when the order of individual steps 1s
explicitly described.

What 1s claimed 1s:

1. A method comprising;

receiving, by a host controller firmware, a notification
from a virtual machine (VM) 1n association with data
stored 1n a memory comprised 1n a computing device
and allocated to the VM, the notification defining one
or more values;

receiving a command from a virtual machine manager
(VMM), the command indicating a memory address
corresponding to the data in the memory;

reading the data from the memory address based on the
receiving of the command;

5

10

15

20

25

30

35

40

45

50

55

60

65

16

validating, by the host controller firmware, the data read
from the memory address based at least on determining,
the data read from the memory represents content that
includes the one or more values defined by the notifi-
cation;
providing, by the host controller firmware, the VMM with
access to the data read from the memory address based
on the content including the one or more values; and

sending a command completion event to the VMM 1ndi-
cating the data read from the memory address is
validated.

2. The method of claim 1, wherein the validating of the
data comprises determining that one or more reserved fields
represented by the data has an expected value of the one or
more values that 1s defined by code of the host controller
firmware, the host controller firmware identifying the
expected value from content of the notification.

3. The method of claim 1, wherein the validating of the
data comprises determiming a Slot ID represented by the data
1s within a predetermined range including the one or more
values that 1s defined by code of the host controller firm-
ware, the host controller firmware 1dentifying the predeter-
mined range from content of the notification.

4. The method of claim 1, wherein the command 1s a read
command generated by the VMM and comprises the
memory address and a data size to be read using the memory
address, and the wvalidating includes determining the
memory size matches an expected size of the content based
at least on the expected size being indicated by the notifi-
cation.

5. The method of claim 1, wherein the validating of the
data comprises:

identilying a request type represented by the data; and

determining that the request type 1s 1n a valid group of

request types.

6. The method of claim 1, wherein the receirving of the
command from the VMM 1s based on detecting a connection
of an entity to a host controller, the data comprises a request
by the VM for connection capabilities of the entity, and the
notification represents a doorbell event for the request.

7. A method comprising:

receiving, by a host controller firmware, a notification

from a virtual machine (VM) 1n association with data
stored 1n a memory comprised in a computing device
and allocated to the VM, the notification indicating one
or more characteristics of a data structure represented
by the data;

recerving a command from a virtual machine manager

(VMM), the command indicating a memory address
corresponding to the data in the memory;

reading the data from the memory address based on the

receiving of the command;

validating, by the host controller firmware, the data read

from the memory address based at least on determining,
the data structure read from the memory matches the
one or more characteristics indicated by the notifica-
tion;

providing, by the host controller firmware, the VMM with

access to the data read from the memory address based
on the data structure matching the one or more char-
acteristics; and

sending a command completion event to the VMM 1ndi-

cating the command 1s validated.

8. The method of claim 7, wheremn the providing the
VMM with access to the data 1s further based on the
validating of the data wherein the one or more characteris-
tics iclude a memory size of the data structure.




US 11,429,419 B2

17

9. The method of claim 7, wherein the validating includes
confirming the host controller firmware sent a doorbell event
to the VMM 1n response to receiving the notification and
prior to recerving the command.

10. The method of claim 7, wherein the one or more
characteristics include a predefined format of the data struc-
ture.

11. The method of claim 7, wherein the reading of the
memory address 1s performed by the host controller firm-
ware using direct memory accesses of virtual machine
memory.

12. The method of claim 7, wherein the host controller
firmware 1s of a host controller and the VMM uses the data
read from the memory address to establish or modily a
connection between the virtual machine and another entity
over the host controller.

13. A system comprising:

a virtual machine manager (VMM) to:

send a command to a host controller firmware, the
command 1ndicating a memory address in a memory
comprised 1in a computing device and allocated to a
virtual machine (VM);

receive a command completion event indicating a vali-
dation, by the host controller firmware, of the com-
mand; and

process data read from the memory address based on
content represented by the data matching one or
more characteristics; and

a host controller hardware including the host controller

firmware to:

receive a notification from the VM 1n association with
the data stored 1n the memory, the notification defin-
ing the one or more characteristics of the content
represented by the data;

receirve the command from the VMM;

perform the validation to confirm the content matches
the one or more characteristics defined by the noti-
fication; and

send the command completion event to the VMM.

10

15

20

25

30

35

18

14. The system of claim 13, wherein the notification
includes a doorbell event and the VMM 1s further to receive
the doorbell event forwarded from the host controller firm-
ware, wherein the sending of the command 1s based on the
doorbell event.

15. The system of claam 13, wherein the command
comprises the memory address and a data size to be read by
the host controller firmware using the memory address, the
one or more values representing the data size.

16. The system of claim 13, wheremn the validation
determines that one or more reserved fields represented by

the data has an expected value of the one or more values that
1s defined by code of the host controller firmware.

17. The system of claim 13, wheremn the validation
determines a Slot ID represented by the data 1s within a
predetermined range that 1s defined by code of the host
controller firmware, the one or more values represent the
predetermined range.

18. The system of claim 13, wherein the VMM 1s further
configured to:

send an additional command to the host controller firm-
ware, the additional command indicating a virtual

machine memory address;

recetve an additional command completion event indicat-
ing a failure, by the host controller firmware, to validate
one or more of data read from the virtual machine
memory address or the additional command.

19. The system of claim 13, wherein the system 1s
comprised in an autonomous vehicle.

20. The system of claim 13, wherein the one or more
values include a VM ID the VM received 1n the notification

and the validation 1s based at least on determining the
command includes the VM 1D.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

