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1
MULITI-CHANNEL DATA PATH CIRCUITRY

BACKGROUND

Technical Field

This disclosure relates generally to computer processors
and more particularly to sharing datapath circuitry among
multiple SIMD groups.

Description of the Related Art

Processors such as graphics processing units (GPUs)
typically include datapath circuitry configured to perform
certain operations, €.g., using single-nstruction multiple-
data (SIMD) techniques. Traditionally, datapath circuitry 1s
dedicated to perform operations for a given currently-as-
signed thread or SIMD group, although threads may share
some resources such as general purpose registers.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a diagram 1llustrating an overview of example
graphics processing operations, according to some embodi-
ments.

FIG. 1B 1s a block diagram illustrating an example
graphics unit, according to some embodiments.

FIG. 2 1s a block diagram 1illustrating example pipeline
circuitry with a shared execution pipeline and multiple
front-end pipelines assigned to different SIMD groups,
according to some embodiments.

FIG. 3 1s a block diagram illustrating a more detailed
example of pipeline circuitry, according to some embodi-
ments.

FI1G. 4 15 a flow diagram 1illustrating an example technique
for selecting an instruction from multiple SIMD groups,
according to some embodiments.

FIG. 5 1s a block diagram 1llustrating example arbitration
circuitry, according to some embodiments.

FIG. 6 1s a flow diagram 1illustrating an example method,
according to some embodiments.

FIG. 7 1s a block diagram illustrating an example com-
puting device, according to some embodiments.

FIG. 8 1s a block diagram illustrating an example com-
puter-readable medium that stores circuit design informa-
tion, according to some embodiments.

This specification includes references to various embodi-
ments, to indicate that the present disclosure 1s not intended
to refer to one particular implementation, but rather a range
of embodiments that fall within the spirit of the present
disclosure, including the appended claims. Particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner consistent with this disclosure.

Within this disclosure, different entities (which may vari-
ously be referred to as “units,” “circuits,” other components,
etc.) may be described or claimed as “configured” to per-
form one or more tasks or operations. This formulation—
|entity] configured to [perform one or more tasks]—is used
herein to refer to structure (1.€., something physical, such as
an electronic circuit). More specifically, this formulation 1s
used to indicate that this structure 1s arranged to perform the
one or more tasks during operation. A structure can be said
to be “configured to” perform some task even if the structure
1s not currently being operated. A “shader processor config-
ured to execute a shader program” i1s intended to cover, for
example, a circuit that performs this function during opera-
tion, even 1f the circuit in question i1s not currently being
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used (e.g., power 1s not connected to 1t). Thus, an enfity
described or recited as “configured to” perform some task

refers to something physical, such as a device, circuit,
memory storing program instructions executable to 1mple-
ment the task, etc. This phrase 1s not used herein to refer to
something 1ntangible.

The term “configured to” 1s not intended to mean “con-
figurable to.” An unprogrammed FPGA, for example, would
not be considered to be “configured to” perform some
specific function, although 1t may be “configurable to”
perform that function. After appropriate programming, the
FPGA may then be configured to perform that function.

Reciting 1n the appended claims that a structure 1s “con-
figured to” perform one or more tasks 1s expressly intended
not to mvoke 35 U.S.C. § 112(1) for that claim element.
Accordingly, none of the claims 1n this application as filed
are intended to be interpreted as having means-plus-function
clements. Should Applicant wish to mvoke Section 112(f)
during prosecution, it will recite claim elements using the
“means for” [performing a function] construct.

As used herein, the term ‘““based on” 1s used to describe
one or more factors that affect a determination. This term
does not foreclose the possibility that additional factors may
aflect the determination. That 1s, a determination may be
solely based on specified factors or based on the specified
factors as well as other, unspecified factors. Consider the
phrase “determine A based on B.” This phrase specifies that
B 1s a factor that 1s used to determine A or that aflects the
determination of A. This phrase does not foreclose that the
determination of A may also be based on some other factor,
such as C. This phrase 1s also intended to cover an embodi-
ment 1n which A 1s determined based solely on B. As used
herein, the phrase “based on” 1s synonymous with the phrase
“based at least 1 part on.”

Further, as used herein, the terms “first,” “second.”
“third,” etc. do not necessarily imply an ordering (e.g.,
temporal) between elements. For example, a referring to a
“first” graphics operation and a “second” graphics operation
does not imply an ordering of the graphics operation, absent
additional language constraining the temporal relationship
between these operations. In short, references such as “first,”
“second,” etc. are used as labels for ease of reference in the
description and the appended claims.

2 &

DETAILED DESCRIPTION

Graphics Processing Overview

Referring to FIG. 1A, a flow diagram illustrating an
example processing flow 100 for processing graphics data 1s
shown. In some embodiments, transtform and lighting pro-
cedure 110 may involve processing lighting information for
vertices recerved from an application based on defined light
source locations, reflectance, etc., assembling the vertices
into polygons (e.g., triangles), and/or transforming the poly-
gons to the correct size and orientation based on position 1n
a three-dimensional space. Clip procedure 115 may mnvolve
discarding polygons or vertices that fall outside of a view-
able area. Rasterize procedure 120 may involve defining
fragments within each polygon and assigning initial color
values for each fragment, e.g., based on texture coordinates
of the vertices of the polygon. Fragments may specily
attributes for pixels which they overlap, but the actual pixel
attributes may be determined based on combining multiple
fragments (e.g., 1n a frame builer) and/or 1gnoring one or
more fragments (e.g., 1f they are covered by other objects).
Shade procedure 130 may 1involve altering pixel components
based on lighting, shadows, bump mapping, translucency,
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etc. Shaded pixels may be assembled 1n a frame builer 135.
Modern GPUs typically include programmable shaders that
allow customization of shading and other processing proce-
dures by application developers. Thus, 1n various embodi-
ments, the example elements of FIG. 1A may be performed
in various orders, performed in parallel, or omaitted. Addi-
tional processing procedures may also be implemented.

Referring now to FIG. 1B, a simplified block diagram
illustrating a graphics unit 150 1s shown, according to some
embodiments. In the illustrated embodiment, graphics unit
150 includes programmable shader 160, vertex pipe 185,
fragment pipe 175, texture processing unit (TPU) 165,
image write unit 170, and memory interface 180. In some
embodiments, graphics unit 150 1s configured to process
both vertex and fragment data using programmable shader
160, which may be configured to process graphics data in
parallel using multiple execution pipelines or instances.

Vertex pipe 185, in the illustrated embodiment, may
include various fixed-function hardware configured to pro-
cess vertex data. Vertex pipe 185 may be configured to
communicate with programmable shader 160 1 order to
coordinate vertex processing. In the illustrated embodiment,
vertex pipe 185 1s configured to send processed data to
fragment pipe 175 and/or programmable shader 160 for
turther processing.

Fragment pipe 175, in the illustrated embodiment, may
include various fixed-function hardware configured to pro-
cess pixel data. Fragment pipe 175 may be configured to
communicate with programmable shader 160 1 order to
coordinate fragment processing. Fragment pipe 175 may be
configured to perform rasterization on polygons from vertex
pipe 185 and/or programmable shader 160 to generate
fragment data. Vertex pipe 185 and/or fragment pipe 175
may be coupled to memory interface 180 (coupling not
shown) 1n order to access graphics data.

Programmable shader 160, in the illustrated embodiment,
1s configured to receive vertex data from vertex pipe 185 and
fragment data from fragment pipe 175 and/or TPU 165.
Programmable shader 160 may be configured to perform
vertex processing tasks on vertex data which may include
various transformations and/or adjustments of vertex data.
Programmable shader 160, in the illustrated embodiment, 1s
also configured to perform fragment processing tasks on
pixel data such as texturing and shading, for example.
Programmable shader 160 may include multiple sets of
multiple execution pipelines for processing data in parallel.

TPU 165, 1n the illustrated embodiment, 1s configured to
schedule fragment processing tasks from programmable
shader 160. In some embodiments, TPU 163 1s configured to
pre-fetch texture data and assign initial colors to fragments
tor further processing by programmable shader 160 (e.g., via
memory interface 180). TPU 165 may be configured to
provide fragment components 1n normalized integer formats
or floating-point formats, for example. In some embodi-
ments, TPU 165 1s configured to provide fragments in
groups of four (a “fragment quad™) 1n a 2x2 format to be
processed by a group of four execution pipelines 1n pro-
grammable shader 160.

Image write unit (IWU) 170, 1n some embodiments, 1s
configured to store processed tiles of an 1mage and may
perform operations to a rendered 1mage before 1t 15 trans-
ferred for display or to memory for storage. In some
embodiments, graphics unit 150 1s configured to perform
tile-based deferred rendering (TBDR). In tile-based render-
ing, different portions of the screen space (e.g., squares or
rectangles of pixels) may be processed separately. Memory
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interface 180 may facilitate communications with one or
more of various memory hierarchies in various embodi-
ments.

Overview of Pipeline with Shared Datapath Circuitry

FIG. 2 1s a block diagram illustrating example pipeline
circuitry, according to some embodiments. In the 1llustrated
embodiment, the pipeline circuitry includes multiple front-
end pipelines 210A-210N, arbitration circuitry 220, and
execution pipeline 230.

The term “SIMD group” i1s intended to be interpreted
according to 1ts well-understood meaning, which includes a
set of threads for which processing hardware processes the
same 1nstruction 1n parallel using different mput data for the
different threads. Various types of computer processors may
include sets of pipelines configured to execute SIMD
instructions. For example, graphics processors often include
programmable shader cores that are configured to execute
instructions for a set of related threads 1n a SIMD {fashion.
Other examples of names that are often used for a SIMD
group include: a clique, a wavelront, or a warp. A SIMD
group may be a part of a larger thread group, which may be
broken up into a number of SIMD groups based on the
parallel processing capabilities of a processor. In some
embodiments, each thread 1s assigned to a hardware pipeline
that fetches operands for that thread and performs the
specifled operations in parallel with other pipelines for the
set of threads. Note that processors may have a large number
of pipelines such that multiple separate SIMD groups may
also execute 1 parallel. In some embodiments, each thread
has private operand storage, e.g., 1n a register file. Thus, a
read of a particular register from the register file may
provide the version of the register for each thread 1n a SIMD
group.

Front-end pipelines 210A-210N may be dedicated to
processing 1nstructions for a currently-assigned SIMD
group. Fach front-end pipeline may include decode and
hazard detection stages, for example. In the illustrated
example, SIMD group X 1s currently assigned to front-end
pipeline 210A and SIMD group Z 1s currently assigned to
front-end pipeline 210N. The front-end pipelines 210 may
correspond to different channels to which the GPU may
assign SIMD groups, as discussed 1n detail below. In a given
implementation, a certain number of channels may be avail-
able and the device may assign SIMD groups to channels as
they become available (e.g., as they finish processing their
previously-assigned SIMD group). In different pipeline
embodiments, diflerent numbers of channels may share an
execution pipeline. In some embodiments, a SIMD group
assigned to a channel stays assigned that channel until
completion of the instructions 1n the SIMD group, in the
absence of an event such as a context switch or a power loss.

Arbitration circuitry 220, in some embodiments, 1s con-
figured to select an struction for assignment to execution
pipeline 230 in each cycle. Arbitration circuitry 220 may
consider various types ol available information for the next
available mnstructions from the different front-end pipelines,
including, without limitation: stall counts for available
instructions, whether available instructions are being specus-
latively executed, whether ones of available instructions
target a particular portion of the shared execution circuitry,
numbers of execution cycles for available instructions, and
ages of SIMD groups of available instructions, or any
combination of these. These arbitration mputs and example
arbitration logic are discussed 1n detail below.

Execution pipeline 230, in some embodiments, includes
circuitry configured to perform operations specified by
recelved instructions. In the illustrated embodiment, execu-
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tion pipeline 230 1s shared among multiple front-end pipe-
lines 210. Execution pipeline 230 may include multiple
different execution units, e.g., for integer operations, tloating
point operations, complex operations (e.g., square root, etc.)
that may each use a certain number of stages to process a
certain type of operation.

Depending on the instruction, execution pipeline 230 may
have an exposed latency of 1 to N instructions, and a
compiler may schedule instructions to attempt avoiding
bubbles 1n the execution pipeline that may be caused by
instruction dependencies. In some embodiments, arbitration
circuitry 220 may use the execution latency of available
instructions 1n selection. In some embodiments, arbitration
circuitry 220 may use mformation indicating which of the
execution units of execution pipeline 230 1s targeted by a
given instruction.

In some embodiments, arbitration circuitry 220 selecting
from among multiple SIMD groups to use shared execution
hardware may reduce or avoid pipeline bubbles, e.g., that the
compiler may not be able to eliminate when compiling
instructions in implementations with un-shared execution
pipelines. In various embodiments, the disclosed techniques
may advantageously improve processor performance or
reduce overall power consumption.

The concept of “execution” 1s broad and may refer to 1)
processing of an instruction throughout an execution pipe-
line (e.g., through fetch, decode, execute, and retire stages)
and 2) processing of an instruction at an execution umt or
execution subsystem of such a pipeline (e.g., an nteger
execution unit or a load-store umit). The latter meaning may
also be referred to as “performing” the instruction. Thus,
“performing” an add instruction refers to adding two or
more operands to produce a result, which may, in some
embodiments, be accomplished by a circuit at an execute
stage of a pipeline (e.g., an execution unit). Conversely,
“executing” the add instruction may refer to the entirety of
operations that occur throughout the pipeline as a result of
the add mnstruction. Similarly, “performing™ a “load” 1nstruc-
tion may include retrieving a value (e.g., from a cache,
memory, or stored result of another mstruction) and storing,
the retrieved value into a register or other location.

Note that various techniques are discussed herein 1n the
context of graphics processors, but similar techniques may

be used 1n other types of processors such as central process-
Ing units, Co-processors, etc.

Detailed Pipeline Example

FIG. 3 1s a block diagram illustrating a more detailed
example of pipeline circuitry, according to some embodi-

ments. In the illustrated embodiment, the pipeline circuitry
includes decode stages 310A-310B, operand cache (OC)

allocation stages 320A-320B, hazard stages 325A-325B,
multiplexer (MUX) 330, park stage 335, OC load stage 340,
1ssue stage 345, and execution stages 350. In the illustrated
example, the processor also includes arbitration circuitry
220, operand cache 355, register file 360, operand fetch
circuitry 365, and instruction cache 370. Note that the
illustrated pipeline stages are included for purposes of
explanation but are not itended to limit the scope of the
present disclosure. Various stages may be omitted, added,
replaced, or re-ordered 1n other embodiments.

Elements 310-323 are examples of the front-end pipelines
210 of FIG. 2. In the illustrated example, there are two
front-end pipelines for purposes of explanation, but the
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disclosed arbitration circuitry may select instructions from
any appropriate number of front-end pipelines in various
embodiments.

Instruction cache 370, in the illustrated embodiment, 1s
configured to cache instructions to be fetched for execution.
Instruction cache 370 may include index, tag, and data fields
for cached instructions. Instruction cache 370 may be a
dedicated instruction cache but may be included 1n a cache/
memory hierarchy that includes one or more levels that are
shared for instructions and data. In some embodiments, fetch
circuitry (not shown) 1s configured to retrieve instructions
from 1nstruction cache 370 for execution by the pipeline
circuitry.

Decode stages 310, 1n some embodiments, are configured
to decode retrieved 1nstructions, which may include deter-
mining the operation specified by the instruction, determin-
ing locations of operands used by the instruction, etc.
Decode stages 310 may generate one or more micro-opera-
tions for each received instruction. For example, a subset of
complex structions may be performed using multiple
micro-operations while other instructions may be performed
using a single micro-operation. In some embodiments,
depending on the struction, all of the micro-operations for
the mstruction may be selected sequentially, or the processor
may allow selection of micro-operations from another front-
end pipeline 1n between the micro-operations of a decoded
instruction.

Operand cache allocation stages 320, in the illustrated
embodiment, are configured to allocate entries 1n operand
cache 355 for input and result operands of decoded 1nstruc-
tions. In the illustrated embodiment, the operand cache 3355
sits between register file 360 and execution stages 350,
which may reduce power used to access operands when
operands are re-used, for example. Allocating operand cache
entries before they are actually needed may allow for a
smaller operand cache which may also allow smaller oper-
and cache addresses sizes, which may then be used for
dependency checks (which may 1n turn reduce power con-
sumption relative to checking longer addresses in the reg-
ister file, for example).

Hazard stages 325, in the illustrated embodiment, are
configured to detect dependencies (e.g., read after write
(RAW) hazards, write after write (WAW) hazards, write
alter read (WAR) hazards, etc.) between executions
executed for a given SIMD group. In some embodiments, a
hazard stage 325 1s configured to determine a stall count for
cach instruction when one or more uncovered dependencies
are encountered. In some embodiments a “cycles until done™
counter 1s used during operand cache allocation, e.g., for
eviction selection. In some embodiments, hazard stages 325
are configured to use these counter values to determine a
stall count per operand. Hazard stages 325 may then deter-
mine the stall count for a given mstruction based on the
maximum stall count of the operands of the instruction. The
stall count may correspond to the number of cycles the
current istruction will stall at the 1ssue stage due to data
dependency hazards on older instructions. The stall count
may be decremented each cycle an instruction from that
channel 1s not selected, as older mstructions proceed in their
execution. Note that the stall counts may be estimates or
may be defimtively determined, 1 various embodiments.

Arbitration circuitry 220 controls MUX 330, 1n the 1llus-
trated embodiment, to select from among available nstruc-
tions from the different channels. FIG. 4, discussed below,
provides a detailed example selection procedure performed
by arbitration circuitry 220 in some embodiments. Informa-
tion regarding operand locations of the selected instruction
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1s sent to operand fetch circuitry 365, which may facilitate
reading 1mput operands into the register file 360, 1 needed.

The pipeline may stall the unselected channel and may
reduce the stall count of the waiting operation for that
channel.

Park stage(s) 335, 1n the 1llustrated embodiment, 1s con-
figured to queue operations, e€.g., to give time to for data to
be returned. Park stages 335 are implemented as a FIFO
structure 1n some embodiments.

Operand cache load stage 340, in the illustrated embodi-
ment, 1s configured to load input operands into allocated
operand cache entries.

Issue stage 343, 1n the illustrated embodiment, 1s config-
ured to 1ssue operations to the appropriate execution unit.
Issue stage 345 may stall instructions based on their stall
counts to avoid hazards, 1f needed.

Execution stages 350, in the 1llustrated embodiments, are
configured to perform received operations over one or more
cycles. In some embodiments, execution stages 350 include
multiple execution pipelines for different types of operations
and different types of operations may use different numbers
of stages/cycles to produce a result. Execution stages 350
may access operands 1n operand cache 355 and may gener-
ate a result that may be cached in operand cache 355,
torwarded, written to register file 360, etc. In some embodi-
ments, the processor includes an integer execution unit,
multiple floating point execution units (e.g., for diflerent
precisions such as 16-bit and 32-bit), and a unit configured
to execute a subset of operation types (e.g., that are pre-
identified as complex operations).

Operand cache 355 may be implemented using various
caching structures. Example embodiments of operand
caches are described in U.S. Pat. No. 9,785,567 1ssued Oct.
10, 2017. In other embodiments, the operand cache may be
omitted and operands may be accessed 1n register file 360.

Example Arbitration Technique and Circuitry

FIG. 4 15 a flow diagram illustrating an example arbitra-
tion technique implemented by arbitration circuitry 220,
according to some embodiments. The method shown 1n FIG.
4 may be used in conjunction with any of the computer
circuitry, systems, devices, elements, or components dis-
closed herein, among others. In various embodiments, some
of the method elements shown may be performed concur-
rently, 1n a different order than shown, or may be omitted.
Additional method elements may also be performed as
desired.

At 410, 1n the 1llustrated embodiment, arbitration circuitry
220 determines whether the operations from the different
channels have different stall counts. If so, arbitration cir-
cuitry picks the channel with the smaller stall count at 420.
As discussed above, the stall count may be determined based
on dependency detection circuitry. Selecting the channel
with the smaller stall count may reduce pipeline bubbles
inserted at the 1ssue stage.

At 430, 1n the 1llustrated embodiment, arbitration circuitry
220 determines whether there 1s a complex instruction (or,
more generally an instruction that targets a particular type of
execution unit). If so, flow proceeds to 440. In some
embodiments, the complex unit operates at a lower rate than
the other units (e.g., 2 rate or V4 rate). In these embodi-
ments, sending too many operations to the complex unmit may
cause stalls. Therefore, the processor may track the number
of cycles needed for outstanding complex instructions (e.g.,
using a lookup table that specifies the number of cycles for
cach type of complex instruction). The processor may also
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track the number of cycles needed for all outstanding
instructions for both channels. Decode units 310, for
example, may determine the cycle counts. In some embodi-
ments, the processor may determine that the complex unit 1s
saturated when a cycle count for in-tlight complex opera-
tions meets a threshold ratio relative to the overall cycle
count. Speaking generally, in various embodiments, various
techniques may be used to determine whether a particular
type ol execution unit has more than a threshold amount of
work pending 1n the pipeline.

At 440, 1n the illustrated embodiments, arbitration cir-
cuitry 220 selects a non-complex instruction 1f the complex
unit 1s saturated. If the complex unit 1s determined not to be
saturated based on 1n-flight instructions, the arbitration
circuitry 220 selects the channel with the complex instruc-
tion. If both channels have complex instructions, arbitration
circuitry 220 selects the instruction with the longest execu-
tion latency. If both channels have complex instructions with
the same execution latency, arbitration circuitry 220 selects
the instruction from the oldest channel. For example, in
some embodiments, the processor tracks ages of SIMD
groups based on when they are dispatched. In this example,
if SIMD group X 1s older than SIMD group Y, the next
istruction for both SIMD groups 1s a complex instruction
and the next instruction from both SIMD groups has the
same execution latency, arbitration circuitry 220 may select
the 1nstruction from SIMD group X.

At 450, 1n the 1llustrated embodiment, arbitration circuitry
220 determines whether there 1s a speculative instruction
waiting. If so, flow proceeds to 460 and arbitration circuitry
selects the channel with the non-speculative instruction.
Instructions may be speculatively executed for various rea-
sons, and 1t 1s unknown whether the results of an instruction
that 1s currently being speculatively executed will actually
be used. As one example, predicated execution may selec-
tively disable threads and may do so conditionally based on
older instructions. While the conditional instructions are
in-thght, 1t 1s unknown whether younger instructions will be
predicated ofl, and these younger instructions may be
executed speculatively. Speculatively executed instructions
that should not have executed will have their results dis-
carded, 1n some embodiments.

At 470, 1n the 1llustrated embodiment, arbitration circuitry
220 selects the 1nstruction from the oldest channel. Note that
FIG. 4 shows a detailed example of arbitration logic for
purposes of 1llustration, but this example 1s not imtended to
limit the scope of the present disclosure (although this
example may provide substantial improvements for certain
processor designs and workloads). In other embodiments,
arbitration logic may generate output signals based on
various combinations of all or a subset of the disclosed
inputs and may also consider other inputs. Further, some of
the decision blocks of FIG. 4 are based on a two-channel
implementation such as the example of FIG. 3, but arbitra-
tion circuitry 220 may implement similar logic for larger
numbers of channels that share execution circuitry, in some
embodiments.

FIG. 5 1s a block diagram 1illustrating example arbitration
circuitry, according to some embodiments. In some embodi-
ments, the 1llustrated circuitry 1s configured to perform the
technique of FIG. 4. In the illustrated embodiment, arbitra-
tion circuitry 220 includes stall count control circuitry 510,
target execution umt control circuitry 520, speculative con-
trol circuitry 530, fallback control circuitry 540, and MUX
550. In the illustrated embodiment, the different types of
arbitration control circuitry receive instruction data, (e.g.,
for the next waiting instruction) from each of multiple SIMD
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groups X-7Z. The different types of control circuitry may
receive diflerent types of information about waiting nstruc-

tions. For example, stall count control circuitry 510 may
receive stall counts while fallback control circuitry 540 may
receive SIMD group age information.

In the 1llustrated embodiment, the arbitration circuitry 220
1s configured to perform multiple checks at least partially 1n
parallel and then control MUX 550 to generate an arbitration
result (for which control signaling 1s not explicitly shown).
For example, each type of arbitration control circuitry may
output a signal indicating whether 1t generated an arbitration
decision 1n the current cycle and MUX control logic may
generate a MUX control signal based on relative priorities of
the different types of arbitration control circuitry. In other
embodiments, diflerent types of arbitration control circuitry
may operate sequentially. In some embodiments, one or
more types ol arbitration circuitry may be powered down it
another control circuit has already generated a final arbitra-
tion decision.

Stall count control circuitry 510, 1n some embodiments, 1s
configured to select a channel with a smaller stall count 11 the
channels have different stalls counts. Circuitry 510 may
include a comparator and MUX, for example.

Target execution umt control circuitry 520, in some
embodiments, 1s configured to determine whether instruc-
tions that target a specific execution unit are available (e.g.,
based on their op-code). Circuitry 520 may include a MUX
controlled by a signal indicating whether the specific execu-
tion unit 1s saturated, to select a channel 1n situations where
one of the channels targets the execution unit. Circuitry 520
may also include a comparator configured to determine the
instruction with the lowest execution latency as a fallback.

Speculative control circuitry 530, 1n some embodiments,
1s configured to select non-speculative instructions, when
available. Circuitry 330 may include an XOR gate, for
example, that receives mputs indicating whether waiting
instructions are speculative and may control a MUX based
on one of the mputs to select a channel when the output of
the XOR indicates that one of the 1nstructions 1s speculative.

Fallback control circuitry 540, in some embodiments, 1s
configured to select an instruction from an older channel.
Fallback control circuitry 540 may include a comparator that
receives age information for executed SIMD groups. As 1s
well-understood by those of skill 1n the art, various diflerent
circuit 1implementations and topologies may be used to
implement the arbitration techniques described herein. The
disclosed example circuitry 1s included to provide specific
examples for illustration, but 1s not intended to limit the
scope of the present disclosure.

Example Method

FIG. 6 15 a flow diagram 1llustrating an example method
for using frame portion cost estimates, according to some
embodiments. The method shown 1n FIG. 6 may be used 1n
conjunction with any of the computer circuitry, systems,
devices, elements, or components disclosed herein, among
others. In various embodiments, some of the method ele-
ments shown may be performed concurrently, in a diflerent
order than shown, or may be omitted. Additional method
clements may also be performed as desired.

At 610, 1n the 1llustrated embodiment, pipeline circuitry
performs, operations specified by first and second single-
instruction multiple-data (SIMD) groups assigned to the
pipeline circuitry.

At 620, 1n the illustrated embodiment, first front-end
circuitry decodes instructions of the first assigned SIMD
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group. At 630, 1n the illustrated embodiment, second front-
end circuitry decodes instructions of the second assigned

SIMD group. Elements 310-325 of FIG. 3 provide a non-
limiting example of front-end circuitry. In some embodi-
ments, the first and second front-end circuitry include
respective hazard detection stages configured to generate
stall counts based on detected hazards. The hazards may be
detected based on contention for operand cache entries or
registers, for example.

At 640, 1n the 1llustrated embodiment, arbitration circuitry
selects an 1nstruction from at least the first and second
front-end circuitry for assignment to shared execution cir-
cuitry 1n a current cycle. In some embodiments, the arbitra-
tion circuitry 1s configured to select an instruction based on
one or more of: stall counts for available instructions,
whether available 1nstructions are being speculatively
executed, whether ones of available instructions target a
particular portion of the shared execution circuitry, numbers
of execution cycles for available instructions, and ages of
available 1nstructions.

In some embodiments, the arbitration circuitry includes
first control circuitry (e.g., circuitry 510) configured to
select, from among at least a first instruction from the first
front-end circuitry and a second instruction from the second
front-end circuitry, an instruction that has a smaller stall
count. In some embodiments, the arbitration circuitry
includes second control circuitry (e.g., circuitry 520) con-
figured to, in the absence of a selection by the first control
circuitry: based on a determination that the first instruction
targets a particular execution unit and the second 1nstruction
does not target the particular execution unit, select from
among the first and second instructions based on whether the
particular execution unit 1s saturated. In some embodiments,
the arbitration circuitry includes third control circuitry (e.g.,
circuitry 330) configured to, 1n the absence of a selection by
the first and second control circuitry: select the first instruc-
tion based on a determination that the first instruction 1s not
a speculative instruction and the second instruction 1s a
speculative 1nstruction. In some embodiments, the arbitra-
tion circuitry 1s configured to, 1n the absence of a selection
by the first, second, and third control circuitry, select an
instruction from an older SIMD group from among the first
and second 1instructions.

At 650, 1n the illustrated embodiment, shared execution
circuitry performs the selected instruction. Elements 335-
350 of FIG. 3 provide a non-limiting example of shared
execution circuitry.

In some embodiments, the first and second front-end
circuitry include respective operand cache allocation stages
and the shared execution circuitry includes an operand cache
load stage, an 1ssue stage, and a plurality of execution stages.

In various embodiments, the disclosed embodiments may
advantageously reduce pipeline bubbles while maintaining
fairness and performing for SIMD groups that share execu-
tion units.

Example Device

Referring now to FIG. 7, a block diagram 1illustrating an
example embodiment of a device 700 1s shown. In some
embodiments, elements of device 700 may be included
within a system on a chip. In some embodiments, device 700
may be included in a mobile device, which may be battery-
powered. Therefore, power consumption by device 700 may
be an important design consideration. In the illustrated
embodiment, device 700 includes fabric 710, compute com-
plex 720 mput/output (I/O) bridge 750, cache/memory con-
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troller 745, graphics unit 150, and display unit 765. In some
embodiments, device 700 may include other components
(not shown) 1n addition to and/or in place of the illustrated
components, such as video processor encoders and decoders,
Image processing or recognition elements, computer vision
elements, etc.

Fabric 710 may include various interconnects, buses,
MUX’s, controllers, etc., and may be configured to facilitate
communication between various elements of device 700. In
some embodiments, portions of fabric 710 may be config-
ured to implement various different communication proto-
cols. In other embodiments, fabric 710 may implement a
single communication protocol and elements coupled to
tabric 710 may convert from the single communication
protocol to other communication protocols internally.

In the illustrated embodiment, compute complex 720
includes bus interface unmit (BIU) 725, cache 730, and cores
735 and 740. In various embodiments, compute complex
720 may 1nclude various numbers of processors, processor
cores and/or caches. For example, compute complex 720
may include 1, 2, or 4 processor cores, or any other suitable
number. In one embodiment, cache 730 1s a set associative
[.2 cache. In some embodiments, cores 733 and/or 740 may
include internal instruction and/or data caches. In some
embodiments, a coherency unit (not shown) in fabric 710,
cache 730, or elsewhere 1n device 700 may be configured to
maintain coherency between various caches of device 700.
BIU 725 may be configured to manage communication
between compute complex 720 and other elements of device
700. Processor cores such as cores 735 and 740 may be
configured to execute mstructions of a particular instruction
set architecture (ISA) which may include operating system
istructions and user application instructions.

Cache/memory controller 745 may be configured to man-
age transier of data between fabric 710 and one or more
caches and/or memories. For example, cache/memory con-
troller 745 may be coupled to an L3 cache, which may in
turn be coupled to a system memory. In other embodiments,
cache/memory controller 745 may be directly coupled to a
memory. In some embodiments, cache/memory controller
745 may include one or more nternal caches.

As used herein, the term “coupled to” may indicate one or
more connections between elements, and a coupling may
include intervening elements. For example, in FIG. 7, graph-
ics unit 150 may be described as “coupled to” a memory
through fabric 710 and cache/memory controller 745. In
contrast, in the illustrated embodiment of FIG. 7, graphics
unit 150 1s “directly coupled” to fabric 710 because there are
no intervening elements.

Graphics unit 150 may include one or more processors
and/or one or more graphics processing units (GPU’s).
Graphics unit 150 may receive graphics-oriented instruc-
tions, such as OPENGL®, Metal, or DIRECT3D® 1nstruc-
tions, for example. Graphics unit 150 may execute special-
1zed GPU 1nstructions or perform other operations based on
the received graphics-oriented instructions. Graphics unit
150 may generally be configured to process large blocks of
data 1n parallel and may build 1images 1n a frame bufler for
output to a display. Graphics unit 150 may include trans-
form, lighting, triangle, and/or rendering engines in one or
more graphics processing pipelines. Graphics unit 150 may
output pixel information for display images. Programmable
shader 160, in various embodiments, may include highly
parallel execution cores configured to execute graphics
programs, which may include pixel tasks, vertex tasks, and
compute tasks (which may or may not be graphics-related).
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In some embodiments, graphics unit 150 includes the
circuitry discussed herein. In other embodiments, the dis-

closed circuitry may be implemented 1n other types of
processors, such as CPUs, for example.

Display unit 765 may be configured to read data from a
frame bufler and provide a stream of pixel values for display.
Display unit 765 may be configured as a display pipeline 1n
some embodiments. Additionally, display unit 765 may be
configured to blend multiple frames to produce an output
frame. Further, display unit 765 may include one or more
interfaces (e.g., MIPI® or embedded display port (eDP)) for
coupling to a user display (e.g., a touchscreen or an external
display).

I/O bridge 750 may include various elements configured
to implement: universal serial bus (USB) communications,
security, audio, and/or low-power always-on functionality,
for example. I/O bridge 750 may also include interfaces such
as pulse-width modulation (PWM), general-purpose mput/
output (GPIO), serial peripheral interface (SPI), and/or
inter-integrated circuit (12C), for example. Various types of
peripherals and devices may be coupled to device 700 via

I/O bridge 750.

Example Computer-Readable Medium

The present disclosure has described various example
circuits 1n detail above. It 1s intended that the present
disclosure cover not only embodiments that include such
circuitry, but also a computer-readable storage medium that
includes design information that specifies such circuitry.
Accordingly, the present disclosure 1s mtended to support
claims that cover not only an apparatus that includes the
disclosed circuitry, but also a storage medium that specifies
the circuitry 1n a format that 1s recognized by a fabrication
system configured to produce hardware (e.g., an integrated
circuit) that includes the disclosed circuitry. Claims to such
a storage medium are intended to cover, for example, an
entity that produces a circuit design, but does not itself
tabricate the design.

FIG. 8 1s a block diagram illustrating an example non-
transitory computer-readable storage medium that stores
circuit design information, according to some embodiments.
In the illustrated embodiment semiconductor fabrication
system 820 1s configured to process the design information
815 stored on non-transitory computer-readable medium
810 and fabricate integrated circuit 830 based on the design
information 815.

Non-transitory computer-readable storage medium 810,
may comprise any ol various appropriate types of memory
devices or storage devices. Non-transitory computer-read-
able storage medium 810 may be an installation medium,
e.g., a CD-ROM, floppy disks, or tape device; a computer
system memory or random access memory such as DRAM,
DDR RAM, SRAM, FDO RAM, Rambus RAM, etc.; a
non-volatile memory such as a Flash, magnetic media, e.g.,
a hard drive, or optical storage; registers, or other similar
types of memory elements, etc. Non-transitory computer-
readable storage medium 810 may include other types of
non-transitory memory as well or combinations thereof.
Non-transitory computer-readable storage medium 810 may
include two or more memory mediums which may reside 1n
different locations, ¢.g., 1n diflerent computer systems that
are connected over a network.

Design information 815 may be specified using any of
various appropriate computer languages, including hard-
ware description languages such as, without limitation:

VHDL, Verilog, System(C, SystemVerilog, RHDL, M,
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MyHDL, etc. Design information 8135 may be usable by
semiconductor fabrication system 820 to fabricate at least a
portion of imtegrated circuit 830. The format of design
information 815 may be recognized by at least one semi-
conductor fabrication system 820. In some embodiments,
design information 815 may also include one or more cell
libraries which specily the synthesis and/or layout of inte-
grated circuit 830. In some embodiments, the design infor-
mation 1s specified in whole or 1n part in the form of a netlist
that specifies cell library elements and their connectivity.
Design information 815, taken alone, may or may not
include suflicient information for fabrication of a corre-
sponding 1ntegrated circuit. For example, design informa-
tion 815 may specily the circuit elements to be fabricated but
not their physical layout. In this case, design information
815 may need to be combined with layout information to
actually fabricate the specified circuitry.

Integrated circuit 830 may, in various embodiments,
include one or more custom macrocells, such as memories,
analog or mixed-signal circuits, and the like. In such cases,
design information 815 may include information related to
included macrocells. Such information may 1nclude, without
limitation, schematics capture database, mask design data,
behavioral models, and device or transistor level netlists. As
used herein, mask design data may be formatted according,
to graphic data system (GDSII), or any other suitable format.

Semiconductor fabrication system 820 may include any of
various appropriate elements configured to fabricate inte-
grated circuits. This may include, for example, elements for
depositing semiconductor materials (e.g., on a water, which
may 1nclude masking), removing materials, altering the
shape of deposited materials, modifying materials (e.g., by
doping materials or moditying dielectric constants using
ultraviolet processing), etc. Semiconductor fabrication sys-
tem 820 may also be configured to perform various testing,
of fabricated circuits for correct operation.

In various embodiments, integrated circuit 830 1s config-
ured to operate according to a circuit design specified by
design information 815, which may include performing any
of the functionality described herein. For example, inte-
grated circuit 830 may include any of various elements
shown 1 FIG. 1B, 2, 3, 5, or 7. Further, integrated circuit
830 may be configured to perform various Ifunctions
described herein in conjunction with other components.
Further, the functionality described herein may be per-
formed by multiple connected integrated circuits.

As used herein, a phrase of the form “design information
that specifies a design of a circuit configured to . . . ” does
not 1mply that the circuit 1n question must be fabricated in
order for the element to be met. Rather, this phrase indicates
that the design information describes a circuit that, upon
being fabricated, will be configured to perform the indicated
actions or will include the specified components.

Although specific embodiments have been described
above, these embodiments are not intended to limait the scope
of the present disclosure, even where only a single embodi-
ment 1s described with respect to a particular feature.
Examples of features provided 1n the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise. The above description 1s intended to cover such
alternatives, modifications, and equivalents as would be
apparent to a person skilled in the art having the benefit of
this disclosure.

The scope of the present disclosure includes any feature
or combination of features disclosed herein (either explicitly
or implicitly), or any generalization thereof, whether or not
it mitigates any or all of the problems addressed herein.
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Accordingly, new claims may be formulated during pros-
ecution of this application (or an application claiming pri-
ority thereto) to any such combination of features. In par-
ticular, with reference to the appended claims, features from
dependent claims may be combined with those of the
independent claims and features from respective idepen-
dent claims may be combined 1n any appropriate manner and
not merely 1n the specific combinations enumerated 1n the
appended claims.

What 1s claimed 1s:

1. An apparatus, comprising;:

pipeline circuitry configured to perform operations speci-

fied by instructions of first and second single-instruc-
tion multiple-data (SIMD) groups assigned to the pipe-
line circuitry, wherein the pipeline circuitry includes:
first front-end circuitry configured to decode instruc-
tions of the first assigned SIMD group;
second {front-end circuitry configured to decode
instructions of the second assigned SIMD group,
wherein the first and second front-end circuitry are
configured to decode an instruction of the first SIMD
group and an instruction of the second SIMD group
in parallel 1n a given cycle;
shared execution circuitry configured to perform opera-
tions specified by the first and second assigned
SIMD groups; and
arbitration circuitry configured to select an instruction
from among at least the first and second front-end
circuitry for assignment to the shared execution
circuitry 1n a current cycle, such that instructions
from both the first SIMD group and the second
SIMD group occupy different stages of the shared
execution circuitry at a given time, wheremn the
selection 1s based on at least the following inputs:
stall counts for 1nstructions from the first and second
front-end circuitry;
whether execution units targeted by instructions
from the first and second front-end circuitry are
saturated; and
whether instructions from the first and second front-
end circuitry are speculatively executed.

2. The apparatus of claim 1, wherein the arbitration
circuitry 1s further configured to select an instruction based
on one or more of the following types of mnformation:

numbers of execution cycles for available instructions;

and

ages ol available instructions.

3. The apparatus of claim 1, wherein the arbitration
circuitry includes first control circuitry configured to select,
from among at least a first instruction from the first front-end
circuitry and a second instruction from the second front-end
circuitry, an mnstruction that has a smaller stall count.

4. The apparatus of claim 3, wherein the arbitration
circuitry includes second control circuitry configured to, 1n
the absence of a selection by the first control circuitry:

based on a determination that the first instruction targets

a particular execution unit and the second instruction
does not target the particular execution unit, select from
among the first and second instructions based on
whether the particular execution unit 1s saturated.

5. The apparatus of claim 4, wherein the arbitration
circuitry includes third control circuitry configured to, 1n the
absence of a selection by the first and second control
circuitry:

select the first instruction based on a determination that

the first mstruction 1s not a speculative mstruction and
the second 1nstruction 1s a speculative istruction.
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6. The apparatus of claim 5, wherein the arbitration
circuitry 1s configured to, 1n the absence of a selection by the
first, second, and third control circuitry, select an instruction
from an older SIMD group from among the first and second
instructions.

7. The apparatus of claim 1, wherein the first and second
front-end circuitry 1include respective hazard detection
stages configured to generate stall counts based on detected
hazards.

8. The apparatus of claim 1,

wherein the first and second front-end circuitry include

respective operand cache allocation stages;

wherein the shared execution circuitry includes an oper-

and cache load stage; and

wherein the shared execution circuitry includes an 1ssue

stage and a plurality of execution stages.

9. The apparatus of claim 1, wherein the shared execution
circuitry includes a plurality of execution pipelines config-
ured to execute diflerent respective sets of struction types.

10. The apparatus of claim 1, further comprising:

a central processing unit;

a graphics processor; and

network interface circuitry;

wherein the pipeline circuitry 1s included 1n at least one of

the central processing unmit or the graphics processor.

11. A non-transitory computer readable storage medium
having stored thereon design information that specifies a
design of at least a portion of a hardware integrated circuit
in a format recognized by a semiconductor fabrication
system that 1s configured to use the design information to
produce the circuit according to the design, wherein the
design iformation specifies that the circuit includes:

pipeline circuitry configured to perform operations speci-

fied by instructions of first and second single-instruc-
tion multiple-data (SIMD) groups assigned to the pipe-
line circuitry, wherein the pipeline circuitry includes:
first front-end circuitry configured to decode instruc-
tions of the first assigned SIMD group;
second {front-end circuitry configured to decode
instructions of the second assigned SIMD group,
wherein the first and second front-end circuitry are
configured to decode an 1nstruction of the first SIMD
group and an instruction of the second SIMD group
in parallel 1n a given cycle;
shared execution circuitry configured to perform opera-
tions specified by the first and second assigned
SIMD groups; and
arbitration circuitry configured to select an instruction
from among at least the first and second front-end
circuitry for assignment to the shared execution
circuitry in a current cycle, such that instructions
from both the first SIMD group and the second
SIMD group occupy different stages of the shared
execution circuitry at a given time, wherein the
selection 1s based on at least the following inputs:
stall counts for instructions from the first and second
front-end circuitry;
whether execution units targeted by instructions
from the first and second front-end circuitry are
saturated; and
whether 1nstructions from the first and second front-end
circuitry are speculatively executed.

12. The non-transitory computer readable storage medium
of claam 11, wherein the arbitration circuitry 1s further
configured to select an instruction based on:

whether ones of available instructions target a particular

portion of the shared execution circuitry;
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numbers of execution cycles for available instructions;

and

ages ol available instructions.

13. The non-transitory computer readable storage medium
of claim 11, wherein the arbitration circuitry includes first
control circuitry configured to select, from among at least a
first instruction from the first front-end circuitry and a
second instruction from the second front-end circuitry, an
instruction that has a smaller stall count; and

wherein the arbitration circuitry includes second control

circuitry configured to, in the absence of a selection by
the first control circuitry and based on a determination
that the first instruction targets a particular execution
unit and the second instruction does not target the
particular execution unit, select from among the first
and second 1nstructions based on whether the particular
execution unit 1s saturated.

14. The non-transitory computer readable storage medium
of claim 13, wherein the arbitration circuitry includes third
control circuitry configured to, 1n the absence of a selection
by the first and second control circuitry, select the first
instruction based on a determination that the first instruction
1s not a speculative instruction and the second instruction 1s
a speculative instruction; and

wherein the arbitration circuitry i1s configured to, 1n the

absence of a selection by the first, second, and third
control circuitry, select an instruction from an older
SIMD group from among the first and second nstruc-
tions.

15. The non-transitory computer readable storage medium
of claim 11, wherein the first and second front-end circuitry
include respective hazard detection stages configured to
generate stall counts.

16. A method, comprising:

performing, by pipeline circuitry, operations specified by

first and second single-instruction multiple-data
(SIMD) groups assigned to the pipeline circuitry,
wherein the performing includes:
decoding, by first front-end circuitry, instructions of the
first assigned SIMD group:;
decoding, by second front-end circuitry, imstructions of
the second assigned SIMD group, including decod-
ing an instruction of the first SIMD group and an
instruction of the second SIMD group 1n parallel 1n
a given cycle;
selecting, by arbitration circuitry, an instruction from at
least the first and second {front-end circuitry for
assignment to shared execution circuitry in a current
cycle, such that instructions from both the first SIMD
group and the second SIMD group occupy diflerent
stages of the shared execution circuitry at a given
time, wherein the selecting 1s based on at least the
following 1nputs:
stall counts for instructions from the first and second
front-end circuitry;
whether execution units targeted by instructions
from the first and second front-end circuitry are
saturated; and
whether 1nstructions from the first and second front-
end circuitry are speculatively executed; and
performing, by the shared execution circuitry, the
selected 1nstruction.

17. The method of claim 16, wherein the selecting 1s
based on whether ones of available instructions target a
particular portion of the shared execution circuitry.

18. The method of claim 16, wherein the selecting 1s
further based on the following types of information:
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numbers of execution cycles for available instructions;
and

ages ol available instructions.
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