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METHODS FOR PROTECTING COMPUTER
HARDWARE FROM CYBER THREATS

DETAILS OF RELATED APPLICATIONS

This 1s a national stage application under 35 U.S.C. § 371
of PCT/IL2020/050074 filed on 16 Jan. 2020, which claimed
the benefit according to 35 U.S.C. § 119 (e) of U.S.

provisional application 62/793,412 filed on Jan. 17, 2019
and having the same title as the present application; and

claimed the benefit according to 35 U.S.C. § 119 (e) of U.S.
provisional application 62/939,699 filed on Nov. 25, 2019
and having the same title as the present application; and
cach of these earlier applications 1s fully incorporated herein
by reference.

FIELD OF THE INVENTION

The 1nvention 1s 1n the field of hardware security

BACKGROUND OF THE INVENTION

Side Channel Attacks (SCA) such as differential power
analysis (DPA), simple power analysis (SPA), and fault
injection are a common category ol cyber-attack used by
hackers and intelligence agencies to penetrate sensitive
systems 1n order to perform cryptographic key extraction.

Any device that performs a cryptographic operation
should withstand side channel attacks and several security
certifications explicitly require such side channel attack
resistance tests.

Many available methods to evaluate the level of protec-
tion of a given device against various forms of SCA require
production of the device prior to testing.

Another common type of cyber-attack 1s differential fault
analysis (DFA). DFA 1s a type of side channel attack in the
field of cryptography or cryptanalysis. DFA induces faults
(c.g. unexpected environmental conditions) into crypto-
graphic implementations, to reveal their internal states.

A block cipher 1s a deterministic algorithm operating on
fixed-length groups of bits, called “blocks™, with an unvary-
ing transformation that 1s specified by a symmetric key. In

many block ciphers, a block 1s defined as a fixed number of

bits (e.g. 128 bits) and the block 1s divided into bytes
containing a fixed number of bits (e.g. 8 bits). Within a
block, the fundamental unit operated upon for encryption
(coding) 1s a byte, e.g. 8 bits.

In various block cipher systems, the size of a block and/or
a byte varies.

IP Cores are prebuilt cells for integration into an existing,
system-on-chip (SOC). SCA attacks can extract crypto-
graphic keys from target hardware—thus making the hard-
ware unsecure—by analyzing, for example, 1ts power out-
puts and/or electromagnetic emission (traces) along with
data samples.

SUMMARY OF THE INVENTION

A broad aspect of the invention relates to decreasing
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One aspect of some embodiments of the invention relates
to protection of hardware components (e.g. semiconductor
chips) from attacks based on differential power analysis
(DPA). In some exemplary embodiments of the invention,
testing of a chip at the design stage (1.e. via a power
consumption (PC) simulator and a trace analyzer) contrib-
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utes to a decrease 1n vulnerability to DPA attacks and/or
contributes to an increase 1n efliciency of product develop-
ment. According to various exemplary embodiments of the
invention, testing of a chip at the design stage employs a
synthesized gate level netlist and/or a cells library and/or an
RTL testbench as an input.

For purposes of this specification and the accompanying
claims, the term “cells library” includes all libraries 1n

“SYNOPSIS Liberty Format”, “ACCELLERA consortium

Advanced Library Format (ALF)” and any functional
equivalent.

In some exemplary embodiments of the invention, the
simulator processes the cells library to produce program
code (e.g. C++ code) that implements a power consumption
model and/or program code that simulates the behavior of
cach cell type. Alternatively, or additionally, in some
embodiments the simulator includes a netlist parser and a
simulator driver.

Another aspect of some embodiments of the invention
relates to a method to check whether the power consumption
due to glitches could be used, during an attack, to reveal a
secret encryption key (coding key). For purposes of this
specification and the accompanying claims, the term
“olitch” indicates the eflect of the volatility of electrical
current before it stabilizes at a clock boundary that causes
unpredicted power consumption of the device.

In some embodiments of the invention momentary glitch
simulation 1s performed locally. This provides an eflicient
alternative to calculating exact power consumption caused
by glitches which would need to take into account signals
propagation 1n space as a function of time. Thus, according
to this aspect, it 1s suilicient to simulate momentary glitches
to see 1I an attack that uses this information 1s likely to
succeed. In some embodiments, the simulation 1ncludes two
stages: using mformation from a cells library to preprocess
cach cell, and runtime calculation of the momentary power
consumption caused by a glitch 1n each cell.

A third aspect of some embodiments of the mvention
relates to processing the cells library to produce program
code that implements a power consumption model and/or
program code that simulates the behavior of each cell type.
Alternatively, or additionally, in some embodiments the
simulator includes a netlist parser and the test vectors driver.
In some embodiments the program code 1s 1n C++.

A Tourth aspect of some embodiments of the mvention
relates to verification of hardware design against differential
fault analysis (DFA). In some embodiments, the user pro-
vides a list of records as an mput. In some embodiments a
predefined list of records 1s provided for known fault 1njec-
tion attacks so that the user does not need to provide 1t as an
input. According to these embodiments, the records describe
where and how intervention into the normal execution of the
design 1s done. In some embodiments, each record includes
a gate name, a name of a pin where a signal 1s swapped and
a timing for swapping. In some exemplary embodiments of
the invention, the current state of the network of gates 1s
stored 1n memory during the simulation and at the right time,
the required intervention to the execution 1s produced. In
some embodiments 11 the design does not halt as a result of
the 1njection a weakness 1s reported.

A fifth aspect of some embodiments of the invention
relates to use of Galois Field transformations (GF) to
increase a level of difhiculty in ascertaining an encryption
key 1n block cipher coding.

A sixth aspect of some embodiments of the mvention
relates to a method of using Galois Field (GF) transforma-
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tion matrices to increase a level of difhiculty 1n ascertaining
an encryption key in block cipher coding.

A seventh aspect of some embodiments of the imnvention
relates to a manufacturing method 1n which microprocessor
chips are produced in batches, with each batch having a
different design but preserving a same function. In some
embodiments the design differences include usage of difler-
ent set of GF representations on the chip. In some exemplary
embodiments of the imnvention, usage of different GF repre-
sentations on the chip means that chips from different
batches will encrypt data differently.

One of the ways to deal with side-channel attacks, called
masking, 1s that arithmetic calculations 1n the field are not
performed directly, but using formulas that lead to the same
final result, but contain diflerent intermediate results.

An eighth aspect of some embodiments of the imnvention
relates to a new masking method. In some embodiments, the
method includes representing each element of the field as a
polynomial of degree no higher than 7+d, where d>0 1s the
redundancy parameter. According to these embodiments, to
represent each element, 8+d bits are required (versus 8 bits
in the standard implementation). Alternatively or addition-
ally, the same field element can be represented in 2¢ various
ways (patrwise differing by terms that are multiples of the
generating polynomial), and at each moment of calculations
it 1s possible to choose any of these representations. In some
embodiments, this can slightly decrease the performance of
calculations, since the result of each multiplication must be
reduced to a polynomial of a higher degree compared to the
standard implementation (7+d 1nstead of 7). Alternatively or
additionally, this representation allows one to counteract
DPA attacks by introducing disturbances in the calculation
by adding multiples of the generating polynomial to the
bytes (data or key) at any time during the encryption,
decryption or extension of the key. This action can be
applied to each byte independently, which permits volatility
(and thus, resistance to attack) even with a small value of the
redundancy parameter d.

A ninth aspect of some embodiments of the mmvention
relates to sequential application of two different masks to a
block cipher. In some exemplary embodiments of the inven-
tion, the first mask 1s not removed until after the second
mask 1s applied. In some exemplary embodiments of the
invention, the first mask 1s an additive mask. Alternatively or
additionally, 1n some embodiments the second mask 1s a
redundancy mask.

A tenth aspect of some embodiments of the invention
relates to associating a checksum datum with a key. In some
exemplary embodiments of the invention, the key 1s a
cryptographic key. Alternatively or additionally, 1n some
embodiments the key 1s a round key resulting from key
scheduling. In some embodiments, the round key 1s the last
round key 1n a set. In some embodiments, association of the
checksum datum with the key contributes to a reduction 1n
susceptibility to fault injection attacks and/or read by write
attacks conducted on either cryptographic keys or on key
scheduling.

An eleventh aspect of some embodiments of the invention
relates to reducing the number of multiplications of two
different elements of a field while computing X” in a field of
characteristic 2 1n a data processor. This reduction contrib-
utes to an improvement 1n processing speed and/or contrib-
utes to a reduction 1n surface area of silicon required in the
chip.

It will be appreciated that the various aspects described
above relate to solution of technical problems related to
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assessing security of a semiconductor chip prior to produc-
tion of a prototype (i.e. at the design stage).

Alternatively or additionally, 1t will be appreciated that
the various aspects described above relate to solution of
technical problems related to a level of competence required
to assess security ol a semiconductor chip.

Alternatively or additionally, 1t will be appreciated that
the various aspects described above relate to solution of
technical problems related to increasing a degree of difli-
culty associated with ascertaining a cryptographic key via
hardware attacks of different types.

In some exemplary embodiments of the invention there 1s
provided a method for simulating power consumption
including: (a) receiving as inputs at a data processor a
synthesized gate level netlist and a cells library; (b) prepro-
cessing the cells library by the data processor to produce
program code for behavior simulation and power consump-
tion simulation of each cell; (¢) simulating a runtime clock
and for each raising and falling conditions of the clock
processing the whole network of the connected gates of the
gate level netlist; (d) applying the behavior simulation on
cryptographic modules using the clock to process the netlist;
and (e) calculating values of output pins of the cells library
using the information about the cells behavior and calculat-
ing power consumption from the preprocessing to simulate
a momentary power consumption. In some exemplary
embodiments of the invention, the method includes receiv-
ing a testbench as an mnput and extracting instructions from
the testbench, the instructions indicating how to automati-
cally mitialize and execute the gate level netlist. Alterna-
tively or additionally, 1n some embodiments the preprocess-
ing sequentially goes through each cell type and converts the
information about the cell to the program code. Alternatively
or additionally, 1n some embodiments the program code
implements a power consumption model. Alternatively or
additionally, 1n some embodiments the program code simu-
lates the behavior of each type of cell in the cells library.
Alternatively or additionally, 1n some embodiments the
processing the cells library, includes producing a table of
2°"%*m entries, where n stands for the number of input pins
of the cell, and m stands for the number of the output pins.

In some exemplary embodiments of the invention there 1s
provided a glitch simulation method including: (a) process-
ing, by a data processor, each cell 1n a cells library to
produce a table of 2°"*m entries, where n stands for the
number of imput pins of the cell, and m stands for the number
of the output pins; and (b) performing, by a data processor,
a runtime calculation of a momentary power consumption
caused by a glitch using a current state of the gate level
netlist as an mput. In some exemplary embodiments of the
invention, the runtime calculation makes the power con-
sumption proportional to:

m
Z gp,c,.{a
=1

where m 1s the number of output pins, and p, ¢ are the
values of previous and current inputs for an investigated cell
respectively;

where a precalculated table of this cell includes an entry
Zp,c,l°

In some exemplary embodiments of the invention there 1s
provided a method for simulating power consumption
including: (a) recerving as an mput at a data processor a cells
library; and (b) processing the cells library to produce
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program code. In some exemplary embodiments of the
invention, the program code implements a power consump-
tion model. Alternatively or additionally, 1n some embodi-
ments the program code simulates the behavior of each type
of cell 1n the cells library. Alternatively or additionally, 1n
some embodiments the processing includes producing a
table of 2*"*m entries, where n stands for the number of
input pins ol the cell, and m stands for the number of the
output pins.

In some exemplary embodiments of the invention there 1s
provided a method for simulating response of hardware to
differential fault analysis (DFA) attacks including: (a)
accessing, by a data processor, a list of records 1n a computer
memory, the records defining a network gate, a time, and
signal to simulate 1intervention into the normal execution of
a semiconductor chip design; (b) keeping 1n a memory the
current state of the network of gates as a gate level netlist
file; (c¢) producing, by the data processor, the simulated
intervention to the execution of the gate level netlist at a
right time using a record from the list; and (d) monitoring a
response ol the execution to the simulated intervention. In
some exemplary embodiments of the invention, the method
includes receiving the records as a user mput. Alternatively
or additionally, 1n some embodiments the method includes
providing the records as a predefined list. Alternatively or
additionally, 1n some embodiments each record in the
records includes a gate name, an i1dentification of a pin
where swapping of signal occurs and a time for swapping.

In some exemplary embodiments of the invention there 1s
provided a semiconductor intellectual property (IP) core
comprising a transformation engine accessing different
transformation matrices and transforming a byte of data
within a block of a block cipher and a cryptographic key
from one representation of a Galois Field (GF) to another
representation of the GF. In some exemplary embodiments
of the mvention, the transformation engine accesses a dii-
ferent transformation matrix for each successive round of
the block cipher. Alternatively or additionally, in some
embodiments the transformation engine applies 1 of at least
10 different transformation matrices for each successive
round. Alternatively or additionally, in some embodiments
the transformation engine applies 1 of at least 20 different
transformation matrices for each successive round. Alterna-
tively or additionally, 1n some embodiments the transforma-
tion engine applies 1 of at least 30 different transformation
matrices for each successive round. Alternatively or addi-
tionally, in some embodiments the IP core 1s provided as an
application-specific integrated circuit (ASIC) design. Alter-
natively or additionally, 1n some embodiments the IP core 1s
provided as a field-programmable gate array (FPGA) logic
designs. Alternatively or additionally, in some embodiments
the block cipher 1s selected from the group consisting of
AES, SM4, and ARIA. Alternatively or additionally, in some
embodiments the transformation engine computes X* by
performing a series of: (1) multiplications of two different
clements of the field; and (11) raising an element of the field
to a power Z wherein Z 1s a power of 2. According to these
embodiments the number of multiplications (1) 1s at least two
less than the number of ones (1s) 1n the binary representation
of Y. In some embodiments, Y=254. Alternatively or addi-
tionally, 1n some embodiments a number of multiplications
(1) 1s 4 or less.

In some exemplary embodiments of the invention there 1s
provided a method of building different representations of
the Galois Field (GF) implemented by a compact logic
including: representing a GF(2°) as an equivalent tower
field. In some exemplary embodiments of the invention, the
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equivalent tower field is GF(((2°)*)*). Alternatively or addi-
tionally, 1n some embodiments the equivalent tower field 1s
GF((2*). Alternatively or additionally, in some embodi-
ments the equivalent tower field 1s represented 1n the poly-
nomial basis. Alternatively or additionally, in some embodi-
ments the equivalent tower field 1s represented 1n the normal
basis. Alternatively or additionally, 1n some embodiments
the method yields at least 432 diflerent representations of the
GF. Alternatively or additionally, in some embodiments the
method includes computing X* by performing a series of: (i)
multiplications of two different elements of the field; and (11)
raising an e¢lement of the field to a power Z wherein 7 1s a
power of 2. According to these embodiments the number of
multiplications (1) 1s at least two less than the number of
ones (1s) 1n the binary representation of Y. In some embodi-
ments, Y=2354. Altematively or additionally, in some
embodiments a number of multiplications (1) 1s 4 or less.

In some exemplary embodiments of the invention there 1s
provided a method for simulating power consumption
including: (a) receiving at least one member of the group
consisting of a synthesized gate level netlist, a cells library
and a testbench as mput(s) at a data processor; (b) generating
a power consumption model that includes consumption due
to short circuit, intrinsic capacity, and glitches. In some
exemplary embodiments of the invention, the receiving
includes receiving at least two members of the group as
inputs. Alternatively or additionally, in some embodiments
the receiving includes receiving all three members of the
group as inputs.

In some exemplary embodiments of the invention there 1s
provided a method including: (a) manufacturing a first batch
of processor chips with a same function and a first design;
and (b) manufacturing a second batch of the processor chips
with the same function and a second design. In some
exemplary embodiments of the invention, the method
includes a first set of representations of a GF 1n the first
design and a second set of representations of the GF 1n the
second design. Alternatively or additionally, i some
embodiments the GF is GF(2%).

In some exemplary embodiments of the invention there 1s
provided a semiconductor intellectual property (IP) core
including a transformation engine designed and configured
to represent each element of a field GF(2%) using a polyno-
mial of degree no higher than 7+d, where d>0 1s a redun-
dancy parameter. In some embodiments, d=9. In some
embodiments, d=24. Alternatively or additionally, in some
embodiments the transformation engine represents a same
field element by one of 2¢ various ways (pairwise differing
by terms that are multiples of P(x)), and at each moment of
calculations chooses any of said various representations.
Alternatively or additionally, in some embodiments the
clement of a field includes a byte of data within a block of
a block cipher and a cryptographic key. Alternatively or
additionally, 1n some embodiments the block cipher 1is
selected from the group consisting of AES, SM4, and ARITA.
Alternatively or additionally, in some embodiments the
transformation engine computes X* by performing a series
of: (1) multiplications of two different elements of the field;
and (11) raising an element of the field to a power Z wherein
7. 15 a power of 2. According to these embodiments the
number ol multiplications (1) 1s at least two less than the
number ol ones (1s) 1n the binary representation of Y. In
some embodiments, Y=254. Alternatively or additionally, 1n
some embodiments a number of multiplications (1) 1s 4 or
less.

In some exemplary embodiments of the invention there 1s
provided a method of building different representations of
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the Galois Field (GF) implemented by logic circuitry includ-
ing: Representing each element of a field GF(2%) using a
polynomial of degree no higher than 7+d, where d>0 15 a
redundancy parameter. In some embodiments, d=9. In some
embodiments, d=24. Alternatively or additionally, in some
embodiments the method 1ncludes representing a same field
element by one of 2¢ various ways (pairwise differing by
terms that are multiples of P(x)), and at each moment of
calculations choosing any of said various representations.
Alternatively or additionally, in some embodiments the
clement of a field includes a byte of data within a block of
a block cipher and a cryptographic key. Alternatively or
additionally, 1n some embodiments the block cipher is
selected from the group consisting of AES, SM4, and ARITA.
Alternatively or additionally, in some embodiments the
method comprises computing X* by performing a series of:
(1) multiplications of two different elements of the field; and
(1) raising an element of the field to a power Z wherein 7
1s a power of 2. According to these embodiments the number
of multiplications (1) 1s at least two less than the number of
ones (1s) 1n the binary representation of Y. In some embodi-
ments, Y=254. Alternatively or additionally, 1n some
embodiments a number of multiplications (1) 1s 4 or less.

In some exemplary embodiments of the mnvention there 1s
provided a semiconductor intellectual property (IP) core
including a transformation engine including: (a) a first mask
application engine; (b) a second mask engine adapted to
apply a second mask prior to the performance of any
non-linear calculation; and (c¢) a removal engine adapted to
remove the first mask after the second mask 1s 1n place and
prior to performance of any non-linear calculation and
remove the second mask when all calculations are complete.
In some embodiments, the second mask 1s a redundancy
mask. Alternatively or additionally, 1n some embodiments
the first mask 1s an additive mask. Alternatively or addition-
ally, in some embodiments wherein d=9. Alternatively or
additionally, in some embodiments d=24. Alternatively or
additionally, in some embodiments the transformation
engine represents a same field element by one of 2¢ various
ways (pairwise diflering by terms that are multiples of P(x)),
and at each moment of calculations chooses any of the
various representations. Alternatively or additionally, in
some embodiments the masks are applied to elements of a
field which includes a byte of data within a block of a block
cipher and a cryptographic key. Alternatively or additionally,
in some embodiments the IP core 1s configured for use with
a block cipher selected from the group consisting of AES,
SM4, and ARIA.

In some exemplary embodiments of the invention there 1s
provided a masking method for block ciphers implemented
by logic circuitry including: (a) applying a first mask; (b)
applying a second mask prior to performance of any non-
linear calculation; (c¢) removing the first mask after the
second mask 1s 1n place and prior to performance of any
non-linear calculation; and (d) removing the second mask.
In some exemplary embodiments of the invention, the
second mask 1s a redundancy mask. Alternatively or addi-
tionally, 1n some embodiments the first mask 1s an additive
mask. Alternatively or additionally, 1n some embodiments
wherein d=9. Alternatively or additionally, in some embodi-
ments wherein d=24. Alternatively or additionally, in some
embodiments the method 1ncludes representing a same field
element by one of 2¢ various ways (pairwise differing by
terms that are multiples of P(x)), and at each moment of
calculations chooses any of the various representations.
Alternatively or additionally, in some embodiments each
clement of a field includes a byte of data within a block of
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a block cipher and a cryptographic key. Alternatively or
additionally, 1n some embodiments the method 1s applied to
a block cipher selected from the group consisting of AES,
SM4, and ARIA.

In some exemplary embodiments of the invention there 1s
provided a method including: (a) providing a cryptographic
key; and (b) associating a check sum datum with said key.

In some exemplary embodiments of the invention, the key
includes at least 64 bits. Alternatively or additionally, 1n
some embodiments the key includes at least 128 bits.

Alternatively or additionally, 1n some embodiments the
check sum datum 1s 1n a format selected from the group

consisting of cyclic redundancy check (CRC), Fletcher’s
checksum, Adler-32, SAE 11708, longitudinal parity check,

Hash function and error detection code.

Alternatively or additionally, 1n some embodiments the
method includes performing key scheduling on said cryp-
tographic key to produce a set of round keys and associating
an additional checksum datum of a last round key 1n the set
of round keys with the cryptographic key.

In some exemplary embodiments of the invention there 1s
provided a method of improving performance of a data
processor including: 1n a field of characteristic 2 computing,
X* by performing a series of: (i) multiplications of two
different elements of the field; and (11) raising an element of
the field to a power Z wherein Z 1s a power of 2; wherein the
number of multiplications (1) 1s at least two less than the
number of ones (1s) in the binary representation of Y. In
some embodiments, the field is ZF(2%). Alternatively or
additionally, 1n some embodiments Y=254. Alternatively or
additionally, 1n some embodiments a number of multiplica-
tions (1) 1s 4 or less. (e.g. 3 or 2 or 1 or 0).

In some exemplary embodiments of the invention there 1s
provided method comprising: (a) providing a cryptographic
key; (b) performing key scheduling on said cryptographic
key to produce a set of round keys; and (c¢) associating a
checksum datum of a last round key in said set of round keys
with said cryptographic key. In some exemplary embodi-
ments of the invention, the method includes associating a
check sum datum of the cryptographic key with the cryp-
tographic key.

For purposes of this specification and the accompanying,
claims, all gerund verb forms and their conjugates indicate
actions performed by a data processor unless otherwise
indicated.

For purposes of this specification and the accompanying
claims, the expressions GF(2%), GF(256) and F,.. are
equivalent.

Unless otherwise defined, all technical and scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
invention belongs. Although suitable methods and materials
are described below, methods and materials similar or
equivalent to those described herein can be used i the
practice of the present invention. In case of contlict, the
patent specification, including definitions, will control. All
maternals, methods, and examples are 1illustrative only and
are not intended to be limiting.

The term “IP core” as used 1n this specification and the
accompanying claims indicates both prebuilt cells for inte-
gration mnto an existing system-on-chip (SoC) and produc-
tion specifications for such cells. For purposes of this
specification and the accompanying claims, “production
specifications” includes bit 1s not limited to, “RTL” files,
“ogate level netlist” files and “after place and route netlist”

files.
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As used herein, the terms “comprising” and “including”,
or grammatical variants thereof are to be taken as specitying
inclusion of the stated features, integers, actions or compo-
nents without precluding the addition of one or more addi-
tional features, integers, actions, components Or groups
thereof. This term 1s broader than, and includes the terms
“consisting of” and “consisting essentially of”” as defined by
the Manual of Patent Examination Procedure of the United
States Patent and Trademark Oflice. Thus, any recitation that
an embodiment “includes™ or “comprises” a feature 1s a
specific statement that sub embodiments “consist essentially
of” and/or “consist of”” the recited feature.

The phrase “consisting essentially of” or grammatical
variants thereof when used herein are to be taken as speci-
tying the stated features, integers, steps or components but
do not preclude the addition of one or more additional
features, integers, steps, components or groups thereof but
only 1f the additional features, integers, steps, components or
groups thereof do not materially alter the basic and novel
characteristics of the claimed composition, device or
method.

The phrase “adapted to™ as used in this specification and
the accompanying claims imposes additional structural limi-
tations on a previously recited component.

The term “method” refers to manners, means, techniques
and procedures for accomplishing a given task including,
but not limited to, those manners, means, techniques and
procedures either known to, or readily developed from
known manners, means, techniques and procedures by prac-
titioners ol architecture and/or computer science.

Implementation of the method and/or IP core according to
embodiments of the invention mvolves performing or com-
pleting selected tasks or steps automatically. Moreover,
according to actual instrumentation and equipment of exem-
plary embodiments of methods, apparatus and IP cores of the
invention, several selected steps could be implemented by
hardware or by software on any operating system of any
firmware or a combination thereof. For example, as hard-
ware, selected steps of the imnvention could be implemented
as a chip or a circuit. As software, selected steps of the
invention could be implemented as a plurality of software
instructions being executed by a computer using any suitable
operating system. In any case, selected steps of the method
and IP core of the mvention could be described as being

performed by a data processor, such as a computing platform
for executing a plurality of instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how 1t may
be carried out in practice, embodiments will now be
described, by way of non-limiting example only, with ret-
erence to the accompanying figures. In the figures, 1dentical
and similar structures, elements or parts thereof that appear
in more than one figure are generally labeled with the same
or similar references 1n the figures 1n which they appear.
Dimensions of components and features shown in the figures
are chosen primarily for convenience and clarity of presen-
tation and are not necessarily to scale. The attached figures
are:

FIG. 1 1s a schematic overview ol software architecture of
various exemplary embodiments of the mvention;

FI1G. 2 1s a simplified flow diagram of a method according,
to some exemplary embodiments of the invention;

FI1G. 3 1s a sitmplified flow diagram of a method according,
to some exemplary embodiments of the invention;
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FIG. 4 1s a simplified flow diagram of a method according
to some exemplary embodiments of the invention;

FIG. 5 15 a simplified tlow diagram of a method according,
to some exemplary embodiments of the invention;

FIG. 6 1s a schematic representation of an IP core accord-
ing to some exemplary embodiments of the invention;

FIG. 7 1s a simplified flow diagram of a method according
to some exemplary embodiments of the invention;

FIG. 8 1s a simplified tlow diagram of a method according,
to some exemplary embodiments of the invention;

FIG. 9 1s a simplified flow diagram of a method according
to some exemplary embodiments of the invention;

FIG. 10 1s a simplified schematic representation of a
semiconductor intellectual property (IP) core according to
some exemplary embodiments of the mmvention;

FIG. 11 1s a simplified flow diagram of a method accord-
ing to some exemplary embodiments of the invention;

FIG. 12 15 a simplified schematic representation of an IP
core according to some exemplary embodiments of the
invention;

FIG. 13 1s a simplified tlow diagram of a method accord-
ing to some exemplary embodiments of the invention;

FIG. 14 1s a simplified flow diagram of a method accord-
ing to some exemplary embodiments of the invention;

FIG. 15 1s a simplified flow diagram of a method accord-
ing to some exemplary embodiments of the invention; and

FIG. 16 1s a simplified flow diagram of a method accord-
ing to some exemplary embodiments of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the invention relate to methods and
hardware usetul 1n reducing vulnerability to various types of
hardware attack.

Specifically, some embodiments of the imnvention can be
used to simulate power consumption from a design speci-
fication of a chip.

For purposes of this specification and the accompanying,
claims the terms “encryption” and “decryption” include, but
are not limited to, digital signing (e.g. using hash functions
and/or block ciphers). Various exemplary embodiments of
the invention relate to use of block ciphers and/or hash
function to 1implement password protection and/or increase
data integrity and/or to conceal information.

The principles and operation of methods and/or hardware
of various exemplary embodiments of the invention may be
better understood with reference to the drawings and accom-
panying descriptions.

Before explaining at least one embodiment of the mven-
tion 1n detail, 1t 1s to be understood that the invention 1s not
limited 1n 1ts application to the details set forth 1n the
following description. The invention 1s capable of other
embodiments or of being practiced or carried out 1n various
ways. Also, 1t 1s to be understood that the phraseology and
terminology employed herein i1s for the purpose of descrip-
tion and 1s not limiting.

System Overview

FIG. 1 1s a schematic overview of software architecture,
indicated generally as 100, of various exemplary embodi-
ments of the invention.

RTL design (110) implements functional modules 1n a
hardware description language (e.g. VHDL 112; Verilog 114
or System C 116). Each statement in the system design
represents many lines of RTL code. In the depicted embodi-
ment, a separate hardware verification 118 takes the design
RTL 110 and designs test benches 120 to check that RTL 110

performs properly.
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Synthesis 160 maps RTL 110 and cells library 130 (see
410 1n FIG. 4) onto a gate level netlist 140. In the depicted
embodiment, gate level netlist 140 serves as an input 141 for

netlist parser 152 of power consumption (PC) simulator 150.
See also 210 1 FIG. 2 and/or 520 1n FIG. 5.

In the depicted embodiment, cells library 130 generates
170 a cell behavior model 154 (see 250 1n FIG. 2 and/or 320
in FIG. 3) which 1s used by PC simulator 150. Details of

exemplary generating 170 are provided below in the context

of FIG. 2, item 220 and/or 320 in FIG. 3 and/or 420 1n FIG.
4

In the depicted embodiment, cells library 130 generates
172 a PC model 156 (see 250 in FIG. 2 and/or 320 1n FIG.
3) which 1s used by PC simulator 150. PC model 156 models

glitches and/or short circuit and/or intrinsic capacitance as
described 1n greater detail hereinbelow. Details of exem-
plary generating 172 are provided below 1n the context of

FIG. 2, item 220 and/or 310 in FIG. 3 and/or 420 1n FIG. 4.
In the depicted embodiment, translation 180 of RTL
testbench 120 produces simulator driver which 1s used by

PC simulator 150. For additional details of exemplary trans-
lation 180 see 260 and/or 270 1n FIG. 2.
In the depicted embodiment, PC simulator 150 integrates

netlist parser 152, behavior model 154 (see also 240 and/or
250 1n FIG. 2), PC model 156 (see also 250 in FIG. 2) and

simulator driver 158 (see also 230 i FIG. 2 and/or 530 1n
FIG. §) to produce simulated power consumption traces 190
as explain 1n detail hereinbelow 1n the context of FIG. 2.
Power consumption traces 190 serves as an mput to Difler-
ential Power Analysis (DPA) analyzer 195. In a DPA hard-
ware attack, analyzer 195 has the potential to discover a
cryptographic key. In some embodiments of the mvention
DPA analyzer 195 produces a vulnerability score as an
output.

First Exemplary Method

FIG. 2 1s a simplified flow diagram of a method for
simulating power consumption of a chip, indicated generally
as 200, according to some exemplary embodiments of the
invention.

Depicted exemplary method 200 includes receiving 210
as 1nputs at a data processor a synthesized gate level netlist
and a cells hibrary (e.g. m SYNOPSIS Liberty format).
Receiving 210 corresponds to 141 1n FIG. 1.

In the depicted embodiment, the cells library 1s prepro-
cessed 220 by the data processor to produce program code
for behavior simulation (see behavior model 154 in FIG. 1)
and power consumption simulation (see PC model 156 of
FIG. 1) of each cell. Preprocessing 220 corresponds to 170
and 172 in FIG. 1.

In the depicted embodiment, method 200 includes simu-
lating 230 a runtime clock and for each raising and falling
conditions of the clock processing the whole network of
connected gates of the gate level netlist. Simulating 230
corresponds to 158 1n FIG. 1.

In some exemplary embodiments of the invention,
method 200 1includes applying 240 the behavior simulation
on cryptographic modules using the runtime clock to process
the netlist. In some embodiments, applying 240 1s performed
synchronously, in other embodiments asynchronously.
Applying 240 corresponds to 154 1n FIG. 1.

In the depicted embodiment, method 200 includes calcu-
lating 250 values of output pins of the cells library using the
information about the cells behavior and calculating power
consumption Ifrom preprocessing 220 to simulate the
momentary power consumption. Calculating 250 corre-

sponds to 154 and 156 1n FIG. 1.
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In some exemplary embodiments of the invention,
method 200 1includes receiving 260 a testbench as an input
at the data processor and extracting 270 instructions from
said RTL testbench. According to these embodiments, the
instructions indicate how to automatically initialize and
execute the gate level netlist. Receiving 260 corresponds to
180 1n FIG. 1. Extracting 270 corresponds to 180 in FIG. 1.

In some exemplary embodiments of the ivention, pre-
processing 220 sequentially goes through each cell type,
described 1n a cells library, and converts the information
about the cell to the program code. In these embodiments,
one of four generation functions 1s applied according to the
cell type (combinational, thip-tlops, latches and state tables).
This conversion generates the behavior simulation code and
power consumption simulation code including glitches.

A test bench specifies how to mitialize the mput pins of
the main module, how to advance a clock, when to run
design under test (DUT) and when to stop the execution.

In some embodiments the program code 1s 1n C++.

In some embodiments DPA vulnerability 1s estimated
from program code and simulated momentary power con-
sumption plus nformation gleaned from the testbench.
Collection of statistics on power consumption traces for
many different mputs to the design under test (DUT) fol-
lowed by application of analytics tools that try to attack the
key using the simulated power consumption collected.

In some embodiments the program code from 220 imple-
ments a power consumption model (e.g. 156 mn FIG. 1).
According to these embodiments, the power consumption
model has three components: short circuit, intrinsic capacity,
and glitches. Glitches account for the volatility of the
clectrical current before 1t becomes stable at the boundary of
a clock.

Alternatively or additionally, 1n some embodiments the
program code from 220 simulates the behavior of each type
of cell in the cells library (e.g. combinational cells, flip-
flops, latches and state tables).

In some exemplary embodiments of method 200, prepro-
cessing 220 includes producing a table of 2*”*m entries,
where n stands for the number of mput pins of the cell, and
m stands for the number of the output pins.

In other words, for every output pin of the cell o,, 1ts logic
function 1s denoted by by 1, and every possible combination
of input pairs 1s considered. Let denote a pair of inputs (1, 1)
to the cell at two consecutive clock cycles as (b*=(b,’,
b, ... b ) =(b’b/, ...,b7)), whereb,* is an input pin
(bit) number k of the mput 1(3), where k runs from 1 to n.

There are n! possible orders in which inputs b/ replace
inputs b’. For every such order there are n-1 intermediate
states for the output pin o,. At every state, we calculate either
the total power consumption at the pin o, corresponding to
a randomly chosen order, or a weighed sum of total power
consumption values corresponding to multiple orders, and
store the result to the entry g, ; of the table.

Exemplary QA Terminal

In some embodiments of the invention, an operator of a
quality assurance terminal provides design RTL 110 (FIG. 1)
(e.g. VHDL 112 and/or Verilog 114 and/or System C 116) as
iputs to a data processor and receives power consumption
traces 190 (and or electromagnetic emission traces) and/or
output of DPA analyzer 1935 as output. Using these outputs,
a decision 1s made about whether to change the design RTL
110.

In some embodiments of the invention, the data processor
of the quality assurance terminal synthesizes 160 a gate level
netlist 520 (FIG. 5) from the mnput(s) and applies a simulated
intervention 330. According to these embodiments monitor-
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ing 550 of the response to the intervention 1s helpiul 1n
making a decision about whether to change the design RTL
110.

Second Exemplary Method

FI1G. 3 1s a simplified flow diagram, indicated generally as
300, of a glitch simulation according to some exemplary
embodiments of the invention.

Depicted exemplary method 300 includes processing 310,
by a data processor, each cell 1n a cells library to produce a
table of 2°"*m entries, where n stands for the number of
input pins ol the cell, and m stands for the number of the
output pins and performing 320, by a data processor, a
runtime calculation of the momentary power consumption
caused by a glitch using a current state of the gate level

netlist as an mput. Processing 310 corresponds to 172 in
FIG. 1. Performing 320 corresponds to 154 and/or 156 1n

FIG. 1.

During the simulation of the netlist, every cell 1s pro-
cessed to calculate the values of 1ts output pins and then the
momentary power consumption 1s simulated. The ingredient
of the power consumption caused by glitch 1s calculated as
follows:

Denote by b,—the value of the previous input to the cell,
by b_ the value of the current one, and by o,—the current
value of the output pin 1. Now, look at the precalculated table
of this cell and retrieve the entry g, ;.

In some exemplary embodiments of the invention, the
runtime calculation performed at 320 makes the power
consumption proportional to:

bid.
Z gp,ﬂ,.fa
{=1

where m 1s the number of output pins, and p, ¢ are the
values of the previous and current inputs for the investigated
cell respectively;

where a precalculated table of this cell includes an entry
Bp.c.l’
fdditional details pertaining to pre-calculation are presented
hereinabove 1n the context of preprocessing 220 of method
200.

In some embodiments of the invention analysis of the
runtime calculation 320 provides a vulnerability score as an
output. In these embodiments the vulnerability score indi-
cates the likelihood that the momentary power consumption
could reveal the cryptographic key.

Third Exemplary Method

FI1G. 4 15 a simplified tlow diagram of a power consump-
tion simulation method, indicated generally as 400, accord-
ing to some exemplary embodiments of the invention.

Depicted exemplary method 400 includes receiving 410
as an mput at a data processor a cells library and processing
420 said cells library to produce program code. In some
embodiments, the program code 1s 1n C++. In some exem-
plary embodiments of method 400, the program code 1imple-
ments a power consumption model. In some embodiments,
power consumption model has three components, short
circuit, intrinsic capacity, and glitches. Glitches account for
the volatility of the electrical current before it becomes
stable at the boundary of a clock. Recerving 410 corresponds
to 130 in FIG. 1. Processing 420 corresponds to 170 and/or
172 1n FIG. 1.

In some embodiments of method 400, the program code
(e.g. 154 1n FIG. 1) simulates the behavior of each type of
cell 1n said cells library. (e.g. combinational cells, tlip-tlops,
latches and state tables)
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In some embodiments of method 400, the processing
includes producing a table of 2°*m entries, where n stands
for the number of mput pins of the cell, and m stands for the
number of the output pins. Additional details of processing
are provided hereimnabove 1n the context of preprocessing
220 of method 200.

Fourth Exemplary Method

FIG. 5 1s a simplified flow diagram of a method of
simulating response of hardware to differential fault analysis
(DFA) attacks, indicated generally as 300, according to
some exemplary embodiments of the mvention;

Depicted exemplary method 500 includes accessing 510,
by a data processor, a list of records 1n a computer memory,
the records defining a network gate, a time, and signal to
simulate intervention into the normal execution of a semi-
conductor chip design.

In the depicted embodiment, method 500 1ncludes keep-
ing 520 in a memory the current state of the network of gates
as a gate level netlist file. According to various exemplary
embodiments of the invention, the memory used at 510 and
520 are a same memory or a different memory. Keeping 520
corresponds to 150 in FIG. 1.

In some embodiments method 500 includes producing
530, by said data processor, the simulated intervention to the
execution of the gate level netlist at a right time using a
record from the list at 510. For example, an intervention can
be a signal change from O to 1 or from 1 to 0. Producing 530
corresponds to 158 1n FIG. 1.

According to various exemplary embodiments of the
invention, the list of records at 510 1s received 540 said
records as a user mput or provided 542 as a predefined list.

In some embodiments each record in the records at 510

includes a gate name, an identification of a pin where
swapping of signal occurs and a time for swapping. In some
embodiments, timing 1s defined 1 terms of the runtime
clock.
Alternatively or additionally, 1n some embodiments, method
500 includes monitoring 350 a response of the execution to
the simulated intervention. In some embodiments, monitor-
ing 550 includes provision of an output indicating how
cllective the device was 1n reacting to the intervention.

Exemplary IP Core

FIG. 6 1s a schematic representation of an IP core,
indicated generally as 600, according to some exemplary
embodiments of the invention.

Depicted exemplary semiconductor intellectual property
(IP) core 600 includes a transformation engine 610 access-
ing different transformation matrices and transforming a
byte 644 of data within a block 644 of a block cipher 640 and
a cryptographic key from one representation of a Galois
Field (GF) to another representation of the GF.

In some embodiments, the transformation engine replaces
key 650 with 1ts representation in another algebraic structure
to produce another value of the key thereby causing block-
cipher calculations to be performed on a different key.
Alternatively or additionally, converting each byte 644 of an
input block 642 once, and doing all of the AES algorithm 1n
the new form, only converting back at the end of all the
rounds. Since all the arithmetic in the AES algorithm 1s
Galois arithmetic, this works provided the key was appro-
priately converted as well. Alternatively or additionally, one
can change into the subfield basis on entering the S-box and
to change back again on leaving it.

In the depicted embodiment, core 600 accesses a database
630 of transformation matrices 620, to 620 .

In some embodiments, transformation engine 610
accesses a different transformation matrix 620, to 620  for
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cach successive round of the block cipher. According to
various exemplary embodiments of the invention, transior-
mation engine 610 employs random selection or a secret key
to select a transformation matrix. In some embodiments
during a round the same representation of the Galois Field
1s used.

According to various exemplary embodiments of the
invention transformation engine 610 applies 1 of at least 10,
at least 15, at least 20, at least 23, at least 30, at least 35, at
least 40, at least 45, at least 50, at least 100 or lesser, or
intermediate or greater numbers of different transformation
matrices for each successive round.

The number of different possibilities of the key 1s between
10 and 100 depending on the choice of the number of
representations of different types m,; and m, (as described in
detail hereinbelow). The level of noise the attacker will have
1s 10 to 100 times bigger than in an attack on the regular
implementation. Thus, the factor of a number of traces

required to remove the noise will be a square of the factor
of noise. In other words, it will be between 100 (for 10
representations) and 10000 (for 100 representations). Such a
design, depending on the configuration, resists attacks that
involve between 1 million and 100 million traces.

According to various exemplary embodiments of the
invention, the IP core 1s provided as an application-specific
integrated circuit (ASIC) design or as a field-programmable
gate array (FPGA) logic design. Alternatively or addition-
ally, 1n various embodiments the block cipher 1s selected
from the group consisting of AES, SM4, and ARIA. Alter-
natively or additionally, the IP core has a power consump-
tion pattern (traces) and/or pattern of electromagnetic emis-
sion (traces) which 1s non-informative. In some
embodiments the non-informative nature of the power con-
sumption pattern contributes to a decrease 1n susceptibility
to hardware attacks. Alternatively or additionally, in some
embodiments the IP core will not reveal information useful
in mounting a hardware attack 1n response to fault injection.

In some embodiments, transformation engine 610 com-
putes X* by performing a series of: (i) multiplications of two
different elements of the field; and (11) raising an element of
the field to a power Z wherein 7 1s a power of 2. According
to these embodiments the number of multiplications (1) 1s at
least two less than the number of ones (1s) in the binary
representation of Y. In some embodiments, Y=254. Alter-
natively or additionally, in some embodiments a number of
multiplications (1) 1s 4 or less.

Fifth ':xemplary Method

FIG. 7 1s a simplified flow diagram of a method for
building dif erent representations of a Galois Field (GF)
implemented by a compact logic, indicated generally as 700,
according to some exemplary embodiments of the invention.

Depicted exemplary method 700 includes representing
710 a GF(2°) as an equivalent tower field.

In some embodiments of method 700 the equivalent tower
field 712 is GF (((2°)%)%).

In some embodiments of method 700 the equivalent tower
field 714 is GF((2)?).

In some embodiments of method 700, the equivalent
tower field 716 1s represented 1n the polynomial basis.

In some embodiments of method 700 the equivalent tower
field 718 1s represented 1in the normal basis.
In some embodiments, method 700 yields at least 432
different representations of the GF.
In actual practice, transformation i1s only conducted on
those elements of the field, or portions thereof, which are
being used 1n calculations.
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Some embodiments of method 700 include computing X*
by performing a series of: (1) multlphcatlons of two different
clements of the field; and (11) raising an element of the field
to a power Z wherein Z 1s a power ol 2. According to these
embodiments the number of multiplications (1) 1s at least two
less than the number of ones (1s) 1n the binary representation
of Y. In some embodiments, Y=254. Alternatively or addi-
tionally, 1n some embodiments a number of multiplications
(1) 1s 4 or less.

Sixth Exemplary Method

FIG. 8 1s a simplified flow diagram of a method for
simulating power consumption, indicated generally as 800,
according to some exemplary embodiments of the invention.

Depicted exemplary method 800 includes receiving 810 at
least one member of the group consisting of a synthesized
gate level netlist, a cells library and a test bench as input(s)
at a data processor and generating 820 a power consumption
model that includes power consumption due to short circuit,
due to intrinsic capacity, and due to glitches. In some
exemplary embodiments of the invention, receiving 810
includes receiving at least two members of the group as
inputs or all three members of the group as inputs.

Seventh Exemplary Method

FIG. 9 1s a smmplified flow diagram of a production
method for microprocessor chips, indicated generally as
900, according to some exemplary embodiments of the
ivention.

Depicted exemplary method 900 includes manufacturing
910 a first batch of processor chips with a same function and
a first design and manufacturing 920 a second batch of the
(same) processor chips with the same function and a second
design. The second design 1s different from the first design.
In some embodiments the chips include a first set of repre-
sentations ol a GF in the first design and a second set of
representations ol the GF 1n the second design. In some
exemplary embodiments of the invention, the GF is GF(2%).

In some exemplary embodiments of the invention, prac-
tice of method 900 contributes to a reduction 1n the useful-
ness of mformation gleaned from a successful hardware
attack on one chip for a similar attack on another chip from
a different batch. Alternatively or additionally, in some
embodiments the number of batches and designs 1s increased
while preserving the same function.

Additional Exemplary IP Core

FIG. 10 1s a schematic representation of a semiconductor
intellectual property (IP) core indicated generally as 1000.
Depicted exemplary IP core 1000 includes a transformation

engine 1010 designed and configured to represent each
element 1021, . of a field GF(2%) 1020 usmg

polynomial 1040 of the form GF(2"*%) where d>0 is
redundancy parameter. Although transformation engine
1010 designed and configured to represent each element
1021, ...ofafield GF(2%)1020 using a polynomial 1040,
in actual practice, transformation using the polynomial is
only conducted on those elements 1021, or portions thereot,
which are being used in calculations.

Transformation engine 1010 generates transformed ele-
ments 1030, to 1030, for each of elements 1021, = 556,10
field 1020. The 256 sets of 27 elements 1030 are used to
populate expanded field 1050. (A single set 1s depicted in the
figure for clanty.) For example i1 d=9, the expanded field
1050 will include 131,072 elements 1030 with 512 elements
1030 corresponding to each of elements 1021. All of the 512
clements 1030 corresponding to a single element 1021 are

algebraically equivalent.
For example 11 d=24, the expanded field 1050 will include

4,294.967.296 elements 1030 with 16,777,216 elements
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1030 corresponding to each of elements 1021. All of the
16,777,216 elements 1030 corresponding to a single element
1021 are algebraically equivalent.

In some exemplary embodiments of the invention,
increasing the value of redundancy parameter d contributes
to an increase 1n security with respect to various types of
attacks. According to various exemplary embodiments of the
invention transformation engine 1010 employs d=9; d=12;
d=14; d=16; d=18; d=20; d=24; d=32; d=48 or intermediate
or greater values of d.

In some exemplary embodiments of the invention, trans-
formation engine 1010 represents a same field element 1021
by one of 27 various ways (pairwise differing by terms that
are multiples of P(x)), and at each moment of calculations
chooses any of the various representations. Alternatively or
additionally, in some embodiments each of elements 1021 of
field 1020 include a byte of data within a block of a block
cipher or a cryptographic key. According to various exem-
plary embodiments of the invention the block cipher 1s
selected from the group consisting of AES, SM4, and ARIA.

In some embodiments, transformation engine 1010 com-
putes X” by performing a series of: (i) multiplications of two
different elements of the field; and (11) raising an element of
the field to a power Z wherein 7 1s a power of 2. According,
to these embodiments, the number of multiplications (1) 1s at
least two less than the number of ones (1s) in the binary
representation of Y. In some embodiments, wherein Y=254.
Alternatively or additionally, 1n some embodiments a num-
ber of multiplications (1) 1s 4 or less.

Additional Exemplary Method

FIG. 11 1s a simplified flow diagram of a method of
building different representations of the Galois Field (GF),
indicated generally as 1100, according to some exemplary

embodiments of the invention.

Depicted exemplary method 1100 i1s implemented by
logic circuitry and comprises representing 1110 each ele-
ment of a field GF(2®) using a polynomial of degree no
higher than 7+d, where d>0 i1s a redundancy parameter.
According to various exemplary embodiments of the inven-
tion method 1100 employs d=9 (1120); d=12; d=14; d=16;
d=18; d=20; d=24 (1130); d=32; d=48 or intermediate or
greater values of d. In some embodiments, method 1100
includes representing 1140 a same field element by one of 29
various ways (pairwise differing by terms that are multiples
of P(x)), and at each moment of calculations chooses any of
said various representations. In some embodiments, the
clement of a field includes 1150 a byte of data within a block
of a block cipher or a cryptographic key. In actual practice,
transformation using the polynomial 1s only conducted on
those elements of the field, or portions thereof, which are
being used 1n calculations.

According to various exemplary embodiments of the
invention the block cipher 1s selected from the group con-
sisting of AES, SM4, and ARIA.

In some embodiments, method 1100 includes computing,
X by performing a series of: (i) multiplications of two
different elements of the field; and (11) raising an element of
the field to a power Z wherein 7 1s a power of 2. According
to these embodiments the number of multiplications (1) 1s at
least two less than the number of ones (1s) 1n the binary
representation of Y. In some embodiments, Y=254. Alter-
natively or additionally, in some embodiments a number of
multiplications (1) 1s 4 or less.

Mathematical Definition of the Block-Ciphers.

In many block-ciphers (AES, SM4, ARIA) messages are
broken into blocks of a predetermined length, and each
block 1s encrypted independently of the others.
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Rijndael (AES) 1s presented here as an example. The
common block ciphers SM4 and ARIA are very similar to
Rijndael.

Rijndael operates on blocks that are 128-bits 1n length.
There are actually three variants of the Riyyndael cipher, each
of which uses a diflerent key length. The permissible key
lengths are 128, 192, and 256 bits. Even a 128-bit key 1s
large enough to prevent any exhaustive search. Of course, a
large key 1s no good without a strong design.

Within a block, the fundamental unit operated upon is a
byte, that 1s, 8 bits. Bytes are thought of 1n two diflerent
ways in Rijndael. Let the byte be given 1n terms of 1ts bits
as b, bs, ..., b,

Consider each bit as an element in GF(2), a finite field of
two elements. First, one may think of a byte as a vector (b-,
be, . . ., by EGF(2)°.

Second, one may think of a byte as an element of GF(2%),
in the following way: Consider the polynomial rning GF(2)
[ X]. It 1s possible to mod out by any polynomial to produce
a factor ring. It this polynomaal 1s irreducible, and of degree
n, then the resulting factor ring 1s 1somorphic to GF(2"). In
Rindael, the irreducible polynomaial

g () =x>+x"+x" +x+1,

is used to mod out and obtain a representation for GF(2°%).
A byte is then represented in GF(2%) by the polynomial b,x’
bx°+ ... 4+b,x4b,.
Arithmetic Operations 1n F, <
Addition 1n this representation of F, -, 1s simply addition of
corresponding 8-vectors over F,, or bitwise addition of
coordinates modulo 2, or simply XOR operation in hexa-
decimal representation.

Multiplication in the field 1s multiplication of correspond-
ing polynomials over the binary field modulo generating
polynomaal.

// Multiplication 1 F256
unsigned char Prod_c(const unsigned char x,
const unsigned char y, const unsigned char P) {
unsigned char s = 0x01, deg = x;
unsigned char res = 0;

do {
if (s & y)
res = deg;
h
if (deg & 0x80) {
deg <<= 1;
deg "= P;

h
else {

deg <<= 1;

h

h
while (s && s <= y);
return res;

h

Other algorithms of multiplications are presented, so for
casy changing of their usage only shell functions are pro-
vided which call only one of the versions.

Exponentiation in F, .,

According to some exemplary methods, to raise a field
clement to a degree d, d i1s presented in binary notation,
calculation of degrees equal to degrees of two and multi-
plication of those that correspond to units 1n binary presen-
tation of d. To calculate degree not more than 253, not more
than 14 multiplications are needed.
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Inversion 1n F, .

Since any element raised to degree 2355 1s unit (this will
be explained hereinbelow), raising an element to degree 254
provides 1ts 1nverse.

// Inversion in F256
// Attention: 1nversion of zero gives zero
unsigned char Inv_c(const unsigned char x,

const unsigned char P) {
return Exp_c(x, 254, P);

h

Euclidean Algorithm

Another way to calculate an inverse element 1s based on
a Fuclidean algorithm.

The Fuclidean algorithm finds the greatest common divi-
sor of two elements of a Euclidean domain. This method 1s
commonly used for natural numbers, but works also on a
ring of polynomials. The Euclidean algorithm 1s based on
the following simple observation: If a=bqg+r (where q 1s
quotient, and r 1s residue of division of a to b), then
gcd(a,b)=gcd(b,r). Indeed, the division with remainder for-
mula 1implies that each common divisor of b and r 15 also a
divisor of a, and each common divisor of a and b 1s also a
divisor of r. Hence sets of common divisors of pairs (a, b)
and (b, r) coincide, thus their greatest common divisors also
coincide.

Using the Euclidean algorithm means successive division
with remainder. First, the polynomial of greater degree 1s
divided by the polynomial of lesser degree. At each next
step, the divisor of the previous step 1s divided to the
remainder of the previous step until zero remainder 1s
obtamned. It 1s bound to happen because remainders
decrease. The last non-zero reminder 1s the desired greatest
common divisor. The procedure of Euclidean algorithm can
be written as follows:

a=bq +r,
b=r,q>+v5

Fi=F{qst+hs

FH—SZFH—E"'?H—]._FFH—I
rn—zzrn—lqn-l-rn

FH—].:FH"'?H+1

Then

d=gcd(a,b)=gcd(b,r )= ... =gcd(r,_ v, )=7,.

This calculation provides a partial solution of linear
equation

ax+by=d,

where d=gcd(a,b). As aresult, r, can be expressed as a linear
combination a and b from the first equation

r>=a-qb.

Further r, can be expressed as a linear combination b and r
from the second equation and substituting already known
expression for r, provides an expression for r,. Continuing
this procedure, expressions for each residue are calculated:

r.=ua+v,b.
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It 1s then easy to find recurrent relations for u, and v,:

Up—Up >~ Up 1V Ve 2~ V195

The last pair (u ,v,) 1s a desired solution (X,y).

As an example, the above procedure 1s applied to the pair
(P,a), where P 1s generating polynomial of a basis of the field
F,.. and a 1s a non-zero polynomial of degree 7. Since

polynomial P 1s irreducible ged(P,a)=1. As 1t was shown
above, 1t 1s possible to find a solution of the equation

ax+Py=1
This means that

ax=1 mod P

Thus x 1s mverse element to a in the field F, .
Here below function of Fuclidean division in the ring of
polynomials and function of inversion 1n the field F,...

// Residue of division of a polynomial to a polynomial
void Eucl_div(const unsigned long dividend,

const unsigned long divisor, unsigned long *quotient,
unsigned long *residue) {

immti1=0,d =0;
unsigned long s = 0x1;
do {
if (s & divisor) {
d=1;
h
s<<= 1;
1++;
h
while (s);

*residue = dividend;
*quotient = 0;
for (i=31;i>=d; i--) {
s =1 <<1i;
if (*residue & s) {
*residue "= divisor << (1 — d);
*quotient "= § >> d;
h
h
h

// Inversion 1n F256 (based on euclidean algorithm)
unsigned long Inv_e(const unsigned long x, const unsigned char P) {
unsigned long r, q, va=0,vb=1, vi, a=P " 0x100, b = x;
if (x == 0) return 0;
do {
Eucl_div(a, b, &q, &1);
vr = va  Prod(vb, q, P);
if (r == 0) return vb;
va = vb;
vb = vr;
a=Db;
b=r;
h
while (1);

h

Multiplicative Group of F, .,

Multiplicative group of any finite field 1s cyclic. This
means that there exists such an element x&F, .. that all its
degrees from O to 255 are different and therefore contains all
field elements except for 0. Thus x*>>=1 and therefore, each
clement of the field except for O raised to degree 255 1s 1:

(xd)255:(x255)d:1d:1 .

This element x called generated element of multiplicative
group (not to be contused with determined above generating
clement of a basis). The mimimal degree to which a field
clement must be raised to get the unit called its degree. An
clement 1s a generating element of multiplicative group 11 1ts

5 degree equal to 2535. Degree of each element 1s a divisor of

255=3-5-17. An element X? is a generating element of
multiplicative group 11 d 1s relatively prime to 255. There are
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128 generating elements of multiplicative group in the field
F,.., they constitute exactly halt of set of all elements.
Checking a generating element u of multiplicative group
allows consideration of another representation of the field
called logarithmic. Each non-zero element x=u“(0=<d<255)
where u 1s a generating element of the multiplicative group,
1s represented by 1ts logarithm d. Additionally, logarithm of
zero 1s defined as 255. Naturally, the mverse function to

logarithm called exponent. The code, which fills tables of
exponents and logarithm by given generating element u and
generating polynomial P, presented below.

// Filling tables of exponents and logarithms
void FillTables(unsigned char *e, unsigned char *1,
const unsigned char u, const unsigned char P) {
unsigned char 1, s = 1;
for (i =0; 1 < 255; i++) {
e[1] = s;
I[s] = 1;
s = Prod(s, u, P);
h
e[255] = 0O;
1[[O] = 235;

h

Multiplication, Exponentiation and Inversion Using Expo-
nent and Logarithm Tables

Logarithmization enables us to transform multiplication
to addition. So, using tables of logarithms and exponents
presented 1n the previous subsection it 1s possible to deter-
mine product of field elements without actual calculations.
Here below alternative code for multiplication, exponentia-
tion and inversion presented. It 1s much faster than presented
above but needs memory usage for tables storage.

// Multiplication i F256
unsigned char Prod_mi(const unsigned char a, const unsigned char b,
const unsigned char *e, const unsigned char *1) {
if (a==011Db==0) return 0;
return e[((unsigned short) 1[a]
+ (unsigned short) 1[b]) % Oxif];
h
// Exponentiation in F256
// Attention: zero to degree zero gives zZero
unsigned char Exp_m(const unsigned char X, const unsigned char d,
const unsigned char *e, const unsigned char *1) {
if (x == 0) return 0;
if (x ==1) return 1;
return e[((unsigned short) d
* (unsigned short) 1[x]) % Ox{l];
1
// Inversion 1n F256

// Attention: inversion of zero gives zero
unsigned char Inv_m(const unsigned char x,
const unsigned char *e, const unsigned char *1) {

if (x == 0) return 0O;

if (x ==1) return 1;

return e[Oxil - 1[x]];

h

Linear Algebra Over F2
Action of a Matrix on a Vector

Each element of the field F,.. 1s presented as unsigned
char interpreted as a row of bits of length 8. Each linear
operator 1n the space F,.. over F, 1s presented as an array
unsigned char[8]. Each element of the array 1s a row of the
matrix. Action of an operator to a vector 1s the product of the
operator’s matrix and the column (transposed to the vector’s
row). Here below an auxiliary function calculating Ham-
ming parity and the function of action of a matrix to a vector
are presented.
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// Hamming parity - Sum of the bits of a byte modulo 2
unsigned char Hp(const unsigned char x) {
unsigned char res = 0, s = 1;
while (s) {
if (x & s) res = 1;
s <<= 1;

h

refurn res;
// Action of a matrix to a vector in F2
unsigned char Act(const unsigned char *M,
const unsigned char x) {

unsigned char res = 0x00;

int 1;
for(i=7;i>=0;i——-) 4
res <<= 1;
res = Hp(M[1] & x);
h
refurn res;
h

Sbox

Function Sbox provides a substitution of a field element,
which 1s composition of inversion and afline transformation.
The afline part depends on linear transformation matrix and
shift-vector. It and its inverse transformation are determined
by the following arrays in standard AES-basis:

Making Sbox includes non-linear substitution first, then—
linear transformation, and shift at the end. Obviously, that 1n
Inverse Shox substitution all inverse components done 1n the
reverse order:

// Sbox substitution
const unsigned char SboxPar[9] =
{0xf1, Oxe3, Oxc7, Ox8f, Ox1f, Ox3e, Ox7c, 0x{8, 0x63};
unsigned char Sbox(const unsigned char b,
const unsigned char *SboxPar,

const unsigned char P) {
return Act(SboxPar, Inv_c(b, P)) © SboxPar[&];

h
// Inverse Sbox substitution
const unsigned char InvSboxPar[9] =
{0xad, 0x49, 0x92, 0x25, 0x4a, 0x94, 0x29, 0x52, 0x63 };
unsigned char InvSbox(const unsigned char b,
h
const unsigned char *InvSboxPar,
const unsigned char P) {

return Inv_c(Act(InvSboxPar, b = InvSboxPar[8]), P);

h

Additional Matrix Utilities

Functions of multiplication, transposition and inversion of
matrices for the version with changing of the basis are also
provided.

// Matrix transposition in F2
void Transpose(const unsigned char *orig, unsigned char *tran) {
unsigned char s = 1;
int 1, |;
for (i=0;1<8; i++) {
tran[i] = 0x00;
for j=7;j>=0;j—){
tran(i]<<=1;
if (orig[j] & s) {
tran[i] = 1;
h
h
s <<= 1;
h
h
// Matrix mversion in F2

int InvMat(const unsigned char *orig, unsigned char *inv) {
unsigned char s = 1, tmp;
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-continued

unsigned char origcopy[8];
int 1, ;
for (i=0;1<8&; i++) {
inv([i] = s;
origcopy|[i] = orig[i];
s <<= 1;
h
for (i=0;1<8&; i++) {
s =1<<1;
] =15
while ({{(origcopy[]] & s) == 0) && | < 8) |++;
if (j == 8)
return —-1;
if j!1=1){
tmp = origeopy[i];
origeopy [1] = origcopy(j];
origcopy[j] = tmp;

tmp = inv([i];

inv([i] = mv[j];

mv[j] = tmp;
h

for (j =1+ 1;] <8; j++) {
if (origcopy[j] & s) {
origcopy[j] "= origcopy|i];
inv(j] = mnv[1];
h
1
I
for (i=0;1<8; i++) {
for j=i+1;] <8 j++) {
s=1<<1p;
if (origcopy[i] & s) {
origcopy[i] = origecopy(j];
inv[i] = 1nv[j];
1
1
1
return O;
}
// Matrix product in F2 (the second factor must be transposed
void ProdMat(const unsigned char *factorl,
const unsigned char *factor2, unsigned char *prod) {

int 1, J;

for j =0;j <8 j++) {
prod[j] = 0;

)

for i=7;1>=0;i--)
for (j = 0;j < 8; j++) {
prod[j] <<= 1;
prod[|] = Hp(factorl[j] & factor2[i]);
h

h
h

Calculation of the Generating Polynomial Corresponding to
an Arbitrary Field FElement

unsigned char GenPol(unsigned char x, unsigned char P) {
unsigned char b[9], a[9], s, tmp;

int 1, J;
al0] = 1;
b[0] = 1;

for (i=1;1<=8; i++) {
a[1] = Prod_c(a[1 - 1], x, P);
b[i] = b[1 - 1] << 1;
{
for (i =0; i <= &; i++) {
s =1 <<1;
) =15
while (((a[j] & s) == 0) && | <= 8) |++;
if (j == 9)
continue;
if j1=1){
tmp = a[i];
a[1] = a[j];
a[j] = tmp;
tmp = b[1];

10

15

20

25

30

35

40

45

50

55

60

65

24

-continued

b[1] = b[j];
b[j] = tmp;
b
for j=1+1;j<=8;j++) {
if (afj] & s) {
a[]] "= afi];
b[j] = b[1];
h
h
)
for (i=0;1<8; i++) {
if (a[1] == 0) return 0O;

h

return b[8];

Note that in SM4 and ARIA, the representations are very
similar: For example for AES and ARIA the irreducible
polynomuial 1s

g (xX)=x5+x* x> 4x+1.

For SM4 there 1s another polynomial

G a0 X)=X4X 42047 +x 0+ 1.

It 1s also convenient to refer to bytes (in etther setting) by
their hexadecimal representations. Of course, 1t 1s possible to
define polynomial rings over GF(2%). Later on, the ring
GF(2®)[y]/(v*+1) will be used. Note that while this is not a
field (as y*+1 is not irreducible in GF(2*)[y] being equal to
(y+1)*), elements are invertible if they are coprime to y*+1,
that 1s, 1f they are not divisible by y+1.

SubBytes

One of AES-primitives for encoding 1s SubBytes—Sbox

function applied to a block of 16 bytes.

// SubBytes (Sbox applied to a block 4x4 bytes)
void SubBytes(const unsigned long *State_w,
const unsigned char *SboxPar, const unsigned char P) {
unsigned char *State = (unsigned char®) State w;
int 1;
for (i =0;1<16;i++) {
State[1] = Sbox(State[1], SboxPar, P);
h
h

// InvSubBytes (InvSbox applied to a block 4x4 bytes)
void InvSubBytes(const unsigned long *State_w,
const unsigned char *InvSboxPar, const unsigned char P) {
unsigned char *State = (unsigned char®) State w;
int 1;
for (i =0;1<16;i++) {
State[1] = InvSbox(State[1], InvSboxPar, P);
h
h

Also Key Extension function needs SubBytes applied to
a word (4 bytes).

// Sbox applied to a word
void SboxWord(unsigned char *Data,
const unsigned char *SboxPar, const unsigned char P) {
int 1;
for (i=0;1<4; i++) {
Data[1] = Sbox(Data[1], SboxPar, P);
h
h

ShiftRows

Function ShiftRows makes cyclic shift of State’s rows—
each one to 1ts own value. Here are codes for this function
and 1ts 1nverse.
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// ShiftRows - the second step of AES round
void ShiftRows(unsigned long *State_w) {
unsigned char *State = (unsigned char®) State_w;

unsigned char tmp;
tmp = State [1];

h

State
State
State
State

1
5
9
1

= State[5];
= State|9];
= State[13];
3] = tmp;

tmp = State[2];
State|2] = State[10];
State|10] = tmp;
tmp = State[6];
State| 6] = State|14];
State[14] = tmp;
tmp = State[15];

State
State
State
State

1

11
K

3

5] = State[11];
| = State|7];
= State|3];

= tmp;

// Inv-ShiftRows - reverse operation to ShiftRows
void InvShiftRows(unsigned long *State_w) {
unsigned char *State = (unsigned char®) State_w;
unsigned char tmp;

tmp = State|13];

State
State
State
State

1

9
.

-

3] = State[9];
| = State[5];

= dtate|1]
= tmp;

2

tmp = State[10];
State|10] = State[2];
State| 2] = tmp;

tmp = State[14];
State| 14| = State[6];
State[6] = tmp;

tmp = State|3];

State

State
State

MixColumns

3
State|7
1
1

-

= State|7];
= State[11];
|| = State[15];

5] = tmp;

Function MixColumns 1s the third step of an AES-round.
It makes linear transformation over each State’s column
(word) which can be interpreted 1n the standard AES-basis
as multiplication of a polynomial of degree not more than 4
to the polynomial P(x)=3x’+x°+x+2 modulo x*+1. The
inverse function i1s the same; the difference i1s only 1n
received parameters that are coeflicients of the inverse

polynomial (modulo x*+1).

Thus, codes for MixColumns function and the inverse one
are the same, but they recerve diflerent parameters.

const unsigned char MixColPar[4] = {0x02, 0x01, 0x01, 0x03};
const unsigned char InvMixColPar[4] = {0x0e, 0x09, 0x0d,

0x0b };

// MixColumns - the third step of AES round
void MixColumns(unsigned long *State_w,
const unsigned char *MixColPar, const unsigned char P) {
unsigned char res[4];
unsigned char *State = (unsigned char®) State w;
int 1, |, k;
for (i=0;1<4;i++) {
for (j = 0; ) <4; j++) {
res [j] = Ox00;
for (k =0; k <4; k++) {
res [j] "= Prod_c(MixColPar[(4 - k + ) & 0x03],
State[1 * 4 + k], P) ;

h

h

for (j =0; ) <4; j++) {
State[1 * 4 + ] = res [j];
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-continued

InvMi1xCol function involves substitution of parameter Inv-
MixColPar" for MixColPar".

AddRoundKey

And the last step of an AES-round 1s AddRoundKey. It
makes XOR of State with RoundKey, 1s involutive (inverse
to 1tsell) and does not accept any parameters.

// AddRoundKey - the fourth step of AES round

void AddRoundKey(unsigned long *State,
const unsigned long *RoundKey) {
int 1;
for (i =0;1<4; i++) {
State[1] "= RoundKey([1];

y
)

RotWord

The RotWord function 1s used in function KeyExpansion.
It shifts cyclic a word to one byte.

// Rotation of a word for one byte
unsigned long RotWord(const unsigned long Word) {
return (Word << 24) =~ (Word >> 8);

h

Putting 1t Together
AES
AES-coding operates with a block called State of size 16

bytes. Each its byte has been interpreted as an element of
finite field F,

Each element of finite field F, ., presented in polynomaial
base determined by irreducible polynomial P(X)=x*+x*+x" +
x+1. This means that the lowest bit 1s constant term, the
lowest but one bit 1s coeflicient at linear term, the lowest but
two bit 1s coetlicient at quadratic term, and so on. Addition
operation 1s ordinary addition of polynomials (or the same—
bitwise XOR of the bytes-summands) and multiplication
operation 1s multiplication of polynomials modulo P(x).

L]

The calculations use parameters that are contained 1n a
special structure:

struct AESparam {

unsigned char Base;

unsigned char Polynomual;

unsigned char RconFactor;

unsigned char SboxPar[9];

unsigned char InvSboxPar[9];

unsigned char MixColPar[4];

unsigned char InvMixColPar[4];
} Param = {0x03, 0x1b, 0x02,
{0x11, Oxe3, Oxc7, 0x8f, Ox1f, Ox3e, Ox7c, 0x{¥, 0x63},
{0xad, 0x49, 0x92, 0x25, Ox4a, 0x94, 0x29, 0x52, 0x63},
{0x02, 0x01, 0x01, 0x03}, {0x0e, 0x09, 0x0d, OxOb} };

O 0 O O O

e

Further the section “Calculations 1n different bases’ shows
how the parameters are changed when transition to another
basis occurs.
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Key Expansion

// Key expansion function for AES
void KeyExpansion(unsigned long *Key,
const struct AESparam *Param, const int Nk, const int NKkExt) {
unsigned char Rcon = 1;
int 1;
for (i = Nk; i < NKExt; i++) {
if (i % Nk) {
Key[1] = Key[1 - 1];
if (Nk > 6) && (1 % Nk) ==4) {
SboxWord((unsigned char®*) (Key + 1),
Param->SboxPar, Param->Polynomial);

h
else {

Key[i] = RotWord(Key[1—-1]);
SboxWord((unsigned char®) (Key + 1),
Param->SboxPar, Param->Polynomial);
Key[i] = ({(unsigned long) Rcon);

Rcon = Prod_c(Rcon, Param->RconFactor,
Param->Polynomuial);

;

Key[i] "= Key[1 - Nk];

Encoding

void Encoding AES(unsigned long *State,
const unsigned long *Key,
const struct AESparam *Param, const int Nr) {
int Round;
AddRoundKey(State, Key);
for (Round = 1; Round < Nr; Round++) {

SubBytes(State, Param->SboxPar, Param->Polynomuial);

ShiftRows(State);

MixColumns(State, Param->MixColPer, Param->
Polynomial);

AddRoundKey(State, Key + Round * 4);

;

ShiftRows(State);
SubBytes(State, Param->SboxPar, Param->Polynomial);
AddRoundKey(State, Key + Nr * 4);

h

Decoding

// Decoding function for AES
voild Decoding_ AES(unsigned long *State, const unsigned long *Key,

const struct AESparam *Param, const int Nr) {

int Round;

AddRoundKey(State, Key + Nr * 4);

InvSubBytes(State, Param->InvSboxPar, Param->Polynomuial);

InvShiftRows(State);

for (Round = Nr - 1; Round > 0; Round—-) {
AddRoundKey(State, Key + Round * 4);
MixColumns(State, Param->InvMixColPar, Param->Polynomaial);

InvShiftRows(State);
InvSubBytes(State, Param->InvSboxPar, Param->Polynomial);

)

AddRoundKey(State, Key);

h

Possible Representation of the Galois Field GF(2°%) Using
the Tower Fields Approach

There are many approaches to represent the Galois Field
GF(2%). Among them, the tower fields approach, that is the
technique which converts the original field GF(2°®) into an
equivalent tower field, such as tower fields GF(((2*)*)") or
GF((2%)%).

One can propose two types of bases for such representa-
tions.

A general element G of GF(2%) can be represented as the

linear polynomial (PB) (in y) over GF(24)5 denote: G=y,
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(v)+v,, with multiplication modulo an 1irreducible polyno-
mial r(y)=y,+ty+v. All the coetlicients are in the 4-bit
subfield GF(2™). So, the pair [y,,Y,] represents G in terms of
a polynomial basis [Y, 1], where Y 1s one root of r(y).

Alternatively, one can use the normal basis (NB) [Y'°, Y]
engaging both roots of r(y). Note that r(y)=y +ty+v=(y+Y)
(y+Y°).

Furthermore, GF(2%) can be similarly represented as a set
of the linear polynomials (1n z) of the form y=I",z+1 ", over
GF(27), with multiplication modulo an irreducible polyno-
mial s(z)=z"+Tz+N, with all the coefficients in GF(2%).
Again, this uses a polynomial basis [Z, 1], where Z 1s one
root of s(z); or the normal basis [Z*,Z] could be used.

Finally, GF(2%) can be represented as linear polynomials
(1n w) of the form I'=g,w+g,, over GF(2), with multiplica-
tion modulo t(w)=w+w+1, where g, and g, are single bits.
This uses a polynomuial basis [ W, 1], with W one root of t(w);
or a normal basis [W*, W].

The above bases (1.e., PB and NB) represent each element
of GF(2™) using m bits in a non-redundant manner. How-
ever, there are two redundant representations, namely, Poly-
nomial Ring Representation (PRR) and Redundantly Rep-
resented Basis (RRB), which use n(>m) bits to represent
cach element of GF(2™). The modular polynomial of these
redundant representations 1s given by an n-degree reducible
polynomial, whereas that of non-redundant representations
1s given by an m-degree irreducible polynomial. This means
that redundant representations provide even a wider variety
of polynomials that can be selected as a modular polynomaial
than non-redundant representations.

How Many Such Representations Exist?

For example, in the non-redundant case, consider all of
the subfield polynomial and normal bases that had a trace of
unmity. There are eight choices for the norm v that make
r(y)=y*+y+v to be irreducible over GF(2*), and two choices
for N that make the polynomial s(z)=z"+z+N to be irreduc-
ible over GF(2*). Each of these polynomials r(y), s(z), and
t(w) has two distinct roots, and for a polynomaial basis either
can be chosen, or for a normal basis both can be used. So
altogether there are

(R*3)%(2%3)%(1%3)=432

possible cases (including the all-polynomial case).

Calculation of an Inverse Element 1n Galois Field Using
the Tower Fields Approach

For the completeness of the description, an explanation on
how to mmplement the circuit for the calculation of the
inverse element 1 tower fields 1s presented.

The representations described above allow operations 1n
GF(2° ) to be expressed 1n terms ol simpler operations 1n
GF(2*), which in turn are expressed in the simple operations
of GF(2°). In each of these fields, addition (the same
operation as subtraction) 1s just b1tw1se XOR, for any basis.

In GF(2®%) with a polynomial basis, multiplication mod
yZ4+Ty+V 1s given by

(Y +Y0)(0 1 1+00)=(Y 1 0g+Y00 1 +Y 10, Ty +(YoO0+Y 01 V).
From this, 1t 1s easy to verily that the inverse 1s given by
(Y +y0) " =071y Iy+[07 (Yo +y, o],

where 0=y, V+y, Y T+Y, .

So, finding an inverse in GF(2®) reduces to an inverse and
several multiplications in GF(2%). Analogous formulas for
multiplication and inversion apply in GF(2™).

Simpler versions apply in GF(2?), where the inverse is the
same as the square (for TEGF(2°), I"*=I"); note then that a
Zero mput gives a zero output, so that special case 1s handled
automatically.
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The details of these calculations change 11 a normal basis
is used at each level. In GF(2°), recall that both Y and Y'°

satisfy y*4+ty+v=0, where t=Y'°4+Y and v=(Y'°)Y, so
1=t"(Y"°+Y). Then multiplication becomes (v,Y " °+y,Y)
(8, Y+, Y)=[y, 8, T+0] Y *+[y,0,T+0]Y.

where 0=(y,+v,)(8,+3,)vt™", and the inverse is (v, Y+
Yo X ) =07 Y 1Y *+[07 Ty, 1Y

where 0=y, v, T +(Y, "+Y, V.

Again, finding an inverse in GF(2%) involves an inverse
and several multiplications in GF(2%), and analogous for-
mulas apply 1n the subfields.

Changing of Bases During AES

One approach 1s to convert each byte of the mput block
once and do all of the AES algorithm 1n the new form, only

converting back at the end of all the rounds. Since all the
arithmetic in the AES algorithm 1s Galois arithmetic, works
provided the key was appropnately converted as well.

Another approach 1s as follows:

The afline transformation can be combined with the basis
change. One can change into the subfield basis on entering
the S-box and to change back again on leaving it.

Transformation engine 610 (FIG. 6) applies one or the
other of these approaches in different embodiments of the
invention.

Each change of basis means multiplication by an 8x8-bit
transformation matrix. Letting X refer to the transformation
matrix that converts from the subfield basis to the standard
basis, then to compute the S-box function of a given byte,
first a bit-matrix multiplication by X' is done to change into
the subfield basis, then calculate the Galois inverse by
subfield arithmetic, then change basis back again with
another bit matrix multiplication, by X. This 1s followed
directly by the athine transformation, which includes another
bit-matrix multiplication by the constant matrix M. (This
can be regarded as another change of basis, since M 1s
invertible.) So, 1t 1s possible to combine the matrices into the
product MX. Then adding the constant b completes the
S-box function.

The 1nverse S-box function i1s similar, except the XOR
with constant b comes first, followed by multiplication by
the bit matrix (MX)™'. Then after finding the inverse,
conversion back to the standard basis through multiplication
by the matrix X 1s performed.

Common HW Logic for Many Diflerent Representations
of GF(2%)

Consider the representations that use the same type of
basis, for example, these that use only the normal basis, or
these that use the polynomial basis. The logics of s-box, and
other linear components of the block-ciphers depends only
on the type of the representation and does not depend on the
basis and thus can be realized by one common block. So the
whole logic of the cipher consists of one (or more) common
block depending on how many types of the representations
are 1ncluded and for each type there are

mim—1)

2

blocks for the transfer matrixes. Recall that a transformation
matrix 1s a bit matrix of dimension 8*8. HW block for each
such matrix consists of few tens of logics gates (there are
many methods for optimizations, for example extracting the
common factors). Thus if the design includes m different
realization of the same type the number of gates needed
estimated as approximately m>*30. To this amount the size
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of the common block which 1s approximately 5-10K gates
should be added. It 1s possible to optimize the required
number of gates by including two or more different types of
the representations. In such a way, the size of the footprint
of the whole logic can be approximated by the following
formula:

where k 1s a number of diflerent representations, n, 1s the size
of a common block for each type of representation (poly-
nomial or normal), d—1s an average size of a bit transior-
mation matrix. d=30, n=~5000, and m—1s a number of

representations of type 1.

S0, 11 one takes m,=135, m,=15, k=2 (means 135 represen-
tations in the normal basis and 15 1n the polynomial basis).
It 1s about 16K gates, which 1s the same order as a regular
realizations of AES.

If m,=100, m,=100, k=2 (means 100 representations in
the normal basis and 100 in the polynomial basis, then the
order of the required number of gates 1s approximately 300K
gates, which can still be acceptable for some projects.

The Algorithm: Combiming All Together

If u and u® are two representations of a same element in
different basis with generating polynomials P and P° respec-
tively, they are related by u"=Mu where M is transposition
matrix.

To calculate transposition of a matrix basis elements of
the second basis {1, P°, P??, ..., P°’} are expressed in the
first one {1, P, P%, ..., P’}. This yields matrix (M*)~" which
1s inverse and transposed to the desired transposition matrix
M.

// Generation of transition matrix
//(actually it appears inversed and transposed)
void MkTrMatGen(unsigned char *TrMat, const unsigned char u,
const unsigned char P) {
unsigned char s = 1;
nt 1;
for (i=0;i<8; i++) {
TtMat[1] = s;
s = Prod_c(s, u, P);
h
h

Here 1s a function which calculates transpose matrix and
parameters while changing basis.

// Calculation of parameters for Key Expansion
// and AES encoding/decoding
int ParamCalc(const unsigned char mask, struct AESparam
*UParam, unsigned char *M, unsigned char *MR) {
const unsigned char SboxPar[9] =
{011, Oxe3, Oxc7, 0x8f, Ox1f, Ox3e, 0x7c, 0x{¥, 0x63};
const unsigned char InvSboxPar[9] =
{Oxa4, 0x49, 0x92, 0x25, 0x4a, 0x94, 0x29, 0x52, 0x63};
const unsigned char MixColPar[4] = {0x02, 0x01, 0x01, 0x03 };
const unsigned char InvMixColPar[4] = {Ox0e, 0x09, 0x0d,
0x0b};
const unsigned char RconFactor = 0x02;
unsigned char MTR[R], M1[8], M1T[8];
int 1;
UParam->Base = mask;
UParam->Polynomial = GenPol[mask, 0x1b] ;
if (UParam->Polynomial == 0) returmn -1 ;
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-continued

MkTrMatGen(MTR, UParam->Base, 0x1b) ;
Transpose(MTR, MR) ;
InvMat(MR, M) ;
ProdMat(SboxPar, MTR, M1) ;
Transpose (M1, M1T) ;
ProdMat(M, M1T, UParam->SboxPar) ;
ProdMat(InvSboxPar, MTR, M1) ;
Transpose (M1, M1T) ;
ProdMat(M, M1T, UParam->InvSboxPar) ;
for (i =0;1<4;i++) {
UParam->MixColPar[1] = Act(M, MixColPar[1]);
UParam->InvMixColPar[1] = Act(M, InvMixColPar[1]) ;
h
UParam->SboxPar[8] = Act(M, SboxPar[8]) ;
UParam->InvSboxPar[8] = Act(M, InvSboxPar[&]) ;
UParam->RconFactor = Act(M, RconFactor) ;
return 0;

Choose k=2 different types of representations

(10=m, ,=<100) different bases (representations of each type)
for GF(2™). Denote them by R, "%, R, . . ., lel=2. Recall,
that each change of basis means multiplication by an 8x8 bit
matrix. Denote by T, , a matrix that converts from the
subfield basis 1 to the subfield basis j.

For the first approach:

1. Foreach AES round r, 1=r=11, choose a basis O=1 =m, +
mn,,

2. At the beginning convert each byte of the result of the
previous round or of the input block to the basis 1,
applying T, (a), O=j<I5.

3. Appropnately convert the round key to the same basis
as well.

4. Do the whole round of AES algorithm 1n the new basis.

In this approach, neither the key nor the real data appear
in the calculations of the AES, only in the calculations
related to the transformation matrix and thus key and data do
not interact with each other.

For the second approach:

1. For each AES round r, 1=r=<11, choose a basis O=1 =m, +

m,,

2. Convert the key and the data to the basis 1, right before
entering the s-box calculation. Calculate the Galois
inverse by subfield arithmetic, then change basis again
with another transformation bit matrix multiply, by
1, ;. This 1s followed directly by the affine transfor-
mation, which includes another bit-matrix multiply by
the constant matrix M. (This can be regarded another
change of basis, since M 1s 1invertible.) So the matrices
can be combined 1nto the product M1, , . Then adding
the constant b also converted to R, completes the S-box
function.

3. Repeat for each round.

In this approach, again neither the key nor the real data
appearing the calculations of the AES, only 1n the calcula-
tions related to the transformation matrix and thus key and
data do not interact with each other.

Conclusions:

1. By this method of AES implementation, the key value

1s completely hidden during the calculations of AES.

2. Even 1n the first round, the number of different possi-
bilities of the key 1s between 10 (8K gates) and 100
(80K gates) depends on the choice of m, and m,. It
means that the level of noise the attacker will have
10-100 times bigger than in the attack on the regular
implementation. Thus, the factor of a number of traces
required to remove the noise will be square of the factor

of noise, 1n other words, 1t will be between 100 (for 10
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representations) and 10000 (for 100 representations).
Such a design will be depending by the configuration
resist the attacks that involve between 1 and 100
million of traces.

3. Another security measure 1s for different batches of
produced chips to include different set of the represen-
tations of the GF(2%).

Calculation with Redundancy
Redundancy Masking

In standard representation, each element of the field F, .
1s a polynomial of degree not more than 7. In some embodi-
ments, redundancy d i1s added to represent an element as
polynomial of degree not more than 7+d. Two polynomials
represent the same field element 1f they are equal modulo
generating polynomial P(x). According to various exem-
plary embodiments of the invention redundancy values
0O=d=24 are employed.

Here 1s a version with redundancy little bit modified

multiplication function. It reduces the result to degree 7+r
instead of 7 1n the standard version.

// Multiplication mn F256 using representation with redundancy
unsigned long Prod_r(const unsigned long x,
const unsigned long v,
const unsigned char P, const unsigned char redund) {
unsigned long s = 0x1, limit = 1 << (redund + 8), deg = x;
unsigned long res = 0;
do {
if (s & y)
res = deg;
h
deg <<= 1;
if (deg & limit) {
deg "= (P << redund);
deg &= limit - 1;
h
s <<= ];
h
while (s && s <= y);
return res;

h

Also 1n this version, the feature of changing of a poly-
nomial to an equivalent one 1s available.

// Change Block elements to an equivalent ones
void AddNoise(unsigned long *Block,
const int redund, unsigned char P) {
unsigned char limit = 1 << redund;
int 1;
for (i =0;1i<16;i++) {
Block[i] "= Prod(rand( ) & (limit — 1), P~ 0x100, P);
h
h

"y

In addition, the last difference 1s that each data element
determined as unsigned long instead of unsigned char.
Therefore, the headers of all functions are changed.
Multiplication and Inversion with Redundancy

A version with redundancy slightly modified multiplica-
tion function 1s provided. It reduces the result to degree 7+r
instead of 7 in the standard version. In the standard version

x° is changed to x®*+P(x). In the redundancy version x”" is
changed to (x®+P(x))x""**,

// Multiplication in F256 using representation with redundancy
unsigned long Prod_r({const unsigned long X, const unsigned long

hE
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-continued

const unsigned char P, const unsigned char redund) {
unsigned long s = 0x1, limit = 1 << (redund + 8), deg = X;
unsigned long res = 0;

do {
if (s & y){

res = deg;

h

deg <<= 1;

if (deg & limit) {
deg "= (P << redund);
deg &= limit - 1;

h

h

while (s && s <= vy);
return res;

h

Since mversion operation 1s actually exponentiation, 1t 1s
reduced to multiplication.

Cyclic Basis

A special case of arithmetic with redundancy 1s arithmetic
in cyclic bases. Cyclic bases provide calculation modulo a
multiple of the generating polynomial of the form x“+1. It 1s
possible to set as ¢ the order of the generating element,
which in GF(2%) is always a divisor of 255. The minimal
possible value 1s ¢c=17, that 1s reached for example for the
polynomial x°+x’+x°+x*+x”+x+1. Below is a multiplication
function 1n a cyclic basis.

// Multiplication i F256 using cyclic basis

unsigned long Prod_g(const unsigned long x,

const unsigned long v, const unsigned char ¢) {
unsigned long s = 0x1, limit = (1 << ¢) - 1,
deg = x, res = 0;

do {
if (s & y) {
res = deg;
h
§ <<= 1:

k.

if (s==011s>vy) break;
deg = (deg << 1 ~ deg >> (¢ - 1)) & limit;

h
while (1);

return res;

h

Linear Transformation with Redundancy

Linear transformations with redundancy can be per-
formed 1n any basis using the same algorithm, with different
parameter values that depend on the choice of the basis. In
particular, the coeflicients of the athne transformation with
redundancy for Sbox and InvSbox, and coethlicients for
MixColumns and InvMixColumns depend on the choice of
the basis. Below 1s the structure of parameters calculated for
the version with redundancy, and a sample set of values for
it.

struct AESparam {
unsigned char Base;
unsigned char Redund;
unsigned char Polynomual;
unsigned char RconFactor;
unsigned long SboxPar[9];
unsigned long InvSboxPar[9];
unsigned long MixColPar[4];
unsigned long InvMixColPar[4];
h

Param = {0x03, 23, 0x1b, 0x02,

{0x8b&2a9f1, 0x170553e3, 0x553el16¢7, O0xd1489c8f,
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-continued

0xa291391f, 0x3el6c33e, 0x7c2d867¢, 0xfB5b0cfy, 0x631,
{0x9373d9a4, 0x26e7b349, 0x4dcf6692, Oxelaa7c25,

0xba60494a, 0x0ff42394, 0x64dcf629, 0xc9b9ec52, 0x051,
{0x02, 0x01, 0x01, 0x03}, {0x0e, 0x09, 0x0d, 0x0b}};

Additional Exemplary IP Core

FIG. 12 1s a simplified schematic representation of an IP
core, indicated generally as 1200, according to some exem-
plary embodiments of the invention.

Depicted exemplary IP core 1200 includes a transforma-
tion engine 1210 which receives a Galois field 1202 as an
input.

Depicted exemplary transformation core 1210 includes a
first mask application engine 1212. In some exemplary
embodiments of the invention, first mask engine 1212
applies an additive mask to mput field 1202. Examples of
additive masks include but are not limited to XOR random
or application of commutative matrices. The output of first
mask engine 1212 1s a transformed Galois field.

Second mask engine 1216 1s adapted to apply a second
mask prior to performance of any non-linear calculation. In
some exemplary embodiments of the invention, the second
mask 1s a redundancy mask. In some exemplary embodi-
ments of the invention, the redundancy mask represents each
clement of 1input field 1202 using a polynomial of degree no
higher than 7+d, where d>0 1s a redundancy parameter (See
FIG. 10 and explanatory text for details). According to

various exemplary embodiments of the invention d=9 and/or
d=24.

In actual practice, first mask engine 1212 and second
mask engine 1216 mask only those elements of 1mput field
1202, or portions thereof, which are being used in calcula-
tions.

In other exemplary embodiments of the invention, the
redundancy mask transforms a byte of data within a block of
a block cipher and a cryptographic key from one represen-
tation of a Galois Field (GF) to another representation of the
GF (See FIG. 6 and explanatory text for details).

Depicted exemplary transformation core 1210 also
includes a removal engine 1218 adapted to remove the first
mask after the second mask 1s 1n place and prior to perior-
mance ol any non-linear calculation. In some exemplary
embodiments of the mvention, this prevents an intermediate
value from being revealed because there 1s always at least
one mask 1n place. Alternatively or additionally 1 some
embodiments, removal engine 1218 removes the second
mask when all calculations are complete. According to
various exemplary embodiments of the invention the IP core
1s implemented 1n the context of block ciphers including, but
not limited to, AES and/or SM4 and/or ARIA.

Using this strategy, an element u has a representation with
a redundancy mask of u+rp. Adding an additive mask,
produces representation u+r p+rg. Removing the redun-
dancy mask provides representation u+r, which 1s the ele-
ment masked by an additive mask without revealing u in
interim results.

Additional Exemplary Method

FIG. 13 1s a ssmplified tlow diagram of a masking method,
indicated generally as 1300 according to some exemplary
embodiments of the mvention.

Depicted exemplary method 1300 1s implemented by
logic circuitry and includes applying 1310 a first mask;
applying 1320 a second mask prior to performance of any
non-linear calculation; removing 1330 the first mask after
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the second mask 1s 1n place and prior to performance of any
non-linear calculation; and removing 1340 the second mask.

In actual practice, applying 1310 and applying 1320 1s
done on only those elements of the field, or portions thereot,
which are being used 1n calculations.

In some exemplary embodiments of the mvention, per-
formance of method 1300 prevents an intermediate value
from being revealed because there 1s always at least one
mask 1n place.

As explained 1n detail hereinabove in the context of FIG.
12, 1n some embodiments, the second mask 1s a redundancy
mask.

As explained 1n detail hereinabove 1n the context of FIG.
12, 1n some embodiments, the first mask 1s an additive mask.

According to various exemplary embodiments of the
invention method 1300 1s performed 1n the context of block
ciphers including, but not limited to, AES and/or SM4
and/or ARIA.

Additional Exemplary Method

FIG. 14 1s a simplified flow diagram of a method, indi-
cated generally as 1400, according to some exemplary
embodiments of the invention. Depicted exemplary method
1400 includes providing 1410 a cryptographic key; and
associating 1420 a check sum datum with the key. In some
embodiments, practice of method 1400 contributes to an
ability to resist fault injection and/or read by write attacks.
In some embodiments, the key includes at least 64 bits.
Alternatively or additionally, in some embodiments the key
includes at least 128 bits. According to various exemplary
embodiments of the invention the check sum datum is 1n a
format selected from the group consisting of cyclic redun-
dancy check (CRC), Fletcher’s checksum, Adler-32, SAE
J11708, longitudinal parity check, Hash function and error
detection code. It 1s expected that other checksum datum
tormats will be developed during the life of this patent and
their use 1n the context of method 1400 1s included a priori.

In some exemplary embodiments of the invention,
method 1400 includes performing 1430 key scheduling on
said cryptographic key to produce a set of round keys and

Associating 1440 an additional checksum datum of a last
round key 1n the set of round keys with the cryptographic
key.

Additional Exemplary Method

FIG. 15 1s a simplified tlow diagram of a method, indi-
cated generally as 1500, according to some exemplary
embodiments of the invention. Exemplary advantages asso-
ciated with the practice of method 1500 1nclude, but are not
limited to, a contribution to an improvement 1n processing
speed and/or a contribution to a reduction 1n surface area of
silicon required in the chip performing the data processing.

Depicted exemplary method 1500 includes computing
1520 X* in a field of characteristic 2 (1510) by performing
a series ol: (1) multiplications 1530 of two different elements
of the field and (11) raising 1532 an element of the field to a
power Z wherein 7 1s a power of 2. According to method
1500 the number of multiplications (1) 1s at least two less

than the number of ones (1s) 1n the binary representation of
Y.
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As an example of how method 1500 differs from previous
practice, 11 Y=234 the binary representation of Y 1s 11111110
so there are seven ones and the number of steps (1) will be
s1X (6) 1n standard computing algorithms.

According to various exemplary embodiments of method
1500, a number of multiplications (1) 1s 4 or less (e.g. 3, 2,
1 or 0).

Alternatively or additionally, in some embodiments the
field is ZF(2%) and/or Y=254.

Exemplary Use Scenario

Although 1t might be argued that fault attacks on the
intermediate results are not productive for the attacker
because of randomization, there 1s a real threat of a read-
by-write attack on the mput. Namely, 1f the attacker forces
a bit of the key (on an input pin) to O (or to 1), 1f the behavior
has not changed after forcing the bit to O, 1t means that the
bit was originally 0; otherwise 1t was 1.

If a checksum (e.g. CRC32) 1s added to the key at the
input interface (see description of method 1400 above) the
number of bits to be supplied increases. For example,

instead of 128-bit key 160 bits have to be supplied (128 bits
of the key+32 bits of the CRC). The engine verfies the CRC
and refuses to work 1n the case of a mismatch. If a fault
changes less than a certain number of bits (this number
depends on the key size and the CRC size), then the CRC
check 1s sure to fail; beyond that minimum, the CRC check
may pass, but with a negligible probability (27> in the case
of CRC32).

Alternatively or additionally, when raising to the power of
254, method 1500 takes advantage of the fact that squaring
(or raising an element of the field to a power Z wherein Z 1s
a power of 2) 1n a field of characteristic two 1s a linear
operation which can be performed more efliciently than a
general multiplication. Instead of the standard way of raising
to the power of 254 that requires 7 squarings and 6 general
(non linear) multlphcatlons method 1500 increases efli-
ciency by using a diflerent sequence with 4 non-linear

multiplications only.
There are many such sequences, €.g.:

Calculation A Type Calculation B Type
X2 = X? (ii) X% =X (ii)
X?*=X?-X (i) X =X%-X (i)
X% = (X% (11) X% = (X%)* (11)
X7 =X6-X (i) X4 = X36. X (Q)
Xlﬁl _ (X?)E (ll) XQD _ (X45)2 (ll)
Xl5 _ le-’l . X (1) XQI _ XQ‘D . X (l)
XIED _ (XIS)S (ll) XIET _ Xlgl _ X36 (l)
XIET _ XIED . X? (1) X254 _ (XIET)E (11)

X254 _ (X 12?)2 (ll)

Calculation A requires 4 non-linear multiplications (type (1)), four squarings (type(i1)), and
one raising to the power of 8 (also type (11)).
Calculation B requires 4 non-linear multiplications (type (1)) and 4 type (1) operations.

The following code provides an exemplary way to gen-
erate additional calculations for any desired Galois field of
characteristic two and for any Y:

import 1tertoois as iter, collections as col
def FindOptimalPath(degree,power,upto=0):

Find optimal (with the minimal number of multiplications) ways to calculate x power in the field

ZF (2 degree).

The maximal returned number of ways is upto, unless upto==

are returned.

0 1n which case all the optimal ways

For every way a multi-line string 1s returned. The first line always contains the set of powers that
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-continued

can be
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reached from 1 by doublings only (powers of 2). Every line, starting from the second one, contains:

* the first addend (always the first element of the set at the previous line)

* the second addend (an element of one of the sets at previous lines)

* their sum modulo (1<<degree)-1 (the order of the multiplicative group of ZF(2 degree))

* the set of powers reachable from the sum by doublings only

limit = (1<<degree)-1

index, eqClasses = { }, { } #index[i] = the equivalence class to which i belongs

for 1 1n range(1, limit):
if 1 1n index:
continue
] =1
eqClass = [ ]
while | not in index:
eqClass.append())
index[|] =1
1 =(2 %)% limit
eqClasses[i] = tuple(eqClass)
Group=col.namedtuple(*Group’,*1st,verbose’)
groups = [{Group(1st=(1,),verbose="
res = | |
while True:
groups.append(set( ))
for group in groups[-2]:
cO=eqClasses[group.1st[-1]][O]
for 1 1n group.1lst
for ¢l in egClasses|[i]:
c2 = (cO+cl)%limit
1if C2==0:
continue
if index[c2] i group[0]:
continue
1st, verbose = tuple(list{group.1lst)+[index[c2]]),
roup.verbose+ ‘%6d%6d% 6d\t%s'\n’%(c0,cl,c2,eq,Classes[index[c2]])
groups|[—1].add{Group(1lst = 1st, verbose = verbose))
if iIndex[c2] == index[power]:
res.append(verbose)
if len(res) == upto:
return res
if len(res):
return res

Additional Exemplary Method

FIG. 16 1s a simplified tlow diagram of a method, indi-
cated generally as 1600, according to some exemplary
embodiments of the mvention. Implementation of method
1600, like method 1400, contributes to a reduction 1n
susceptibility to fault injection attacks. Depicted exemplary
method 1600 includes providing 1610 a cryptographic key
and performing 1620 key scheduling on the cryptographic
key to produce a set of round keys. In the depicted embodi-
ment, method 1600 includes associating 1630 a checksum
datum of a last round key 1n said set of round keys with the
cryptographic key. In some exemplary embodiments of
method 1600, the method includes associating a check sum
datum of the cryptographic key with the cryptographic key
as 1 method 1400.

Exemplary Advantages

Some embodiments of methods 200 and/or 300 and/or
400 and/or 800 contribute to accuracy of an estimation of an
ability of a chip to resist SCA prior to manufacturing the

chip. According to various embodiments the attacks include
SPA and/or DPA and/or electromagnetic attacks (EMA)
and/or fault injection attacks.

Some embodiments of method 500 contribute to accuracy
of an estimation of an ability of a chip to resist fault injection
attacks prior to manufacturing the chip.

Some embodiments of IP core 600 and/or 1000 and/or
1200 and/or method 700 and/or 1100 and/or 1300 contribute

to an increase in robustness of encryption.
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Alternatively or additionally, some embodiments of IP
cores 600 and/or 1000 and/or 1200 contribute an ability of
a manufactured chip to resist various types of SCA.

Alternatively or additionally, implementation of IP core
1200 and/or method 1300 1s possible 1n the context of SM4
block cipher.

Some embodiments of method 900 contribute to an ability
of a population of manufactured chips to resist various types
of SCA and reverse engineering.

In some embodiments combination of additive and redun-
dancy masking contributes to a reduction in information
leakage while masking by applying a second mask before
removing the first mask so that at least one mask 1s always
in place.

Alternatively or additionally, implementation of method
1500 contributes to an increase 1n calculation speed and/or
a reduction 1n the amount of silicon surface area required 1n
the data processing chip.

Alternatively or additionally, implementation of methods
1400 and/or 1600 contributes to a reduction 1n susceptibility
to fault 1njection attacks.

It 1s expected that during the life of this patent, many new
block cipher algorithms will be developed, and the scope of
the invention 1s intended to 1nclude all such new technolo-
g1es a priori.

Although the invention has been described 1n conjunction
with specific embodiments thereof, 1t 1s evident that many
alternatives, modifications and variations will be apparent to
those skilled 1n the art. Accordingly, the invention embraces
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all such alternatives, modifications and variations that fall
within scope of the appended claims and/or this specifica-
tion.

Specifically, a variety of numerical indicators have been
utilized. It should be understood that these numerical 1ndi-

cators could vary even further based upon a vanety of

engineering principles, materials, mtended use and designs
incorporated into the various embodiments of the mnvention.
Additionally, components and/or actions ascribed to exem-
plary embodiments of the mnvention and depicted as a single
unit may be divided into subunits. Conversely, components
and/or actions ascribed to exemplary embodiments of the
invention and depicted as sub-units/individual actions may
be combined into a single unit/action with the described/
depicted function.

Alternatively, or additionally, features used to describe a
method can be used to characterize an apparatus and features
used to describe an apparatus can be used to characterize a
method.

It should be further understood that the individual features
described heremabove can be combined i all possible
combinations and sub-combinations to produce additional
embodiments of the mvention. The examples given above
are exemplary in nature and do not limit the scope of the
invention, which 1s defined solely by the following claims.

Each recitation of an embodiment of the invention that
includes a specific feature, part, component, module or
process 1s an explicit statement that additional embodiments
of the invention not including the recited feature, part,
component, module or process exist.

Alternatively or additionally, various exemplary embodi-
ments ol the invention exclude any specific feature, part,
component, module, process or element which 1s not spe-
cifically disclosed herein.

Specifically, the ivention has been described in the
context of block ciphers but might also be used 1n other
cryptography scenarios.

All publications, references, patents and patent applica-
tions mentioned 1n this specification are herein incorporated
in their entirety by reference into the specification, to the
same extent as 1 each individual publication, patent or
patent application was specifically and individually indi-
cated to be incorporated herein by reference. In addition,
citation or identification of any reference 1n this application
shall not be construed as an admission that such reference 1s
available as prior art to the present invention.

The terms “include”, and “have” and their conjugates as
used herein mean “including but not necessarily limited to™.

The 1nvention claimed 1s:

1. A semiconductor intellectual property (IP) core com-
prising a transiformation engine designed and configured to
represent each element of a field GF(2°) using a polynomial
of degree no higher than 7+d, where d>0 1s a redundancy
parameter;

wherein said transformation engine represents a same

field element by one of 2¢ various ways (pairwise
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differing by terms that are multiples of P(x)), and at
cach moment of calculations chooses any of said vari-
ous representations.
2. An IP core according to claim 1, wherein d=9.
3. An IP core according to claim 2, wherein d=24.
4. A method of building different representations of the
Galois Field (GF) implemented by logic circuitry compris-
ng:
representing each element of a field GF(2®) using a
polynomial of degree no higher than 7+d, where d>0 1s
a redundancy parameter; and

representing a same field element by one of 27 various
ways (patrwise diflering by terms that are multiples of
P(x)), and at each moment of calculations chooses any
of said various representations.

5. A method according to claim 4, wherein d=9.

6. A method according to claim 5, wherein d=24.

7. An IP core according to claim 1, wherein said element
of a field comprises a byte of data within a block of a block
cipher and a cryptographic key.

8. An IP core according to claim 7, wherein said block
cipher 1s selected from the group consisting of AES, SM4,
and ARIA.

9. An IP core according to claim 1, wherein said trans-
formation engine computes X* by performing a series of:

(1) multiplications of two different elements of the field;

and

(1) raising an element of the field to a power Z wherein

/. 1s a power of 2;
wherein the number of multiplications (1) 1s at least two less
than the number of ones (1s) 1n the binary representation of

Y

10. An IP core according to claim 9, wherein Y=254.

11. An IP core according to claim 10, wherein a number
of multiplications (1) 1s 4 or less.

12. A method according to claim 4, wherein said element
of a field comprises a byte of data within a block of a block
cipher and a cryptographic key.

13. A method according to claim 12, wherein said block
cipher 1s selected from the group consisting of AES, SM4,
and ARIA.

14. A method according to claim 4, comprising computing
X' by performing a series of:

(1) multiplications of two different elements of the field;

and

(1) raising an element of the field to a power Z wherein

/. 1s a power of 2;
wherein the number of multiplications (1) 1s at least two less
than the number of ones (1s) 1 the binary representation of
Y.

15. A method according to claim 14, wherein Y=234.

16. A method according to claim 15, wherein a number of
multiplications (1) 1s 4 or less.
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