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SYNTHESIZING PATIENT-SPECIFIC
SPEECH MODELS

FIELD OF THE INVENTION

The present mvention 1s related to the field of speech-
signal processing, particularly for diagnostic purposes.

BACKGROUND

Sakoe and Chiba, “Dynamic Programming Algorithm
Optimization for Spoken Word Recognition,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 26.2
(1978): 43-49, which 1s mcorporated herein by reference,
reports on an optimum dynamic programming (DP) based
time-normalization algorithm for spoken word recognition.
First, a general principle of time-normalization i1s given
using a time-warping function. Then, two time-normalized
distance definitions, called symmetric and asymmetric
forms, are dertved from the principle. These two forms are
compared with each other through theoretical discussions
and experimental studies. The symmetric form algorithm
superiority 1s established. A technique, called slope con-
straint, 1s introduced, 1n which the warping function slope 1s
restricted so as to improve discrimination between words 1n
different categories.

Rabiner, Lawrence R., “A tutorial on hidden Markov
models and selected applications 1 speech recognition,”
Proceedings of the IEEE 77.2 (1989): 257-286, which 1s
incorporated herein by reference, reviews theoretical aspects
of types of statistical modeling, and shows how they have
been applied to selected problems 1n machine recognition of
speech.

U.S. Pat. No. 5,864,810 describes a method and apparatus
for automatic recognition of speech, which adapts to a
particular speaker by using adaptation data to develop a
transformation through which speaker independent models
are transformed into speaker adapted models. The speaker
adapted models are then used for speaker recognition and
achieve better recognition accuracy than non-adapted mod-
¢ls. In a further embodiment, the transformation-based adap-
tation technique 1s combined with a known Bayesian adap-
tation technique.

U.S. Pat. No. 9,922,641 describes a method that includes
receiving input speech data from a speaker 1n a first lan-
guage, and estimating, based on a universal speech model,
a speaker transform representing speaker characteristics
associated with the mput speech data. The method also
includes accessing a speaker-independent speech model for
generating speech data 1n a second language that 1s different
from the first language. The method further includes modi-
tying the speaker-independent speech model using the
speaker transform to obtain a speaker-specific speech model,
and generating speech data 1n the second language using the
speaker-specific speech model.

SUMMARY OF THE INVENTION

There 1s provided, 1n accordance with some embodiments
of the present mvention, an apparatus including a commu-
nication interface and a processor. The processor 1s config-
ured to receive, via the communication interface, a plurality
of speech samples {u_°}, m=1 ... M, which were uttered by
a subject while 1n a {first state with respect to a disease, and
using {u_°} and at least one reference discriminator, which
1s not specific to the subject, synthesize a subject-specific
discriminator, which 1s specific to the subject and 1s config-
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2

ured to generate, 1n response to one or more test utterances
uttered by the subject, an output indicating a likelthood that
the subject 1s 1n a second state with respect to the disease.

In some embodiments, the first state 1s a stable state and
the second state 1s an unstable state.

In some embodiments, the disease 1s selected from the
group ol diseases consisting of: congestive heart failure
(CHF), coronary heart disease, arrhythmia, chronic obstruc-
tive pulmonary disease (COPD), asthma, interstitial lung

disease, pulmonary edema, pleural eflusion, Parkinson’s
disease, and depression.

In some embodiments, the processor i1s configured to
synthesize the subject-specific discriminator by:

generating a first-state subject-specific speech model 6°
that returns, for any speech sample s, a first distance measure
indicative of a first degree of similarity between s and
first-state speech of the subject, and

generating a second-state subject-specific speech model
0" that returns a second distance measure indicative of a
second degree of similarity between s and second-state
speech of the subject.

In some embodiments,

the at least one reference discriminator includes K refer-
ence discriminators {¢,}, k=1 ... K, {¢,} including:

respective first-state reference speech models that return

respective first distances {D,”(s)}, which indicate first
degrees of similarity between s and respective refer-
ence first-state speech uttered by K groups of one or
more other subjects, and

respective second-state reference speech models that

return respective second distances {D,'(s)}, which
indicate second degrees of similanty between s and
respective reference second-state speech uttered by the
groups,

0° returning the first distance measure by applying a
function to {D,’(s)}, and

0" returning the second distance measure by applying the
function to {D,"'(s)}.

In some embodiments, the function, when applied to
ID,”(s)}, returns a weighted average of {D'.”(s)}, D'.”(s)
being a non-decreasing function of D °(s).

In some embodiments, the weighted average 1s
>, “w,D' (s) for K weights {w,}, k=1 . . . K, that
minimize a sum of respective distance measures for {u_°}
with respect to a constraint, the distance measure for each
speech sample u_ belonging to {u °} being based on
2w DY ().

In some embodiments, the at least one reference discrimi-
nator includes:

a first-state reference speech model that returns a first
distance D°(s), which indicates a first degree of similarity
between s and reference first-state speech, and

a second-state reference speech model that returns a
second distance D'(s), which indicates a second degree of
similarity between s and reference second-state speech.

In some embodiments,

the first-state reference speech model returns D°(s) by
applying a first function to a set of feature vectors V(s)
extracted from s,

the second-state reference speech model returns D'(s) by
applying a second function to V(s), and

generating 6° and 0' includes generating 6° and 6' using
a normalizing transformation T that optimally transforms
{V(u, ")} under one or more predefined constraints.

In some embodiments, T minimizes 2, nACT(V(0)),V
(u,)) with respect to a constraint, A being a third distance
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measure between any two sets of features, and u, being a
canonical utterance of content of u € {u_°}.

In some embodiments, A 1s a non-decreasing function of
a Dynamic Time Warping (DTW) distance.

In some embodiments, T minimizes 2 ., »f'T(V(1)))
with respect to a constraint, ', being a non-decreasing
function of the first function.

In some embodiments,

0" returns the first distance measure by applying the first

function to T(V(s)), and

6' returns the second distance measure by applying the
second function to T(V(s)).

In some embodiments,

generating 6° includes generating 6° by applying a denor-
malizing transformation T', which optimally transforms first
parameters of the first-state reference speech model under
one or more predefined constraints, to the first parameters,
and

generating 0" includes generating 6' by applying T' to
second parameters of the second-state reference speech
model.

In some embodiments, T' minimizes ZHE{H;}T'(DD)(H)
under the constraints, T'(D")(s) being the first distance
returned by the first-state reference speech model under the
transformation.

In some embodiments,

the first-state reference speech model includes a first
Hidden Markov Model (HMM) including multiple first
kernels, the first parameters including first-kernel param-
eters of the first kernels, and

the second-state reference speech model includes a sec-
ond HMM including multiple second kernels, the second
parameters including second-kernel parameters of the sec-
ond kernels.

In some embodiments, the first kernels and second kernels
are (Gaussian, and T' includes:

an ailine transformation operating on a mean vector of any
one or more (Gaussian kernels, and

a quadratic transformation operating on a covariance
matrix of any one or more Gaussian kernels.

In some embodiments,

the first-state reference speech model includes multiple
first reference frames, the first parameters including first-
reference-frame features of the first reference frames, and

the second-state reference speech model includes multiple
second reference frames, the second parameters including
second-reference-frame features of the second reference
frames.

In some embodiments,

the reference first-state speech includes multiple first-state
reference speech samples uttered by a first subset of R other
subjects,

the reference second-state speech includes multiple sec-
ond-state reference speech samples uttered by a second
subset of the other subjects, and

the processor 1s further configured to:

identify respective transformations {1}, r=1 . .. R, for

the other subjects, T, being, for each r” one of the other
subjects, a normalizing transformation that optimally
transforms {®, } under one or more predefined con-
straints, {®, } being a union of (i) those of the first-state
reference speech samples uttered by the other subject
and (1) those of the second-state reference speech
samples uttered by the other subject,

compute modified sets of features by, for each r” one of

the other subjects, applying T, to {V(® )}, and
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generate the reference discriminator from the modified

sets of features.

In some embodiments,

the first-state reference speech model and the second-state
reference speech model are 1dentical with respect to a first
set of parameters and differ from one another with respect to
a second set of parameters,

the processor is configured to generate 0° such that 0° is
identical to the first-state reference speech model with
respect to the second set of parameters, and

the processor is configured to generate 0' such that 0" is
identical to 6 with respect to the first set of parameters and
identical to the second-state reference speech model with
respect to the second set of parameters.

In some embodiments,

the first-state reference speech model and the second-state
reference speech model 1include different respective Hidden
Markov Models (HMMs), each including multiple kernels
having respective kernel weights,

the first set of parameters includes the kernel weights, and

the second set of parameters includes kernel-parameters
of the kernels.

In some embodiments,

the at least one reference discriminator includes a refer-
ence neural network associated with multiple parameters,
which returns, for any one or more speech samples, another
output indicating a likelihood of the speech samples having
been uttered in the second state, and

the processor 1s configured to synthesize the subject-
specific discriminator by synthesizing a subject-specific
neural network, by tuning a subset of the parameters so as
to minimize an error of the other output for a set of input
speech samples that includes {u_°}.

In some embodiments, the parameters include a plurality
of neuronal weights, and the subset of the parameters
includes a subset of the weights.

In some embodiments, the reference neural network
includes multiple layers, and the subset of the weights
includes at least some of the weights associated with one of
the layers but does not include any of the weights associated
with another one of the layers.

In some embodiments,

the layers include (1) one or more acoustic layers of
neurons, which generate an acoustic-layer output in
response to an input based on the speech samples, (11) one or
more phonetic layers of neurons, which generate a phonetic-
layer output 1n response to the acoustic-layer output, and (i11)
one or more discriminative layers of neurons, which gener-
ate the other output 1n response to the phonetic-layer output,
and

the subset of the weights includes at least some of the
weilghts associated with the acoustic layers and the discrimi-
native layers but does not include any of the weights
associated with the phonetic layers.

In some embodiments, the subset of the parameters
includes a speaker-identifying parameter i1dentifying a
speaker of the speech samples.

In some embodiments, the set of input speech samples
further includes one or more second-state speech samples.

There 1s further provided, in accordance with some
embodiments of the present invention, a method including
receiving a plurality of speech samples {u,°}, m=1 ... M,
which were uttered by a subject while 1n a first state with
respect to a disease. The method further includes, using
fu °! and at least one reference discriminator, which is not
specific to the subject, synthesizing a subject-specific dis-
criminator, which 1s specific to the subject and 1s configured
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to generate, 1 response to one or more test utterances
uttered by the subject, an output indicating a likelthood that
the subject 1s 1n a second state with respect to the disease.

There 1s further provided, in accordance with some
embodiments of the present invention, a computer software
product including a tangible non-transitory computer-read-
able medium in which program instructions are stored. The
instructions, when read by a processor, cause the processor
to receive a plurality of speech samples {u,°}, m=1 ... M,
which were uttered by a subject while 1n a first state with
respect to a disease, and using {u °} and at least one
reference discriminator, which 1s not specific to the subject,
synthesize a subject-specific discriminator, which 1s specific
to the subject and 1s configured to generate, 1n response to
one or more test utterances uttered by the subject, an output
indicating a likelihood that the subject 1s 1n a second state
with respect to the disease.

The present invention will be more fully understood from
the following detailed description of embodiments thereof,
taken together with the drawings, 1n which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic 1llustration of a system for evalu-
ating the physiological state of a subject, 1n accordance with
some embodiments of the present invention;

FIGS. 2-4 are flow diagrams for techmques for generating,
subject-specific speech models, 1n accordance with some
embodiments of the present invention; and

FIG. 5 1s a schematic illustration of a neural-network
discriminator, 1n accordance with some embodiments of the
present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Glossary

In the context of the present application, including the
claims, a subject 1s said to be 1n an “unstable state” with
respect to a physiological condition (or “disease”) 1 the
subject 1s sullering from an acute worsening of the condi-
tion. Otherwise, the subject 1s said to be 1n a “stable state”
with respect to the condition.

In the context of the present application, including the
claims, a “speech model” refers to a computer-implemented
function configured to map a speech sample to an output
indicating a property of the sample. For example, given a
speech sample s uttered by a subject, a speech model may
return a distance measure D(s) indicating a degree of simi-
larity between s and reference speech of the subject or of
other subjects.

In the context of the present application, including the
claims, a “discriminator” refers to a group of one or more
models, typically machine-learned models, configured to
discriminate between various states. For example, given a
set of states, such as “stable” and “unstable,” with respect to
a particular physiological condition, a discriminator may,
based on a speech sample of a subject, generate an output
indicating the likelihood that the subject 1s 1n one of the
states.

Overview

For a subject who suflers from a physiological condition,
it may be desired to train a discriminator configured to
ascertain, based on the subject’s speech, whether the subject
1s 1n a stable state or an unstable state with respect to the

10

15

20

25

30

35

40

45

50

55

60

65

6

condition. A challenge, however, 1s that 1t may be diflicult to
acquire a sullicient number of training samples for each of

the states. For example, for a subject who 1s generally stable,
a suilicient number of speech samples uttered while 1n the
stable state might be available, but it may be difhicult to
acquire a suilicient number of speech samples uttered while
in the unstable state. For other subjects, 1t may be straight-
forward to collect a suflicient number of unstable-state
samples (e.g., following admittance of the subject to a
hospital), but not a suflicient number of stable-state samples.

To address this challenge, embodiments of the present
invention generate a subject-specific discriminator, which 1s
specific to the subject (1.e., 1s configured to discriminate for
the subject), from a reference discriminator, which 1s not
specific to the subject. To generate the subject-specific
discriminator, the processor uses speech samples uttered by
the subject while 1n one of the states to modily, or adapt, the
reference discriminator. This process 1s referred to as a
“synthesis™ of the subject-specific discriminator, given that,
advantageously, no speech samples uttered by the subject
while 1n the other state are required.

The techniques described herein may be used to synthe-
s1Zze a discriminator for any suitable physiological condition
such as congestive heart failure (CHF), coronary heart
disease, atrial fibrillation or any other type of arrhythmaa,
chronic obstructive pulmonary disease (COPD), asthma,
interstitial lung disease, pulmonary edema, pleural effusion,
Parkinson’s disease, or depression.

System Description

Reference 1s initially made to FIG. 1, which 1s a schematic
illustration of a system 20 for evaluating the physiological
state of a subject 22, in accordance with some embodiments
of the present invention.

System 20 comprises an audio-receiving device 32, such
as a mobile phone, a tablet computer, a laptop computer, a
desktop computer, a voice-controlled personal assistant
(such as an Amazon Echo™ or a Google Home™ device),
a smart speaker device, or a dedicated medical device used
by subject 22. Device 32 comprises circuitry including an
audio sensor 38 (e.g., a microphone), which converts sound
waves to analog electric signals, an analog-to-digital (A/D)
converter 42, a processor 36, and a network interface, such
as a network interface controller (NIC) 34. Typically, device
32 further comprises a storage device such as a solid-state
drive, a screen (e.g., a touchscreen), and/or other user
interface components, such as a keyboard and a speaker. In
some embodiments, audio sensor 38 (and, optionally, A/D
converter 42) belong to a unit that 1s external to device 32.
For example, audio sensor 38 may belong to a headset that
1s connected to device 32 by a wired or wireless connection,
such as a Bluetooth connection.

System 20 further comprises a server 40, comprising
circuitry including a processor 28, a storage device 30, such
as a hard drive or flash drive, and a network interface, such
as a network imterface controller (NIC) 26. Server 40 may
further comprise a screen, a keyboard, and/or any other
suitable user interface components. Typically, server 40 1s
located remotely from device 32, e.g., 1n a control center,
and server 40 and device 32 communicate with one another,
via their respective network interfaces, over a network 24,
which may include a cellular network and/or the Internet.

System 20 1s configured to evaluate the subject’s physi-
ological state by processing one or more speech signals (also
referred to herein as “speech samples™) recerved from the
subject. Typically, processor 36 of device 32 and processor
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28 of server 40 cooperatively perform the receiving and
processing ol at least some of the speech samples. For
example, as the subject speaks into device 32, the sound
waves of the subject’s speech may be converted to an analog
signal by audio sensor 38, which may in turn be sampled and
digitized by A/D converter 42. (In general, the subject’s
speech may be sampled at any suitable rate, such as a rate
of between 8 and 45 kHz.) The resulting digital speech
signal may be received by processor 36. Processor 36 may
then communicate the speech signal, via NIC 34, to server
40, such that processor 28 receives the speech signal via NIC
26. Subsequently, processor 28 may process the speech
signal.

To process the subject’s speech signals, processor 28 uses
a subject-specific discriminator 44, which 1s specific to
subject 22 and 1s stored 1n storage device 30. Based on each
iput speech signal, the subject-specific discriminator gen-
erates an output indicating a likelihood that the subject 1s 1n
a particular physiological state. For example, the output may
indicate a likelihood that the subject 1s 1n a stable state,
and/or a likelihood that the subject 1s in an unstable state,
with respect to a physiological condition. Alternatively or
additionally, the output may include a score indicating the
degree to which the subject’s state appears to be unstable.
Processor 28 i1s further configured to synthesize subject-
specific discriminator 44 prior to using the subject-specific
discriminator, as described 1n detail below with reference to
the subsequent figures.

In response to the output from the subject-specific dis-
criminator, the processor may generate any suitable audio or
visual output to the subject and/or to another person, such as
the subject’s physician. For example, processor 28 may
communicate the output to processor 36, and processor 36
may then communicate the output to the subject, e.g., by
displaying a message on the screen ol device 32. Alterna-
tively or additionally, 1n response to the subject-specific
discriminator outputting a relatively high likelihood that the
subject’s state 1s unstable, the processor may generate an
alert indicating that the subject should take medication or
visit a physician. Such an alert may be communicated by
placing a call or sending a message (e.g., a text message) to
the subject, to the subject’s physician, and/or to a monitoring,
center. Alternatively or additionally, 1 response to the
output from the discriminator, the processor may control a
medication-administering device so as to adjust an amount
of medication administered to the subject.

In other embodiments, subsequently to synthesizing the
subject-specific discriminator, processor 28 communicates
the subject-specific discriminator to processor 36, and pro-
cessor 36 then stores the discriminator 1n a storage device
belonging to device 32. Subsequently, processor 36 may use
the discriminator to assess the physiological state of subject
22. As yet another alternative, even the synthesis of the
subject-specific discriminator may be performed by proces-
sor 36. (Notwithstanding the above, the remainder of the
present description, for simplicity, generally assumes that
processor 28—also referred to hereinbelow simply as “the
processor’—performs the synthesis.)

In some embodiments, device 32 comprises an analog
telephone that does not comprise an A/D converter or a
processor. In such embodiments, device 32 sends the analog,
audio signal from audio sensor 38 to server 40 over a
telephone network. Typically, 1n the telephone network, the
audio signal 1s digitized, communicated digitally, and then
converted back to analog before reaching server 40. Accord-
ingly, server 40 may comprise an A/D converter, which
converts the imncoming analog audio signal—received via a
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suitable telephone-network interface—to a digital speech
signal. Processor 28 receives the digital speech signal from

the A/D converter, and then processes the signal as described
above. Alternatively, server 40 may receive the signal from
the telephone network before the signal 1s converted back to
analog, such that the server need not necessarily comprise an
A/D converter.

As further described below with reference to the subse-
quent figures, processor 28 uses training speech samples,
which were uttered by subject 22 while 1n a known physi-
ological state, to synthesize subject-specific discriminator
44. Each of these samples may be received via a network
interface, as described above, or via any other suitable
communication interface, such as a flash-drive interface.
Similarly, at least one reference discriminator that 1s not
specific to subject 22, which i1s also used to synthesize the
subject-specific discriminator, or training samples Ifrom
other subjects that may be used to generate the reference
discriminator, may be received by processor 28 via any
suitable communication interface.

Processor 28 may be embodied as a single processor, or
as a cooperatively networked or clustered set of processors.
For example, a control center may include a plurality of
interconnected servers comprising respective processors,
which cooperatively perform the techniques described
heremn. In some embodiments, processor 28 belongs to a
virtual machine.

In some embodiments, the functionality of processor 28
and/or of processor 36, as described herein, 1s implemented
solely 1n hardware, e.g., using one or more Application-
Specific Integrated Circuits (ASICs) or Field-Programmable
Gate Arrays (FPGAs). In other embodiments, the function-
ality of processor 28 and of processor 36 1s implemented at
least partly 1n software. For example, 1n some embodiments,
processor 28 and/or processor 36 1s embodied as a pro-
grammed digital computing device comprising at least a
central processing unit (CPU) and random access memory
(RAM). Program code, including software programs, and/or
data are loaded 1nto the RAM {for execution and processing
by the CPU. The program code and/or data may be down-
loaded to the processor 1n electronic form, over a network,
for example. Alternatively or additionally, the program code
and/or data may be provided and/or stored on non-transitory
tangible media, such as magnetic, optical, or electronic
memory. Such program code and/or data, when provided to
the processor, produce a machine or special-purpose com-
puter, configured to perform the tasks described herein.

Synthesizing the Subject-Specific Discriminator

As described above 1n the Overview, conventional tech-
niques for generating a discriminator for discriminating
between two states typically requires a suflicient number of
training samples for each of the states. However, in some
situations, the processor may have suflicient training
samples for only one of the states. To address such situa-
tions, the processor synthesizes the subject-specific dis-
criminator.

To perform this synthesis, the processor first receives a
plurality of speech samples {u,°}, m=1 ... M, which were
uttered by the subject while 1n a first state (e.g., a stable
state) with respect to a disease. Next, using {u,°} and at
least one reference discriminator, which is not specific to the
subject, the processor synthesizes the subject-specific dis-
criminator. Advantageously, despite the processor having
few or no speech samples uttered by the subject while 1n the
second state (e.g., an unstable state) with respect to the
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disease, the subject-specific discriminator may generate, 1n
response to one or more test utterances uttered by the
subject, an output indicating a likelihood that the subject 1s
in the second state.

Multi-Model Discriminators

In some embodiments, the subject-specific discriminator
includes a first-state subject-specific speech model 6° and a
second-state subject-specific speech model 0'. For any
speech sample s, 0° returns a first distance measure indica-
tive of a degree of similarity between s and first-state speech
of the subject, while 0" returns a second distance measure
indicative of a degree of similarity between s and second-
state speech of the subject. In such embodiments, the
subject-specific discriminator may generate an output based
on a comparison of the two distance measures to one
another. For example, assuming a convention 1 which a
greater distance indicates less similarity, the subject-specific
discriminator may generate an output indicating that the
subject 1s likely in the first state 1n response to the ratio
between the first distance measure and the second distance
measure being less than a threshold. Alternatively, the
subject-specific discriminator may output respective likeli-
hoods for the two states based on the distance measures, or
simply output the two distance measures.

To synthesize such a multi-model discriminator, various
techniques may be used. Examples of such techniques are
hereby described with reference to FIGS. 2-4.

(1) First Technique

Reference 1s now made to FIG. 2, which 1s a flow diagram
for a first technique 46 for generating 6° and 6', in accor-
dance with some embodiments of the present invention.

Technique 46 begins at a first recerving-or-generating step
48, at which the processor receives or generates Kz1 refer-
ence discriminators {¢,}, k=1 . . . K. (It is noted that the
processor may receive some of the discriminators while
generating others of the discriminators.) {¢,} comprise
respective first-state reference speech models and respective
second-state reference speech models that are specific to the
same K groups of one or more other subjects, referred to
herein as “reference subjects.” In other words, for any
speech sample s, the first-state reference speech models
return respective first distances {D_°(s)}, k=1 . . . K, which
indicate degrees of similarity between s and respective
reference first-state speech uttered by the K groups, while
the second-state reference speech models return respective
second distances {D,'(s)}, k=1 . . . K, which indicate
degrees of similarity between s and respective reference
second-state speech uttered by the K groups. In some
embodiments, each of the reference speech models com-
prises a parametric statistical speech model, such as a
Hidden Markov Model (HMM).

Subsequently, at a speech-sample-receiving step 50, the
processor receives one or more lirst-state speech samples
fu °! from subject 22 (FIG. 1). Next, at a first first-state-
model-generating step 32, the processor computes a function
“f” for transforming the set of distances {D,”(s)} into a
single transformed distance f({D,”(s)}) such that another
function of the transformed distances for {u_°} is minimized
with respect to one or more suitable constraints. The pro-
cessor thus generates 0 such that the distance measure
returned by 6°, for any speech sample s, is computed by
applying the function “f to {D,”(s)}.

For example, the processor may identily the function “1”
that minimizes the sum X __ *f({D,’(u, )}, gq=0, with
respect to the constraints. Alternatively, the function “”” may
minimize the weighted sum X _ *B, 1f({D,°(u )Y})I4, with
respect to the constraints. In such embodiments, the weight
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3 for each speech sample may be a function of the quality
of the sample, i1n that higher-quality samples may be
assigned greater weights. Alternatively or additionally, those
speech samples whose transformed distances are greater
than a predefined threshold (such as a particular percentile of
the transformed distances) may be assumed to be outliers,
and may therefore be assigned a weighting of zero.

Subsequently, at a {first second-state-model-generating
step 54, the processor generates 0' by applying the same
function to {D,'(s)}. In other words, the processor generates
0" such that the distance measure returned by 0, for any
speech sample s, is equal to f{D,'(s)}).

Effectively, 1n technique 46, the processor uses the first-
state speech samples of the subject to learn the manner 1n
which the subject’s voice in the first state may be best
approximated as a function of the voices of the K groups of
reference subjects 1n the first state. The processor then
assumes that the same approximation applies to the second
state, such that the function used for 6° may also be used for
0"

As a specific example, the function computed 1n first-
state-model-generating step 52, when applied to {D,°(s)},
may return a weighted average of {D'.°(s)}, D'.°(s) being a
non-decreasing function of D,"(s) such as ID,”(s)I¥ for p=1.
In other words, the distance measure returned by 0°, for any
speech sample s, may be equal to 2,_,*w,D"."(s) for K
weights {w,}, k=1 . .. K. Similarly, in such embodiments,
the distance measure returned by 6' may be equal to
> Sw,D7(s), D' (s) being the same non-decreasing func-
tion of D, '(s). Effectively, such a function approximates the
subject’s voice as a weighted average of the voices of the K
groups ol reference subjects.

In such embodiments, to compute the K weights 1n
first-state-model-generating step 52, the processor may
minimize the sum of respective distance measures for {u_°}
with respect to a constraint (e.g., 2,_,“w,=1), the distance
measure for each speech sample u, belonging to {u °}
being based on the transformed distance X, _,“w, D" °(u,).
For example, the processor may minimize, with respect to a
validity constraint, X__ X _ *w, D" °(u )| for q=0. (For
embodiments in which D',”(s)=ID,"(s)?, q is typically made
equal to 1/p.) As noted above, the transformed distances may
be weighted, e.g., 1n response to the varying qualities of the
samples.

In some embodiments, to simplity the subject-specific
models, the processor nullifies weights that are relatively
low, such as weights that are less than a particular percentile
of {w,} and/or less than a predefined threshold. The pro-
cessor may then rescale the remaining non-zero weights
such that the sum of the weights 1s one. For example, the
processor may nullify all weights but the largest weight
w_ . such that the distance measure returned by 6° is equal
toD', ° wherek, _isthe index of w,__. Thus, effectively,
the suﬂﬁject’s voice may be approximated by that of a single
one of the K groups of reference subjects, ignoring the other
K-1 groups.

(11) Second Technique

Reference 1s now made to FIG. 3, which 1s a flow diagram
for a second technique 56 for generating 6° and 6', in
accordance with some embodiments of the present inven-
tion.

Technique 56 begins at a second recerving-or-generating,
step 58, at which the processor receives or generates a
first-state reference speech model and a second-state refer-
ence speech model (each of which 1s not specific to the
subject). Similarly to each of the first-state reference models
in technique 46 (FIG. 2), the first-state reference speech
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model in technique 56 returns a first distance D°(s), which
indicates a degree of similarity between any speech sample
s and reference first-state speech. Likewise, similarly to each
of the second-state reference models 1n technique 46, the
second-state reference speech model 1n technique 56 returns
a second distance D'(s), which indicates a degree of simi-
larity between s and reference second-state speech.

For example, the first-state reference speech model may
return D°(s) by applying a first function f, to a set V(s) of
feature vectors extracted from s (i.e., D°(s) may equal
1,(V(s))), while the second-state reference speech model
may return D'(s) by applying a second function f; to V(s)
(i.e., D'(s) may equal f,(V(s))). Each of the reference speech
models may comprise a parametric statistical speech model,
such as a Hidden Markov Model (HMM).

However, as opposed to the case i technique 46, the two
reference models are not necessarily generated from refer-
ence speech of the same group of subjects. For example, the
first-state reference speech model may be generated from
reference first-state speech of one group of one or more
subjects, while the second-state reference speech model may
be generated from reference second-state speech of another
group ol one or more subjects. Alternatively, one or both of
the models may be generated from artificial speech gener-
ated by a speech synthesizer. Hence, technique 56 diflers
from technique 46 as described in detail immediately below.

Subsequently to performing second receiving-or-generat-
ing step 58, the processor receives {u_°} at speech-sample-
receiving step 30. Next, in some embodiments, at a trans-
formation-computing step 60, the processor computes a
transformation T that optimally transforms {V(u,,”)} under
one or more predefined constraints. T may be referred to as
a “feature-normalizing’” transformation, 1n that T transforms
features of the subject’s speech samples so as to neutralize
the vocal-tract particularity of the subject, 1.e., T renders the
speech samples more generic or canonical.

For example, T may minimize 2 ,, »J'o(T(V(u))) with
respect to a constraint, ', being a non-decreasing function of
t,. (For example, 1',(*) may equal I1,(*)I¥ for p=1.) Alter-
natively, T may minimize 2 ., o ACT(V(1)),V(u,)) under
one or more predefined validity constraints, where A 1s a
distance measure between any two sets of feature vectors,
and u,, is, for each sample u belonging to {u_"}, a canonical
utterance of the content of u, such as a synthesized utterance
of the content. In some embodiments, A 1s a non-decreasing
function of a Dynamic Time Warping (DTW) distance,
which may be computed as described in the reference to
Sakoe and Chiba cited 1n the Background, which 1s incor-
porated herein by reference. For example, A (T(V(u)),V(u,))
may be equal to IDTW(T(V(n)),V(u))I¥, where DTW(V,,
V,) 1s the DTW distance between two sets of feature vectors
V, and V,, and p=1.

(It 1s noted that, typically, the DTW distance between two
sets of feature vectors 1s computed by mapping each feature
vector 1n one set to a respective feature vector 1n the other
set such that the sum of respective local distances between
the pairs of feature vectors 1s minimized. The local distance
between each pair of vectors may be computed by summing
the squared differences between the corresponding compo-
nents of the vectors, or using any other suitable function.)

Typically, the processor extracts, from each receirved
speech sample s, N overlapping or non-overlapping frames,
N being a function of the predefined length of each frame.
V(s) thus includes N feature vectors {v_}, n=1 ... N, one
teature vector per frame. (Each feature vector may include,
for example, a set of cepstral coeflicients and/or a set of
linear prediction coeflicients for the frame.) Typically, T
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includes a transformation that operates on each feature
vector independently, i.e., T(V(s))={T(v,)}, n=1 . .. N. For
example, T may include an afline transformation that oper-
ates on each feature vector independently, 1.e., T(V(s)) may
be equal to {Av_+b}, n=1 . . . N, where A is an LxLL matrix
and b 1s an Lx1 vector, L being the length of each vector v,.

Subsequently to computing T, the processor, at a second
first-state-model-generating step 62, generates 0° (the first-

state model for the subject) such that, for any speech sample
s, 0” returns £,(T(V(s))). Similarly, at a second second-state-
model-generating step 64, the processor generates 6' such
that 0 returns £, (T(V(s))).

In other embodiments, rather than computing T, the
processor, at an alternate transformation-computing step 66,
computes an alternate transformation 1', which optimally
transforms parameters ol the first-state reference speech
model under one or more predefined constraints. For
example, the processor may compute 1" such that T" mini-
mizes ZHE{HWH}T'(DD)(U) under the constraints, T'(D°)(s)
being the distance returned by the first-state reference
speech model under the transformation. Alternatively, sub-
sequently to computing T, the processor may derive T' from
T such that applying T' to the model parameters has the same
ellect as applying T to the features of the subject’s speech
samples. T' may be referred to as a “parameter-denormal-
1zing ’ transiormation, in that T' transforms the parameters of
the reference models to better match the vocal-tract particu-
larity of the subject, 1.e., T' renders the reference models
more specific to the subject.

In such embodiments, subsequently to computing 1", the
processor, at a third first-state-model-generating step 68,
generates 0° by applying T' to parameters of the first-state
reference speech model. Similarly, at a third second-state-
model-generating step 70, the processor generates 6' by
applying T' to parameters of the second-state reference
speech model. In other words, the processor generates 0°
such that 6 returns, for any speech sample s, T'(D°)(s)=f",
(V(s)), where 1, differs from 1, by wvirtue of using the
T'-modified parameters of the first-state reference speech
model; similarly, the processor generates 0' such that 0
returns T'(DY(s)=1", (V(s)), where ', differs from f, by virtue
of using the T'-modified parameters of the second-state
reference speech model. (For embodiments 1n which T' 1s

derived from T as described above, I',(V(s))=1,(T(V(s)))
and 1, (V(s))=1,(T(V(5))).)

For example, for cases in which each of the reference
speech models includes an HMM including multiple ker-
nels, each subject-specific model may, per the former
embodiments, input T(V(s)) to the kernels of the corre-
sponding reference speech model. Alternatively, per the
latter embodiments, the parameters of the kernels may be
transformed using 1", and V(s) may then be mput to the
transformed kernels.

As a specific example, each reference HMM may include
multiple Gaussian kernels for each state, each kernel being
of the form

E—(v—mTcr_l (v=p1)

gv; pt, o) =

V27|

v being any feature vector belonging to V(s), u being a mean

vector, and O being a covariance matrix having a determi-

nant |ol. For example, assuming a state x having J kernels,

the local distance between v and X may be computed as
J _ _ : -

L&, 'w, gV, 0, ), where g(viu, .0, ) is the j Gauss-



US 11,417,342 B2

13

1an kernel belonging to state x for =1 . . .
of this kernel, and L 1s any suitable scalar function such as
the 1dentity function or the minus-log function. In this case,
T" may include an afhine transformation operating on the
mean vector of any one or more of the kemels and a
quadratic transformation operating on the covariance matrix
of any one or more of the kernels. In other words, T' may
transform a Gaussian kernel by replacing u with p'=A""(u+
b) and o with o'=A~'0A?’, such that, for example, each local
distance 1s computed as L(ijl“']rwI sglvip', .0 ). (For
embodiments 1n which T' 1s derived from T as described
above, g(viu' ;,0,. ;) 1s equal to g(I(v):u,,,0,,), where
T(v)=Av+b.)

Alternatively, each of the reference speech models may
include multiple reference frames. In such embodiments, the
distance returned by each reference speech model, for each
speech sample s, may be computed (e.g., using DTW) by
mapping each feature vector v, to one of the reference
frames such that the sum of the respective local distances
between the feature vectors and the reference frames to
which the feature vectors are mapped 1s minimized. In this
case, per the former embodiments, each of the subject-
specific models may map {T(v, )} to the reference frames of
the corresponding reference model for n=1 . . . N such that
the sum of the local distances 1s minimized. Alternatlvelyj
per the latter embodiments, the features of the reference
frames may be transformed using 1", and {v,} may then be
mapped to the transformed reference frames forn=1 . . . N.

Regardless of whether T 1s applied to the subject’s speeeh
samples or T' 1s applied to the reference models, it 1s
generally advantageous for the reference models to be as
canonical or subject-independent as possible. Hence, 1n
some embodiments, particularly 11 the reference speech used
for generating the reference models 1s from a relatively
small number of other subjects, the processor, during recerv-
ing-or-generating step 58, normalizes the reference speech
prior to generating the reference models.

For example, the processor may first receive first-state
reference speech samples uttered by a first subset of R other
subjects, along with second-state reference speech samples
uttered by a second subset of the other subjects. (The subsets
may be overlapping, 1.e., at least one of the other subjects
may provide both a first-state reference speech sample and
a second-state reference speech sample.) Next, for each r”
one of the other subjects, the processor may identify {® },
the union of (1) those of the first-state reference speech
samples uttered by the r”” other subject and (ii) those of the
second-state reference speech samples uttered by the r”
other subject. Subsequently, the processor may identily
respective transformations {T,}, r=1 . . . R, for the other
subjects, T, being another normalizing transformation that
optimally transforms {® } under the constraints described
above. For example, 1, may minimize 24 g yACT(V(D)),
V(®,)) under predefined validity constraints, @, being a
canonical (e.g., synthesized) utterance of the content of ®.
Next, the processor may compute modified sets of features
by, for each r” one of the other subjects, applying T, to
{V(®,)}. Finally, the processor may generate the reference
discriminator—including both reference models—irom the
modified sets of features.

(111) Third Technique

Reference 1s now made to FI1G. 4, which 1s a flow diagram
for a third technique 72 for generating 6° and 6', in accor-
dance with some embodiments of the present invention.

Similarly to technique 56 (FIG. 3), technique 72 may
handle instances 1n which the first-state reference speech and
the second-state reference speech come from different

I, w 1s the weight
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respective groups of subjects. Technique 72 merely requires
that the two reference models be 1dentical to one another
with respect to a first set of parameters, though differing
from one another with respect to a second set of parameters
assumed to represent the effect of the subjects’ health state
on the reference speech. Since this effect 1s assumed to be
the same for subject 22 (FIG. 1), technique 72 generates 6°
and 0" so as to be identical to their corresponding reference
models, respectively, with respect to the second set of
parameters, while differing with respect to the first set of
parameters.

Technique 72 begins at a third receirving-or-generating,
step 74, at which the processor receives or generates the
first-state reference speech model and the second-state ret-
erence speech model such that the two models are i1dentical
with respect to the first set of parameters and difler from one
another with respect to the second set of parameters.

For example, the processor may {irst recerve or generate
the first-state reference model. Subsequently, the processor
may adapt the second-state reference model to the first-state
reference model, by modifying the second set of parameters
(without moditying the first set of parameters) such that the
sum of the respective distances returned by the second-state
model for the second-state reference speech samples 1s
minimized with respect to a suitable validity constraint.
(Any suitable non-decreasing function, such as the absolute
value raised to the power of g=1, may be applied to each of
the distances 1n this summation. ) Alternatively, the processor
may first receive or generate the second-state reference
model, and then adapt the first-state reference model from
the second-state reference model.

In some embodiments, the reference models include dif-
ferent respective HMMs, each including multiple kernels
having respective kernel weights. In such embodiments, the
first set of parameters may include the kernel weights. In
other words, the two reference models may include 1dentical
states and, in each state, the same number of kernels having
the same kernel weights. The first set of parameters may
turther include the state transition distances or probabilities.
The second set of parameters, with respect to which the
reference models differ from one another, may include the
parameters (e.g., means and covariances) of the kemels.

For example, for the first-state reference model, the local
distance between any state x and any feature vector v may
be L(XZ,_,"w, g(vil,,»0,,")). The second-state reference
model may include the same states as the first-state reference
model, and, for any state x, the local distance may be
L(ijleng(V;prl :Gx,;l))'

Subsequently to third receiving-or-generating step 74, the
processor receives {u °} at speech-sample-receiving step
50. Next, at a fourth first-state-model-generating step 76, the
processor generates 6° such that 6° is identical to the first-
state reference speech model with respect to the second set
ol parameters. To perform this adaptation of the first-state
reference model, the processor may use an algorithm similar
to the Baum-Welch algorithm, which 1s described, for
example, 1n section 6.4.3 of L. Rabiner and B-H. Juang,
Fundamentals of Speech Recognition, Prentice Hall, 1993,
which 1s mcorporated herein by reference. In particular, the
processor may first initialize 0° to have the parameters of the
first-state reference model. Next, the processor may map
each feature vector in {u,,’} to a respective state in 6°. The
processor may then, for each state, use the feature vectors
mapped to the state to recompute the first set of parameters
for the state. The processor may then remap the feature
vectors to the states. This process may then be repeated until
convergence, 1.e., until the mapping does not change.
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Subsequently to fourth first-state-model-generating step
76, the processor, at a fourth second-state-model-generating
step 78, generates 0' such that 6' is identical to 6° with
respect to the first set of parameters and identical to the
second-state reference speech model with respect to the >
second set of parameters.

Neural-Network Discriminators

In alternate embodiments, the processor synthesizes a
subject-specific neural-network discriminator, rather than a
multi-model discriminator. In particular, the processor first
receives or generates a reference discriminator including a
neural network associated with multiple parameters. Subse-
quently, the processor tunes some of these parameters as
described below, thereby adapting the network to subject 22

(FIG. 1).

For further details regarding this technique, reference 1s
now made to FIG. 5, which 1s a schematic illustration of a
neural-network discriminator, in accordance with some
embodiments of the present invention. 20

FIG. 5 shows the manner in which a reference neural
network 80 may be adapted to a specific subject. Neural
network 80 1s configured to receive a speech-related input 82
based on one or more speech samples uttered by a subject.
For example, the neural network may receive the speech 25
samples themselves, and/or features, such as mel-frequency
cepstral coellicients (MFCCs), extracted from the samples.
Neural network 80 may further receive a text mput 90
including, for example, an indication of the phonetic content
of the speech samples. (The phonetic content may be pre-
determined, or ascertained from the speech samples using
speech-recognition techniques.) For example, 11 the neural
network 1s tramned on N diflerent utterances serially num-
bered 0. .. N-1, text input 90 may include a sequence of bits
indicating the serial number of the utterance that 1s uttered
in the speech samples.

Given the aforementioned input, the neural network
returns an output 92 indicating the likelihood of the speech
samples having been uttered in the second state. For g
example, output 92 may explicitly include the likelihood of
the speech samples having been uttered 1n the second state.
Alternatively, the output may explicitly include the likeli-
hood of the speech samples having been uttered 1n the first
state, such that the output implicitly indicates the former 45
likelithood. For example, 1f the output states a 30% likel:-
hood for the first state, the output may eflectively indicate a
70% likelihood for the second state. As yet another alterna-
tive, the output may include respective scores for the two
states, from which both likelithoods may be calculated. 50

Typically, neural network 80 includes multiple layers of
neurons. For example, for embodiments 1n which speech-
related input 82 includes raw speech samples (rather than
features extracted therefrom), the neural network may
include one or more acoustic layers 84, which generate an 55
acoustic-layer output 83 1n response to speech-related input
82. Elflectively, acoustic layers 84 extract feature vectors
from the mput speech samples by performing an acoustic
analysis of the speech samples.

As another example, the neural network may include one 60
or more phonetic layers 86, which generate a phonetic-layer
output 85 1n response to acoustic-layer output 83 (or 1n
response to analogous features contained 1n speech-related
input 82). For example, phonetic layers 86 may match the
acoustic features of the speech samples, which are specified 65
by acoustic-layer output 83, with the expected phonetic
content of the speech samples as indicated by text input 90.
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Alternatively, the network may be configured for a single
predefined text, and may thus omit phonetic layers 86 and
text mput 90.

As yet another example, the neural network may include
one or more discriminative layers 88, which generate output
92 in response to phonetic-layer output 85 (and, optionally,
acoustic-layer output 83). Discriminative layers 88 may
include, for example, one or more layers of neurons that
compute features for discriminating between the first health
state and the second health state, followed by an output
layer, which generates output 92 based on these features.
The output layer may include, for example, a first-state
output neuron, which outputs a score indicating the likel:-
hood for the first state, and a second-state output neuron,
which outputs another score indicating the likelihood for the
second state.

In some embodiments, neural network 80 1s a deep-
learning network, in that the network incorporates a rela-
tively large number of layers. Alternatively or additionally,
the network may include specialized elements such as
convolutional layers, skipped layers, and/or recurrent neural
network components. The neurons 1n the neural network 80
may be associated with various types of activation functions.

To synthesize a subject-specific neural-network discrimi-
nator, the processor tunes a subset of the parameters asso-
ciated with network 80 so as to minimize an error of output
92 for a set of input speech samples that includes {u, °}. In
other words, the processor inputs {u_°} along with, option-
ally, one or more speech samples uttered by the subject or by
other subjects while 1n the second state, and tunes the subset
of the parameters such that the error of output 92 1s mini-
mized.

For example, the processor may tune some or all of the
respective neuronal weights of the neurons belonging to the
network. As a specific example, the processor may tune at
least some of the weights associated with one of the neuronal
layers without tuming any of the weights associated with
another one of the layers. For example, as indicated in FIG.
5, the processor may tune the weights associated with
acoustic layers 84 and/or the weights associated with dis-
criminative layers 88, which are assumed to be subject-
dependent, but not the weights associated with phonetic
layers 86.

In some embodiments, the neural network 1s associated
with a speaker-identifying (or “subject ID”’) parameter 94,
which i1dentifies the speaker of the speech samples used to
generate speech-related input 82. For example, given R
serially-numbered reference subjects whose speech was
used to train network 80, parameter 94 may include a
sequence of R numbers. For each input 82 acquired from one
of these subjects, the serial number of the subject may be set
to 1 1n parameter 94, and the other numbers may be set to
0. Parameter 94 may be input to acoustic layers 84, to
phonetic layers 86, and/or to discriminative layers 88.

In such embodiments, the processor may tune parameter
94, alternatively or additionally to tuning the neuronal
weights. By tuning parameter 94, the processor may etlec-
tively approximate the subject’s voice as a combination of
the respective voices of some or all of the reference subjects.
As a purely illustrative example, for R=10, the processor
may tune parameter 94 to a value of [0.5000030000.2
0], indicating that the subject’s voice 1s approximated by a
combination of the respective voices of the first, fifth, and
ninth reference subjects. (Parameter 94 thus becomes asso-
ciated with the network by virtue of being a fixed parameter
of the network, rather than being associated with the net-
work merely by being a variable input to the network.)
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To tune the parameters, the processor may use any suit-
able technique known in the art. One such technique 1is
back-propagation, which 1teratively subtracts, from the
parameters, a vector of values that 1s a multiple of the
gradient of a deviation function with respect to the param-
cters, the deviation function quantifying the deviation
between the output and the expected output of the network.
Back-propagation may be performed for each sample in the
set of mput speech samples (optionally with multiple 1tera-
tions over the samples), until a suitable degree of conver-
gence 1s reached.

It will be appreciated by persons skilled in the art that the
present invention 1s not limited to what has been particularly
shown and described hereinabove. Rather, the scope of
embodiments of the present imnvention includes both com-
binations and subcombinations of the various features
described hereinabove, as well as variations and modifica-
tions thereof that are not 1n the prior art, which would occur
to persons skilled in the art upon reading the foregoing
description. For example, the scope of embodiments of the
present invention includes a synthesis of a single-model
subject-specific discriminator, such as a neural-network dis-
criminator, from a reference discriminator including a first-
state reference speech model and a second-state reference
speech model.

Documents incorporated by reference 1n the present pat-
ent application are to be considered an integral part of the
application except that to the extent any terms are defined 1n
these incorporated documents in a manner that contlicts with
the definitions made explicitly or implicitly in the present
specification, only the definitions in the present specification
should be considered.

The invention claimed 1s:
1. Apparatus, comprising:
a communication interface; and
a processor, configured to:
receive, via the communication interface, a plurality of
subject-uttered speech samples {u, °}, m=1 ... M,
which were uttered by a subject while 1n a first state
with respect to a disease,
obtain at least one reference discriminator that was
trained, using multiple reference first-state speech
samples uttered 1n the first state and multiple refer-
ence second-state speech samples uttered 1n a second
state with respect to the disease, to discriminate
between first-state utterances uttered 1n the first state
and second-state utterances uttered in the second
state,
wherein each of the reference first-state speech
samples and reference second-state speech
samples was not uttered by the subject; and
using {u °}, even without using any other speech
samples uttered by the subject while 1n the second
state, adapt the at least one reference discriminator to
the subject.
2. The apparatus according to claim 1, wherein the first
state 15 a stable state and the second state 1s an unstable state.
3. The apparatus according to claim 1, wherein the disease
1s selected from the group of diseases consisting of: con-
gestive heart failure (CHF), coronary heart disease, arrhyth-
mia, chronic obstructive pulmonary disease (COPD),
asthma, interstitial lung disease, pulmonary edema, pleural
ellusion, Parkinson’s disease, and depression.
4. The apparatus according to claim 1, wherein the
processor 1s configured to adapt the reference discriminator
by:
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generating a first-state subject-specific speech model 0°
that returns, for any speech sample s, a first distance
measure 1ndicative ol a first degree of similarity
between s and first-state speech of the subject, and
generating a second-state subject-specific speech model
0" that returns a second distance measure indicative of
a second degree of similarity between s and second-
state speech of the subject.
5. The apparatus according to claim 4,
wherein K first-state subsets of the reference first-state
speech samples were uttered, respectively, by K groups
ol one or more other subjects,
wherein K second-state subsets of the reference second-
state speech samples were uttered, respectively, by the
K groups,
wherein the at least one reference discriminator includes
K reference discriminators {¢,}, k=1 . . . K, {¢,}
including:
respective first-state reference speech models that
return respective first distances {D,°(s)}, which indi-
cate first degrees of similarity between s and the
first-state subsets, respectively, and

respective second-state reference speech models that
return respective second distances {D,'(s)}, which
indicate second degrees of similarity between s and
the second-state subsets, respectively,

wherein 0 returns the first distance measure by applying
a function to {D,”(s)}, and

wherein 0' returns the second distance measure by apply-
ing the function to {D,"'(s)}.

6. The apparatus according to claim S, wherein the
function, when applied to {D,’(s)}, returns a weighted
average of {D'.”(s)}, D'.”(s) being a non-decreasing func-
tion of D °(s).

7. The apparatus according to claim 6, wherein the
weighted average is X,_,“w,D"'°(s) for K weights
{w, }, k=1 ...K, that minimize a sum of respective distance
measures for {u, °} with respect to a constraint, the distance
measure for each speech sample u, belonging to {u °}
being based on 2, “w, D' °(u ).

8. The apparatus according to claim 4, wherein the at least
one reference discriminator includes:

a first-state reference speech model that returns a first
distance D"(s), which indicates a first degree of simi-
larity between s and the reference first-state speech
samples, and

a second-state reference speech model that returns a
second distance D' (s), which indicates a second degree
of similarity between s and the reference second-state
speech samples.

9. The apparatus according to claim 8,

wherein the first-state reference speech model returns
D°(s) by applying a first function to a set of feature
vectors V(s) extracted from s,

wherein the second-state reference speech model returns
D'(s) by applying a second function to V(s), and

wherein generating 6” and 0' comprises generating 6° and
0" using a normalizing transformation T that optimally
transforms {V(u_°)} under one or more predefined
constraints.

10. The apparatus according to claim 9, wheremn T mini-

mizes 2, %A(I(V(0)), V(u,)) with respect to a constraint,
A being a third distance measure between any two sets of

features, and u, being a canonical utterance of content
of u €{u,°}.
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11. The apparatus according to claim 10, wherein A 1s a
non-decreasing function of a Dynamic Time Warping
(DTW) distance.

12. The apparatus according to claim 9, wherein T mini-
mizes 2, 0 'o(T(V(u))) with respect to a constraint, f,
being a non-decreasing function of the first function.

13. The apparatus according to claim 9,

wherein 0° returns the first distance measure by applying

the first function to T(V(s)), and
wherein 0' returns the second distance measure by apply-
ing the second function to T(V(s)).

14. The apparatus according to claim 8,

wherein generating 0 comprises generating 0° by apply-
ing a denormalizing transformation T', which optimally
transforms first parameters of the first-state reference
speech model under one or more predefined con-
straints, to the first parameters, and

wherein generating 6' comprises generating 0' by apply-

ing 1" to second parameters of the second-state refer-
ence speech model.

15. The apparatus according to claim 14, wherein T
minmizes = {HMG}T'(DD)(U) under the constraints, T'(D”)(s)
being the first distance returned by the first-state reference
speech model under the transformation.

16. The apparatus according to claim 14,

wherein the first-state reference speech model includes a

first Hidden Markov Model (HMM) including multiple
first kernels, the first parameters including first-kernel
parameters of the first kernels, and

wherein the second-state reference speech model includes

a second HMM 1ncluding multiple second kernels, the
second parameters including second-kernel parameters
ol the second kernels.

17. The apparatus according to claim 16, wherein the first
kernels and second kernels are Gaussian, and wherein T
includes:

an alline transformation operating on a mean vector of any

one or more (Gaussian kernels, and

a quadratic transformation operating on a covariance

matrix ol any one or more Gaussian kernels.

18. The apparatus according to claim 14,

wherein the first-state reference speech model includes

multiple first reference frames, the first parameters
including first-reference-frame features of the first ret-
erence frames, and

wherein the second-state reference speech model includes

multiple second reference frames, the second param-
cters including second-reference-frame features of the
second reference frames.

19. The apparatus according to claim 8,

wherein the reference first-state speech samples were

uttered by a first subset of R other subjects,

wherein the reference second-state speech samples were

uttered by a second subset of the other subjects, and

wherein the processor 1s configured to obtain the refer-

ence discriminator by:

identifying respective transformations {T,}, r=1 ... R,
for the other subjects, T, being, for each r” one of the
other subjects, a normalizing transformation that
optimally transforms {® } under one or more pre-
defined constraints, {®,} being a union of (i) those
of the reference first-state speech samples uttered by
the other subject and (1) those of the reference
second-state speech samples uttered by the other
subject,

computing modified sets of features by, for each r”” one
of the other subjects, applying T, to {V(® )}, and
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generating the reference discriminator from the modi-
fied sets of features.
20. The apparatus according to claim 8,
wherein the first-state reference speech model and the
second-state reference speech model are 1dentical with
respect to a first set of parameters and differ from one
another with respect to a second set of parameters,

wherein the processor is configured to generate 6° such
that 0 is identical to the first-state reference speech
model with respect to the second set of parameters, and

wherein the processor is configured to generate 6' such
that 0' is identical to 0° with respect to the first set of
parameters and 1dentical to the second-state reference
speech model with respect to the second set of param-
eters.

21. The apparatus according to claim 20,

wherein the first-state reference speech model and the

second-state reference speech model 1include different
respective Hidden Markov Models (HMMs), each
including multiple kernels having respective kernel
welghts,

wherein the first set of parameters includes the kernel

weights, and

wherein the second set of parameters includes kernel-

parameters of the kernels.

22. The apparatus according to claim 1,

wherein the at least one reference discriminator includes

a reference neural network associated with multiple
parameters, which returns, for any one or more test
speech samples, an output indicating a likelihood of the
test speech samples having been uttered 1n the second
state, and

wherein the processor 1s configured to adapt the reference

discriminator by tuning only a subset of the parameters
sO as to minimize an error of the output for a set of input
speech samples that includes {u,°}.

23. The apparatus according to claim 22, wherein the
parameters include a plurality of neuronal weights, and
wherein the subset of the parameters includes a subset of the
weights.

24. The apparatus according to claim 23, wherein the
reference neural network includes multiple layers, and
wherein the subset of the weights imncludes at least some of
the weights associated with one of the layers but does not
include any of the weights associated with another one of the
layers.

25. The apparatus according to claim 24,

wherein the layers include (1) one or more acoustic layers

of neurons, which generate an acoustic-layer output 1n
response to an input based on the test speech samples,
(11) one or more phonetic layers of neurons, which
generate a phonetic-layer output i response to the
acoustic-layer output, and (111) one or more discrimi-
native layers ol neurons, which generate the output 1n
response to the phonetic-layer output, and

wherein the subset of the weights icludes at least some

of the weights associated with the acoustic layers and
the discriminative layers but does not include any of the
weights associated with the phonetic layers.

26. The apparatus according to claim 22, wherein the
subset of the parameters includes a speaker-identiiying
parameter 1dentifying a speaker of the test speech samples.

277. The apparatus according to claim 22, wherein the set
of input speech samples further includes one or more mput
second-state speech samples.
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28. A method, comprising;:
receiving a plurality of subject-uttered speech samples
fu °l, m=1 ... M, which were uttered by a subject
while 1n a first state with respect to a disease;
obtaining at least one reference discriminator that was
trained, using multiple reference {irst-state speech
samples uttered in the first state and multiple reference
second-state speech samples uttered in a second state
with respect to the disease, to discriminate between
first-state utterances uttered in the first state and sec-
ond-state utterances uttered 1n the second state,
wherein each of the reference first-state speech samples
and reference second-state speech samples was not
uttered by the subject; and
using {u,°}, without using any other speech samples
uttered by the subject while 1n the second state, adapt-
ing the at least one reference discriminator to the
subject.
29. The method according to claim 28, wherein the first
state 1s a stable state and the second state 1s an unstable state.
30. The method according to claim 28, wherein the
disease 1s selected from the group of diseases consisting of:
congestive heart failure (CHF), coronary heart disease,
arrhythmia, chronic obstructive pulmonary disease (COPD),
asthma, interstitial lung disease, pulmonary edema, pleural
cllusion, Parkinson’s disease, and depression.
31. The method according to claim 28, wherein adapting,
the reference discriminator comprises:
generating a first-state subject-specific speech model 6
that returns, for any speech sample s, a first distance
measure 1ndicative of a first degree of similarity
between s and first-state speech of the subject; and
generating a second-state subject-specific speech model
6" that returns a second distance measure indicative of
a second degree of similarity between s and second-

state speech of the subject.

32. The method according to claim 31,

wherein K first-state subsets of the reference first-state
speech samples were uttered, respectively, by K groups
of one or more other subjects,

wherein K second-state subsets of the reference second-

state speech samples were uttered, respectively, by the

K groups,

wherein the at least one reference discriminator includes

K reference discriminators {¢.}, k=1 . . . K, {@.}

including;

respective first-state reference speech models that
return respective first distances {D,°(s)}, which indi-
cate first degrees of similarity between s and the
first-state subsets, respectively, and

respective second-state reference speech models that
return respective second distances {D,'(s)}, which
indicate second degrees of similarity between s and
the second-state subsets, respectively,

wherein 0° returns the first distance measure by applying

a function to {D.°(s)}, and
wherein 0' returns the second distance measure by apply-
ing the function to {D,'(s)}.

33. The method according to claim 32, wherein the
function, when applied to {D,”(s)}, returns a weighted
average of {D'.°(s)}, D'.°(s) being a non-decreasing func-
tion of D,°(s).

34. The method according to claim 33, wherein the
weighted average is 2,_,“w, D" °(s) for K weights {w,},
k=1 . . . K, that minimize a sum of respective distance
measures for {u,_°} with respect to a constraint, the distance
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measure for each speech sample u, belonging to {u,°}
being based on X,_,*w,D'.°(u_).

35. The method according to claim 31, wherein the at least
one reference discriminator includes:

a first-state reference speech model that returns a first
distance D"(s), which indicates a first degree of simi-
larity between s and the reference first-state speech
samples, and

a second-state reference speech model that returns a
second distance D' (s), which indicates a second degree
of similarity between s and the reference second-state
speech samples.

36. The method according to claim 35,

wherein the first-state reference speech model returns
D"(s) by applying a first function to a set of feature
vectors V(s) extracted from s,

wherein the second-state reference speech model returns
D'(s) by applying a second function to V(s), and

wherein generating 0° and 0' comprises generating 0° and
0' using a normalizing transformation T that optimally
transforms {V(u, °)} under one or more predefined
constraints.

37. The method according to claim 36, wherein T mini-
mizes 2, r,, 0 A(T(V(u)), V(u,)) with respect to a constraint,
A being a third distance measure between any two sets of
features, and u, being a canonical utterance of content of
u &fu L

38. The method according to claim 37, wheremn A 1s a
non-decreasing function of a Dynamic Time Warping
(DTW) distance.

39. The method according to claim 36, wherein T mini-
mizes 2, 15 o(T(V(u))) with respect to a constraint, f,
being a non-decreasing function of the first function.

40. The method according to claim 36,

wherein 0° returns the first distance measure by applying
the first function to T(V(s)), and

wherein 0' returns the second distance measure by apply-
ing the second function to T(V(s)).

41. The method according to claim 35,

wherein generating 6° comprises generating 6° by apply-
ing a denormalizing transformation T, which optimally
transforms first parameters of the first-state reference
speech model under one or more predefined con-
straints, to the first parameters, and

wherein generating 6 comprises generating 6' by apply-
ing 1" to second parameters of the second-state refer-
ence speech model.

42. The method according to claim 41, wherein T' mini-
mizes ZHE{HWG}T'(DD)(U) under the constraints, T'(D°)(s)
being the first distance returned by the first-state reference
speech model under the transformation.

43. The method according to claim 41,

wherein the first-state reference speech model includes a
first Hidden Markov Model (HMM) including multiple
first kernels, the first parameters including first-kernel
parameters of the first kernels, and

wherein the second-state reference speech model includes
a second HMM including multiple second kernels, the
second parameters including second-kernel parameters
of the second kernels.

44. The method according to claim 43, wherein the first
kernels and second kernels are (Gaussian, and wherein T
includes:

an athine transformation operating on a mean vector of any
one or more (Gaussian kernels, and
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a quadratic transformation operating on a covariance
matrix of any one or more Gaussian kernels.

45. The method according to claim 41,

wherein the first-state reference speech model includes
multiple first reference frames, the first parameters
including first-reference-frame features of the first rei-
erence frames, and

wherein the second-state reference speech model includes
multiple second reference frames, the second param-
cters including second-reference-frame features of the
second reference frames.

46. The method according to claim 35,

wherein the reference first-state speech samples were
uttered by a first subset of R other subjects,

wherein the reference second-state speech samples were
uttered by a second subset of the other subjects, and
wherein obtaining the reference discriminator comprises:
identifying respective transformations {T,}, r=1 ... R,
for the other subjects, T, being, for each r’” one of the
other subjects, a normalizing transformation that
optimally transforms {® } under one or more pre-
defined constraints, {®,} being a union of (i) those
of the reference first-state speech samples uttered by
the other subject and (1) those of the reference
second-state speech samples uttered by the other
subject;
computing modified sets of features by, for each r” one
of the other subjects, applying T, to {V(®,)}; and
generating the reference discriminator from the modi-
fied sets of features.
47. The method according to claim 35,
wherein the first-state reference speech model and the
second-state reference speech model are 1dentical with
respect to a first set of parameters and differ from one
another with respect to a second set of parameters,
wherein generating 0° comprises generating 0° such that
0" is identical to the first-state reference speech model
with respect to the second set of parameters, and
wherein generating 0" comprises generating 0" such that
0' is identical to 0° with respect to the first set of
parameters and identical to the second-state reference
speech model with respect to the second set of param-
cters.
48. The method according to claim 47,
wherein the first-state reference speech model and the
second-state reference speech model include different
respective Hidden Markov Models (HMMs), each
including multiple kernels having respective kernel
weights,
wherein the first set of parameters includes the kernel
weights, and
wherein the second set of parameters includes kernel-
parameters of the kemels.
49. The method according to claim 28,
wherein the at least one reference discriminator includes
a reference neural network associated with multiple
parameters, which returns, for any one or more test
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speech samples, an output indicating a likelihood of the
test speech samples having been uttered in the second
state, and

wherein adapting the reference discriminator comprises

tuning only a subset of the parameters so as to minimize
an error of the output for a set of input speech samples
that includes {u, °}.

50. The method according to claim 49, wherein the
parameters include a plurality of neuronal weights, and
wherein the subset of the parameters includes a subset of the
weights.

51. The method according to claim 50, wherein the
reference neural network includes multiple layers, and
wherein the subset of the weights imncludes at least some of
the weights associated with one of the layers but does not
include any of the weights associated with another one of the
layers.

52. The method according to claim 51,

wherein the layers include (1) one or more acoustic layers

of neurons, which generate an acoustic-layer output 1n
response to an input based on the test speech samples,
(11) one or more phonetic layers of neurons, which
generate a phonetic-layer output in response to the
acoustic-layer output, and (111) one or more discrimi-
native layers of neurons, which generate the output in
response to the phonetic-layer output, and

wherein the subset of the weights includes at least some

of the weights associated with the acoustic layers and
the discriminative layers but does not include any of the
welghts associated with the phonetic layers.

53. The method according to claim 49, wherein the subset
of the parameters includes a speaker-identifying parameter
identifying a speaker of the test speech samples.

54. The method according to claim 49, wherein the set of
input speech samples further includes one or more 1put
second-state speech samples.

55. A computer software product comprising a tangible
non-transitory computer-readable medium in which pro-
gram 1nstructions are stored, which instructions, when read
by a processor, cause the processor to:

recetve a plurality of subject-uttered speech samples

fu °!, m=1 ... M, which were uttered by a subject
while 1n a first state with respect to a disease,
obtaining at least one reference discriminator that was
trained, using multiple reference first-state speech
samples uttered 1n the first state and multiple reference
second-state speech samples uttered in a second state
with respect to the disease, to discriminate between
first-state utterances uttered in the first state and sec-
ond-state utterances uttered 1n the second state,
wherein each of the reference first-state speech samples
and reference second-state speech samples was not
uttered by the subject, and
using {u_°}, even without using any other speech samples
uttered by the subject while 1n the second state, adapt-
ing the at least one reference discriminator to the
subject.
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