12 United States Patent

Benton et al.

US011416222B2

US 11,416,222 B2
Aug. 16, 2022

(10) Patent No.:
45) Date of Patent:

(54) DETERMINING VALIDITY OF MULTIPART
BRANCHING LITERATE PROGRAMS

(71) Applicant: Red Hat, Inc., Raleigh, NC (US)

(72) Inventors: William Benton, Madison, WI (US);
Sophie Watson, Toronto (CA)

(73) Assignee: Red Hat, Inc., Raleigh, NC (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 16/551,024

(22) Filed: Aug. 26, 2019
(65) Prior Publication Data
US 2021/0064348 Al Mar. 4, 2021
(51) Int. CL
GO6l’ 8/33 (2018.01)
GO6l’ 8/10 (2018.01)
GO6l’ 11/36 (2006.01)
(52) U.S. CL
CPC ..o Go6l’ 8/33 (2013.01); GO6GF 8/10

(2013.01); GoO6F 113604 (2013.01); GO6F
11/3636 (2013.01); GO6F 11/3664 (2013.01)

9,152,297 B2* 10/2015 Sokolsky GOO6F 3/04817
2009/0193398 Al* 7/2009 Mitchell GO6F 8/73
717/137

2010/0023928 Al* 1/2010 Hentschel GOO6F 11/3604
717/124

2014/0304036 Al* 10/2014 Sjoblom G06Q 30/0269
705/7.32

2017/0083626 Al* 3/2017 Kensel GO6N 20/00
2018/0150378 Al* 5/2018 Gopalswamy GO6F 8/35

FOREIGN PATENT DOCUMENTS

WO 2018226888 2/2019

OTHER PUBLICATIONS

Le1 Shi et al., “Contract Visualisation: Sketches for Generic Inter-
faces”, University Scholars Program, National University of Sin-
gapore, 2017, 12 pages.

(Continued)

Primary Examiner — Lewis A Bullock, Jr.

Assistant Examiner — Theodore E Hebert
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

Implementations for verifying validity of a literate program-

ming document are described. An example method may
include accessing a first module of a plurality of modules of

(58) Field of Classification Search
CPC GO6F 8/33; GO6F 8/10
USPC e 717/113

See application file for complete search history.

a literate programming document, wherein the plurality of
modules are organized as a directed graph, identiiying a first
contract associated with the first module, wherein the first
contract specifies a first set of input criteria to be satisfied by
one or more first input provided to the first module and a first
set of output criteria to be satisfied by one or more first
output generated by the first module, and determining
whether the one or more {irst output satisfies the first set of
output criteria when the one or more first input satisfies the

(56) References Cited
U.S. PATENT DOCUMENTS

7,860,815 B1* 12/2010 Tangirala GO6N 5/02 : o
706/45 first set of 1nput criteria.
7.984,383 B2* 7/2011 Schell GO6F 9/451
715/771 20 Claims, 5 Drawing Sheets
dﬂﬂ?
' ™

MMD

Receive a lirst module of a pluratity of modules of a
iterate programming document, wherein the plurality
of modules are organized as a directed graph

l 420
-
Generate a first contract associated with the first
module in view of the first module and additional
moduies connected to the first modute within the
directed graph, wherein the first contract apecifies a
first set of input criteria associated with the first
maduie and a first set of output criteria associated
with the first moduie;

;

Determine whether one or more first output
generated by the first module satisfies the first set of
output crileria when one or more first input provided

to the first module satisfies the first set of input
criteria

' g

Frovide an indication that the first module satisfies a
validity test upon determination that the one or more
first output satisfies the first set of output criteria
when the one or more first input satisfies the first set
of input criteria

US 11,416,222 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Interactive and Reactive Data Science using Scala and Spark™,

GitHub 2019, 4 pages http://spark-notebook/spark-notebook.

Michael D. Kickmeier-Rust et al., “Immersive Digital Games: The
Interfaces for Next-Generation E-Leaming?”, Dept. of Psychology,
University of Graz, 2007, 10 pages.

* cited by examiner

US 11,416,222 B2

Sheet 1 of 5

Aug. 16, 2022

U.S. Patent

R R R R R R R R R G L N R G G R R G R R R R R R R R G G G R R G G R G G R R G G R R G R R G g g gy R R L L R S L R R G R R R R R R R G R R R G G G R G G W G G G R G G R R R G G G G R GG g agage age R R R R R R R R R R L R R G G R R G R R R R R R R R R R G R R G G R G G R R G G G R M R R G g g gy

081 Nuald 041 Z uayD | 007 LwueuD S —

1T jesmoig TZT 1osmoug | | TOT sosmoug | 901 auibuz
s | _ m uoieuswajdu]

B e e s 7 Giiaasasssssssnnssasse | | |
iiii...iiﬁi.%...iz; TR 4 | | BuiwuwieiBoid aesey]

Ty . S y OF1 usuodwod

Buijoday

20T MHOMLIN

m ocl
ISx0/YD J0BsU0D

AR SR S SU S S SN SU T S U U T S S U SA S S U S SU S S S SU S S S M S SN S M U SN S S S UM T S S S S Sa S S g

BGI N usuwmnoog

..

...
..
111
...

[SN ||| seynuep) oeHUOD

.,,,,”"__mE_aamEpumbcmu 0ol LTI

ad .mmmmmmmmmmmmmm::m::m::m:m:m:m:m::mmmm | “ ON—\
EGT © juawno0Q i OI3pON N JOBHUO e

PSR T S SR e

& o e _

chi

auibug ydein

Y GO1 auibug mco.zmm.___mm_\w
- R a #om‘._EoO Duiiieibold ajeisn

Gl

_ W.”“mq_”.,._ﬂ”._”.n_”.,._ﬂ”.m”.m”.mﬁﬁ”.m”.w.m”.m,.m”.w.m”.m”.m”.w.m”.m” _____ | e 10T (shisoH
" i E m 101 (s)isoH

N

WD

w:-'-'

N

s :
o

O :
E A
=

Q

®

D 4

e,

Vit

PR S UP U SR SR U BRSSP UR SR P RPN RPN SR P NP S R NP S B S B S T S S S T S U S S S i T Y R T R R R - R T R R T T R N T R HNN RN IR ERNE IR TN EENE T R T T EE R
e i

1S | juswinoog w””__”_””-m-__ il V 10ERUCD

S SR S SR SR S SO A e

_ e S s e] 067
0G4 ;mS M_”_v_wémﬂmm. ._ -
enday | T Aiojisoday
Atonsoday SIOBION 001

SNPO usmjuey +

US 11,416,222 B2

Sheet 2 of §

Aug. 16, 2022

U.S. Patent

210

m a2 4 a2 4 a2 4 & 4 & 4 2 4 B N4 & 4 B2 4 B N4 2 4 B2 4 A N 2 N B2 4 A N 2 N B2 4 =2 N & N &2 4 = § a2 3
l”'l.Il.'l.'l.'l.‘l.‘l.ll.‘l.‘l.ll.‘l.‘l.ll.‘ 'l.l 'l.‘ Il.' 'l.l 'l.‘ Il.' 'l.l L e

Common
Preamble

R]

221

220

231

a'alaialalalalalalalalal Al alal Al a el Al a e Al e Al
.-.I”I.r.r.r.-..rl.r.r.r.r.-..rl.r.-..rl.r.-..rl.r.-..rl.r.rtl.r.r.rlt.rtl.r.r.rl.r.r.r.r.-.'.r‘_

ion 2
B

que

«
®
2
=

)

Techn
implementat
Techn

vas

1
1

*

B
ion

x
T e e e

ique

Techn
Implementat
253
lque

»

LA TR S

Techn
Implementat

; .
L U e L e e e e e e r LT L e e e e
.Tl..Tl..Tl..Tl..Tl..Tl..T...Tl..rL . 11..'..*1..'1..'..* .Tl..T...Tl..TI..T...TI..TI..TI..TI.
TR T R T R T R R L R R T R R R R R R R R L T T T T T T T T T T R T T R T R R R R R R

[
[
[
[
[
[]
[
[
[
[]
[
[]
[
[
[
[]
[
[
[]
[
¥

230

FIG. 2

U.S. Patent Aug. 16, 2022 Sheet 3 of 5 US 11,416,222 B2

3001

10

Accessing a first module of a plurality of modules of
a literate programming document, wherein the
piurality of modules are organized as a directed

graph

320

l[dentifying a first contract associated with the first
module, wherein the first contract specifies a first set
of input criteria to be satisfied by one or more first

input provided to the first module and a first set of
output criteria to be satisfied by one or more first
output generated by the first module;

330

Determining whether the one or more first output
satisfies the first set of output criteria when the one
or more first input satisfies the first set of input
criteria

FIG. 3

U.S. Patent Aug. 16, 2022 Sheet 4 of 5 US 11,416,222 B2

400 2*

Receive a first module of a plurality of modules of a
\literate programming document, wherein the plurality
| of modules are organized as a directed graph

| modules connected fo the first module within the
| directed graph, wherein the first contract specifies a
first set of input criteria associated with the first
| module and a first set of output criteria associated
' with the first module;

| Determine whether one or more first output

| generated by the first module satisfies the first set of

output criteria when one or more first input provided

| to the first module satisfies the first set of input
criteria

| Provide an indication that the first module satisfies a
| validity test upon determination that the one or more
first output satisfies the first set of output criteria

| when the one or more first input satisfies the first set

FIG. 4

U.S. Patent Aug. 16, 2022 Sheet 5 of 5 US 11,416,222 B2

PROCESSING / £10
DEVICE ' Lo

INSTRUCTIONS || e > VIDECE} E:?PLAY

Literate
Programming

Val?dration 526 oo A
Engine 105

V4 : ALPHA-NUMERIC
VOLATILE MEMORY INPUT DEVICE

Programiming

Validation | N
Engine 105 \\ 526 CURSOR

N | : o CONTROL
P 506 DEVICE

NON-VOLATILE / 10
MEMORY 'DATA STORAGE DEVICE

- [COMPUTER-READABLE

_____________________ - - STORAGE MED'UM

P N

NETWORK T -
WTERFACE e - '|NSTRUCT|ONS L4 524

DEVICE

Literate |
Programming

Validation _ 526
ngine 105 /

SIGNAL 930
» GENERATION
DEVICE

NETWORK

e
e e N e o s s R

FIG. 5

US 11,416,222 B2

1

DETERMINING VALIDITY OF MULTIPART
BRANCHING LITERATE PROGRAMS

TECHNICAL FIELD

The disclosure 1s generally related to literate program-

ming, and more particularly, to determining validity of
multipart branching literate programming documents.

BACKGROUND

Literate programming 1s a programming paradigm in
which an explanation for a computer program 1s given with
regards to the program logic in a natural language, such as
English, along with snippets of macros and traditional
source code, from which a compilable source code can be
generated. In a literate programming environment, an author
can write sections of 1nstructional content with each section
devoted to a particular area or sub area of a programming
concept. Each section can contain a subsection for a sub-
section for a source code, a natural language explanatory
narration with regards to the source code, and visualization
of the output from running the source code.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure 1s 1llustrated by way of examples, and not
by way of limitation, and may be more fully understood with
references to the following detailed description when con-
sidered 1n connection with the figures, 1n which:

FIG. 1 depicts a high-level block diagram of an example
computer system architecture, in accordance with one or
more aspects of the disclosure;

FIG. 2 depicts an example of a literate programming
document directed graph, according to one or more aspects
of the disclosure;

FIG. 3 depicts a flow diagram of an example method for
determining whether the output criteria for a module of
literate programming document 1s satisfied, 1n accordance
with one or more aspects of the disclosure;

FIG. 4 depicts a flow diagram of an example method for
generating a contract to determine validity of a module of a
literate programming document, in accordance with one or
more aspects of the disclosure;

FIG. 5 depicts a block diagram of an 1llustrative comput-
ing device operating in accordance with the examples of the
disclosure.

DETAILED DESCRIPTION

Described herein 1s a system for determining validity of a
literate programming document. Literate programming
environments allow for interactive tutonials for teaching and
demonstrating programming concepts, programming lan-
guages, computing techniques, etc. Typically, the tutonals
can consist of multiple documents presented 1n a sequential
order. Literate programming environments can be used to
explain a programming concept to a user, provide sequence
of source codes associated with the concept, let the user
execute the sequence of source codes, and provide visual-
ization ol the output generated by executing the source
codes so the user can understand the effect of executing the
source codes. The user can interact with a literate program-
ming document (also referred to herein as a “document”™ and
“notebook™) by changing supplied input values and/or mak-
ing changes to the source code. A literate programming
document can be directed towards a particular programming

10

15

20

25

30

35

40

45

50

55

60

65

2

concept that includes multiple sections. For example, a
literate programming document may involve a data structure
programming concept, specifically a “priority heap.” In one
example, one section of the concept may involve interface
functions for the priority heap, another section of the may
involve representation of the priority heap, etc. As such, a
literate programming document can include multiple mod-
ules, each module of the multiple modules directed towards
cach section of the programming concept covered by the
document. In some scenarios, the sections of the program-
ming concept may be presented in a particular order, for
example, to develop understanding of the concept, satisly
dependency requirements, etc.

Conventionally, a literate programming document 1s
designed 1n a linear manner. The modules of a document are
generally presented serially, one after another, to cover the
various sections of a particular concept. Some sections can
contain concepts that can be implemented in more than one
way. In some examples, the different ways of implementa-
tions are presented one after another. However, 1t can be
diflicult to enable users to truly understand the concept from
start to fimsh when the various implementation options are
presented 1n a linear manner. The user 1s not usually given
an option to choose one of the implementations to leam.
When the user learns all the different implementation
options before moving on to the next section of the concept,
the user can miss to make the connection between one
section to another section. In some examples, the user may
be only presented with one particular way of implementation
even when multiple ways exist, regardless of user’s skillset,
strength, preference or interest. In that case, user does not
learn other ways to implement the concept 1n that section.

In addition, the different ways of implementation can
generate different results, and as such the sections cannot be
presented cohesively 1n the document because the document
cannot 1ntegrate outputs from one section and use them as
input into another section. For example, output of a first
section using a first way of implementation can be different
from the output of the same first section using a second way
of implementation. The subsequent, second section, has to
be able to receive the output of the first section as the mnput
of the second section. However, 11 the output varies based on
selected implementation, then the second section may not be
able to accept the output due to incompatibility. Thus, with
varying implementations, 1t may not be possible to design
integrated modules that can utilize outputs from the previous
module. As a result, the sections of a programming concept
can seem disconnected and user can have a difficult time
understanding how to implement a programming concept
from beginning to end.

Aspects of the disclosure address the above and other
deficiencies by providing technology that allows for orga-
nizing modules of a literate programming document as
branching content. The branching contents can allow the
user to select a module that 1s one of the multiple ways of
implementation for a section of the programming concept,
and after finishing the module, the user can proceed to a
module covering a subsequent section of the programming
concept. The modules can be organized as a directed graph
of modules. The technology can identily a contract associ-
ated with each module that specifies a set of input criteria
and a set of output criteria for the module. The mput criteria
describes the type of mput that the module can accept and
output criteria describes the type of output that the module
generates. Input and output criteria in the contract can be
specified 1n view of preceding and subsequent modules,
respectively. The technology then determines whether for all

US 11,416,222 B2

3

possible executions of the module an output generated by
the module satisfies the output criteria when an mput pro-
vided to the module satisfies the mput criteria. If 1t 1s
determined that the output criteria 1s satisfied when 1nput
criteria 1s satisfied, then an indication 1s provided that the
module 1s valid. The technology can also determine that
output from a preceding module satisfies the input criteria of
the current module and that output from the current module
satisiies the mput criteria of the subsequent module specified
in a contract corresponding to the subsequent module.

As such, the systems and methods described herein
include technology that enhances utilization of computing
resources, such as processor usage and memory usage, for a
computer system. In particular, aspects of the disclosure
provide technology directed to a validation engine that
enhances the efliciency and/or performance of a computing
system by ensuring that the modules of a literate program-
ming document are valid prior to or during execution of the
document. This may enhance the efliciency and performance
of the computer system by reducing processor usage and
improving network bandwidth, for example, associated with
attempting to execute a literate programming document that
1s invalid and fails to be executed. The security and com-
posability afforded by the validation engine 1s advantageous
for robustness of the computer system, reduced impact of
human errors and machine errors in development of the
documents, reduced chance of components of the document
breaking when there 1s a modification associated with the
documents, reduced human effort in error-checking the
documents, and improved reproducibility of the documents
and associated source codes.

Various aspects of the above referenced methods and
systems are described in details herein below by way of
examples, rather than by way of limitation.

FIG. 1 1s a block diagram of a network architecture 100
in which implementations of the disclosure may operate. In
some 1implementations, the network architecture 100 may be
used to implement a literate programming validation engine
in accordance with implementations of the disclosure. The
literate programming validation engine can support one or
more of a graph engine, a contract generator, a contract
identifier, a contract checker, and a reporting component 1n
a distributed system implemented using network architec-
ture 100.

In one mmplementation, the network architecture 100
includes one or more hosts 101 communicably coupled via
a network 102 to a data store 103, and one or more clients
160-180. Hosts 101 may be a single host machine or
multiple host machines arranged in a heterogeneous or
homogenous group (e.g., cluster) and may include one or
more rack mounted servers, workstations, desktop comput-
ers, notebook computers, tablet computers, mobile phones,
palm-sized computing devices, personal digital assistants
(PDASs), etc. In one example, hosts 101 may be a computing
device implemented with x86 hardware. In another example,
computer system 100 may be a computing device imple-
mented with PowerPC®, SPARC®, or other hardware.
Hosts 101 may be part of a dedicated server, a data center,
a cloud computing environment, a continuous integration
and deployment pipeline (CI-CD), etc. In the example
shown 1 FIG. 1, hosts 101 may include various compo-
nents, including but not limited to, a literate programming,
validation engine 105 and a literate programming imple-
mentation engine 106. Literate programming validation
engine 103 and literate programming implementation engine
106 may be hosted on the same host machine or separate
host machine of hosts 101.

10

15

20

25

30

35

40

45

50

55

60

65

4

The network 102 may be may be a private network (e.g.,
a local area network (LAN), a wide area network (WAN),
intranet, or other similar private networks) or a public
network (e.g., the Internet). The network 102 can include
any number of intermediate computing devices and network
elements between the hosts 101, data store 103, and/or
clients 160-180. The network 102 can include any number or
combination of wired and wireless communication mediums
between the nodes 1n the network.

Literate programming validation engine 105 and literate
programming implementation engine 106 may use data from
or store data and/or instructions to data store 103. Data store
103 may include any non-persistent data storage (e.g.,
memory), persistent data storage (e.g., flash storage, hard
drive, tape), other medium, or combination thereof that 1s
capable of storing instructions for carrying out the opera-
tions ol the components and modules discussed herein. Data
store 103 may include various data and repositories, includ-
ing but not limited to, sample mput 104, content module
repository 150, contracts repository 190, module to contract
mapping 195, etc. Data store 103 may be divided into
multiple data stores that each store diflerent types of data
and/or repositories described herein.

Client computer systems, such as clients 160, 170 and
180, may be connected to hosts 101 via network 102. Each
client 160, 170, 180 may be a mobile device, a PDA, a
laptop, a desktop computer, a tablet computing device, a
server device, or any other computing device. In some
implementations, users can interact with literate program-
ming documents (e.g., documents 151-159) executed by
literate programming implementation engine 106 using one
or more of clients 160, 170, and 180 via corresponding web
browser applications 161, 171 and 181. For example, a user
can access document 152 via browser 161 using client 160.
The user can interact with the document 152, such as, read
explanatory narration, execute source code, receive visual-
ization ol the output, make modifications to mmput and/or
source code, etc. Literate programming implementation
engine 106 may receive the interaction and execute the
document 152. In other implementations, the documents
may be hosted and executed directly on hosts 101.

Literate programming validation engine (also referred
herein as “validation engine”) 105 may be used to ensure
validity of modules of a literate programming document.
Validation engine may be used to guarantee the quality and
correctness of a tutorial presented via the literate program-
ming document by validating input and output interfaces of
cach of the individual modules 1n 1solation. Validation
engine 105 may include various components, such as, a
graph engine 110, a contract generator 120, a contract
identifier 125, a contract checker 130, and a reporting
component 140. More or less components may be included
without loss of generality. For example, two or more of the
components or portions of the components may be com-
bined mto a single component, or one of the components
may be divided into two or more sub-components. In one
implementation, one or more of the components or sub-
components may be executed by different processing
devices on different computing devices (e.g., different host
machines).

The graph engine 110 may generate a directed graph of a
plurality of modules of a literate programming document.
The contract generator 120 may generate a contract associ-
ated with each module to specily a set of iput criteria and
a set of output criteria for the module. The contract identifier
125 may identify the contract that 1s associated with a
particular module. The contract checker 130 may determine

US 11,416,222 B2

S

whether an output generated by the module satisfies the
output criteria when an input provided to the module satis-
fies the input criternia. The reporting component 140 may be
used to indicate the results of running the contract checker,
such as, the module 1s valid or not valid. Hosts 101 may also
include literate programming implementation engine (also
referred herein as the “implementation engine”) 106. As
discussed previously, implementation engine 106 may ren-
der and execute the literate programming document(s) that
are presented via the browsers.

In one implementation, data store 103 may include a
content module repository 150 that stores literate program-
ming documents (e.g., document 1 through document N). A
literate programming document can include instructional
content related to a programming concept and describe
various programming logic under the programming concept.
In an example, the literate programming document can
represent a tutorial. The document can be divided into
multiple modules that each cover a smaller unit, such as, a
section covering one technique, within a larger topic of the
programming concept. In some examples, a module 1itself
can be a distinct document. As such, a literate programming
document can comprise of multiple documents within 1tself.
The modules can individually or in combination include
source code for the unit covered in the module, natural
language (e.g., English) explanatory narration, for example,
related to the source code, visualization of the execution of
the source code, mput values or path to mput files, etc. The
source code may be compilable. The module can be
executed, for example, by using browsers 161-181. In some
examples, the modules can be interactive, that 1s, a user can
change an input value or update the source code 1n a module
using the browser and execute the module.

In some implementations, a developer may create the
document (e.g., document 151-159). In some examples, a
human user 1s the developer who may design the document
and manually write various portions of the documents,
including deciding how each module 1s divided. In some
examples, the document may be created automatically (e.g.,
without any user interaction) by a developer that 1s a
computer software. For example, the document can be
generated using source code and description from an exist-
ing soitware program, using machine learning algorithms,
etc. The document, including the various modules, can be
stored 1n data store 103.

In some 1mplementations, the notebook (e.g., literate
programming document) may contain various implementa-
tions of a single technique 1ncluded 1n the document. Each
module can include a different implementation of the tech-
nique. In this manner, a user can choose to examine and
execute a single module to learn one implementation of a
technique and skip the other modules covering the other
implementations of the same technique. The modules of the
document can be organized as branching content. In one
example, the branching content can be structured using a
directed graph of modules. The directed graph of modules 1s
made up of a set of vertices (e.g., nodes) connected by edges,
where the edges have a direction associated with them. Each
node, or vertex, of the directed graph can represent a
module, and the edges point to the direction of the subse-
quent module. In the flow of a document covering a larger
concept that includes multiple techniques (e.g., smaller units
or sections), the techniques can be presented using a par-
ticular order of the techniques that the developer defines. At
certain points in the tlow of the document, the content of
document may be presented with branches when there 1s a
technique with multiple implementations. Each implemen-

10

15

20

25

30

35

40

45

50

55

60

65

6

tation of the techmique 1s represented 1 a node of the
directed graph, and 1s connected by an edge within the graph
from the previous one or more modules representing the
previous technique. The modules are also connected by
edges to one or more modules of the subsequent techmique.
The direction of the edges indicate the order of the tech-
niques. An edge 1s pointed from a module of a previous
technique to the direction of a module of the next technique.
The branches of the graph diverge when there are multiple
modules representing multiple implementations of a tech-
nique, where selecting a given choice of the implementation
restricts the spaces of choices made in the rest of the
document. The branches of the graph converge when mul-
tiple implementations lead to one module of a technique,
where a selection point represents multiple independent
ways ol achieving a result that would be used by a common
remainder of the document. FIG. 1 depicts a directed graph
112 of multiple modules (e.g., modules 114, 115, etc.) that
are mcluded 1n document 152. A more detailed example 1s
depicted 1n FIG. 2, as described below.

FIG. 2 depicts an example of a literate programming,
document directed graph 200, according to one or more
aspects of the disclosure. The directed graph 200 1s made up
of modules 210 through 240. The modules 210-240 repre-
sents the nodes of graph 200. The nodes (e.g., the modules
210-240) are connected by edges 251 through 258. Each
edge has a direction. For example, edge 251 has a direction
from module 210 to module 220, indicating that module 220
1s the subsequent module after module 210. In an example,
module 210 covers a common preamble of a programing
concept described in the document. The common preamble
may include an introduction to the upcoming stages, such as,
an overview ol the subject area, any source code to generate
data for use in the subsequent modules, any code to clean
any existing data, etc. The graph 200 diverges after module
210 1n two branches through edge 251 and edge 252. After
covering the common preamble 1 module 210, the pro-
gramming concept covers a technique A, which can be
implemented 1n two different ways, implementation 1 and
implementation 2. Module 220 includes implementation 1 of
technique A and module 221 includes implementation 2 of
technique A. One or more output generated from module
210 1s used to provide one or more input of module 220 as
well as module 221. As such, module 220 and module 221
both have to be able to accept the output generated from
module 210.

Similarly, after technique A, the concept covers a tech-
nique B, which can also be implemented 1n two different
ways, implementation 1 and implementation 2. Module 230
includes implementation 1 of technique B and module 231
includes implementation 2 of technique B. Module 220,
which covers implementation 1 of technique A, 1s connected
by edge 2353 and edge 254 to the two subsequent modules
230 and 231. Szmilarly, module 221, which covers imple-
mentation 2 of technique A, 1s connected by edge 255 and
edge 256 to the two subsequent modules 230 and 231. The
direction of edges 253-256 from technique A to technique B
indicate that the modules covering technique B are the
subsequent modules after those covering technique A. After
technique B, the concept converges mto a common module
240, connected via edges 257 and 238. The common module
may include content relevant to all techniques implemented
n prewous modules. Common modules can be used when
there 1s only one implementation or workilow 1dentified for
that specific step of the concept. The common module 240
has to be able to accept the output(s) generated by any of its
preceding modules 230 and 231. In some 1mplementations,

US 11,416,222 B2

7

cach module may include fields to i1dentify one or more
preceding module and/or one or more subsequent modules.
In some implementations, a particular order of the modules
may be identified in the data store 103.

In a first 1llustrative example, a literate programming 5
document may cover a topic 1n data structure. The particular
concept being covered by the modules of directed graph 200
maybe on “priority heap.” The document may include
content to simulate a cotfee shop. The common preamble 1n
module 210 may i1nclude content related to data generation 10
or loading, source code for processing the data and deter-
mimng the priority of each item 1in the priority heap, eftc.
Technique A may be directed towards a function for map-
ping from particular values to priorities. Technique A can be
implemented i several ways. Examples of various imple- 15
mentations of the function can include:

Module 220: Implementation 1: assume Customer values
(arrival time, job size)—arrival time.

Module 221: Implementation 2: assume Customer values
(arrival time, job size)—job size. 20
Module 222 (not shown): Implementation 3: assume

Customer values (arrival time, job size)—1nverse job size.

Technique B may be directed towards representing the
priority heap, and can be implemented 1n several ways.
Examples of various implementations of the technique can 25
include:

Module 230: Implementation 1: represent as a tree.

Module 231: Implementation 2: represent as an array.

The common module 240 may take any example from
technique A and any example from technique B and lets the 30
user interact with a heap to evaluate how it performs for
given tasks. For example, 11 the document covers modeling
queueing policies for a coflee shop, the user can experiment
with the policy module to answer questions, such as, does 1t
make sense to serve the shortest jobs first (e.g., to let a filter 35
collee order go ahead of several elaborate espresso drink
orders 1n the queue), does the collee shop work better 11 there
1s a notion of fairness (e.g., might some orders have to wait
indefinitely), does 1t make sense to preempt long-running
orders to allow others to the front of the line, etc. The 40
different policies for scheduling orders are technique A.
Other questions that could be explored and answered 1n the
common modules: what 1s the relative performance of a data
structure and policy combination developed 1n the course of
a user’s (e.g., student’s) experience of the document (e.g., 45
tutorial), which representation performs better when the
collee shop 1s able to serve customers with a bounded
number of customers 1n the queue, which one performs
better 1f the number of customers 1s allowed to grow without
bound, etc. The different representations are technique B. As 50
such, for example, after module 210 (common preamble),
the graph diverges into two branches and the user can select
one of the two modules 220 and 221. The user can select
module 221 (implementation 2 of technique A), and after
finishing the module, the graph diverges again into two 55
branches (module 230 and 231) and user can select module
230 (implementation 1 of technique B). After finishing the
module, user can proceed to the common module 240. User
can skip module 220 and 231 and still be able to fimish the
priority heap concept from beginning to end, learning at 60
least some of the tradeofls and details involved in the
techniques used for the concept.

In a second illustrative example, a literate programming,
document may cover a topic in machine learning. The
document may include content for spam detection using 65
machine learning. The common preamble in module 210
may include content related to data generation (e.g., create

8

the raw documents used for the remainder of the modules),
data visualization code (e.g., visual representation of the
documents simulated by the data generator, model evalua-
tion code (e.g., baseline model for spam detection and
methods for evaluating how good a model 1s), etc. Technique
A may be directed towards feature engineering, which can
transform the raw documents into an input which can be
used as input for machine learning models. Technique A can
be mmplemented 1n several ways. Examples of various
implementations of the function can include: Module 220:
Implementation 1: general summaries of the raw documents
such as: number of words, average word length, pieces of
punctuation, length of longest word, length of shortest word,
ctc.; Module 221: Implementation 2: TF-idf (Term {fre-
quency-inverse document Irequency): a numeric vector
capturing how important words are within the documents.

Technique B may be directed towards modelling, which 1s
training the model which classifies the raw document. Tech-
nique B can be implemented 1n several ways. Examples of
various implementations of the technique can include:

Module 230: Implementation 1: Random Forest model.

Module 231: Implementation 2: Logistic regression
model.

The common module 240 may include data drift 1denti-
fication, deployment of the model generated through tech-
nique B to a production environment, etc.

Returning to FIG. 1, validity engine 105 can be used to
determine validity of the literate programming documents
(e.g., document 152). Particularly, validity engine 105 can
determine validity of the modules included 1n the directed
graph of the modules. In some implementation, the directed
graph of the modules may be created by the developer by
indicating the nodes and edges of the graph and connecting
the modules by indicating the subsequent module. In some
implementation, the graph engine 110 may generate the
directed graph of a plurality of modules of a literate pro-
gramming document. In some example, the developer can
enter the relationships between the modules into a user
interface and the graph engine may generate a directed graph
of the modules using the relationships.

In one implementation, data store 103 may include a
contracts repository 190 that stores interface contracts (e.g.,
contract A through contract N) for each of the modules of the
directed graph 1dentified in the content module repository
150. Fach contract specifies a criteria for valid mput and
output of the module. That 1s, the contract specifies a set of
input criteria to be satisfied by one or more 1nput provided
to the corresponding module and a set of output criteria to
be satisfied by one or more output generated by the corre-
sponding module.

The contract may specily the mput the module can
consume and the output the module can return or provide. In
an example, the content of a contract may specily, 1mn a
machine readable equivalent language, that: “this module
consumes a file containing records consisting of an unsigned
integer that uniquely 1dentifies the record, a boolean label,
and a 64-clement vector of floating-point numbers. It returns
a serialized function mapping from 64-clement vectors of
floating-point numbers to boolean-valued predictions.” In
another example, a contract may specily: “this module
consumes a text file and a list of string labels. It returns a file
containing records consisting of an unsigned integer that
unmiquely 1dentifies the record, a boolean label, and a 64-¢l-
ement vector ol floating-point numbers.” In yet another
example, the contract may specily: “this module consumes
a large record-oriented file, a function to generate a key (of
arbitrary type) given a record, and a function that compares

US 11,416,222 B2

9

two keys (of the same type as the first function) and returns
true 1t the first key 1s less than or equal to the second under
some ordering. It produces a record-oriented file consisting
of the same records as the first file, but ordered so that the
keys generated from each record by the first function are in
increasing order given the ordering implemented in the
second function.”

For example, for the first illustrative example depicted in
FIG. 2 of the priority heap, a corresponding contract for a
module can specily an output criteria to be: “returns a
structure that has three operations: put(priority, oby), take()
and size(), such that put increases size by one, take returns
the element with the highest priority and reduces the size by
one, etc.” It should be noted that the foregoing are examples
tor 1llustrative purposes only, and the actual content of the
contracts may difler, such as, 1n format, language, etc. For
the second 1llustrative example depicted in FIG. 2 of the
spam detection, a contract for technique A (e.g., modules
220 and 221) may specily an input criteria to include “a
pandas data frame, where each row has a column labelled
“text”, indicating the location of the text from the documents
and a label stating ‘spam’ or ‘legitimate.””” For the technique
B, contracts for each of the two implementations (e.g.,
module 230 and 231) may specily an input criteria to
include: “a pandas data frame, with each row contaiming a
vector of floating point numbers, as well as a label stating
‘spam’ or ‘legitimate.”” For the common module 240, the
contract may specily the mput criteria to include ““a serial-
1zed model which takes in text strings (documents) and
returns a prediction of ‘spam’ or ‘legitimate.””

The scope of the interface contracts may vary. Examples
of kinds of content in the contracts may include, but not be
limited to, static type annotations (with first-order types,
structures, arrays, etc.), parametric type annotations (with
higher-order types whose constituents are parameterized on
other types), dependent type annotations (in which types
may be parameterized either on other types or on expres-
s10ons 1n a host language), dynamically-evaluated assertions,
unit tests, property-based tests, or other functional tests.

In some 1mplementations, a contract developer (e.g., a
human user) can write an interface contract for modules in
the document. In other implementations, contract generator
120 can automatically (e.g., without any human user inter-
action) generate a contract corresponding to a module. In an
example, contract generator 120 can infer a machine read-
able contract from a module of the notebook. The contract
can be inferred 1n various ways. In an example, the contract
can be automatically (e.g., without any user interaction)
inferred from the source code included 1n each module. For
example, if a and b are both integers defined within the
source code, 1t can be inferred that the operation of “a+b”
within the code will also result mto an integer. In some
implementations, the mput criteria for a current module may
be specified based on a preceding module when a preceding,
module exists, such that the output of the preceding module
1s compatible with the input of the current module. In some
implementations, the output criteria for a current module
may be specified based on a subsequent module when a
subsequent module exists, such that the output of the current
module 1s compatible with the mput of the subsequent
module.

In an implementation, contract identifier 125 may identify
a contract associated with a particular module of the directed
graph. The particular module may be the module for which
validity 1s being checked on. As described previously, for
cach module, a corresponding contract may exist. In some
example, the contract identifier 125 may automatically (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

10

without any user interaction) identity the contract corre-
sponding the module using a module to contract mapping
table that includes identifiers of contracts corresponding to
a module. In some example, a module to contract mapping
195 may be stored in data store 103.

In an implementation, contract checker 130 may be used
to automatically (e.g., without any user interaction) deter-
mine validity of the particular module. The contract checker
can access the particular module and analyze the particular
module to vernily the validity of the module 1n view of the
corresponding contract. In an example, the contract checker
130 may determine whether an output generated by the
particular module satisfies the output criteria when an input
provided to the module satisfies the mput criteria. Contract
checker 130 verifies that under all cases, a notebook module
satisfies the output portion (e.g., set of mput criteria) of 1ts
corresponding contract so long as the mput portion (e.g., set
of output criteria) of the contract 1s satisfied. For example,
for the contract specifying that “this module consumes a text
file and a list of string labels; 1t returns a file containing
records consisting of an unsigned integer that uniquely
identifies the record, a boolean label, and a 64-element
vector of floating-point numbers,” the contract checker
determines whether the output criteria (e.g., a file containing
records consisting of an unsigned integer with the specified
criteria) 1s satisiied by the output generated by the particular
module, when the input criteria 1s satisfied (e.g., a text file
and a list of string labels are provided as mput to the
particular module).

In one example, the determination of validity of the output
may be performed automatically (e.g., without any user
interaction) using a prool by exhaustion operation (e.g., an
exhaustive prool search) associated with execution of the
particular module. The proof operation (e.g., a proof search)
may mnvolve working through constraints and quantifiers. As
an example of a constraint, a data structure may comprise a
collection of objects representing collee orders, which pro-
vides a certain minimal interface but impose no restrictions
on its representation. As an example of a quantifier, a given
constraint holds on a polymorphic type for any kind of value
included within 1t (e.g., “this function returns the length of
an order queue given any type of queue”) whether 1t 1s
modeling a collee shop or an assembly line. In an example,
the statement to be proved 1s split up in a finite number of
cases and each type of case 1s checked to see if the
proposition 1 question holds. A proof search for the mod-
ules may mvolve proving that for all possible execution of
the module, 1t the mput criteria 1s met, so 1s the output
criteria, and 1n the alternative, showing that it 1s impossible
to prove 1t for all possible executions.

In another example, the determination of validity of the
output 1s performed automatically (e.g., without any user
interaction) using a set of sample mputs satistying the first
set of 1input criteria. In some scenarios, an exhaustive proof
search may not be feasible, practical, and/or desired. As an
alternative, a trial and error process may be used to verity
whether the output criteria 1s met. A set of sample synthetic
inputs may be obtained from a space of valid imnputs accord-
ing to the mput criteria 1dentified in the contract. In some
examples, a set of sample mput 104 may be stored 1n data
store 103. Using each of the sample inputs, it can be
automatically (e.g., without any user interaction) verified
that the outputs generated using the sample mput are valid
as well, according to the output criteria identified 1n the
contract. In some example, the sample mputs can include a

US 11,416,222 B2

11

library of example valid inputs supplied by a human devel-
oper or a soiftware algorithm (e.g., a machine learning
system) to test the process.

In some implementations, the contract checker 130 may
check the validity of the module 1n view of one or more
subsequent modules. The contract checker 130 may access
the subsequent module(s) of the particular module 1dentified
by the direction of the edges connecting the modules from
the particular module to the subsequent module. The output
of the particular module may be provided as direct 1mput
(e.g., as 15) or indirect input (e.g., aiter processing the output
turther or appending additional content to the output) for the
subsequent module(s). The contract checker 130 may deter-
mine whether the output of the particular module satisties a
set of input criteria specified 1n a contract identified by
contract identifier 125 that corresponds to a subsequent
module.

For example, in the second illustrative example of FIG. 2
involving spam detection, contract checker 130 determines
whether the output of the feature engineering modules of
technique A 1 module 220 (e.g., the particular module) or
module 221 are in the form expected by the two diflerent
implementations of technique B 1n module 230 or 231 (e.g.,
subsequent modules), as specified 1n the corresponding
contracts to be “a pandas data frame, with each row con-
taining a vector of floating point numbers, as well as a label
stating ‘spam’ or ‘legitimate.”” Similarly, contract checker
130 determines whether the output of the modelling modules
(e.g., technique B) 230 and 231 are in the form expected by
the common module 240, as specified in the corresponding
contract to be ““a serialized model which takes 1n text strings
(documents) and returns a prediction of ‘spam’ or ‘legiti-
mate.””

In some implementations, the contract checker 130 may
check the validity of the module 1n view of one or more
preceding modules. The contract checker 130 may access
the preceding module(s) of the particular module 1dentified
by the direction of the edges connecting the modules from
the preceding module to the particular module. The output of
the preceding module may be provided as direct input (e.g.,
as 1s) or indirect input (e.g., aifter processing the output
turther or appending additional content to the output) for the
particular module. The contract checker 130 may determine
whether the output of the preceding module satisfies a set of
input criteria specified in a contract for the particular mod-
ule. For example, 1n the second 1llustrative example of FIG.
2 involving spam detection, contract checker 130 determines
whether the output of the data generator in the common
preamble of module 210 (e.g., a preceding module) 1s 1n the
form which the two different implementations of technique
A 1n module 220 (e.g., the particular module) or module 221
expects, as specified 1n the corresponding contracts to be “a
pandas data frame, where each row has a column labelled
“text”, indicating the location of the text from the documents
and a label stating ‘spam’ or ‘legitimate.’”

In some 1mplementations, the contract checker 130 can
check the validity of the modules after the developer creates
the modules and prior to a user executing the modules. In
some 1mplementations, the contract checker 130 can check
the validity of the modules periodically as part of source
control check-1n or continuous integration.

In some implementations, the contract checker 130 can
check the validity of the modules after recerving a modified
version of the particular module. In an example, a user may
moditly the particular module of the notebook using browser
161, for example, by changing the source code portion of the
interactive module. Validation engine 105 may automati-

10

15

20

25

30

35

40

45

50

55

60

65

12

cally receive the modified version of the particular module.
The contract checker 130 may automatically determine
whether the output generated by the modified version of the
particular module satisfies the output criteria specified 1n the
contract corresponding to the particular module, when the
input provided to the modified version of the particular
module satisfies the mput criteria 1n the contract.

The reporting component 140 may be used to provide
indication of the results of executing the contract checker
130. If the particular module 1s valid, the module may be
released (e.g., made available) to be ready to execute by
users. If the particular module 1s indicated as invalid, the
module may be put on hold from being released to the users
for execution, and/or be provided back to the developer to
implement a fix that can satisiy the validity test. In some
examples, responsive to determining that the output of the
particular module satisfies the set of output criteria when the
input satisfies the input criteria, reporting component 140
may provide an indication that the particular module satis-
fies a validity test. In some examples, responsive to deter-
mining that the output of the particular module does not
satisly the output criteria when the input satisfies the 1nput
criteria, reporting component 140 may provide an indication
that the particular module fails to satisty, or does not satisty,
a validity test. The validity test can include whether the
particular module 1s valid or not valid. Among other factors,
a valid module satisfies input criteria 1in the contract in order
to be able to receive mput from two different preceding
modules and satisfies the output criteria to be able to provide
output to two diflerent subsequent modules. In some
example, the reporting component 140 may include a report-
ing user itertace (Ul) to provide the indication to the user.
The reporting Ul may be used to keep track of the modules
that satisiy the validity test and the modules that do not
satisly the validity test. The reporting Ul may be used to
identify modules that need turther modification to satisty the
validity test and the criteria in the contract.

FIGS. 3 and 4 depict flow diagrams for illustrative
examples of methods 300 and 400 for determining validity
of a literate programming document, 1n accordance with one
or more aspects of the disclosure. Method 300 1llustrates an
example process tlow for determining whether the output
criteria for a module of literate programming document 1s
satisfied, according to at least one implementation. Method
400 1s an example process flow for generating a contract to
determine validity of a module of a literate programming
document, according to at least one implementation.

Methods 300 and 400 may be performed by processing
devices that may comprise hardware (e.g., circuitry, dedi-
cated logic, programmable logic, microcode, etc.), execut-
able code (such as 1s run on a general purpose computer
system or a dedicated machine), or a combination of both.
Methods 300 and 400 and each of their individual functions,
routines, subroutines, or operations may be performed by
one or more processors of the computer device executing the
method. In certain implementations, methods 300 and 400
may each be performed by a single processing thread.
Alternatively, methods 300 and 400 may be performed by
two or more processing threads, each thread executing one
or more 1ndividual functions, routines, subroutines, or
operations of the method. In an illustrative example, the
processing threads implementing methods 300 and 400 may
be synchronized (e.g., using semaphores, critical sections,
and/or other thread synchronization mechanisms). Alterna-
tively, the processes implementing methods 300 and 400
may be executed asynchronously with respect to each other.

US 11,416,222 B2

13

For simplicity of explanation, the methods of this disclo-
sure are depicted and described as a series of acts. However,
acts 1n accordance with this disclosure can occur 1n various
orders and/or concurrently, and with other acts not presented
and described herein. Furthermore, not all illustrated acts
may be required to implement the methods 1n accordance
with the disclosed subject matter. In addition, those skilled
in the art will understand and appreciate that the methods
could alternatively be represented as a series of interrelated
states via a state diagram or events. Additionally, 1t should
be appreciated that the methods disclosed 1n this specifica-
tion are capable of being stored on an article of manufacture
to facilitate transporting and transferring such methods to
computing devices. The term “article of manufacture,” as
used herein, 1s intended to encompass a computer program
accessible from any computer-readable device or memory
page media. In one implementation, methods 300 and 400
may be performed by literate programming validation
engine 105 as shown 1n FIG. 1.

Referring to FIG. 3, method 300 may be performed by
processing devices of a server device or a client device and
may begin at block 310. At block 310, a processing device
may access a first module of a plurality of modules of a
literate programming document. The first module may be
accessed automatically (e.g., without any user interaction).
The plurality of modules may be organized as a directed
graph. In some examples, the literate programming docu-
ment includes 1nstructional content describing programming,
logic included 1n the literate programming document. The
instructional content may include source code, visualization,
natural language explanatory narration, or a combination
thereol. In some examples, the plurality of modules are
executable. In some examples, the source code in the
module 1s compilable. In some examples, each module of
the plurality of modules 1s connected by edges within the
directed graph to at least one preceding module or at least
one subsequent module, or a combination thereof. For
example, a particular module may be connected to no
preceding module, only one preceding module, or more than
one preceding module. Similarly, the particular module may
be connected to no subsequent module, only one subsequent
module, or more than one subsequent module. In some
examples, at least one module of the plurality of modules 1s
connected by the edges within the directed graph to a
plurality of preceding modules, or a plurality of subsequent
modules, or a combination thereof. For example, a particular
module may be connected to two or more preceding module
and no subsequent module, two or more subsequent module
and no preceding module, two or more preceding module
and one or more subsequent module, two or more subse-
quent module and one or more preceding module, etc.

At block 320, the processing device may 1dentify a first
contract associated with the first module. In an 1implemen-
tation, the first contract specifies a first set of 1nput criteria
to be satisfied by one or more first input provided to the first
module and a first set of output criteria to be satisfied by one
or more first output generated by the first module. In some
examples, the first set of input criteria 1n the first contract 1s
specified 1 view of the at least one preceding module, and
the first set of output criteria in the first contract 1s specified
in view ol the at least one subsequent module. In some
examples, the processing device may first generate the first
contract in view of the first module and additional modules
connected to the first module within the directed graph.

At block 330, the processing device may determine
whether the one or more {irst output satisfies the first set of
output criteria when the one or more first input satisfies the

10

15

20

25

30

35

40

45

50

55

60

65

14

first set of mput criteria. The determination may be per-
formed automatically (e.g., without any user interaction). In
some examples, the determination 1s performed using a
prool by exhaustion operation associated with execution of
the first module. In some examples, the determination 1s
performed using a set of sample inputs satisiying the first set
of mput criteria. In some examples, the processing device
may further provide an indication that the first module
satisfies a validity test, 1 1t 1s determined that the one or
more {irst output satisfies the first set of output criteria when
the one or more first mput satisfies the first set of input
criteria. In some examples, the processing device may
turther provide an indication that the first module does not
satisly a validity test, when 1t 1s determined that the one or
more first output does not satisiy the first set of output
criteria when the one or more first input satisfies the first set
of mnput criteria.

In some examples, the processing device may further
access a second module of the plurality of modules of the
literate programming document, wherein one or more sec-
ond input 1s provided to the second module using the one or
more first output generated by the first module; 1dentify a
second contract associated with the second module, wherein
the second contract specifies a second set of 1nput criteria to
be satisfied by the one or more second 1nput provided to the
second module; and determine whether the one or more first
output satisfies the second set of 1nput criteria specified 1n
the second contract.

In some examples, the processing device may further
access a third module of the plurality of modules of the
literate programming document, wherein the one or more
first input 1s provided to the first module using one or more
third output generated by the third module, and determine
whether the one or more third output satisfies the first set of
input criteria specified 1n the first contract.

In some examples, the processing device may further
receive a modified version of the first module and determine
whether one or more modified first output generated by the
modified version of the first module satisfies the first set of
output criteria when the one or more first input provided to
the modified version of the first module satisfies the first set
ol input criteria.

Retferring to FIG. 4, method 400 may be performed by
processing devices of a server device or a client device and
may begin at block 410. At block 410, a processing device
may receive a first module of a plurality of modules of a
literate programming document, wherein the plurality of
modules are organized as a directed graph. In some
examples, each module of the plurality of modules 1s con-
nected by edges within the directed graph to at least one
preceding module or at least one subsequent module, or a
combination thereof. For example, a particular module may
be connected to no preceding module, only one preceding
module, or more than one preceding module. Similarly, the
particular module may be connected to no subsequent mod-
ule, only one subsequent module, or more than one subse-
quent module. In some examples, at least one module of the
plurality of modules 1s connected by the edges within the
directed graph to a plurality of preceding modules, or a
plurality of subsequent modules, or a combination thereof.
For example, a particular module may be connected to two
or more preceding module and no subsequent module, two
or more subsequent module and no preceding module, two
or more preceding module and one or more subsequent
module, two or more subsequent module and one or more
preceding module, etc.

US 11,416,222 B2

15

At block 420, a processing device may automatically
(e.g., without any user interaction) generate a first contract
associated with the first module 1 view of the first module
and additional modules connected to the first module within
the directed graph. In some examples, the first contract
specifies a first set of mput criteria associated with the first
module and a first set of output criteria associated with the
first module. In some examples, the first set of mput criteria
in the first contract 1s specified 1n view of the at least one
preceding module, and the first set of output criteria 1n the
first contract 1s specified in view of the at least one subse-
quent module.

At block 430, a processing device may determine whether
one or more first output generated by the first module
satisfies the first set of output criteria when one or more first
input provided to the first module satisfies the first set of
input criteria. The determination may be performed auto-
matically (e.g., without any user interaction). In some
examples, the determination 1s performed using a proof by
exhaustion operation associated with execution of the first
module. In some examples, the determination 1s performed
using a set of sample inputs satistying the first set of input
criteria.

At block 440, a processing device may, provide an indi-
cation that the first module satisfies a validity test upon
determination that the one or more first output satisfies the
first set of output criteria when the one or more first input
satisfies the first set of input criteria. Alternatively, in some
examples, the processing device may provide an indication
that the first module does not satisiy a validity test, when it
1s determined that the one or more first output does not
satisty the first set of output criteria when the one or more
first nput satisfies the first set of input criteria. The 1ndica-
tion may be provided automatically (e.g., without any user
interaction). In some examples, the imndication may be pro-
vided using a reporting user interface. Additionally, 1n some
examples, the processing device may further receive a
modified version of the first module and determine whether
one or more modified first output generated by the modified
version of the first module satisfies the first set of output
criteria when the one or more first input provided to the
modified version of the first module satisfies the first set of
input criteria.

FIG. 5 depicts a block diagram of a computer system
operating 1n accordance with one or more aspects of the
disclosure. In various 1illustrative examples, computer sys-
tem 500 may correspond to network architecture 100 of FIG.
1. The computer system may be included within a data
center that supports virtualization. Virtualization within a
data center results in a physical system being virtualized
using virtual machines to consolidate the data center inira-
structure and increase operational efliciencies. A virtual
machine (VM) may be a program-based emulation of com-
puter hardware. For example, the VM may operate based on
computer architecture and functions of computer hardware
resources associated with hard disks or other such memory.
The VM may emulate a physical computing environment,
but requests for a hard disk or memory may be managed by
a virtualization layer of a computing device to translate these
requests to the underlying physical computing hardware
resources. This type of virtualization results 1n multiple VMs
sharing physical resources.

In certain implementations, computer system 300 may be
connected (e.g., via a network, such as a Local Area Net-
work (LAN), an intranet, an extranet, or the Internet) to
other computer systems. Computer system 500 may operate
in the capacity of a server or a client computer in a

10

15

20

25

30

35

40

45

50

55

60

65

16

client-server environment, or as a peer computer 1 a peer-
to-peer or distributed network environment. Computer sys-
tem 500 may be provided by a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a server, a
network router, switch or bridge, or any device capable of
executing a set of 1nstructions (sequential or otherwise) that
specily actions to be taken by that device. Further, the term
“computer” shall include any collection of computers that
individually or jomntly execute a set (or multiple sets) of
instructions to perform any one or more of the methods
described herein.

In a further aspect, the computer system 500 may include
a processing device 502, a volatile memory 504 (e.g.,
random access memory (RAM)), a non-volatile memory 506
(e.g., read-only memory (ROM) or eclectrically-erasable
programmable ROM (EEPROM)), and a data storage device
516, which may commumnicate with each other via a bus 508.

Processing device 502 may be provided by one or more
processors such as a general purpose processor (such as, for
example, a complex mstruction set computing (CISC)
microprocessor, a reduced instruction set computing (RISC)
microprocessor, a very long instruction word (VLIW)
microprocessor, a microprocessor implementing other types
of instruction sets, or a microprocessor implementing a
combination of types of instruction sets) or a specialized
processor (such as, for example, an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), or a network
Processor).

Computer system 500 may further include a network
interface device 3522. Computer system 500 also may
include a video display unit 510 (e.g., an LCD), an alpha-
numeric iput device 512 (e.g., a keyboard), a cursor control
device 514 (e.g., a mouse), and a signal generation device
520.

Data storage device 516 may include a non-transitory
computer-readable storage medium 524 on which may store
istructions 326 encoding any one or more of the methods
or functions described herein, mcluding instructions for
implementing methods 300 or 400 for literate programming
validation engine 105 (which may be the same as literate
programming validation engine 105 of FIG. 1) and the
components 1llustrated 1in FIGS. 1 and 2.

Instructions 526 may also reside, completely or partially,
within volatile memory 504 and/or within processing device
502 during execution thereol by computer system 500,
hence, volatile memory 504 and processing device 502 may
also constitute machine-readable storage media.

While computer-readable storage medium 524 1s shown
in the illustrative examples as a single medium, the term
“computer-readable storage medium” shall include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets ol executable instructions. The term
“computer-readable storage medium” shall also include any
tangible medium that 1s capable of storing or encoding a set
ol instructions for execution by a computer that cause the
computer to perform any one or more ol the methods
described heremn. The term “computer-readable storage
medium” shall include, but not be limited to, solid-state
memories, optical media, and magnetic media.

Other computer system designs and configurations may
also be suitable to implement the system and methods
described herein.

The methods, components, and features described herein
may be implemented by discrete hardware components or

US 11,416,222 B2

17

may be integrated in the functionality of other hardware
components such as ASICS, FPGAs, DSPs or similar

devices. In addition, the methods, components, and features
may be implemented by firmware modules or functional
circuitry within hardware devices. Further, the methods,
components, and features may be implemented 1n any com-
bination of hardware devices and computer program com-
ponents, or 1n computer programs.

Unless specifically stated otherwise, terms such as “deter-
mimng,” “detecting,” “verilying,” “evicting,” “selecting,”
“restricting,” “recerving,” “updating,” “providing” or the
like, refer to actions and processes performed or imple-
mented by computer systems that manipulates and trans-
forms data represented as physical (electronic) quantities
within the computer system registers and memories 1nto
other data similarly represented as physical quantities within

the computer system memories or registers or other such
information storage, transmission or display devices. Also,
the terms “first,” “second,” “third,” “fourth,” etc. as used
herein are meant as labels to distinguish among different
clements and may not have an ordinal meaning according to
theirr numerical designation.

Examples described herein also relate to an apparatus for
performing the methods described herein. This apparatus
may be specially constructed for performing the methods
described herein, or 1t may comprise a general purpose
computer system selectively programmed by a computer
program stored in the computer system. Such a computer
program may be stored in a computer-readable tangible
storage medium.

The methods and 1llustrative examples described herein
are not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used 1n
accordance with the teachings described herein, or it may
prove convenient to construct more specialized apparatus to
perform methods 300 and/or each of its individual functions,
routines, subroutines, or operations. Examples of the struc-
ture for a variety of these systems are set forth i the
description above.

The above description 1s intended to be illustrative, and
not restrictive. Although the disclosure has been described
with references to specific illustrative examples and 1mple-
mentations, 1t will be recognized that the disclosure 1s not
limited to the examples and implementations described. The
scope of the disclosure should be determined with reference
to the following claims, along with the full scope of equiva-
lents to which the claims are entitled.

- Y 4 A 4 4

What 1s claimed 1s:

1. A method comprising:

obtaining, by a processing device, a plurality of modules
of a literate programming document for implementing
an 1nteractive tutorial related to a programming con-
cept, each module of the plurality of modules providing
instructional content relating to a respective unit of the
programming concept, wherein each module of the
plurality of modules corresponds to a node of a directed
graph connected by an edge to at least one of: a
preceding node corresponding to a preceding module,
or a subsequent node corresponding to a subsequent
module, wherein the plurality of modules comprises a
common preamble module introducing the program-
ming concept, and at least a set of first technique
modules related to a first technique of the programming,
concept, and wherein each first technique module of the
set of first techmque modules branches from the com-

10

15

20

25

30

35

40

45

50

55

60

65

18

mon preamble module and provides instructional con-

tent relating to a respective implementation of the first

technique;

accessing, by the processing device, a first module of the
plurality of modules;

identifying, by the processing device, a first contract
associated with the first module, wherein the first
contract specifies a first set of input criteria to be
satisfied by first input provided to the first module and

a first set of output criteria to be satisfied by first output

generated by the first module; and
performing, by the processing device, a validity test with

respect to the first module, wherein performing the
validity test with respect to the first module comprises
determining whether the first output satisfies the first
set of output criteria and the first input satisfies the first
set of 1nput criteria.
2. The method of claim 1, further comprising:
responsive to determimng that the first output satisfies the
first set of output criteria and the first input satisfies the
first set of input criteria, providing an indication that the
first module satisfies the validity test; and

responsive to determining that the first output does not

satisly the first set of output criteria and the first input
satisfies the first set ol mput critenia, providing an
indication that the first module does not satisiy the
validity test.

3. The method of claim 1, wherein the instructional
content provided by each first technique module of the set of
first technique modules comprises one or more of: source
code, a visualization of an output of the source code gen-
crated by executing the source code, or natural language
explanatory narration related to the source code.

4. The method of claim 3, wherein the plurality of
modules are executable and the source code 1s compilable.

5. The method of claim 1, further comprising:

recerving, by the processing device, a modified version of

the first module; and

determining, by the processing device, whether modified

first output generated by the modified version of the
first module satisfies the first set of output criteria and
the first input provided to the modified version of the
first module satisfies the first set of input criteria.

6. The method of claim 1, further comprising:

accessing, by the processing device, a second module of

the plurality of modules of the literate programming
document, wherein second input i1s provided to the
second module using the first output generated by the
first module:

identifying, by the processing device, a second contract

associated with the second module, wherein the second
contract specifies a second set of input criteria to be
satisfied by the second input; and

determiming, by the processing device, whether the first

output satisfies the second set of input criteria.

7. The method of claim 1, further comprising;:

accessing, by the processing device, a third module of the

plurality of modules of the literate programming docu-
ment, wherein the first mput 1s provided to the first
module using third output generated by the third mod-
ule; and

determining, by the processing device, whether the third

output satisiies the first set of input criteria.

8. The method of claim 1, wherein determiming whether
the first output satisfies the first set of output criteria com-
prises using a prool by exhaustion operation associated with
execution of the first module.

US 11,416,222 B2

19

9. The method of claim 1, wherein determining whether
the first output satisfies the first set of output criteria com-
prises using a set of sample mputs satistying the first set of
input criteria.

10. The method of claim 1, wherein:

at least one of the nodes 1s connected by a plurality of

edges within the directed graph to one or more of: a
plurality of preceding nodes corresponding to a plural-
ity of preceding modules, or a plurality of subsequent

nodes corresponding to a plurality of subsequent mod-
ules.

11. The method of claim 1, further comprising:

generating, by the processing device, the first contract in
view of the first module and additional modules con-
nected to the first module within the directed graph.
12. A system comprising:
a memory; and
a processing device communicably coupled to the
memory 10o:
obtain a plurality of modules of a literate programming
document for implementing an interactive tutorial
related to a programming concept, each module of
the plurality of modules providing 1nstructional con-
tent relating to a respective unit of the programming
concept, wherein each module of the plurality of
modules corresponds to a node of a directed graph
connected by at least one edge to at least one of: a
preceding node corresponding to a preceding mod-
ule, or a subsequent node corresponding to a subse-
quent module, wherein the plurality of modules
comprises a common preamble module introducing
the programming concept, and at least a set of {first
technique modules related to a first technique of the
programming concept, and wherein each first tech-
nique module of the set of first technique modules
branches from the common preamble module and
provides instructional content relating to a respective
implementation of the first technique;
receive a first module of the plurality of modules;
generate a first contract associated with the first module
in view of the first module and additional modules
connected to the first module within the directed
graph, wherein the first contract specifies a first set of
input criteria associated with the first module and a
first set of output criteria associated with the first
module;
determine whether first output generated by the first
module satisfies the first set of output criteria and
first input provided to the first module satisfies the
first set of mput criteria; and
upon a determination that the first output satisfies the
first set of output criteria and the one or more first
input satisfies the first set of input criteria, provide an
indication that the first module satisfies a validity
test.
13. The system of claim 12, wherein the processing device
1s further to:
receive a modified version of the first module; and
determine whether modified first output generated by the
modified version of the first module satisfies the first set
of output criteria and the first input provided to the
modified version of the first module satisfies the first set
of 1nput criteria.
14. The system of claim 12, wherein the determination 1s
performed using a proof by exhaustion operation associated
with execution of the first module.

10

15

20

25

30

35

40

45

50

55

60

65

20

15. The system of claim 11, wherein:
at least one of the nodes 1s connected by a plurality of

edges within the directed graph to one or more of: a
plurality of preceding nodes corresponding to a plural-
ity of preceding modules, or a plurality of subsequent

nodes corresponding to a plurality of subsequent mod-
ules.

16. The system of claim 12, wherein the processing device
1s further to:

recerve a second module of the plurality of modules of the

literate programming document, wherein second 1nput
1s provided to the second module using the first output
generated by the first module;

identify a second contract associated with the second

module, wherein the second contract specifies a second
set of mput criteria to be satisfied by the second nput;
and

determine whether the first output satisfies the second set

of 1nput criteria.

17. A non-transitory machine-readable storage medium
storing 1nstructions that cause a processing device to:
obtain a plurality of modules of a literate programming,

document for implementing an interactive tutorial
related to a programming concept, each module of the
plurality of modules providing instructional content
relating to a respective unit of the programming con-
cept, wherein each module of the plurality of modules
corresponds to a node of a directed graph connected by
at least one edge to at least one of: a preceding node
corresponding to a preceding module, or a subsequent
node corresponding to a subsequent module, wherein
the plurality of modules comprises a common preamble
module mtroducing the programming concept, and at
least a set of first technique modules related to a first
technique of the programming concept, and wherein
cach first technique module of the set of first technique
modules branches from the common preamble module
and provides instructional content relating to a respec-
tive implementation of the first technique;

recetve a first module of the plurality of modules;
identify a first contract associated with the first module,

wherein the first contract specifies, in view of the
preceding module, a first set of mput criteria to be
satisfied by first input provided to the first module and
specifies, 1n view of the subsequent module, a first set

of output criteria to be satisfied by first output gener-
ated by the first module; and

perform a validity test with respect to the first module,

wherein, to perform the validity test, the processing
device 1s to determine whether the first output satisfies
the first set of output criteria and the first input satisfies
the first set of mput criteria.

18. The non-transitory machine-readable storage medium
of claim 17, wherein the processing device 1s further to:
upon a determination that the first output satisfies the first

set of output criteria and the first input satisfies the first
set of 1input criteria, provide an 1ndication that the first
module satisfies the validity test; and

upon a determination that the first output does not satisty

the first set of output criteria and the first input satisfies
the first set of 1put criteria, provide an indication that
the first module does not satisty the validity test.

19. The non-transitory machine-readable storage medium
of claim 17, wherein at least one module of the plurality of
modules 1s connected by edges within the directed graph to
one or more of: multiple subsequent modules, or multiple
preceding modules.

US 11,416,222 B2
21

20. The non-transitory machine-readable storage medium
of claim 17, wherein the processing device 1s further to:
generate the first contract in view of the first module and
additional modules connected to the first module within
the directed graph. 5

G e x Gx ex

22

	Front Page
	Drawings
	Specification
	Claims

