US011409709B1

a2y United States Patent 10) Patent No.: US 11.409,709 B1
Capello et al. 45) Date of Patent: Aug. 9, 2022

(54) CLOUD-NATIVE GLOBAL FILE SYSTEM (56) References Cited

WITH FILE ACCELERATOR |
U.S. PATENT DOCUMENTS

(71) Applicant: Nasuni Corporation, Boston, MA (US) 5.909.594 A * 6/1999 ROSS wovovovveerirnn HO4T, 47/245
710/20
(72) Inventors: John A. Capello, Cambridge, MA 6,611,848 B1* 82003 Bradley GO6F ;8/7 %gg
(US); Aaron 1. Binford, McHenry, IL 6,633,870 B1* 10/2003 Bradley GO6Q 10/10
(US); Chinmaya Kanth Gogineni, 6,687,716 B1* 2/2004 Bradley GOGF 16/1767
Holliston, MA (US); David T. Mandile, 707/822
Boston, MA (US); Russell A. Neufeld, 7,280,481 B2* 10/2007 Rongccccceoveeene. HO041 45/12
Newton Highlands, MA (US); Toby C. | 370/238
Patterson, Watertown, MA (US): David 8,037,476 BL* 10/2011 Shavitcoccocr. GOGF 9/526
’ ’ " 718/104
M. Shaw, Newton, MA (US) 0,053,167 BL* 6/2015 SWift ..ccoovvvorrennne. GOG6F 16/27
10,311,153 B2* 6/2019 Mas_()n, Jr. ..., GO6F 16/1827
(73) Assignee: Nasuni Corporation, Boston, MA (US) 2001/0032282 A1* 1072001 Marietta GOﬁ;Fl (1)}52/ (1)3
| | o | 2003/0165160 Al* 9/2003 Minami HO4L 69/161
(*) Notice: Subject to any disclaimer, the term of this 370/466
patent 1s extended or adjusted under 35 2005/0138112 Al* 6/2005 Sagar HO04L 69/329
U.S.C. 154(b) by 0 days. 709/203
(Continued)
(21) Appl. No.: 17/214,342 Primary Examiner — Cam Linh T Nguyen
. No.: . _
(74) Attorney, Agent, or Firm — David H. Judson
(22) Filed: Mar. 26, 2021 (57) ABSTRACT

A cloud native global file system 1s augmented to include a
“file accelerator” that 1s configured to speed up data propa-

(51) Int. CI. H gation with respect to updates on a shared volume and, 1n
GO6F 16/175 (2019'0j) particular by performing real-time analysis on audit event
Gool 16/176 (201 9-O:~) data to coordinate pushes and pulls across multiple edge
Goot 16/17 (201 9-0:~) appliances, eflectively replacing static snapshot and syn-
Gool 16/18 (2019.01) chronization schedules. A “push” refers to a snapshot on the

(52) U.S. CL volume that occurs at a particular filer, and a “pull” refers to
CPC GO6F 16/178 (2019.01); GO6F 16/1734 a synchromzation (sync) operation initiated by a particular

(2019.01); GOGF 16/1774 (2019.01); GOG6F filer to obtain whatever 1s 1n the cloud (and that 1s the subject
16/1873 (2019.01) of the pull). The file accelerator operates 1n several modes of

(58) TField of Classification Search “triggered” operation based on user activity, and under the
USPC 707/610 control of a cloud-based controller.

See application file for complete search history. 19 Claims, 6 Drawing Sheets
fw/’l 0
SCORING MECHANISM
ACTIVATED UPON
602 VOLUME LOCK RELEASE
N\
QUERY 612
FILER
PUSH RECOMMENDATION
604
SHARED
VOLUME FILER PULL RECOMMENDATION
608 FOLLOWING PUSH COMPLETION
606
\
CLOUD-BASED CONTROLLER
FILER PULL RECOMMENDATION
FOLLOWING PUSH COMPLETION

US 11,409,709 B1
Page 2

(56)

2007/0128899
2010/0223359
2011/0126099
2012/0263159
2016/0026406

2016/0246816
2017/0004083
2020/0341752

References Cited

U.S. PATENT DOCUMENTS
Al* 6/2007 Mayerooooouene.l.
Al* 9/2010 Runstedler
Al* 5/2011 Anderson
Al* 10/2012 Moeller
Al* 1/2016 Hahn ...
Al* 8/2016 Ablccocoeeeiiininnnn,
Al* 1/2017 Jamnccooeeen,
Al* 10/2020 Lim ..o,

* cited by examiner

GO6F 21/568

439/152

HO4L 67/06

709/219

HO4L 63/08

715/704

HO04L 47/00

370/338

GO6F 3/0656

711/103

GO6F 16/148
GOO6F 12/0868
GO6F 11/3604

U.S. Patent Aug. 9, 2022 Sheet 1 of 6 US 11.409,709 B1

100 104 102
LOCAL FILE VERSIONED FILE OBJECT-BASED
SYSTEM SYSTEM INTERFACE DATA STORE

FIG. 1

200 LOCAL FILE

SYSTEM
ALL
READ/WRITE
CONTENT 202 |EVENTS
CONTROL
SERVICE (CCS) | FILE SYSTEM STORAGE
AGENT (FSA)
204
=
L OCAL
206 STORAGE
PROTECTED
EFS FILES
< T T T

EXTENDED FILE
STORAGE (EFS) ™ 210
DATA MODEL

LOCAL

208~ USERFILES

FI1G. 2

U.S. Patent Aug. 9, 2022 Sheet 2 of 6 US 11.409,709 B1
314
CONTENT CONTROL
SERVICE (CCS)
CONTROL CONTROL CONTROL
300 NTFS 302 304~ ExT3, XFS
306~ [FILE SYSTEM 306 ~ | FILE SYSTEM 306~ | FILE SYSTEM
AGENT (FSA) AGENT (FSA) AGENT (FSA)
WINDOWS OSX LINUX
308" PLATFORM 310-"| PLATFORM 312~ PLATFORM
STORAGE
STORAGE STORAGE

EXTERNAL OBJECT
REPOSITORY

316

FI1G. 3

v OId
457

US 11,409,709 B1

JHOVO MSIQ

o’
S
7
2
=
s 9,
SSIHJNOD
ONV LdAHONS
&
m 4%, oLy mov
=N Olv IBNIOA Uepayoe)
o
0
Z Tdn

U.S. Patent

NOILVENOIANOO
ONIOOOT

AYVHEl'T JHVHS

90v | ¥Ov |20v
3SNd | TINYIN | Paws

00%

Jl44Vdl
SVN

U.S. Patent Aug. 9, 2022 Sheet 4 of 6 US 11.409,709 B1

500
\ 530
L OCAL NAS
MANAGEMENT LOCK CLOUD
WEB INTERFACE | | SERVER STORAGE
502 518 522
520
HTTPD ADMIN
NFS/CIFS AND LOCK
ACTIVE FUSE NAEMON CacheMan VolMgr
DIRECTORY LDAP 506 512 514
NFSD
F

U.S. Patent

SHARED
VOLUME

608

702

702

702

Coervioe | |

Aug. 9, 2022 Sheet 5 of 6 US 11,409,709 B1
610
SCORING MECHANISM
ACTIVATED UPON
602 VOLUME LOCK RELEASE
QUERY —> 612
FILER P
<*—— PUSH RECOMMENDATION
604
.
FILER PULL RECOMMENDATION

FOLLOWING PUSH COMPLETION

606
—"> CLOUD-BASED CONTROLLER
FILER PULL RECOMMENDATION
~— FOLLOWING PUSH COMPLETION

FIG. 6

700

FILER 1 —

FILE ACCELERATOR
CONTROLLER

(CLOUD-BASED)

FILER 2

FILER 3 ——— > EVENT DATA

<—1 RECOMMENDATION

US 11,409,709 B1

Sheet 6 of 6

Aug. 9, 2022

U.S. Patent

anoio

A3 TI0OHLINOD

3114

908

ONAS 1SV
03439014l

TINd
(EERR]R.AI

1OHSJVNS
(34349014l

HO1VHT1300v | SNOLLVANIWNODSY

SINdAZ

G08

JOIAAS
d01vy31400V
3114

8 DIA

708

NOILONNAH
1IdNY

JONVI 1ddV 34904

008

¢08

S40IAYES
JONVI 1ddV

S31vddn
NJLSAS
3114

US 11,409,709 Bl

1

CLOUD-NATIVE GLOBAL FILE SYSTEM
WITH FILE ACCELERATOR

BACKGROUND OF THE INVENTION

Technical Field

This application relates generally to data storage.

Background of the Related Art

It 1s known to provide a cloud-native global file system
that 1s used to provide primary file storage for enterprise
data. In this approach, edge appliances (or “filers™) typically
located on-premises securely transmit all files, file versions
and metadata to a preferred private or public cloud object
store, while locally caching only active files. The appliances
are stateless, and multiple appliances can mount the same
volume 1n the cloud. As files are written locally, an authori-
tative copy of every file and metadata (1nodes) are stored in
the cloud. The system provides a single, unified namespace
for all primary file data that 1s not bound by local hardware
or network performance constraints. The above-described
approach to enterprise file services also has been extended to
provide multiple-site/multiple-filer access to the same
namespace, thereby enabling participating users with the
ability to collaborate on documents across multiple filers/
sites. Major cloud platforms, e.g., Amazon® AWS,
Microsolt® Azure, Google® Cloud and others, are then
utilized as a write-once, read many object store for the
enterprise primary file data, which 1s typically stored in
volumes. A solution of this type 1s available commercially
from Nasuni® Corporation of Boston, Mass.

In a multi-site shared volume often one or more files must
be pushed from a source filer to one or many target filers that
share the volume. In this context, the operator of the source
filer must be able to determine when those files have arrived
at the targets. In this operating scenario, there 1s a desire to
reduce data propagation time, especially with respect to
directories that are under a global file lock across a set of
filers that share the volume.

BRIEF SUMMARY

According to this disclosure, a cloud native global file
system 1s augmented to mclude a *“file accelerator” that 1s
configured to speed up data propagation with respect to
updates on a shared volume and, in particular by performing,
real-time analysis on audit event data to coordinate pushes
and pulls across multiple edge appliances, eflectively replac-
ing static snapshot and synchromzation schedules. As used
herein, a “push”™ refers to a snapshot on the volume that
occurs at a particular filer, and a “pull” refers to a synchro-
nization (sync) operation initiated by a particular filer to
obtain whatever 1s 1n the cloud (and that 1s the subject of the
pull). The file accelerator operates in several modes of
“triggered” operation based on user activity, and under the
control of a cloud-based controller. The first mode 1s a
triggered push (or snapshot), which 1s a mode 1n which a
particular filer of the set of filers sharing the volume 1s
prioritized (over the other filers) for a push. A push occurs
with respect to the entire volume and moves data and
metadata ofl of the particular filer and into the cloud object
store. Once the push completes, the other filers of the set of
filers sharing the volume then need to obtain that data and
metadata; to this end, the second mode of triggered opera-
tion (and which 1s the opposite of the triggered push) 1s then

10

15

20

25

30

35

40

45

50

55

60

65

2

a triggered pull, whereby the data and metadata that was the
subject of the triggered push get pulled to the other filers that
share the volume. In this embodiment, the filers are not
operating under a global file lock (GFL). Each filer has a
local service running that checks-in with the controller
periodically (e.g., every five (35) seconds) to query whether
the controller has a new “recommendation” to either push or
pull. Once a filer receives a recommendation from the
controller to 1nitiate a triggered push, 1t does so. Once the
filer completes the push on the volume, the controller
thereafter responds to queries from the other filers with a
recommendation to pull. In this manner, each of the other
filers merge its respective local cache to the latest version of
the volume.

Which one of the filers (in the set that share the volume)
1s 1dentified for the push depends on a prioritization scheme
that determines a current “highest priority filer.” This deter-
mination 1s made by the controller which continuously
recerves event data from each of the filers, and then uses a
scoring mechanism to determine which of the filers of the set
should then be prioritized for receiving the push recommen-
dation. The scoring mechanism 1s turned on (activated) for
the filers upon occurrence of a particular event, namely, a
volume lock release event that has occurred at a filer. When
the controller receives an indication that the volume lock
release event has occurred, 1t sets or re-sets the scoring
mechanism and begins computing scores for the filers based
on the event data that 1s thereafter received by the controller.
As the received event data 1s analyzed and scored, a highest
priority filer 1s i1dentified, and the controller provides the
push recommendation to that controller when queried.

According to a further feature, and when a directory 1is
operated under a global file lock (GFL), the controller may
provide a filer a pull recommendation to “fast sync” the
directory.

The foregoing has outlined some of the more pertinent
features of the disclosed subject matter. These features
should be construed to be merely illustrative. Many other
beneficial results can be attained by applying the disclosed
subject matter 1n a different manner or by modifying the
subject matter as will be described.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present mnven-
tion and the advantages thereof, reference 1s now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 1s a block diagram illustrating how a known
versioned file system interfaces a local file system to an
object-based data store;

FIG. 2 1s a block diagram of a representative implemen-
tation of a portion of the mterface shown in FIG. 1;

FIG. 3 1s a more detailed implementation of the interface
where there are a number of local file systems of different
types;

FIG. 4 illustrates the iterface implemented as an appli-
ance within a local processing environment;

FIG. 5 depicts a versioned file system that implements
global locking;

FIG. 6 depicts a set of filers being managed by a controller
that 1ssues triggered push and pull recommendations to the
filers:

FIG. 7 1s another depiction of the file accelerator solution
according to this disclosure; and

US 11,409,709 Bl

3

FIG. 8 depicts additional details regarding the file accel-
erator.

DETAILED DESCRIPTION

FIG. 1 1llustrates a local file system 100 and an object-
based data store 102.

Although not meant to be limiting, preferably the object-
based data store 102 1s a “‘write-once” store and may
comprise a “cloud” of one or more storage service providers.
An mterface 104 (or “filer”) provides for a “versioned {ile
system” that only requires write-once behavior from the
object-based data store 102 to preserve substantially its
“complete” state at any point-in-time. As used herein, the
phrase “point-in-time” should be broadly construed, and it
typically refers to periodic “snapshots” of the local file
system (e.g., once every “n” minutes). The value of “n” and
the time unit may be varied as desired. The interface 104
provides for a file system that has complete data integrity to
the cloud without requiring global locks. In particular, this
solution circumvents the problem of a lack of reliable atomic
object replacement 1n cloud-based object repositories. The
interface 104 1s not limited for use with a particular type of
back-end data store. When the interface i1s positioned in
“front” of a data store, the interface has the eflect of turning
whatever 1s behind it into a “versioned file system™ (“VFES™).
The VFS 1s a construct that 1s distinct from the interface
itselt, and the VFS continues to exist irrespective of the state
or status of the interface (from which 1t may have been
generated). Moreover, the VES 1s self-describing, and it can
be accessed and managed separately from the back-end data
store, or as a component of that data store. Thus, the VES
(comprising a set of structured data representations) 1s
location-independent. In one embodiment, the VFS resides
within a single storage service provider (SSP) although, as
noted above, this 1s not a limitation. In another embodiment,
a first portion of the VFS resides i a first SSP, while a
second portion resides 1n a second SSP. Generalizing, any
given VES portion may reside i any given data store
(regardless of type), and multiple VES portions may reside
across multiple data store(s). The VFS may reside in an
“internal” storage cloud (1.e., a storage system internal to an
enterprise), an external storage cloud, or some combination
thereof.

The interface 104 may be implemented as a machine. A
representative implementation 1s the Nasunmi® Filer, avail-
able from Nasunmi® Corporation ol Boston, Mass. Thus, for
example, typically the interface 104 1s a rack-mounted
server appliance comprising hardware and software. The
hardware typically includes one or more processors that
execute software 1n the form of program instructions that are
otherwise stored 1n computer memory to comprise a “special
purpose” machine {for carrying out the {functionality
described herein. Alternatively, the interface 1s implemented
as a virtual machine or appliance (e.g., via VMware®, or the
like), as software executing 1 a server, or as solftware
executing on the native hardware resources of the local file
system. The interface 104 serves to transform the data
representing the local file system (a physical construct) into
another form, namely, a versioned file system comprising a
series of structured data representations that are useful to
reconstruct the local file system to any point-in-time. A
representative VFS 1s the Nasumi Unity File System
(UmFS™), Although not meant to be limiting, preferably
cach structured data representation 1s an XML document (or
document fragment). As 1s well-known, extensible markup
language (XML) facilitates the exchange of information 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

a tree structure. An XML document typically contains a
single root element (or a root element that points to one or
more other root elements). Each element has a name, a set
ol attributes, and a value consisting of character data, and a
set of child elements. The interpretation of the information
conveyed in an element 1s derived by evaluating its name,
attributes, value and position 1n the document.

The interface 104 generates and exports to the write-once
data store a series of structured data representations (e.g.,
XML documents) that together comprise the versioned file
system. The data representations are stored in the data store.
Preferably, the XML representations are encrypted belore
export to the data store. The transport may be performed
using known techniques. In particular, REST (Representa-
tional State Transter) 1s a lightweight XML-based protocol
commonly used for exchanging structured data and type
information on the Web. Another such protocol 1s Simple

Object Access Protocol (SOAP). Using REST, SOAP, or

some combination thereof, XMlL-based messages are
exchanged over a computer network, normally using HTTP
(Hypertext Transier Protocol) or the like. Transport layer
security mechanisms, such as HI'TP over TLS (Transport
Layer Security), may be used to secure messages between
two adjacent nodes. An XML document and/or a given
clement or object therein 1s addressable via a Uniform
Resource Identifier (URI). Familiarity with these technolo-
gies and standards 1s presumed.

FIG. 2 1s a block diagram of a representative implemen-
tation of how the interface captures all (or given) read/write
events from a local file system 200. In this example imple-
mentation, the iterface comprises a file system agent 202
that 1s positioned within a data path between a local file
system 200 and 1ts local storage 206. The {file system agent
202 has the capability of “seeing” all (or some configurable
set of) read/write events output from the local file system.
The mterface also comprises a content control service (CCS)
204 as will be described in more detail below. The content
control service 1s used to control the behavior of the file
system agent. The object-based data store 1s represented by
the arrows directed to “storage” which, as noted above,
typically comprises any back-end data store including, with-
out limitation, one or more storage service providers. The
local file system stores local user files (the data) in their
native form in cache 208. Reference numeral 210 represents
that portion of the cache that stores pieces of metadata (the
structured data representations, as will be described) that are
exported to the back-end data store (e.g., the cloud).

FIG. 3 1s a block diagram illustrating how the interface
may be used with different types of local file system archi-
tectures. In particular, FIG. 3 shows the CCS (in this
drawing a Web-based portal) controlling three (3) FSA
istances. Once again, these examples are representative,
and they should not be taken to limit the mnvention. In this
example, the file system agent 306 1s used with three (3)
different local file systems: NTFS 300 executing on a
Windows operating system platform 308, MacFS (also
referred to as “HFS+” (HFSPlus)) 302 executing on an OS
X operating system platform 310, and EX'T3 or XFS 304
executing on a Linux operating system platform 312. These
local file systems may be exported (e.g., via CIFS, AFP, NFS
or the like) to create a NAS system based on VFS. Conven-
tional hardware, or a virtual machine approach, may be used
in these implementations, although this 1s not a limitation.
As 1ndicated 1 FIG. 3, each platform may be controlled
from a single CCS instance 314, and one or more external
storage service providers may be used as an external object

US 11,409,709 Bl

S

repository 316. As noted above, there 1s no requirement that
multiple SSPs be used, or that the data store be provided
using an SSP.

FIG. 4 1illustrates the interface implemented as an appli-
ance within a local processing environment. In this embodi-
ment, the local file system traflic 400 1s received over
Ethernet and represented by the arrow identified as “NAS
trafli

ic.” That traflic 1s provided to smbd layer 402, which 1s
a SAMBA file server daemon that provides CIFS (Windows-
based) file sharing services to clients. The layer 402 1s
managed by the operating system kernel 404 is the usual
manner. In this embodiment, the local file system 1s repre-
sented (in this example) by the FUSE kernel module 406
(which 1s part of the Linux kernel distribution). Components
400, 402 and 404 are not required to be part of the apphance.
The file transter agent 408 of the interface 1s associated with
the FUSE module 406 as shown to intercept the read/write
events as described above. The CCS (as described above) 1s
implemented by a pair of modules (which may be a single
module), namely, a cache manager 410, and a volume
manager 412. Although not shown 1n detail, preferably there
1s one file transfer agent instance 408 for each volume of the
local file system. The cache manager 410 1s responsible for
management of “chunks” with respect to a local disk cache
414. This enables the interface described herein to maintain
a local cache of the data structures (the structured data
representations) that comprise the versioned file system. The
volume manager 412 maps the root of the FSA data to the
cloud (as will be described below), and 1t further under-
stands the one or more policies of the cloud storage service
providers. The volume manager also provides the applica-
tion programming interface (API) to these one or more
providers and communicates the structured data representa-
tions (that comprise the versioned file system) through a
transport mechanism 416 such as cURL. cURL 1s a library
and command line tool for transferring files with URL

syntax that supports various protocols such as FIP, FTPS,
HTTP, HTTPS, SCP, SFTP, TFTP, TELNET, DICT, LDAP,

LDAPS and FILE. cURL also supports SSL certificates,
HTTP POST, HTTP PUT, FTP uploading, HI'TP form based
upload, proxies, cookies, user+password authentication, file
transier resume, proxy tunneling, and the like. The struc-
tured data representations preferably are encrypted and
compressed prior to transport by the transformation module
418. The module 418 may provide one or more other data
transformation services, such as duplicate elimination. The
encryption, compression, duplicate elimination and the like,
or any one of such functions, are optional. A messaging layer
420 (e.g., local socket-based IPC) may be used to pass
messages between the file system agent instances, the cache
manager and the volume manager. Any other type of mes-
sage transport may be used as well.

The interface shown 1n FIG. 4 may be implemented as a
standalone system, or as a managed service. In the latter
case, the system executes 1 an end user (local file system)
environment. A managed service provider provides the
system (and the versioned file system service), preferably on
a fee or subscription basis, and the data store (the cloud)
typically 1s provided by one or more third party service
providers. The versioned file system may have its own
associated object-based data store, but this 1s not a require-
ment, as 1ts main operation 1s to generate and manage the
structured data representations that comprise the versioned
file system. The cloud preferably 1s used just to store the
structured data representations, preferably 1n a write-once
manner, although the “versioned file system™ as described
herein may be used with any back-end data store.

10

15

20

25

30

35

40

45

50

55

60

65

6

As described above, the file system agent 408 1s capable
of completely recovering from the cloud (or other store) the
state of the native file system and providing immediate file
system access (once FSA metadata 1s recovered). The FSA
can also recover to any point-in-time for the whole file
system, a directory and all its contents, a single file, or a
piece of a file. These and other advantages are provided by
the “versioned file system™ of this disclosure, as 1t now
described in more detail below.

For more details concerning the filer as described above,
the disclosure of U.S. Pat. No. 9,575,841 1s hereby incor-
porated by reference.

FIG. 5 1s a block diagram that 1llustrates a system 500 for
managing a versioned file system (as described above) that
also includes the capability of global locking. The system
500 1ncludes an interface 510 in communication with local
tratlic 520, a web-based portal 5330, a local cache 540, a lock
server 550, and cloud storage 3560. The interface 3510
includes a SMBD layer 502, a NFSD layer 504, a FUSE
module 506, a FSA 508, a cache manager 512, a volume
manager 514, a lock daemon 3516, a transport layer 518, and
an administrative module 522. In some embodiments, the
interface 510 1s the same as the interface described with
respect to FIG. 4 but with the addition of the lock daemon
516.

SMB/CIFS lock requests are intercepted by SMBD layer
502, which 1s a SAMBA f{ile server daemon. An optional
Virtual File System (VFES) module can extend the SAMBA
server daemon to send the local lock information to the FSA
508. FSA 508 then communicates with FUSE 3506 to coor-
dinate the FUSE f{ile descriptors (pointers) with the 1octl
information to determine a path for the given file(s) asso-
ciated with the lock request. Assuming a path 1s enabled for
global locking, FSA 508 sends the lock and path to the lock
daemon 516, which handles the lock request as described
below. If a path 1s not enabled for global locking, the lock
request stays within the SAMBA server as 1t did previously
(e.g., contlict management, etc. as described above) and it 1s
not sent to the lock daemon 516.

NFES lock requests are passed through the NFSD layer 504
to FUSE 506. Assuming a path prefix 1s enabled for global
locking, FSA 508 communicates with the lock daemon 516
to handle the lock request using a common protocol, as
described above. If the path prefix 1s not enabled for global
locking, FSA 508 handles the lock request as it did previ-
ously (e.g., conflict management, etc. as described above)
and the lock request 1s not sent to the lock daemon 516.

The lock daemon 516 1s responsible for local lock man-
agement and coordinating with the global lock server. The
lock daemon 516 can perform one or more of the following
functions: (a) translating the lock format; (b) communicating
with the centralized lock server; (¢) acquiring locks; (d) lock
peeking; (e) lock re-acquiring; (1) lock releasing; and (g)
communicating with the filer.

With respect to translating the lock format, the lock
daemon 516 can translate the local file lock requests to a
common lock format understood by the centralized lock
server 550 (described below). Using this approach, the lock
server 5350 recerves a lock request 1n one format regardless
of the underlying network protocol (e.g., SMB/CIFS or
NFES). The centralized lock server 550 can be 1n a network
operations center (NOC) 3555.

The lock daemon 516 can then communicate with the
centralized lock server 550 by making calls to a Centralized
Lock API. Through the API, the lock daemon 516 can
execute a lock request, an unlock request, and/or a lock
break request. A lock request generally requires the trans-

US 11,409,709 Bl

7

mission of certain mformation such as the first handle (a
unique identifier to the original base object for the file), the
requested lock mode, the file path, the protocol of the
requester, etc. Additional information such as timestamps
and serial number can be included in the lock request. The
requested lock mode 1s the type of access for the lock, such
as a shared or exclusive lock, a lock for read, a lock for write,
lock for exclusive write, lock for shared write. If the
centralized lock server 5350 grants the lock request, the lock
server 350 then uses information provided in the lock
request (e.g., the first handle) to retrieve the latest version of
the requested file from cloud storage 560. The centralized
lock server 550 transmits the latest version of the requested
file to the lock daemon 516, which can store the file 1n local
cache 540.

An unlock request can include the same or similar infor-
mation as the lock request but with an updated handle name
that was generated as a result of modifications to the locked
file. A lock break request can be provided by a system
administrator to manually unlock a file (e.g., 1T a user leaves
a locked file open overnight, a server goes down, etc.).

Prior to making a new lock request, the lock daemon 516
determines whether a lock already exists in local cache 540
or on the centralized lock server 550. If no lock exists 1n
either of those locations, the lock daemon 516 acquires a
new lock through the centralized lock server 550. The new
lock can have a lock mode computed using the requested
access and share profiles (masks).

Lock peeking can be initiated every time a file 1s opened
for read. In lock peeking, the lock daemon 516 can query
whether a lock exists on the file prior to opening the file. IT
a lock exists, the lock daemon 516 can also determine the
associated lock mode to evaluate whether the lock mode
permits the user to open the file. The lock daemon 516
retrieves this information from local lock cache 540 1t the
filer requesting the lock peek already has a write lock on the
file. Otherwise, the lock daemon 516 retrieves this informa-
tion from the centralized lock server 5350. Each lock peek
request can be cached 1n the local lock cache 540 for a short
time period (e.g., several seconds) to reduce trailic to the
central lock server 550 if the lock daemon 516 receives a
new lock peek request shortly after the first lock peek
request.

For example, another user may have a lock for exclusive
write access to the file that does not allow any shared access
(1.e., no shared read access). In this example, the lock
daemon 516 determines from the lock query that the file
cannot be opened due to an existing lock on the file. In
another example, the lock mode can allow shared read or
write access 1n which case the lock daemon 516 determines
from the lock query that the file can be opened.

During lock peeking, the lock daemon 516 can also
retrieve additional information about the file, such as the file
handle, handle version, first handle, and lock push version.
The file handle 1s a pointer to the latest version of the file 1n
the cloud. The handle version 1s a version of the file in the
cloud. The first handle provides a unique 1dentifier to the file
across versions and renames of the file. The lock push
version 1s the latest version of the file that was sent to the
cloud.

The lock daemon 516 can cache locks and unlocks 1n a
local lock cache 340 for release to the centralized lock server
550. I a lock request 1s made for a file that has a cached
unlock request, the lock can be reestablished without having,
to acquire a new lock from the centralized lock server 550.
In such a situation, the unlock request 1s cancelled. This
caching can reduce load on the lock server 550 and improve

10

15

20

25

30

35

40

45

50

55

60

65

8

response time. In general, the unlock requests are cached for
a certain period of time prior to release to the lock server 550
to allow for such lock reestablishment.

As discussed above, the lock request includes information
on the protocol (e.g., SMB/CIFS or NFS) of the requester
and the lock mode. The lock server 550 receives this
information and can determine, based on any existing
lock(s) on the requested file, whether the lock server 550 can
issue multiple locks on the same file. The lock server 550
can evaluate the protocol used by the requester of the
existing lock and the associated access/share permissions of
that lock and determine whether protocol used with the new
lock requester 1s compatible.

In addition, the lock daemon 516 handles lock releases. In
some embodiments, the lock daemon 516 does not imme-
diately send the lock release to the lock server 550. This time
delay can reduce load on the centralized lock server 550
because files are frequently locked and unlocked 1n rapid
succession, as discussed above. Before a lock 1s released, 1t
the file was changed, the current data 1s sent to cloud storage
560 (e.g., Amazon S3, Microsoit Azure, or other public or
private clouds) so the most recent data 1s available to the
next locker.

Finally, the lock daemon 3516 can communicate with the
FSA 508. The lock daemon 516 can receive lock requests
and/or lock peek requests from FSA 3508, which the lock
daemon 516 translates into a common protocol for trans-
mission to the centralized lock server 550, as discussed
above. The lock daemon can also pass the updated handle
name to the FSA 508 to perform a file-level snapshot before
unlocking a file and/or a file level merge/synchromzation
betfore locking a file.

For global locking, it 1s desirable for the locker to have the
most recent version of the file associated with the lock
request (and lock grant). To accomplish this, the cache
manager 512 can be configured to snapshot a single file (e.g.,
the file associated with the lock request) without triggering
a copy-on-write (COW) event (which would cause a version
update, as discussed above) and without aflecting other
snapshot operations. After a single file snapshot, the cache
manager 5312 can mark all parent directories of the file as
changed or “dirty.” In addition, the fault manager algorithm
can be configured to fault a single file based on requests
from the FSA 508.

The merge/push algorithm can be modified to provide for
merging single files. Before the locked file 1s pushed to the
local cache 540, the NOC 3555 assigns a unique lock version

(e.g., 64 bit) to the file. The lock version can be used by FSA
508 to determine whether a locked file or its metadata is
dirty (1.e., changed). The parent directories of the locked file
can continue to use the existing write version assigned from
the last TOC. Thus, FSA 508 can track two values: lock_
write_version and lock_push_version. When a file or direc-
tory 1s dirtied, the lock write_version 1s updated. When a
file or directory 1s pushed to local cache 540, the lock_push_
version 1s updated.

As discussed above, the file data from the NOC 555 (or
centralized lock server 550) 1s merged into the local cache
540 before the FSA 508 returns control of the file to the
client. To determine 11 the file data 1n the NOC 5355 1s newer
than the file data in the cache 3540 (e.g., if the lock 1s

retrieved while an unlock request 1s cached), the FSA checks
MAX (lock_write_version, lock_push_version) against the
NOC lock version. If the NOC lock version 1s greater than
the lock_write_version and the lock_push_version, the file
data (object metadata and data) from the NOC 355 1s used
to 1nstantiate the object (locked file) in the local cache 540.

US 11,409,709 Bl

9

I1 the file data in the cache 540 1s newer, then the file data
from the NOC 535 1s discarded. In the circumstance where
the NOC 555 indicates that the file 1s deleted, the delete
version 1s compared to the local cache 540 version 1n order
to apply the delete to the local cache 540.

In addition, the merge/push algorithm can be modified to
reconcile the single-file merges of locked files with the
snapshot merges of files. Any file that was “fast synced”
through the FSA 508 (1.e., locked) or “fast pushed” to the
cloud (i.e., unlocked) 1s designated as *““cloud fast synced.”
When merging an object or file that 1s considered “cloud
dirty” or “cloud fast synced,” the FSA 508 will update the
file 1f the incoming lock_push_version 1s greater than MAX
(lock_write_version, lock push_version), as discussed
above. If the incoming lock_push_version 1s less than MAX
(lock_write_version, lock _push_version), the cache object
1s considered newer, and the incoming update 1s discarded
by the FSA 508. Also, when a file 1s missing (deleted) from
the pushed version, but the file 1s also locally fastsynced, the
file will not be deleted. This merging can occur concurrently
or before the global lock on the file 1s granted.

In addition, if a file has been deleted or renamed, the local
cache metadata can record a “delete tombstone” which
includes certain information (e.g., parent first handle, lock
version, name, etc.). FSA 508 merges a file as new if the file
1s newer than any delete tombstone contained 1n the cache
for the unique file. This can address the situation 1n which a
file has been fast synchronized before merge. In that case,
the mmcoming cloud dirty file 1s old compared to the cache
and the import 1s discarded.

To ensure that the unlocked file includes the changes from
the latest version, the locked file can only be unlocked when
the lock_push_version 1s greater than or equal to the lock-
_write_version at which point the FSA 508 sends the lock-
_push_version back to the NOC 355 (or centralized lock
server 550) to store the new version of the file 1 cloud
storage 560.

In some embodiments, the interface 310 snapshots and
merges new liles at the time of creation. The new file
requests can be stored on the lock server 550 with the lock
entries. Other users can poll the lock server 550 to determine
il new files/objects exist that have not yet been populated to
the cloud 560, for example if there are new files/objects 1n
a given directory. After the new files have been created, the
locker server 550 can merge the new {file requests into the
appropriate directories 1n the cloud 560.

The following provides further details regarding “‘shar-
ing” 1n the context of a multi-site 1implementation. This
technique 1s described 1n U.S. Pat. No. 8,661,063, the
disclosure of which 1s hereby also incorporated by reference.
As used herein, “sharing” refers to the ability to provide full
read/write access at any time to any file/folder/volume
owned by a particular filer, or across multiple such filers.
According to this approach, independent volumes are
enabled to share data in the cloud.

Consider the case of two (2) filers that desire to do full
read/write sharing of a single volume, where each of the
filers uses an interface and creates a VFS as has been
described above. In particular, Filer A has Volume-RW, and
Filer B has Volume'-RW. Users of Filer A read and write
Volume-RW as a normal file system, and users of Filer B
read and write Volume'-RW as a normal file system. This
type of operation has been described above. Now, according,
to the “sharing” technique, filers first register into a sharing,
group. Preferably, a web-based interface (or the like) is
provided for this purpose, although any other convenient
sharing group registration mechanism may be used. The

10

15

20

25

30

35

40

45

50

55

60

65

10

registration interface includes or 1s associated with appro-
priate authentication and/or authorization mechanisms to
ensure privacy and security, and that entities desiring to
“share” independent volumes can manage their sharing
appropriately. (Filers may also de-register from a sharing
group using the web-based interface). At a start of each
snapshot, a filer that has registered for a sharing group 1s
provided (e.g., by the service provider or otherwise) a
“snapshot lock™ that includes 1ts version number. By defi-
nition, during this lock no other filers can snapshot. Once the
version 1s acquired, the filer that acquires the lock does the
following: (1) the filer first looks at delta lists (attached to
TOCs, and as described 1n more detail below) from the last
version this filer pushed to the current version, and then
applies all changes to 1ts current file system; (11) the filer then
begins pushing to the cloud; and (111) completes the push. In
the alternative, instead of using delta lists, the filer can
compare file system metadata (directories, structures, and so
forth). When using file system compare, portions of the
directory tree may not need to be compared, e.g., 1f there are
common eclements between or among the sides being
merged.

During the push (1.e., as all chunks and the file manifests,
etc. are being pushed), optionally a notification 1s sent to all
other members of the sharing group notifying them of
new/changed {files. In the embodiment where notification 1s
used, the message typically includes only the cloud handle
tfor the file mamifest; other information (e.g., the GUID of the
filer that wrote the file, the path of the file 1n the namespace,
etc.) can be learned from this manifest. Preferably, the
sending filer only has to send once, and the notification
message 1s replicated into a persistent message queue for
cach other filer 1n the sharing group. (Preferably, each filer
in the sharing group has an associated message queue,
although this 1s not a limitation).

Once notified, each other filer 1n the sharing group per-
forms the following: 1f the version of the object 1s greater
than 1ts own version, the other filer inserts the new/changed
file mto its “now” current file system, e.g., using a fast
restore algorithm. If the version of the object 1s less than its
own version, the other filer 1ignores the update.

During the snapshot, the filer doing the snapshot gets

bundles (associated with each TOC) from the cloud for each
version between 1ts last snapshot and the current snapshot
and that contains metadata about the 1tems changed during
the snapshot. Such metadata (sometimes referred to as a
delta list) may include: path names, access control lists
(ACLs), and handles. A delta list may be attached to each
TOC that indicates what changes since the last TOC. Pret-
erably, the deltas (differences) between the versions are
merged 1nto the current snapshot sequentially. A new delta
frame 1s created and tied into the new TOC 1n connection
with completing the snapshot operation.

As an optimization, changes may be streamed to the cloud
when snapshotting 1s not occurring to improve sharing
response time.

The above-described techmiques provide the ability to
share independent volumes that are established by distinct
filers. This conserves storage space in the cloud, does not
require the use of shadow volumes, does not require snap-
shots to alternate between or among filers, facilitates near-
live sharing of files even before a snapshot 1s complete,
maintains synchronous snapshot of file system capability,
and enables multiple volumes to have independent histories
without twice the data being persisted 1n the cloud.

US 11,409,709 Bl

11

The filers may be anywhere geographically, and no net-
work connectivity between or among the filers 1s required
(provided filers have a connection to the service).

More generally, sharing enables multi-site access to a
single shared volume. The data in the volume 1s 100%
available, accessible, secure and immutable. The approach
has infimite scalability and eliminates local capacity con-
straints. The sites (nodes) may comprise a single enterprise
environment (such as geographically-distributed oflices of a
single enterprise division or department), but this 1s not a
requirement, as filers are not required to comprise an inte-
grated enterprise, though practical limitations (e.g., security)
can dictate whether multiple enterprises can share access to
a common file system. This enables partners to share the file
system (and thus particular volumes therein) 1n the cloud.
Using the service provider-supplied interfaces, which are
preferably web-based, the permitted users may set up a
sharing group and manage it. Using the sharing approach as
described, each member of the sharing group in effect “sees”
the same volume. Thus, any point-in-time recovery of the
shared volume 1s provided, and full read/write access 1s
enabled from each node 1n the sharing group.

The above-described services platform consolidates an
enterprise’s Network Attached Storage (NAS) and file server
silos 1 cloud storage, delivering infimite scale, built-in
backup, global file sharing, and local file server perior-
mance. A commercial implementation of these technologies
1s a software-as-a-service (SaaS) platiorm 1s available from
Nasuni Corporation. Enterprise customer data 1s stored on
one or more third party clouds 1n a write-once, read-many
(WORM) manner in a platform-specific format, namely,
UniFS®-formatted volumes. This solution provides NAS
consolidation, backup and recovery modernization, multi-
site file sharing, and rapid, infrastructure-ifree disaster recov-
ery, while also serving as a foundation for data analytics and
multi-cloud IT 1mitiatives 1n a manner that 1s now described.
File Accelerator

With the above as background, the techniques of this
disclosure are now described.

As will be seen, a main goal of the file accelerator solution
herein 1s to speed up data propagation (typically, during the
sharing process) and, in particular by performing real-time
analysis on audit event data to coordinate pushes and pulls
across multiple edge appliances, effectively replacing static
schedules. For the following description, 1t 1s assumed that
multiple filers are sharing a volume stored 1n a private,
public or hybrid cloud object store. As used herein, a “push”™
refers to a snapshot on the volume that occurs at a particular
filer, and a “pull” refers to a synchronization (sync) opera-
tion 1nitiated by a particular filer to obtain whatever 1s 1n the
cloud (and that 1s the subject of the pull). Pull 1s a unidi-
rectional operation that 1s a command for the filer to merge
its local cache to the latest version of the file system.
Generally, pull 1s the opposite of push.

According to this disclosure, the file accelerator operates
in several modes of “triggered” operation based on user
activity, and under the control of a cloud-based controller.
The first mode 1s a triggered push (or snapshot), which 1s a
mode 1n which a particular filer of the set of filers sharing the
volume 1s prioritized (over the other filers) for a push. A push
occurs with respect to the entire volume and moves data and
metadata ofl of the particular filer and into the cloud object
store. Once the push completes, the other filers of the set of
filers sharing the volume then need to obtain that data and
metadata; to this end, the second mode of triggered opera-
tion (and which 1s the opposite of the triggered push) 1s then
a triggered pull, whereby the data and metadata that was the

10

15

20

25

30

35

40

45

50

55

60

65

12

subject of the triggered push get pulled to the other filers that
share the volume. FIG. 6 depicts the triggered push and pull
operations for a set of filers 602, 604 and 606 with respect
to the shared volume 608. In this embodiment, the filers are
not operating under a global file lock (GFL). Each filer 602,
604 and 606 has a local service running that checks-in with
the controller 610 periodically (e.g., every five (5) seconds).
In particular, the filer checks-in with the controller to query
whether the controller has a new “recommendation” to
either push or pull. The filers typically query the controller
asynchronously from one another, but once a filer (such as
filer 602) receives a recommendation from the controller
610 to imitiate a triggered push, i1t does so. Once filer 602 (in
this example) completes the push on the volume, the con-
troller thereatter responds to queries from filers 604 and 606
with a recommendation to pull. In this manner, each of the
filers 604 and 606 merge 1ts respective local cache to the
latest version of the volume. As will be described below,
which one of the filers (1in the set that share the volume) 1s
identified for the push depends on a prioritization scheme
that determines a current “highest priority filer.” This deter-
mination 1s made by the controller 610, which continuously
receives event data from each of the filers, and then uses a
scoring mechanism 612 to determine which of the filers of
the set should then be prioritized for receiving the push
recommendation. The scoring mechanism 1s turned on (acti-
vated) for the filers upon occurrence of a particular event,
namely, a volume lock release event that has occurred at a
filer. When the controller receives an indication that the
volume lock release event has occurred, 1t sets or re-sets the
scoring mechanism and begins computing scores for the
filers based on the event data that 1s thereafter recerved by
the controller. As the recerved event data 1s analyzed and
scored, a highest priority filer 1s identified, and the controller
provides the push recommendation to that controller when
queried.

Push 1s a scarce resource, and as noted 1t 1s usually
rescored when a volume lock has been released. With
respect to an update to a particular version in the versioned
file system, preferably only one recommendation to push 1s
awarded at one time. That said, triggered push/pull opera-
tions may still be interleaved across the filer set. In other
words, assume filer 602 executes the triggered push on the
volume with respect to version 100 (V100) of the versioned
file system, and (once the push completes) the filers 604 and
606 cxecute the associated triggered pull on that volume
(and V100), as previously described. In this time period, and
depending on when the volume lock release event has
occurred, filer 604 may receive a separate push recommen-
dation with respect to a next version V101 of the versioned
file system that 1t 1s updating. That push, 1n turn, may cause
the controller to 1ssue the triggered pulls (for V101 updates)
to filers 602 and 606. In other words, the particular triggered
push and the related triggered pulls need not operate 1n a
mutually exclusive manner.

As mentioned, the above-described processing 1s enabled
for filers sharing a volume but that are not operating under
global file lock. When filers are operating under GFL,
another mode of triggered operation—triggered fast sync—
may be mmplemented by the controller. In this mode, the
controller instructs a filer to sync individual directories to
the latest versions of the contents within them. In other
words, triggered fast sync 1s implemented with respect to
one or more directories of the volume, as opposed to the
volume as a whole. In one embodiment, triggered file sync
1s 1nitiated by the controller for the filers under GFL when
it receives event data indicating that a new file 1s created on

US 11,409,709 Bl

13

a particular filer while unique users are also showing up 1n
the directory on the other filers. While this 1s a typical use
case for triggering fast sync, this mode may also be triggered
for other activity such as file delete, file write, directory
create, directory delete, etc. When triggered fast sync 1is
cnabled, and as part of sending audit events to the controller,
the controller notes when a change occurs 1n a directory that
1s global file lock (GFL)-enabled. When this change gets
reported, 1t also causes an immediate re-score of the priori-
tized list being maintained for the push recommendation.

The notion of a “recommendation” 1s not intended to
imply that the filer that receives the recommendation can
ignore it. The recommendation(s) provided by the controller
to the individual filers sharing the volume are instructions to
take the 1dentified action (namely, push or pull, as the case
may be), and the filers take such actions when 1nstructed by
the controller to do so.

In operation, and as described, each filer 1s configured to
periodically check-in with the cloud-based controller (e.g.,
every five (5) seconds) to determine whether the cloud-
based controller has any recommendation(s) for the filer. To
this end, the cloud-based controller continuously receives
user activity event data from the filers, and it executes the
prioritization scheme based on the user activity. The priori-
tization scheme 1s carried out relative to a directory 1n which
updates (e.g., reads, writes, deletes, creates, etc.) are hap-
pening on a filer. As updates occur, the cloud-based con-
troller receives the event data and keeps track of what file or
directory-related activity 1s of most “interest” to users. A
typical heuristic indicative of user “interest” 1s a simple
count of the number of unique users waiting for a file. Other
types of heuristics may be used for the prioritization scheme
associated to the directory. Using the prioritization scheme,
and based on user activity at the filers, the cloud-based
controller determines which filer of the set of filers should
have priority for the push recommendation. The cloud-based
controller then proactively provides the recommendation to
the highest-prionity filer as determined by the relevant
interest heuristic and the user activity. By implementing
triggered push (snapshot) 1n this manner, data 1s propagated
across the filers reliably and much more quickly as com-
pared to using static push and pull schedules.

As depicted 1n FIG. 7, the file acceleration solution herein
comprises two basic components: a file accelerator control-
ler 700, and a file accelerator service 702. As described
above, the file accelerator controller 700 comprises cloud-
based infrastructure that analyzes audit events and coordi-
nates push and pull activity among appliances sharing a
volume. The file accelerator service 702 executes on an edge
appliance (one of the appliances sharing the volume) to send
events to the cloud and receive recommendations to push
(the triggered push mode) and pull (the triggered pull mode
when the filers are not operating under GFL, and the
triggered fast sync mode when the filers are operating under
GFL). The file accelerator service 702 on the edge appliance
executes recommended actions, and 1t includes the capabil-
ity to recover from system and network problems. The
cloud-based file accelerator controller 700 analyzes audit
cvents sent from an appliance (in particular, the file accel-
erator service 702 running on an appliance), e.g., hashed
directory names, numeric or UUID user names, and file
extensions. Preferably, and to preserve confidentiality of
customer data, file, directory and user name information 1s
obfuscated before leaving the appliance. As previously
described, triggered push or pull operations herein operate
independently of scheduled push/pull activity, as such
scheduled activity often does not provide suflicient data

10

15

20

25

30

35

40

45

50

55

60

65

14

propagation speeds. Stated another way, when triggered
push and pull for the shared volume are enabled for file
acceleration, the scheduled push/pull for that volume are
disabled, although the scheduled push/pull for other vol-
umes typically continues to operate.

As noted, the file accelerator controller 700 recommends
pushes and pulls based on certain actions on one appliance,
¢.g., directory and file creates, deletes, renames, etc., as well
as actions in the same directory on other appliances. A
representative push operating scenario (with the described
sequence of ordered operations) thus may proceed as fol-
lows, assuming three filers (filer 1, filer 2 and filer 3 that are
sharing the volume): (1) user 1 on filer 1 creates directory B
under directory A in volume 1; the audit event 1s sent to the
cloud; (2) users on filer 2 and filer 3 cd nto directory A on
volume 1; the audit events are sent to the cloud; (3) the file
accelerator controller 600 detects this behavior and marks
volume 1 for push on filer 1; (4) filer 1 calls 1ts associated
file accelerator controller service 602 and learns 1t should
push volume 1; (5) filer 1 pushes volume 1; and (6) filers 2
and 3 will soon sync changes via a pull, which occurs as a
by-product of the filer service. Thus, the propagation of
directory B to filer 2 and to filer 3 1s accelerated. While this
1s a typical use case, even 1n the absence of collaborative
behavior, push recommendations may also be awarded
based on general wire activity, time since the last push, and
other considerations.

FIG. 8 depicts the file acceleration solution of this dis-
closure 1n additional detail. As depicted, an edge appliance
800—such as depicted i FIG. 4 and described above—
comprises a set of local appliance services 802 that receive
and process {ile system updates. The appliance services 802
provides information to an audit component 804. The appli-
ance 800 further includes a file accelerator service 805 of
this disclosure coupled to the audit component 804 and that
1s responsible for dispatching filtered audit events to and
executing recommendations (e.g., push, pull) from the
remote cloud-based file accelerator controller 806. In one
embodiment, the file accelerator service 805 1s implemented
as a Python-based service. It provides a set of features,
preferably with respect to a single selected volume per
account under file accelerator control. In this manner, and
excepting the volume affected, other volumes 1n the system
are unaflected, 1.e., they continue to use standard push and
pull schedules. A volume that 1s managed for file accelera-
tion (“FA” or global (G)FA) according to this disclosure 1s
sometimes referred to as “FA- (or GFA-enabled) volume.”

In operation, the file accelerator service 805 reads audit
events from the audit component 804, performs transforma-
tion (e.g., hashing and filtering), and then sends the event
data to the file accelerator controller 806. In particular, the
data sent to the file accelerator controller 806 should be
hashed to prevent sensitive information from being acces-
sible to the service provider or any bad actor. In one
non-limiting embodiment, this 1s accomplished by one-way
hashing directory paths. For example, 11 an audit log con-
tained the file/dirl/dir2/dir3/file .txt, the data sent to the
cloud would be hash (/dirl/dir2/dir3). As noted above, the
service 805 also provides triggered snapshot and fast sync.
In particular, preferably appliances using the file accelerator
solution do not use standard push and pull (snapshot and
sync) schedules configured by the service provider (e.g., 1n
a management component (MC)); instead, the file accelera-
tor service 805 running on the edge appliance 800 receives
instructions (recommendations) from the file accelerator
controller 806 about specific actions to take. As noted above,
the filer’s file accelerator service 8035 1s configured by

US 11,409,709 Bl

15

default to check-in with the controller on a regular cadence
to determine 11 1t push or pull. This polling not required, as
the controller may provide this information to the f{ile
accelerator services proactively. In the event the service 805
running on the local edge appliance loses communication
with the file accelerator controller 806, the service 805 {ails
over to emulate the scheduled push and pull as configured on
the volume by the management component.

The file accelerator service is started when a new con-
figuration 1s recerved by the edge appliance. A post-config
hook script may be used for this purpose. Preferably, cron-
j0bs for push and pull are not created for the GFA-enabled
volume, as such activity would cause create lock contention
and potentially minimize the benefits of running the file
acceleration service. On the MC, preferably the user is
provided a noftification (e.g., a banner) indicating that
changes to push and pull schedules for the GFA-enabled
volume will not take effect, although the user 1s still per-
mitted to change the schedules. API calls to obtain volume
push locks preferably indicate the source of the lock, espe-
cially 11 the reason for requesting lock 1s the local FA service
calling push.

In an example implementation, the file accelerator con-
troller 806 (for the associated set of local files and therr file
acceleration service(s)) 1s configured as an endpoint in the
cloud, behind which 1s the infrastructure enabling 1ts capa-
bilities. In one embodiment, endpoints are implemented 1n a
public cloud service (e.g., Amazon® AWS® or Microsoft®
Azure® or others) and provide multi-tenancy, high-avail-
ability, and cross-region failover for disaster preparedness.
The file accelerator controller typically 1s implemented 1n
the same public, private or hybrid cloud environment (the
cloud object store) that supports that versioned file system
exported by the filers. In Amazon AWS, for example, the
controller infrastructure 1s 1implemented using a gateway
component (e.g., APl Gateway), a serverless compute com-
ponent (e.g., Lambda), and a backend database (e.g., Aurora
MySQL).

In operation, preferably, the file accelerator controller 806
exposes a single endpoint by which data sent by edge
appliances 1s ingested and recorded for scoring, which
tacilitates the dynamic triggering functionality according to
the configured prioritization scheme for the directory that 1s
maintained and enforced by the controller. As noted, prei-
erably scoring 1s triggered when the controller 806 1s noti-
fied (e.g., by a Network Operations Center (NOC)) that a
volume lock has been released. As noted above, according to
this disclosure a particular prioritization scheme 1s config-
ured to enforce a user activity “interest” heuristic. Based on
the heuristic (e.g., a number of unique users waiting for a
particular file), the scoring then determines which one of the
filers should recetve a push recommendation. In other
words, according to a preferred approach, the push recom-
mendation 1s awarded to the filer with a highest score (1.e.,
need). When a highest scoring filer than receives the push
recommendation, its local file accelerator service executes
the push with respect to the volume.

Thus, according to the file accelerator solution, user
activity on the filers 1s continuously provided to the cloud-
based controller. The file accelerator service running on the
edge appliances receives and acts on recommended actions,
but preferably all decision-making resides in the cloud-
based controller.

Preferably, a web-based interface 1s available to make
available to permitted users mnformation about how the file
accelerator solution 1s functioning for a given customer and
volume. For example, the interface may display push and

10

15

20

25

30

35

40

45

50

55

60

65

16

event data on a volume, details about recommendations,
scores and other diagnostic data, and an input form to enable
a user to mquire about activity for a given file or directory
across all appliances. Further, the controller interface may be
alerted based on mformation sent from the appliance to the
controller, such as: problems executing recommendations,
metrics, and other errors and exceptions. Preferably, inira-
structure 1ssues can be detected and reported using cloud
tools (e.g., AWS CloudWatch) and custom health checks.
The solution may also be itegrated with external monitor-
ing and alert tools.

Preferably, the file accelerator controller stores data sent
to 1t by the edge appliances, including timestamps of audit
events as well as timestamps for calling pull. A propagation
time may then be defined, e.g., as the time delta between a
write-like audit event happening, and the other edge appli-
ances pulling down the file change from the audit event.
With this on-the-1ly calculation of data propagation time, the
system can collect ordinal statistics from which mathemati-
cal operations on data can then be performed (e.g., by filer,
by volume, time range, and the like).

Because preferably all file, directory and user name
information are obfuscated before leaving the appliance, the
cloud does not have direct access to the customer’s data.
Nevertheless, 1t 1s possible for a determined attacker to
monitor an interest 1n a file or directory associated with some
hash value. For example, 1f an attacker repeatedly sees a
hash such as 498b104612c0113e¢29ded47313¢c14122, 1t may
assume that the customer 1s doing a lot of work on the file,
even though 1t does not know what data 1s 1n the file. Plain
hashes also are vulnerable to dictionary and rainbow table
attacks where a large text corpus 1s hashed to provide a list
of hashes hat can be compared to a given target hash to
reveal the original data. To provide further security, the hash
might be salted by adding random data to the data being
hashed (e.g., hash(RANDOM|{oobar)), but—even then—a
particular hash will still be the same across all systems and
for an indefinite time period; while this does make a dic-
tionary or rainbow table attack more diflicult, the use of a
static, and therefore known, salt does not fully avoid these
attacks, as 1t 1s still possible (albeit more labor 1ntensive) to
leverage these attacks while incorporating the salt. A better
solution 1s to use rotating salted hashes, wherein (as the
name i1mplies) the salt for each hash 1s rotated. If the salt
rotation period 1s short enough, there may not be time to
create the dictionary or rainbow table in the first place.
Further, because the hashes change every salt rotation
period, there 1s no way for an attacker to build up the
necessary records ol what makes a hash interesting. At
worst, the attacker could determine how interesting a given
hash 1s for the salt rotation period.

To rotate a hash, the system needs to know the amount of
time that a record 1s useful/interesting to the system. Pret-
erably, the rotating salt hash protocol guarantees that a
record hash 1s usable for at least that amount of time (1.¢., the
lifetime), but never more than some multiple (e.g., double
that amount of time). In practice, it will range between
lifespan and lifespan®2, averaging to lifespan®1.5. In prac-
tice, a double hash scheme 1s used, one with (time/lifespan)
and the other with (time/lifespan)+1. This ensures that even
in the worst-case scenario where the hash i1s generated 1n the
last moments of the lifespan, that the hash 1s still usable for
(at least) a full lifespan. A simple salt of (time/lifespan) 1s not
suflicient, as that can be pre-calculated by the attacker,
allowing them to buld up a dictionary for a future window
of time. Instead, preferably some secret information 1is
included 1n the hash that even the service provider (more

US 11,409,709 Bl

17

specifically, the NOC) cannot know. The filer-secret can be
any piece of information that i1s already known to all filers
sharing a volume but explicitly not known to the NOC. For
example, this could be a hash of private MPIs of the volume
key for the volume, a simple hash of the volume key 1tsell,
etc. Alternatively, the hash 1itself could be constructed as an
HMAC (hashed message authentication code) using these
same volume key hashes as the HMAC key.

Preferably, all filers use the same salting method, but the
particular details do not impact the protocol from the NOC
perspective. The NOC just sees a hash that can be compared,
e.g.,

hash (filer-secret|(time/lifespan)lfilename)

hash (filer-secret|(time/lifespan)+1|filename)

When comparing hashes, the NOC needs to check against
both of the above. Even though in practice the “+1” will not
match the “+0” hash, they are treated equivalently. Alter-
nately, and as noted above, the filer-secret 1s used as the key
for an HMAC. This actually uses the filer-secret as a key to
encrypt a hash. Because the NOC does not know the
filer-secret, 1t cannot verily the hash.

While the above describes a particular order of operations
performed by certain embodiments of the disclosed subject
matter, 1t should be understood that such order 1s exemplary,
as alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, or the like. References 1n the specification to a
given embodiment indicate that the embodiment described
may include a particular feature, structure, or characteristic,
but every embodiment may not necessarily include the
particular feature, structure, or characteristic.

While the disclosed subject matter has been described in
the context of a method or process, the subject matter also
relates to apparatus for performing the operations herein.
This apparatus may be specially constructed for the required
purposes, or 1t may comprise a computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored 1n a
computer readable storage medium, such as, but 1s not
limited to, any type of disk including an optical disk, a
CD-ROM, and a magnetic-optical disk, a read-only memory
(ROM), a random access memory (RAM), a magnetic or
optical card, or any type of media suitable for storing
clectronic 1nstructions, and each coupled to a computer
system bus. A computer-readable medium having instruc-
tions stored thereon to perform the interface functions 1s
tangible.

A given implementation of the disclosed subject matter 1s
soltware written 1n a given programming language that runs
on a server on an Intel-based hardware platiorm running an
operating system such as Linux. As noted above, the inter-
face may be implemented as well as a virtual machine or
appliance, or 1n any other tangible manner.

While given components of the system have been
described separately, one of ordinary skill will appreciate
that some of the functions may be combined or shared in
given instructions, program sequences, code portions, and
the like.

Having described the subject matter herein, what we
claim 1s as follows.

The invention claimed 1s:

1. A method of data sharing among multiple filers that
share a volume of a versioned file system 1n a private, public
or hybrid cloud object store using scheduled push/pull
activity on the volume, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

18

at a controller that 1s distinct from the multiple filers:

continuously receiving event data from the multiple
filers that are configured to share the volume,
wherein the event data represents user activity on a
filer;

upon receipt of an indication that a volume lock has
been released at a given filer, analyzing the event
data thereatfter received according to a prioritization
scheme to determine a highest priority filer; and

responsive to receipt of a query from the highest
priority filer, delivering to the highest prionty filer a
recommendation to 1nitiate a push on the volume to
move data off the highest prionty filer and 1nto the
cloud object store;

wherein the push on the volume occurs independently
ol the scheduled push/pull activity, thereby reducing
data propagation time for the data sharing.

2. The method as described 1n claim 1 further including:

responsive to completion of the push on the volume by the

highest prionty filer, and responsive to receipt of a
query from at least one other filer, delivering to the one
other filer a recommendation to initiate a pull on the
volume to pull the data to the other filer independently
of the scheduled push/pull activity.

3. The method as described 1n claim 1 wherein the
prioritization scheme 1s associated with given user activity
associated with the directory that has occurred at the highest
priority filer, the directory having also been referenced by
other user activity on one or more {filers other than the
highest prionty filer.

4. The method as described in claim 1 wherein the highest
priority filer 1s determined according to an interest metric
enforced by the prioritization scheme.

5. The method as described 1n claim 4 wherein the given
user activity associated with a filer 1s a file or directory
update and the interest metric 1s a number of unique users at
the one or more filers other than the highest priority filer
waiting on a file.

6. The method as described in claim 1 further including
disabling the scheduled push/pull activity.

7. The method as described 1n claim 1 wherein the
multiple filers are global file lock (GFL)-enabled.

8. The method as described 1n claim 7 further including
providing at least one filer a recommendation to fast sync
one or more directories to latest versions of contents within
them.

9. The method as described 1n claim 1 wherein the event
data comprises an entry i an audit log of a given filer and
whose directory path 1s hashed to prevent exposure of
sensitive information in the audit log.

10. The method as described 1n claim 9 wherein a hash
associated with the directory path 1s a salted, rotating hash.

11. The method as described 1n claim 1 at least one other
volume associated with the multiple filers continues to
operate under the scheduled push/pull activity.

12. The method as described 1n claim 11 further including
failing back to the scheduled push/pull activity upon loss of
communication with respect to a filer.

13. A file accelerator software-as-a-service (SaaS), com-
prising:

multiple filers that share a volume 1n a private, public or

hybrid cloud object store using scheduled push/pull
activity on the volume, each filter comprising a physi-
cal or virtual machine;

cloud-based infrastructure comprising at least one com-

puting machine, the computing machine comprising
computer memory holding computer program code, the

US 11,409,709 Bl

19

computer program code configured as a controller

distinct from the multiple filers to:

periodically receive from the multiple filers queries for
push and pull recommendations;

continuously receive event data from the multiple filers
that are configured to share the volume, wherein the
event data represents user activity on a filer;

upon receipt of an indication that a volume lock has
been released at a given filer, analyze the event data
thereafter received according to a prioritization
scheme to determine a highest prionty filer;

responsive to receipt of a query for a push or pull
recommendation from the highest prionty filer,
deliver to the highest priority filer a recommendation
to 1nitiate a push on the volume to move data ofl the
highest prionty filer and into the cloud object store;
and

responsive to receipt of a query for push or pull
recommendation from at least one other filer, deliver
to the at least other filer a recommendation to 1nitiate
a pull on the volume to retrieve the data from the
cloud object store;

wherein the highest priority filer receives and mnitiates the

recommendation to push the volume;

wherein, following completion of the push, the at least

other filer receives and mitiates the recommendation to
pull the volume;

wherein the push or pull occur independently of the

scheduled push/pull activity, thereby reducing data
propagation time for data sharing.

14. The file accelerator SaaS as described 1 claim 13
wherein the highest priority filer 1s determined according to
an iterest metric enforced by the prioritization scheme.

15. The file accelerator SaaS as described 1n claim 14
wherein the given user activity associated with a filer 1s an
update and the interest metric 1s a number of unique users at
the one or more filers other than the highest priority filer

waiting on a file.

10

15

20

25

30

35

20

16. The file accelerator SaaS as described in claim 12
wherein a directory in the volume 1s global file lock (GFL)-
enabled, and wherein the computer program code 1s further
configured to:

provide at least one filer a recommendation to initiate a

fast sync on the directory.

17. A filer apparatus configured to share a volume 1n a
private, public or hybnd cloud object store using scheduled
push/pull activity on the volume, comprising;:

a Processor;

computer memory storing computer program code

executed by the processor, the computer program code

configured to:
generate event data from an activity occurring on the

filer;

uploading the event data for analysis with event data
provided by one or more other filer apparatus that
share the volume:

receiving a recommendation to 1nitiate a push or pull
operation, the recommendation having been gener-
ated at a controller remotely from the filer apparatus
upon a determination at the controller that a directory
associated with the filer apparatus 1s also being
referenced by activity on one or more other filer
apparatus that share the volume and that mnvolves a
given {ile behavior; and

independently of the scheduled push/pull activity, 1ni-
tiating the push or pull operation based on the
recommendation, thereby reducing data propagation
time for data sharing.

18. The filer apparatus as described 1n claim 17 wherein
the program code 1s further configured to generate the event
data by hashing an entry in an audit log.

19. The filer apparatus as described in claim 18 further
including applying a salted, rotating hash to the event data.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

