US011397738B2

a2 United States Patent (10) Patent No.: US 11,397,738 B2

Modai et al. 45) Date of Patent: Jul. 26, 2022
(54) STATELESS STREAM HANDLING AND (56) References Cited
RESHARDING

U.S. PATENT DOCUMENTS

(71) Applicant: Iguazio Systems Ltd., Herzliyva (IL)

2003/0177187 Al* 9/2003 Levine ................ HO4L 63/0428
709/205
(72) Inventors: Ori Modai, Ramat Hasharon (IL); Orit 2013/0011484 Al*  1/2013 Bevier ... A61K 31/353
Nissan-Messing, Hod Hasharon (IL); 424/490
Yaron Haviv, Tel Mond (IL); Ortal 2016/0191250 A1*  6/2016 Bestler ................ GUOF ;‘i’g 2/%(55;
Levi, Herzliya (IL) 2016/0203061 AL*  7/2016 Lee oo GOGF 16/1844
: . : 714/19
(73) Assignee: Iguazio Systems Ltd., Herzliya (IL) 2016/0357674 AL* 122016 Waldspurger ....... GOGF 12/0893
2017/0075965 Al1* 3/2017 L ....ooooveein, GO6F 16/2386
(*) Notice: Subject to any disclaimer, the term of this 2017/0103116 A1*  4/2017 HU oooveeveeeeeeeeei, GO6F 16/217
patent 1s extended or adjusted under 35 %8;?8%2; ég i: 2;38; IS<ﬁI NS Hgglg;/l()ﬁg/?g
U.S.C. 154(b) by 140 days. . . 1O DUICOUL e
(b) by h 2018/0260125 Al*  9/2018 Botes .....oooo....... GOGF 11/2094
_ 2019/0163545 Al1* 5/2019 Singh .................... GO6F 16/278
(21) ~ Appl. No.: 15/913,919 2019/0179613 AL*  6/2019 Stamos ................. GOGF 16/278
_ 2019/0208013 Al* 7/2019 Lat .....cccoeevvnvinnnn... GO6F 16/116
(22) Filed: Mar. 7, 2018 2019/0278859 Al* 9/2019 Modal ......coouvvnn. GO6F 16/278
2019/0278863 Al* 9/2019 Modal .......coevv. GO6F 16/278
(65) Prior Publication Data * cited by examiner
US 2019/0278860 Al Sep. 12, 2019 . .
P Primary Examiner — Pavan Mamillapall
(51) Int. CL (74) Arr(?r;fzeyJ Agent, or Firm — FisherBroyles, LLP;
GOG6F 17/00 (2019.01) Arie]l Reinitz
GO6F 7/00 (2006.01)
57 ABSTRACT
GO6F 16/2455 (2019.01) (57) _
GOGF 16/21 (2019.01) Systexps and metho@s are dls?losed for ;tateless stream
GOGF 16/27 (2019.01) handhpg and resharding. In one 1mplementat10nj a {irst s:_lard
(52) U.S. Cl including one or more messages 1s generated. The first shard
CPC GOGF 16/24568 (2019.01); GOGF 16/219 1s assoclated with a first shard version attribute. The first

(2019 01) GOGEF 16724562 (2019 Ol) GO6GF shard and the first shard version attribute are provided as d
7 16/2 7& (2619 01) first atomic update within a data stream. The first shard 1s

resharded into at least a second shard. The second shard 1s

(58) Field of Classification Search associated with a second shard version attribute. The second

CPE GG 16/24568; GIO 66/1;1196_/?05661:2 ;1 (6}/(;?; shard and the second shard version attribute are provided as
USPC ” 707/769 a second atomic update within the data stream.
See application file for complete search history. 17 Claims, 11 Drawing Sheets
R
163“‘“‘*‘ é ‘-huh.
! ~120
mmmmm MO b
110 __,..«_fi“;?déi L D”?? 110
112 M || M2 || M3 |-+ - 1308 T SHARD 114
STREAM SHARD: 51 13991{5_1.}."TE 13 h STREAM
PRODUCTEON T: i 15QB SH;:?RD ;; L-....uxu} CDNSUMPT’GN
ENGINE e AT Tl ENGINE
SHARD: 52 1o | ILIATES
DEVICE Lals 4 L N DEVICE
(PRODUCER) SHARD: 53 130 /] | _REPOSITORY (CONSUMER)
STREAMISTI IR
124
- STREAM
-/  MANAGEMENT ~ 110D
ENGINE ) - '
| Mol DEVICE
1108 - AN » P (CONSUMER
e L B S - T A ]
DRODLCER STREAM: ST2 1 (STREAMING .
( JCER) e NS e . .= | SYSTEM/SERVICE) .



US 11,397,738 B2

Sheet 1 of 11

Jul. 26, 2022

U.S. Patent

m?@

(HIWNSNOD.)
30IA3Q

(HINNSNOD)
30IA30
ANIONS

NOILIWNSNOD ||

_WvaIS

J0LE -

| (DIAYIS/NALSAS | .--

ONINYRILS)
HIAHES

NSNS
_.zmzmoqz,qz
ANYEHLS

pﬁﬁy:w.&mm

Vi Old

.
\

& 8 &
» @ 8@

3OIA3Q

:w Eﬁm._.m_

(430N00¥d)
30IAIG

ANIONS
NOILONAOYd




. &

. _ | (GONNFSMALSAS | 1 e
(YIWNGNOD) |~ 77 7T ONINYENLS) | 1" (y30na0uq)
B0NIA | e | Y3AYES I0IAIC

US 11,397,738 B2

INION3
» INFWIOVYNYI
AN NVIHLS

Sheet 2 of 11

(M30n00Hd))
30IA3A

- INIONI
- NOILLONAOY¥d
TERTES

(HINNSNOD,)
43IA40
INION3

NOILANNSNOD |
~ hvadls |

Jul. 26, 2022

V0L~

U.S. Patent



U.S. Patent Jul. 26, 2022 Sheet 3 of 11 US 11,397,738 B2

e 200

205 GENERATE SHARD

240~ ASSOCIATE ATTRIBUTE(S)

945 PROVIDE SHARD

2907 REQUEST ATTRIBUTE(S)

225" RECEIVE ATTRIBUTE(S)
2307 PROVIDE SHARD

235" ADJUST OPERATION



U.S. Patent Jul. 26, 2022 Sheet 4 of 11 US 11,397,738 B2

240

D5 RECEIVE SHARD

055~ IDENTIFY MESSAGE(S)

o~ ASSOCIATE MESSAGE(S)

575~ INSERT MESSAGE(S)




U.S. Patent Jul. 26, 2022 Sheet 5 of 11 US 11,397,738 B2

e 300

205~ RECEIVE SHARD

3107 ASSOCIATE ATTRIBUTE(S)

3157 PROVIDE SHARD

390 REQUEST ATTRIBUTE(S)

305 RECEIVE ATTRIBUTE(S)

3307 PROVIDE SHARD

335" INITIATE ADJUSTMENT

FIG. 3



US 11,397,738 B2

Sheet 6 of 11

2022

/

Jul. 26

U.S. Patent

(MINNSNOD,)
30130

IANIONS
NOILJWNSNOD |

E.qmm._,m

0Ly —

| (30IAYISINILSAS

ONINYIHLS)

INION3
INFWIOYNYIN
NYIMLS

~N{e3LviS

oy

20ey -

agsy -
402y -]

Vo

q@ Ol

L

& # ©

(H30NA0Hd.)
JOINIG

LIS E.qmm._.m

INION3
NOILONAQ0Hd

| .. NYIHLS
-85y




US 11,397,738 B2

Sheet 7 of 11

Jul. 26, 2022

U.S. Patent

qoLy . __,..._...,T

®
& e L

(MINNSNOO)
J0IAAC

ONINYIHLS)
A SEYELS

.

RN (30INSASINILSAS

sssy—|____ ¢ 'NOISHAA
mmm mmqrm

385% ¢ ‘NOISH3A
VZs | om«:w

INION3
LNIWIOVYNYW
NYIHLS

ANIONZ

NOILdWNSNOD 308y -

AHOLISOd3Y

WYIHLS

NQGY _ NG (- agsy

aoey -

h Y

(¥30NQ0¥d)

J0IA3C
INION3
NOILONAO¥d
WYTALS




U.S. Patent Jul. 26, 2022 Sheet 8 of 11 US 11,397,738 B2

5127 GENERATE SHARD

5147 ASSOCIATE SHARD
2167 PROVIDE SHARD

5187 RECEIVE ATTRIBUTE
520~ RE-SHARD
E00~ GENERATE SHARD

54 ASSOCIATE SHARD

526™ PROVIDE SHARD

FIG. 5A



U.S. Patent Jul. 26, 2022 Sheet 9 of 11 US 11,397,738 B2
— 530

532~ RECEIVE SHARD

534~ REQUEST VERSION

536 PERFORM OPERATION

538 CANCEL PERFORMANCE

E40~ RECEIVE SHARD

549~ PERFORM OPERATION




U.S. Patent Jul. 26, 2022 Sheet 10 of 11 US 11,397,738 B2

550

5527 RECEIVE SHARD

554 REQUEST VERSION

5567 PERFORM OPERATION

558~ CANCEL PERFORMANCE

£

N PROVIDE REQUEST

562~ RECEIVE SHARD

564 PERFORM OPERATION

FIG. 5C



U.S. Patent Jul. 26, 2022 Sheet 11 of 11 US 11,397,738 B2

600" 3

- B§OEES§O_R§ 5‘1 S
. . MEMORY 632 --

INSTRUCTIONS
616

INSTRUCTIONS

|
l
|
|
|
|
l.
STORAGE UNIT 636 :
5 1
|
|
!

ORIENTATION | |
= -P-;-S‘-SRE _  Leen Ao O]
COMMUNICATION 664
Wi | [_WIRELESS ] [_CELLULAR ¢
[ NEARFIELD ] [ BLUETOOTH | [ Wil ]|

=

DEVICES
670

FIG. 6



US 11,397,738 B2

1

STATELESS STREAM HANDLING AND
RESHARDING

TECHNICAL FIELD

Aspects and implementations of the present disclosure
relate to data processing and, more specifically, but without
limitation, to stateless stream handling and resharding.

BACKGROUND

Streaming systems can include devices that provide or
push data on a regular basis. Other devices may request or
pull this data, e.g., 1n order to process it.

SUMMARY

The following presents a shortened summary of various
aspects of this disclosure in order to provide a basic under-
standing of such aspects. This summary 1s not an extensive
overview ol all contemplated aspects, and 1s intended to
neither 1dentily key or critical elements nor delineate the
scope of such aspects. Its purpose i1s to present some
concepts of this disclosure mn a compact form as a prelude to
the more detailed description that 1s presented later.

In one aspect of the present disclosure, systems and
methods are disclosed for stateless stream handling and
resharding. In one implementation, a first shard comprising
one or more messages 1s generated. The first shard 1s
associated with a first state attribute. The first shard and the
first state attribute are provided as an update within a data
stream.

In another aspect of the present disclosure, a first shard
including a first state attribute 1s received within a {first
stream. A message that 1s inconsistent with the first state
attribute 1s 1dentified within the first shard. The message 1s
associated as an attribute of the first shard. A second shard
including a second state attribute 1s received. Based on the
second state attribute, a position of the message within the
second shard 1s determined. The message 1s inserted into the
second shard based on the determining.

In another aspect of the present disclosure, a first shard
including one or more messages 1s received. The first shard
1s associated with a first state attribute. The first shard and
the first state attribute are provided as an update within a
data stream.

In another aspect of the present disclosure, a first shard
including one or more messages 1s generated. The first shard
1s associated with a first shard version attribute. The first
shard and the first shard version attribute are provided as a
first update within a data stream. The first shard 1s resharded
into at least a second shard. The second shard 1s associated
with a second shard version attribute. The second shard and
the second shard version attribute are provided as a second
update within the data stream.

In another aspect of the present disclosure, a first shard
including one or more messages and a first shard version
attribute 1s received from a device. A current shard version
1s requested from the device. Based on a determination that
the current shard version 1s consistent with the first shard
version attribute, an operation 1s performed with respect to
the first shard.

In another aspect of the present disclosure, a first shard
including one or more messages and a first shard version
attribute 1s recerved. A current shard version 1s requested.
Based on a determination that the current shard version is

10

15

20

25

30

35

40

45

50

55

60

65

2

consistent with the first shard version attribute, an operation
1s performed with respect to the first shard.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects and implementations of the present disclosure
will be understood more tully from the detailed description
given below and from the accompanying drawings of vari-
ous aspects and implementations of the disclosure, which,
however, should not be taken to limit the disclosure to the
specific aspects or implementations, but are for explanation
and understanding only.

FIG. 1A1llustrates an example system, 1n accordance with
an example embodiment.

FIG. 1B illustrates an example system, in accordance with
an example embodiment.

FIG. 2A 1s a flow chart illustrating a method, 1n accor-
dance with an example embodiment, for stateless stream
handling and resharding.

FIG. 2B 1s a flow chart illustrating a method, 1n accor-
dance with an example embodiment, for stateless stream
handling and resharding.

FIG. 3 1s a flow chart 1llustrating a method, 1n accordance
with an example embodiment, for stateless stream handling
and resharding.

FIG. 4 A illustrates an example system, 1n accordance with
an example embodiment.

FIG. 4B illustrates an example system, in accordance with
an example embodiment.

FIG. 5A 1s a flow chart illustrating a method, 1n accor-
dance with an example embodiment, for stateless stream
handling and resharding.

FIG. 5B 1s a flow chart illustrating a method, 1n accor-
dance with an example embodiment, for stateless stream
handling and resharding.

FIG. 5C 1s a tflow chart illustrating a method, 1n accor-
dance with an example embodiment, for stateless stream
handling and resharding.

FIG. 6 1s a block diagram illustrating components of a
machine able to read instructions from a machine-readable
medium and perform any of the methodologies discussed
herein, according to an example embodiment.

DETAILED DESCRIPTION

Aspects and implementations of the present disclosure are
directed to stateless stream handling and resharding.

As described herein, various device(s), system(s), etc. can
generate data, content, commands, etc., such as such as
messages or events. In certain implementations, such mes-
sages, commands, events, etc. can be structured, formatted,
provided and/or transmitted in various ways, such as a
stream, feed, queue, etc. Examples of such device(s) (from
which messages, events, etc., originate) include but are not
limited to: computing devices, Internet of Things (‘Io1)
devices, sensors, systems, other devices, services, and/or
functions, and/or any other element or source capable of
generating, providing, and/or otherwise making accessible
the messages, commands, events, data, etc., described
herein. In various examples illustrated here, the referenced
device(s) (Irom which a stream of messages, events, etc. can
originate) may be referred to as “producer(s).”

As also described herein, various device(s), system(s),
etc. can be configured to access, analyze, process, and/or
perform various other operations on data, content, com-
mands, etc., such as such as messages or events (e.g.,
stream(s), feed(s), etc. of messages, events, etc., originating




US 11,397,738 B2

3

from the producer(s) referenced above). Examples of such
device(s) or system(s) (that process the referenced streams)
include but are not limited to: computing devices, systems,
services, and/or any other element capable of processing
and/or otherwise performing operations with respect to the
streams, messages, commands, events, data, etc., described
herein. In various examples illustrated here, the referenced
device(s) (that can process streams of messages, events, etc.)
may be referred to as “consumer(s).”

Various modern systems may employ multiple producers
and multiple consumers 1n various topologies or arrange-
ments. Such streaming systems may, for example, be con-
figured to ensure that all events, messages, etc., within a
stream are handled (e.g., provided by a producer and/or
processed by a consumer) at least once. In scenarios in
which multiple producers and/or consumers are present,
such streaming systems may be configured to provide cer-
tain messages, events, etc. multiple times, such as in the
event of a malifunction, crash, failure, etc., at a producer. In
such a scenario, various messages, events, etc., may be
provided multiple times, and it may be necessary to identify
and/or resolve such redundancy (e.g., by the consumer when
processing the referenced messages, events, etc.).

It can therefore be appreciated that various inefliciencies
are present 1n streaming systems or services configured to

stream and/or process each event, message, etc., within a
stream ‘at least once.’

Accordingly, described herein are technologies that
enable streaming systems/services to provide and/or process
such events or messages once (e.g., ‘exactly once) and avoid
redundancies or inefliciencies even 1n scenarios in which a
producer or consumer fails. In doing so, the described
technologies maintain the resiliency of a streaming system
and enable stream producers and consumers to recover from
tailures while ensuring ‘exactly once’ semantics. Addition-
ally, the described technologies can enable conditional
updates and stateless operations, as described herein.

It can therefore be appreciated that the described tech-
nologies are directed to and address specific technical chal-
lenges and longstanding deficiencies 1n multiple technical
areas, including but not limited to content streaming, content
delivery, and data processing. As described in detail herein,
the disclosed technologies provide specific, technical solu-
tions to the referenced technical challenges and unmet needs
in the referenced techmical fields and provide numerous
advantages and 1mprovements upon conventional
approaches. Additionally, 1n various implementations one or
more of the hardware elements, components, etc., referenced
herein operate to enable, improve, and/or enhance the
described technologies, such as 1 a manner described
herein.

By way of illustration, FIG. 1A depicts an example
system 100, in accordance with some implementations. As
shown 1 FIG. 1A, system 100 can include devices such as
device 110A and device 110B (also referred to herein as
‘producer(s)’), as well as other systems, services, entities,
etc., as described herein. Various devices can be connected
to and/or otherwise communicate or transmit information,
data, etc., to one another via various networks, connections,
protocols, etc. (e.g., via the internet).

The referenced producers (e.g., device 110A as shown in
FIG. 1A) can be, for example, a server computer, computing
device, storage service (e.g., a “cloud” service), etc. which
a stream ol messages, events, etc. can originate. In certain
implementations, such devices can include stream produc-
tion engine 112.

"

10

15

20

25

30

35

40

45

50

55

60

65

4

Stream production engine 112 can be a program, module,
or set of 1nstructions that configures/enables a device (e.g.,
a producer such as device 110A as shown in FIG. 1A) to
perform various operations such as are described herein.
Such 1nstructions, etc., can be stored 1 memory of the
device (e.g. memory 630 as depicted 1n FIG. 6 and described
below). One or more processor(s) of the device (e.g., pro-
cessors 610 as depicted 1n FIG. 6 and described below) can
execute such instruction(s). In doing so, the device can be
configured to perform various operations, such as those
described herein. For example, stream production engine
112 can configure the device to generate shard(s) and/or
perform other operations as described herein.

As also shown 1n FIG. 1A, system 100 can also include
devices such as device 110C and device 110D (also referred
to herein as ‘consumer(s)’). Such devices can be, for
example, a server computer, computing device, services
(e.g., a “cloud” service), etc. configured to access, analyze,
process, and/or perform various other operations on mes-
sages or events (e.g., stream(s), feed(s), etc. originating from
the producer(s) referenced above). In certain 1mplementa-
tions, such devices can include stream consumption engine
114. Stream consumption engine 114 can be a program,
module, or set of instructions that configures/enables a
device (e.g., device 110C as shown 1 FIG. 1A) to perform
various operations such as are described herein. For
example, stream consumption engine 114 can configure the
device to request and/or process messages, events, etc., such
as those orniginating from ‘producer’ devices, as described
herein.

Additionally, 1 certain implementations system 100 can
also server 120. Server 120 can be, for example, a server
computer, computing device, services (e.g., a “cloud” ser-
vice), etc. configured to manage various aspects of a dis-
tributed streaming system (e.g., a system that incorporates
multiple producers and/or consumers. In certain implemen-
tations, server 120 can include repository 122 and/or stream
management engine 124. Repository 122 can be, {for
example, various storage resource(s) such as an object-
oriented database, a relational database, memory, etc. with
respect to which data (e.g., shards, messages, objects, etc.,
such as those referenced herein) can be retrieved and/or
stored. Stream management engine 124 can be a program,
module, or set of instructions that configures/enables server
120 to perform various operations such as are described
herein. For example, stream management engine 124 can
configure server 120 to update (and/or perform various other
operations or transformations on) a record, shard, message,
object etc. stored in repository 122, as described herein.

Further aspects and features of system 100 are described
in more detail below.

As used herein, the term “configured” encompasses 1ts
plain and ordinary meaning. In one example, a machine 1s
configured to carry out a method by having software code
for that method stored in a memory that 1s accessible to the
processor(s) of the machine. The processor(s) access the
memory to implement the method. In another example, the
instructions for carrying out the method are hard-wired nto
the processor(s). In yet another example, a portion of the
instructions are hard-wired, and a portion of the instructions
are stored as soltware code 1n the memory.

FIG. 2A 15 a flow chart illustrating a method 200, accord-
ing to an example embodiment, for stateless stream handling
and resharding. The method i1s performed by processing
logic that can comprise hardware (circuitry, dedicated logic,
etc.), software (such as 1s run on a computing device such as
those described herein), or a combination of both. In one




US 11,397,738 B2

S

implementation, the method 200 1s performed by one or
more elements depicted and/or described 1n relation to FIG.
1A (including but not limited to device 110A and/or stream
production engine 112), while 1n some other implementa-
tions, the one or more blocks of FIG. 2A can be performed
by another machine or machines.

For simplicity of explanation, methods are depicted and
described as a series of acts. However, acts 1n accordance
with this disclosure can occur in various orders and/or
concurrently, and with other acts not presented and
described herein. Furthermore, not all illustrated acts may be
required to implement the methods 1n accordance with the
disclosed subject matter. In addition, those skilled in the art
will understand and appreciate that the methods could
alternatively be represented as a series of interrelated states
via a state diagram or events. Additionally, 1t should be
appreciated that the methods disclosed 1n this specification
are capable of being stored on an article of manufacture to
facilitate transporting and transferring such methods to
computing devices. The term article of manufacture, as used
herein, 1s intended to encompass a computer program acces-
sible from any computer-readable device or storage media.

At operation 2035, a first shard 1s generated. In certain
implementations, such a shard can be an object or partition
(e.g., from a larger database or object) and can include one
Or more messages, events, records, etc., as described herein.
For example, as shown 1n FIG. 1A, shard ‘S1° (130A) can be
generated by producer 110A (e.g., by stream production
engine 112). As shown 1n FIG. 1A, shard 130A can include
messages 132 (e.g., messages ‘M1,” ‘M2,” ‘M3, etc.).

At operation 210, the first shard (e.g., as generated at
operation 203) 1s associated with an attribute. In certain
implementations, such an attribute can be a state attribute
152A, such as state attribute (“STATE”) ‘X1,” as shown 1n
FIG. 1A. Such a state attribute can reflect, for example,
various aspects of the state of the producer. Examples of
such a state can include but are not limited to a quantity or
value corresponding to the number of messages being pro-
duced by the producer (e.g., per second), various aspects of
data transformation being performed by the producer, and/or
other state(s) reflecting the status or operation(s) of the
producer.

In certain scenarios, storing/associating a state attribute
with a shard can enable a producer that fails or malfunctions
to be remitialized and continue providing shards, messages,
records, etc., within a stream. For example, as described
heremn, 1n a scenario 1 which a producer fails and 1s
reimitialized, the producer can request (e.g., from server 120
and/or repository 122) the state attribute (e.g., from a shard
associated with the same producer and provided to/received
by server 120). In response, the producer can receive a state
attribute/identifier that retlects, for example, the state of the
producer (e.g., when the most recently recerved shard was
provided). The producer can then reinitialize and continue
providing shards, messages, etc. based on such received
state (rather than, for example, providing redundant copies
of shards/records that have been previously received by the
streaming system). It can be appreciated that such a con-
figuration can enable the producer to operate in a stateless
mannet.

Additionally, as shown 1n FIG. 1A, in certain implemen-
tations the described technologies can further assign or
associate additional attributes (e.g., attribute 152B) to the
referenced shards, messages, etc. Such attributes can, for
example, enable various entities, services, systems, etc.
(e.g., server 120) to collect, monitor, and/or generate various
metrics, statistics, etc., that reelect aspects of the operation

10

15

20

25

30

35

40

45

50

55

60

65

6

of a producer. By way of illustration, such attributes (which
can be associated to a shard, e.g., by the producer from
which 1t originates) can reflect the number of messages,
events, etc. pushed by the producer, number of records
updated, messages since a last push operation, various
latencies associated with operations of the producer (e.g.,
push latency), etc. In doing so, the streaming system can
monitor the operation of various producer(s), and can further
adjust various other operations based on the referenced
metrics, statistics, etc., as described herein.

Additionally, in certain implementations such a state
attribute can retlect an importance and/or location of one or
more of the messages (e.g., within the associated shard/
stream). By way of illustration, in a scenario in which
messages, data, etc., being provided/pushed by the producer
into the stream has a structured format, the described tech-
nologies (e.g., stream production engine 112) can enable
various operations/transformations. For example, an afttri-
bute (e.g., attribute 152B as shown 1n FIG. 1A) and/or other
such property of a shard (e.g., shard °S1’) can be assigned/
updated based on message(s), data, etc., within the shard. By
way of illustration, such attribute(s), propertie(s), etc. can be
used for statistics (e.g., retflecting message properties such as
message types), alerts (e.g., based on content of a message
within the stream), location markers (e.g., retlecting location
ol certain messages within a shard), efc.

By way of further illustration, it can be appreciated that
certain messages provided/pushed by a producer may be of
particular significance, importance, etc. (e.g., messages con-
taining certain content). Accordingly, 1t can be advantageous
to configure the described technologies to enable such
message(s) to be easily accessed, 1dentified, etc. In certain
implementations, when generating a shard that includes
message(s) ol particular importance (e.g., messages contain-
ing certain types of content), an attribute 152B or other such
property can be associated with the shard, reflecting that 1t
contains an important message. Upon receiving such a shard
(with the referenced attribute/property), streaming system
120 and/or consumer 110C can prioritize the processing,
analysis, etc. of such a shard/message (and/or perform other
operations). By way of further example, the referenced
attribute 152B or property can retlect the location (e.g.,
within the shard) of such important, significant, eftc.
message(s). In doing so, the state/attributes of the shard can
reflect content within 1ts messages and can further enable
operations to be performed on such messages (e.g., 1n a
prioritized manner).

Additionally, 1n certain implementations, the referenced
attribute 152B (which can be used to adjust/control opera-
tion of the producer) can include/retlect a token, such as may
be assigned based on a processing capacity of a streaming
system. Such a token may be assigned (e.g., to a shard,
message, etc.) based on a processing capacity of a streaming
system. In certain implementations, such a token can be
assigned by the streaming system 120 and/or by a consumer
(e.g., consumer 110C) of the stream. For example, the
referenced tokens can be used to implement flow control
operations which can, for example, adjust operation of the
producer (e.g., 1n scenarios 1 which shards, messages, etc.,
are being provided too quickly). Further aspects of the
referenced flow control operations are described below, e.g.,
at operation 235.

In other implementations, the referenced attribute can
include or reflect an 1dentifier such as a sequence identifier.
Such a sequence identifier can reflect the position of the
associated shard (and/or message(s)) within a sequence. By
way of 1llustration, a time/date stamp (reflecting, for



US 11,397,738 B2

7

example, the time/date the associated shard, message(s),
etc., was/were received, created, and/or provided) can be
used as a sequence identifier. In doing so, the relative
position of a certain shard can be determined. For example,
a sequence 1dentifier associated with shard S2’ (as shown 1n
FIG. 1A) can reflect that such a shard was received, created,
and/or provided after shard ‘S1’ and before shard *S3°.

It should be noted that 1n scenarios in which multiple
producers are present (e.g., as shown in FIG. 1A), the
referenced attribute(s) can further include a field, identifier,
etc., that reflects the producer from which the associated
shard/message(s) originated. Accordingly, in the scenario
depicted 1n FIG. 1A, shard(s) originating from producer
110A can be associated with an attribute reflecting the
identity of the producer and a timestamp, while shard(s)
originating from producer 110B can be associated with
corresponding 1dentifier(s) also reflecting the 1dentity of that
producer (as well as a timestamp). Doing so can, for
example, ensure consistent processing of multiple shards
originating from multiple producers.

At operation 215, the first shard (e.g., as generated at
operation 203) 1s provided. For example, 1n the scenario
depicted 1 FIG. 1A, producer 110A and/or stream produc-
tion engine 112 can provide a shard (e.g., shard “S1’) 1nto
stream 140A (e.g., via a ‘push’ operation).

In certain 1implementations, such a shard (and an associ-
ated attribute) 1s provided (e.g., ‘pushed’) as an update (e.g.,
within a data stream). In certain implementations, such an
update can be an atomic update and/or a conditional update
(e.g., within a data stream, such as an update that transforms
shard 130D to shard 130D', as shown i FIG. 1A). For
example, an atomic update can include multiple updates,
operations, etc., that are to be performed collectively (e.g.,
on repository 122). In doing so, either all of the updates,
operations, etc., are to be performed or the atomic update 1s
rejected and none of the updates, operations, etc., are to be
performed (e.g., 1n a scenario 1n which certain updates
cannot be completed). By way of further example, the
providing of such a shard can be conditioned, for example,
on 1t being provided to and/or received by a streaming
system (e.g., server 120) for the first time. Accordingly, upon
determining, for example, that a shard has already been
provided/received (e.g., based on attributes/sequence 1den-
tifier(s) of the received shard and/or other shards), the
referenced update operation can be canceled. In other imple-
mentations, shard(s) that are received out of order can be
handled in other ways, as described herein.

By way of further illustration, 1n a scenario 1 which a
producer (e.g., device 110A) malfunctions or fails while
providing messages, shards, etc., when such a producer
resumes operation, attributes (e.g., sequence identifiers) of
those messages/shards that have been previously provided to
the stream can be used to determine that such shards/
messages do not need to be provided/pushed again. Doing so
can enable shards, messages, records, etc., to be provided
exactly once by a producer to a streaming system, and can
eliminate the need for redundant records/shards, even in
scenari1os 1 which such producer fails.

At operation 220, an attribute such as a state attribute 1s
requested (e.g., from the first shard). For example, 1n a
scenar1o 1n which producer 110A malfunctions, fails, etc.,
when remnitializing, producer 110A (and/or stream produc-
tion engine 112) can request a state attribute (e.g., from
stream 140A, server 120 and/or repository 122). Doing so
can enable producer 110A to remitialize and continue pro-
viding shards, messages, etc., that have not previously been
‘pushed’ (e.g., to stream 140A, server 120, and/or repository

10

15

20

25

30

35

40

45

50

55

60

65

8

122), without providing or pushing redundant shard(s)/
message(s) (which have already been pushed/received).

By way of further illustration, 1n certain implementations
the referenced attribute (being requested) can include or
reflect a sequence 1dentifier (e.g., from the first shard). For
example, 1n a scenario 1 which producer 110A malfunc-
tions, fails, etc., when remnitializing, producer 110A (and/or
stream production engine 112) can request a sequence
identifier (e.g., from stream 140A, server 120 and/or reposi-
tory 122). Doing so can enable producer 110A to reimitialize
and continue providing shards, messages, etc., that have not
previously been ‘pushed’ (e.g., to stream 140A, server 120,
and/or repository 122), without providing or pushing redun-
dant shard(s)/message(s) (which have already been pushed/
received).

At operation 225, an attribute such as a state attribute 1s
received (e.g., 1 response to the request at operation 220).
In certain implementations, such a state attribute can be
received by producer 110A and/or stream production engine
112, as shown in FIG. 1A. Additionally, 1n certain 1mple-
mentations such an attribute can be received in response to
a request (e.g., the request provided at operation 220). As
described herein, such an attribute can reflect a state of the
producer when such shard, etc., was provided/pushed.

By way of illustration, in a scenario in which producer
110A (as shown 1n FIG. 1A) fails or malfunctions after
pushing shard °S1,” upon remitializing, the producer can
request the state attribute 152A associated with such a shard
(e.g., Irom stream 140A and/or server 120). Upon receiving,
the associated state attribute (here, *X17), producer 110A can
determine 1ts state (e.g., at the time the shard, etc., was
pushed) and can thus reinitialize operation to such a state
(and continue pushing subsequent shard(s)). It can be appre-
ciated that such a configuration can enable the producer to
operate 1n a stateless manner.

By way of further illustration, 1n certain implementations
a sequence 1dentifier can be received. In certain implemen-
tations, such a sequence identifier can be recerved by pro-
ducer 110A and/or stream production engine 112, as shown
in FIG. 1A. Additionally, 1n certain implementations such a
sequence 1dentifier can be received 1n response to a request
(e.g., the request provided at operation 220). As described
herein, such a sequence identifier can reflect the relative
position of a shard (and/or message(s)) within a sequence.

By way of illustration, in a scenario in which producer
110A (as shown in FIG. 1A) fails or malfunctions after
pushing shard ‘S1,” upon remitializing, the producer can
request the sequence 1dentifier associated with such a shard
(e.g., from stream 140A and/or server 120). Upon receiving,
the associated sequence 1dentifier, producer 110A can deter-
mine that shard *S1” has been successtully pushed, and can
reinitialize operation to continue pushing subsequent
shard(s). Doing so can enable such shards, messages,
records, etc., to be provided and processed ‘exactly once,’
without needing redundant operations and/or multiple cop-
ies to ensure all messages are provided/processed.

At operation 230, a second shard 1s provided. In certain
implementations, such a shard can be provided within a data
stream based on the received state attribute(s) (e.g., as
received at operation 225). By way of illustration, in a
scenario 1n which producer 110A (as shown in FIG. 1A) fails
or malfunctions after pushing shard ‘S1,” upon remnitializing,
the producer can request (e.g., at operation 220) the state
attribute 152A (e.g., a sequence 1dentifier and/or another
attribute) associated with such a shard (e.g., from stream
140A and/or server 120). Upon recerving (e.g., at operation
225) the associated state attribute (here, ‘X1°), producer




US 11,397,738 B2

9

110A can determine that shard ‘S1° has been successtully
pushed, and can reinitialize operation to continue pushing
other/subsequent shard(s) (e.g., shard ‘S2’). Doing so can
enable such shards, messages, records, etc., to be provided
and processed ‘exactly once,” without needing redundant
operations and/or multiple copies to ensure all messages are
provided/processed.

By way of further example, the referenced second shard
can be provided within a data stream based on a received
attribute (e.g., a state attribute, such as 1s received at
operation 2235). By way of illustration, in a scenario in which
producer 110A (as shown 1n FIG. 1A) fails or malfunctions
after pushing shard ‘S1,” upon remitializing, the producer
can request the state attribute 152A associated with such a
shard (e.g., from stream 140A and/or server 120). Upon
receiving the associated state attribute (here, *X1”), producer
110A can determine 1ts state (e.g., at the time the shard, etc.,
was pushed) and can remmitialize operation to such a state
(and continue pushing other/subsequent shard(s)). As
described herein, such a configuration can enable the pro-
ducer to operate 1n a stateless manner.

At operation 235, an operation of a message production
source can be adjusted. That 1s, as described herein, the
referenced shard(s) can be associated with various
attribute(s) (e.g., attribute 152B as shown 1n FIG. 1A). As
also described herein, 1n certain implementations, producer
110A can request and/or receive certain attributes (based
upon which the producer can, for example, determine which
shards have/have not been provided within a stream).
Accordingly, 1n certain implementations, such attribute(s)
can also be used to control or adjust operation of the
producer. For example, 1n certain implementations server
120 (e.g., a streaming system/service) can associate, assign,
or update certain attribute(s) with respect to a shard (e.g., as
stored 1n repository 122). Upon recerving a request from the
producer (e.g., as described above at operation 220), such
control attribute(s) can be provided to the producer. Upon
receiving such attribute(s) (e.g., as described at operation
225), the producer can adjust its operation accordingly.
Additionally, 1n certain implementations, such operation(s)
can be adjusted based on a received attribute (e.g., as
received at operation 225).

By way of illustration, in one scenario such an attribute
152B can reflect whether the producer 1s (or 1s not) to remain
active. Such an attribute can be dictated or provided by
another entity (e.g., streaming system 120 and/or another
source). Accordingly, upon receiving a shard (e.g., shard
‘S1° as shown 1 FIG. 1A) and storing/maintaining such a
shard (e.g., within repository 122), server 120 can associate
attribute 152B to the shard which can reflect, for example,
that producer 110A 1s to be disabled. Upon receiving a
request (e.g., ifrom producer 110A) for such attribute(s), the
‘disable’ attribute can be returned (and received by producer
110A). Producer 110A can then adjust i1ts operation (here,
disabling 1tself from providing subsequent shards, messages,
etc.) and/or perform corresponding operations. In doing so,
push/pull operations initiated by the described producer can
be used to enable additional functionality.

Additionally, 1n certain implementations, the referenced
attribute 152B (which can be used to adjust/control opera-
tion ol the producer) can include/reflect a token. Such a
token may be assigned (e.g., to a shard, message, etc.) based
on a processing capacity ol a streaming system. In certain
implementations, such a token can be assigned by the
streaming system 120 and/or by a consumer (e.g., consumer
110C) of the stream. For example, the referenced tokens can
be used to implement flow control operations which can, for

10

15

20

25

30

35

40

45

50

55

60

65

10

example, adjust operation of the producer (e.g., 1n scenarios
in which shards, messages, etc., are being provided too
quickly).

By way of illustration, system 120 (and/or a consumer)
can assign a token to a shard, e.g., as attribute 152B as
shown 1n FIG. 1A. The system can be configured to assign
a certain number of tokens (e.g., 1000 tokens per second to
a stream originating from a particular producer) and may be
turther configured to only store/maintain those shards being
assigned a token (e.g., i repository 122). The system 120
can also be configured to adjust (e.g., increase or decrease)
the number of tokens (e.g., 1n scenarios 1n which it may be
advantageous for system and/or consumer(s) to increase/
decrease the rate at which messages, shards, etc., are being
received from the stream). While those shards, messages,
etc., can be stored/maintained (e.g., 1n repository 122), those
shards, messages, etc. not assigned a token may not be
stored/maintained (until they are assigned a token). In doing
s0, the flow of shards, messages, etc., from the producer can
be further controlled using push/pull operations initiated by
the producer (without a separate control channel to control
operation).

FIG. 2B 1s a flow chart illustrating a method 240, accord-
ing to an example embodiment, for stateless stream handling
and resharding. The method 1s performed by processing
logic that can comprise hardware (circuitry, dedicated logic,
etc.), software (such as 1s run on a computing device such as
those described herein), or a combination of both. In one
implementation, the method 240 1s performed by one or
more elements depicted and/or described in relation to FIG.
1A (including but not limited to server 120 and/or stream
management engine 124), while in some other implemen-
tations, the one or more blocks of FIG. 2B can be performed
by another machine or machines.

At operation 250, a first shard 1s received, e.g., within a
first stream. In certain implementations, such a shard can
include one or more messages, events, records, etc., as
described herein (e.g., shard *S1’° including include mes-
sages 132, as shown i FIG. 1A). Additionally, 1n certain
implementations, such a shard can include or reflect a state
attribute. Such a state attribute 152A can reflect, for
example, aspects of the state of the producer, such as the
number of messages being produced by the producer (e.g.,
per second), aspects of data transformation being performed
by the producer, and/or other state(s) reflecting the status or
operation(s) of the producer.

In other implementations, such a state attribute can reflect
the position of the associated shard (and/or message(s))
within a sequence. By way of illustration, such a state
attribute can include or reflect a time/date stamp (reflecting,
for example, the time/date the associated shard, message(s),
etc., was/were received, created, and/or provided). In doing
s0, the relative position of a certain shard can be determined.

At operation 255, a message 1s 1dentified (e.g., within the
shard received at operation 250). In certain implementations
such a message (or messages ) can be one that 1s inconsistent
with a state attribute associated with the shard within which
the message was recerved. For example, such a message can
be 1dentified as being received out of sequence with one or
more other messages within the first shard. For example, in
the scenario depicted in FIG. 1A, message ‘M2’ can be
determined to have been recerved out of order (e.g., with
respect to other message(s) within the shard). In certain
implementations, such a determination can be computed
based on the state attribute 152 A associated with the shard.
For example, the referenced state attribute can reflect that
the shard includes messages received/provided during a



US 11,397,738 B2

11

certain period of time, while the message (‘M2 ) may reflect
a message from another period of time.

At operation 260, the message (e.g., as identified at
operation 255) 1s associated as an attribute of the first shard.
For example, an attribute 152B of the shard (e.g., shard *S1”)
can be populated with the content, data, etc. of such a
message (which has been determined not to belong within
the sequence of other message(s) within the shard. Such an
attribute can function as a queue for such message(s) (e.g.,
those received out-olf-sequence), as described herein.

At operation 263, a second shard 1s recerved. In certain
implementations, such a shard can include or retlect another
state attribute. Additionally, 1n certain implementations such
a second shard can be received within the first stream (e.g.,
the stream within which the first shard was received at
operation 230) and/or within a second stream (which may
originate from another producer). By way of illustration,
additional shard(s) (e.g., shard °S2,” °S3,” etc.) can be
received, e.g., from the same producer and/or from other
producer(s).

At operation 270, a position of the message within the
second shard 1s determined. In certain implementations,
such position can be determined (e.g., based on the second
state attribute). For example, upon receiving other shard(s),
it can be further determined whether the identified
message(s) (which were received out-of-order within the
first shard) are correctly positioned within the other shard(s).
As described herein, the correct position of such message(s)
can be determined based on the respective state attribute(s)
of the received shard(s).

At operation 275, the message can be inserted into the
second shard (e.g., based on the determining). For example,
in the scenario depicted 1n FIG. 1A, upon determining that
the correct position of message ‘M2’ 1s within shard ‘S2,’
stream management engine 124 can insert the message 1nto
the appropriate shard. It can be appreciated that doing so
can, for example, enable multiple streams to be processed
together, even 1n scenarios 1 which they may not be
perfectly aligned.

Additionally, 1n certain implementations the described
technologies can be configured to process the described
streams, shards, messages, etc., in order to identily gaps
within the referenced data/content. For example, 1n sce-
narios 1n which data pushed into a shard 1s expected to be
sorted and/or 1dentified using various record identifiers, etc.
gaps within such data (reflecting, for example, missing
records) can be 1dentified and/or recorded/saved. In certain
implementations, such gaps can be identified based on the
described state attribute(s) which can retlect the position of
a shard, message, etc., e.g., within a sequence. Upon 1den-
tifying such a gap, various alerts can be imtiated/provided
(e.g., to attempt to locate the missing records, to highlight
such a deficiency to an administrator, etc.).

FIG. 3A 15 a flow chart 1llustrating a method 300, accord-
ing to an example embodiment, for stateless stream handling
and resharding. The method i1s performed by processing
logic that can comprise hardware (circuitry, dedicated logic,
etc.), software (such as 1s run on a computing device such as
those described herein), or a combination of both. In one
implementation, the method 300 1s performed by one or
more elements depicted and/or described in relation to FIG.
1A (including but not limited to device 110C and/or stream
consumption engine 114), while 1n some other implemen-
tations, the one or more blocks of FIG. 3 can be performed
by another machine or machines.

At operation 305, a first shard 1s recerved (e.g., from
server 120 and/or producer 110A). In certain implementa-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions, such a shard can include one or more messages,
events, records, etc., as described herein. For example, as
shown in FIG. 1B, shard ‘S4” (130E) can be received from
server 120. As noted, 1n certain implementations such a
shard may originate at producer 110A. As shown in FIG. 1B,
shard 130F can include messages 132 (e.g., messages ‘M4’
‘MS,” ‘M6,’ etc.).

At operation 310, the first shard (e.g., as received at
operation 303) 1s associated with an attribute. In certain
implementations, such an attribute can be a state attribute
152C, such as state attribute (“STATE”) ‘X2, as shown 1n
FIG. 1B. Such a state attribute can retlect, for example,
various aspects of the state of the consumer. Examples of
such a state can include but are not limited to a quantity or
value corresponding to the number of messages being
pulled, received and/or processed by the consumer (e.g., per
second), various aspects ol data transformation being per-
formed by the consumer, and/or other state(s) reflecting the
status or operation(s) of the consumer.

In certain scenarios, storing/associating a state attribute
with a shard can enable a consumer that fails or malfunctions
to be remitialized and continue pulling, requesting and/or
processing shards, messages, records, etc., within a stream.
For example, as described herein, in a scenario in which a
consumer fails and 1s remnitialized, the consumer can request
(e.g., Trom server 120 and/or repository 122) the state
attribute (e.g., from a shard associated with the same con-
sumer and provided to/received by server 120). In response,
the consumer can receive a state attribute that reflects, for
example, the state of the consumer (e.g., when the most
recently received shard was provided or processed). The
consumer can then remitialize and continue pulling or
processing shards, messages, etc. based on such recerved
state (rather than, for example, pulling or processing redun-
dant copies of shards/records that have already been
received, processed and/or provided to the streaming sys-
tem). It can be appreciated that such a configuration can
enable the consumer to operate 1n a stateless manner.

Additionally, as shown in FIG. 1B, in certain implemen-
tations the described technologies can further assign or
associate additional attributes 152D to the referenced shards,
messages, etc. Such attributes can, for example, enable
various entities, services, systems, etc. (e.g., server 120) to
collect, monitor, and/or generate various metrics, statistics,
ctc., that reelect aspects of the operation of a consumer. By
way of illustration, such attributes (which can be associated
to a shard, e.g., by the consumer from which 1t 1s received)
can reflect the number of messages, events, etc. pulled by the
consumer, number of records updated, messages since a last
pull operation, various latencies associated with operations
of the consumer (e.g., pull latency), etc. In doing so, the
streaming system can monitor the operation of various
consumer(s), and can further adjust various other operations
based on the referenced metrics, statistics, etc., as described
herein.

Additionally, 1n certain implementations such a state
attribute can reflect an importance and/or location of one or
more of the messages (e.g., within the associated shard/
stream). By way of illustration, in a scenario in which
messages, data, etc., being received, pulled, and/or pro-
cessed by the consumer have a structured format, the
described technologies (e.g., stream consumption engine
114) can enable various operations/transformations. For
example, an attribute (e.g., attribute 152D as shown in FIG.
1B) and/or other such property of a shard (e.g., shard ‘S4°)
can be assigned/updated based on message(s), data, etc.,
within the shard. By way of illustration, such attribute(s),




US 11,397,738 B2

13

propertie(s), etc. can be used for statistics (e.g., reflecting
message properties such as message types), alerts (e.g.,
based on content of a message within the stream), location
markers (e.g., reflecting location of certain messages within
a shard), etc.

By way of further illustration, 1t can be appreciated that
certain messages receirved, pulled, and/or processed by a
consumer may be of particular significance, importance, etc.
(c.g., messages containing content that may necessitate
immediate action). Accordingly, it can be advantageous to
configure the described technologies to enable such
message(s) to be easily accessed, 1dentified, etc. In certain
implementations, when receiving, pulling, and/or processing
a shard that includes message(s) of particular importance
(c.g., messages containing certain types of content), an
attribute 152D or other such property can be associated with
the shard, reflecting that 1t contains an important message.
Upon recerving such a shard (with the referenced attribute/
property), streaming system 120 can prioritize the process-
ing, analysis, etc. of such a shard/message (and/or perform
other operations). By way of further example, the referenced
attribute 152D or property can reflect the location (e.g.,
within the shard) of such important, sigmificant, etc.
message(s). In doing so, the state/attributes of the shard can
reflect content within 1ts messages and can further enable
operations to be performed on such messages (e.g., 1n a
prioritized manner).

Additionally, 1n certain implementations, the referenced
attribute 152D (which can be used to adjust/control opera-
tion of a producer) can include/retlect a token, such as may
be assigned based on a processing capacity of a streaming
system. Such a token may be assigned (e.g., to a shard,
message, etc.) based on a processing capacity of a streaming,
system. In certain implementations, such a token can be
assigned by the streaming system 120 and/or by a consumer
(e.g., consumer 110C) of the stream. For example, the
referenced tokens can be used to implement flow control
operations which can, for example, adjust operation of the
producer (e.g., 1n scenarios in which shards, messages, etc.,
are being provided too quickly). Further aspects of the
referenced tlow control operations are described below, e.g.,
at operation 350.

In other implementations, the referenced attribute can
include or reflect an identifier such as a sequence 1dentifier.
Such a sequence identifier can reflect the position of the
associated shard (and/or message(s)) within a sequence. By
way of 1llustration, a time/date stamp (reflecting, for
example, the time/date the associated shard, message(s),
etc., was/were recerved and/or processed) can be used as a
sequence 1dentifier. In doing so, the relative position of a
certain shard can be determined. For example, a sequence
identifier associated with shard ‘S5 (as shown in FIG. 1B)
can reflect that such a shard was recerved and/or processed
after shard ‘'S4’ and before shard ‘S6’ (within stream 140C).

It should be noted that in scenarios 1n which multiple
consumers are present (e.g., as shown in FIG. 1B), the
referenced sequence 1dentifier(s) can further include a field,
property, etc., that reflects the consumer that pulled, pro-
cessed, etc. the associated shard/message(s). Accordingly, 1n
the scenario depicted in FIG. 1B, shard(s) received/pro-
cessed by consumer 110C can be associated with an attribute
reflecting the identity of the consumer and a timestamp,
while shard(s) received/processed by consumer 110D can be
associated with corresponding attribute(s) also reflecting the
identity of that producer (as well as a timestamp). Doing so
can, for example, ensure consistent processing of multiple
shards across multiple consumers.

10

15

20

25

30

35

40

45

50

55

60

65

14

At operation 315, the first shard (e.g., as received at
operation 303) 1s provided. For example, in the scenario
depicted 1 FIG. 1B, consumer 110C and/or stream con-
sumption engine 114 can provide a shard (e.g., shard “S4°)
into stream 140C (e.g., via a ‘push’ operation).

In certain 1implementations, such a shard (and an associ-
ated state attribute) 1s provided (e.g., ‘pushed’) as an update
(e.g., within a data stream). In certain implementations, such
an update can be an atomic update and/or a conditional
update (e.g., within a data stream, such as an update that
transforms shard 130H to shard 130H', as shown 1n FIG.
1B). For example, an atomic update can include multiple
updates, operations, etc., that are to be performed collec-
tively. In doing so, either all of the updates, operations, etc.,
are to be performed or the atomic update 1s rejected and none
of the updates, operations, etc., are to be performed (e.g., 1n
a scenario 1 which certain updates cannot be completed).
By way of further example, the providing of such a shard can
be conditioned, for example, on 1t being provided to and/or
received by a streaming system (e.g., server 120) for the first
time. Accordingly, upon determining, for example, that other
shards have already been provided/received (e.g., based on
attributes/sequence 1dentifier(s) of the received shard and/or
other shards), the referenced update operation can be can-
celed. In other implementations, shard(s) that are received
out of order can be handled 1n other ways, as described
herein.

By way of further i1llustration, 1n a scenario 1n which a
consumer (e.g., device 110C) malfunctions or fails while
providing messages, shards, etc., when such a consumer
resumes operation, the attribute(s) (e.g., sequence 1dentifi-
ers) of those messages/shards that have been previously
provided to the stream can be used to determine that such
shards/messages do not need to be provided/pushed again.
Doing so can enable shards, messages, records, etc., to be
provided exactly once by a consumer to a streaming system,
and can eliminate the need for redundant records/shards,
even 1n scenarios in which such consumer fails.

At operation 320, an attribute such as a state attribute 1s
requested (e.g., from the first shard). For example, in a
scenar10o 1n which consumer 110C malfunctions, fails, etc.,
when reinitializing, consumer 110C (and/or stream con-
sumption engine 114) can request a state attribute (e.g., from
stream 140C, server 120 and/or repository 122). Doing so
can enable consumer 110C to remitialize and continue
pulling or processing shards, messages, etc., that have not
previously been handled (e.g., to stream 140C, server 120,
and/or repository 122), without pulling or processing redun-
dant shard(s)message(s) (which have already been
handled).

By way of further illustration, 1n certain implementations
the referenced attribute (being requested) can include or
reflect a sequence 1dentifier (e.g., from the first shard). For
example, 1n a scenario 1n which consumer 110C maliunc-
tions, fails, etc., when remitializing, consumer 110C (and/or
stream consumption engine 114) can request a sequence
identifier (e.g., from stream 140C, server 120 and/or reposi-
tory 122). Doing so can enable consumer 110C to remnitialize
and continue providing shards, messages, etc., that have not
previously been ‘pushed’ (e.g., to stream 140C, server 120,
and/or repository 122), without providing or pushing redun-
dant shard(s)/message(s) (which have already been pushed/
received).

At operation 325, an attribute such as a state attribute 1s
received (e.g., 1 response to the request at operation 320).
In certain implementations, such a state attribute can be
received by consumer 110C and/or stream consumption




US 11,397,738 B2

15

engine 114, as shown in FIG. 1B. Additionally, 1n certain
implementations such an attribute can be received 1n
response to a request (e.g., the request provided at operation
320). As described herein, such an attribute can retlect a state
of the consumer when such shard, etc., was pulled/pro-
cessed.

By way of illustration, in a scenario in which consumer
110C (as shown i FIG. 1B) fails or malfunctions after
pulling or processing shard ‘S4,” upon remitializing, the
consumer can request the state attribute 152C associated
with such a shard (e.g., from stream 140C and/or server
120). Upon receiving the associated state attribute (here,
‘X2’), consumer 110C can determine its state (e.g., at the
time the shard, etc., was pulled or processed) and can thus
reimitialize operation to such a state (and continue pulling/
processing subsequent shard(s)). It can be appreciated that
such a configuration can enable the consumer to operate 1n
a stateless manner.

By way of further 1llustration, 1n certain implementations
a sequence 1dentifier can be received. In certain implemen-
tations, such a sequence 1dentifier can be recerved by con-
sumer 110C and/or stream consumption engine 114, as
shown 1n FIG. 1C. Additionally, 1n certain implementations
such a sequence identifier can be received 1n response to a
request (e.g., the request provided at operation 320). As
described herein, such a sequence 1dentifier can retlect the
relative position of a shard (and/or message(s)) within a
sequence.

By way of illustration, 1n a scenario in which consumer
110C (as shown i FIG. 1B) fails or malfunctions after
pushing shard ‘S4,” upon reimnitializing, the consumer can
request the sequence identifier associated with such a shard
(e.g., from stream 140C and/or server 120). Upon receiving
the associated sequence 1dentifier, consumer 110C can deter-
mine that shard *S4” has been successtully pushed, and can
thus remnitialize operation to continue pushing, processing,
etc. subsequent shard(s). Doing so can enable such shards,
messages, records, etc., to be pulled and processed ‘exactly
once,” without needing redundant operations and/or multiple
copies to ensure all messages are pulled/processed.

At operation 330, a second shard 1s provided. In certain
implementations, such a shard can be provided within a data
stream based on the received state attribute(s) (e.g., as
received at operation 325). By way of illustration, in a
scenar1o in which consumer 110C (as shown 1 FIG. 1B)
fails or malfunctions after pulling or processing shard S4,’
upon reimtializing, the consumer can request (e.g., at opera-
tion 320) the state attribute 152C associated with such a
shard (e.g., from stream 140C and/or server 120). Upon
receiving (e.g., at operation 325) the associated state attri-
bute (here, ‘X2’), consumer 110C can determine that shard
‘S4” has been successiully pulled/processed, and can reini-
tialize operation to continue pulling or processing subse-
quent shard(s) (e.g., shard °S5”). Doing so can enable such
shards, messages, records, etc., to be pulled and processed
‘exactly once,” without needing redundant operations and/or
multiple copies to ensure all messages are handled.

By way of further example, the referenced second shard
can be provided within a data stream based on a received
attribute (e.g., a state attribute, such as 1s received at
operation 325). By way of illustration, in a scenario 1n which
consumer 110C (as shown 1n FIG. 1B) fails or maltfunctions
alter pulling or processing shard ‘S4,” upon remitializing,
the consumer can request the state attribute 152C associated
with such a shard (e.g., from stream 140C and/or server
120). Upon receiving the associated state attribute (here,
‘X2”), consumer 110C can determine 1ts state (e.g., at the

10

15

20

25

30

35

40

45

50

55

60

65

16

time the shard, etc., was pulled/processed) and can reinitial-
1ze operation to such a state (and continue pulling/process-
ing subsequent shard(s)). As described herein, such a con-
figuration can enable the consumer to operate 1n a stateless
mannet.

At operation 335, an adjustment of an operation of a
message production source can be imitiated. That 1s, as
described herein, the referenced shard(s) can be associated
with various attribute(s) (e.g., attribute 152D as shown in
FIG. 1B). As also described herein, 1n certain implementa-
tions, producer 110A can request and/or receive certain
attributes (based upon which the producer can, for example,
determine which shards have/have not been provided within
a stream). Accordingly, in certain implementations, such
attribute(s) can also be used to control or adjust operation of
the producer. For example, 1in certain implementations server
120 (e.g., a streaming system/service) and/or consumer
110C can associate, assign, or update certain attribute(s)
with respect to a shard (e.g., as stored in repository 122).
Upon receiving a request from the producer (e.g., as
described above at operation 220), such control attribute(s)
can be provided to the producer. Upon receiving such
attribute(s) (e.g., as described at operation 225), the pro-
ducer can adjust 1ts operation accordingly. Additionally, 1n
certain 1mplementations, the adjustment of such operation(s)
by producer 110A can be initiated by consumer 110C wvia
updates to the described state attribute(s).

By way of illustration, in one scenario such an attribute
152D can reflect whether the producer 1s (or 1s not) to remain
active. Such an attribute can be dictated or provided by
another entity (e.g., streaming system 120, consumer 110C,
and/or another source). Accordingly, upon receiving a shard
(e.g., shard ‘S4° as shown 1n FIG. 1B) and storing/main-
taining such a shard (e.g., within repository 122), server 120
can associate attribute 152D to the shard which can retlect,
for example, that producer 110A 1s to be disabled. Upon
receiving a request (e.g., from producer 110A) for such
attribute(s), the °‘disable’ attribute can be returned (and
received by producer 110A). Producer 110A can then adjust
its operation (here, disabling itself from providing subse-
quent shards, messages, etc.) and/or perform corresponding
operations. In doing so attributes/identifiers originating from
a consumer can be used to mitiate operations by the
described producer (which instructions can be transmitted
via push/pull operations of the producer), thereby enabling
additional functionality.

Additionally, 1n certain implementations, the referenced
attribute 152D (which can be used to adjust/control opera-
tion ol the producer) can include/retlect a token. Such a
token may be assigned (e.g., to a shard, message, etc.) based
on a processing capacity of a streaming system and/or a
consumer. In certain implementations, such a token can be
assigned by the streaming system 120 and/or by a consumer
(c.g., consumer 110C) of the stream. For example, the
referenced tokens can be used to implement flow control
operations which can, for example, adjust operation of the
producer (e.g., 1n scenarios 1n which shards, messages, etc.,
are being provided too quickly).

By way of illustration, system 120 (and/or a consumer)
can assign a token to a shard, e.g., as attribute 152D as
shown in FIG. 1B. The system can be configured to assign
a certain number of tokens (e.g., 1000 tokens per second to
a stream originating from a particular producer) and may be
turther configured to only store/maintain those shards being
assigned a token (e.g., in repository 122). The system 120
can also be configured to adjust (e.g., increase or decrease)
the number of tokens (e.g., 1n scenarios 1n which it may be



US 11,397,738 B2

17

advantageous for system and/or consumer(s) to i1ncrease/
decrease the rate at which messages, shards, etc., are being
received from the stream). While those shards, messages,
etc., can be stored/maintained (e.g., 1n repository 122), those
shards, messages, etc. not assigned a token may not be
stored/maintained (until they are assigned a token). In doing
s0, the tlow of shards, messages, etc., from the producer can
be further controlled (e.g., by a consumer) using push/pull
operations 1nitiated by the producer (without a separate
control channel to control operation).

FIG. 5A 1s a tlow chart 1llustrating a method 310, accord-
ing to an example embodiment, for stateless stream handling
and resharding. The method i1s performed by processing
logic that can comprise hardware (circuitry, dedicated logic,
etc.), software (such as 1s run on a computing device such as
those described herein), or a combination of both. In one
implementation, the method 510 1s performed by one or
more elements depicted and/or described in relation to FIG.
4A (including but not limited to device 410A and/or stream
production engine 112), while 1n some other implementa-
tions, the one or more blocks of FIG. 5A can be performed
by another machine or machines.

At operation 512, a first shard 1s generated. In certain
implementations, such a shard can include or incorporate
various messages, events, records, etc., as described herein.
For example, as shown i FIG. 4A, shard 430A (*S1°) can
be generated by producer 410A. Such a shard can include
messages 432 (‘M1°-‘M4°).

At operation 514, the first shard (e.g., the shard generated
at operation 512) can be associated with an attribute such as
a shard version attribute (e.g., attribute 438A, as shown 1n
FIG. 4A). Such a shard version attribute can reflect, for
example, a number or value that corresponds to the version
of the shard (e.g., as generated by producer 410A). That 1s,
it can be appreciated that while messages, data, records, etc.,
within a stream can be divided up into shards, the size
(and/or other aspects) of such shards may be suboptimal
(c.g., 1 scenarios 1n which the streaming system
and/or consumers cannot process such shards efliciently/
optimally). Accordingly, as described herein, the referenced
producer can be configured to re-shard the described shard
(s), 1n order to enable previously pushed records to be
pushed within shards that may provide better results, efli-
ciency, etc., when handled by the described technologies. In
certain implementations, 1n order to ensure consistency, such
shards can be assigned a version number or value (the
described shard version attribute) to ensure that up-to-date
or most current shard(s) are processed (in lieu of previously
pushed shards which have since been re-sharded).

Additionally, as described herein, the disclosed technolo-
gies can enable various operations, such as atomic updates
and conditional updates, to be performed with respect to
shard(s)/stream(s), e€.g., based on the referenced shard ver-
sion attribute(s). For example, a push operation can be
generated/provided with a condition that reflects a particular
shard version attribute. Accordingly, 1n a scenario 1n which
the shard version changes, such a push operation can be
rejected (as described herein).

At operation 516, the first shard (e.g., as generated at
operation 512) and the first shard version attribute (e.g., as
associated at operation 514) are provided or pushed e.g., as
an update within data stream 440A (e.g., to system 120
and/or consumer 4108, as shown in FIG. 4A). For example,
as shown 1n FIG. 4A, shard 430A can be pushed or provided
by producer 410A. As noted, such an update can be, for
example, an atomic update that includes multiple updates,
operations, etc., that are to be performed collectively. In

10

15

20

25

30

35

40

45

50

55

60

65

18

doing so, either all of the updates, operations, etc., are to be
performed or the atomic update 1s rejected and none of the
updates, operations, etc., are to be performed (e.g., 1n a
scenario 1n which certain updates cannot be completed).

At operation 518, a state attribute 1s received (e.g., from
system 120 and/or consumer 410B). In certain implemen-
tations, such a state attribute can reflect a processing capac-
ity ol a streaming system and/or a consumer. By way of
illustration, such an attribute can reflect bandwidth,
resources, etc., of various available producers.

At operation 520, the first shard (e.g., as generated at
operation 512) 1s resharded, e.g., into a second shard, third
shard, etc. In certain implementations, such resharding can
be performed based on the first shard. For example, a second
shard (e.g., shard 430B as shown in FIG. 4A) can be
generated. Such a second shard can include message(s) (e.g.,
messages ‘M1’ and ‘M2’) originating from the first shard
430A.

Additionally, 1n certain implementations the referenced
resharding can be performed or initiated based on the
received first state attribute (e.g., at operation 3518). For
example, such a state attribute can retlect that the system 120
and/or consumer 410B may be overloaded or otherwise
incapable of efliciently handling/processing the shards origi-
nating from producer 410A. In response, the producer can
reshard previously pushed shards (e.g., shard 430A as shown
in FIG. 4A), e.g., in to new shards (430B and 430C, which
can contain fewer messages per shard, as shown). In doing
s0, such shards (even those that have already been pushed)
can be updated 1n a manner that enables them to be handled,
processed, etc., more ethiciently (e.g., by multiple consum-
ers ).

At operation 522, a third shard 1s generated (e.g., 1n
accordance with the resharding at operation 3520). For
example, as shown 1n FIG. 4A, shard 430C can be generated.

At operation 3524, the second shard (e.g., as resharded/
generated at operation 520) 1s associated with a second shard
version attribute. As described herein, such a shard version
attribute can reflect, for example, a number or value that
corresponds to the version of the shard (e.g., as generated by
producer 410A). For example, while shard 430A 1s associ-
ated with a shard version attribute 458A (*VERSION: 1),
shard 430B 1s associated with a shard version attribute 458B
(‘VERSION: 2.” reflecting that it 1s a newer, updated version
of shard 430A).

Additionally, in certain implementations, in scenarios in
which a shard 1s resharded (e.g., shard 430A as shown in
FIG. 4A), an attribute retlecting a point or location within a
shard or stream that corresponds to the resharding operation
can be associated with the referenced shard. In certain
implementations, such an attribute can be persisted 1n an
atomic manner. For example, attribute 458N as shown 1n
FIG. 4A can be associated with shard 430A (which 1s being
resharded, as described herein). Such an attribute can retlect
a point or location within the shard/stream that corresponds
to the resharding operation (e.g., prior to/at the pushing
and/or processing of message ‘M1’). Maintaining such a
point/location as an attribute of the shard/stream can be
advantageous, for example, 1n enabling identification of the
point at which the referenced resharding occurred. Doing so
can enable multiple consumers to synchronize their opera-
tions, €.g., to ensure that messages from the referenced
shard/stream are only processed once.

At operation 526, the second shard and the second shard
version attribute are provided or pushed e.g., as an update
(e.g., an atomic update or a conditional update) within data
stream 440A (e.g., to system 120 and/or consumer 410B, as




US 11,397,738 B2

19

shown 1n FIG. 4A). For example, as shown in FIG. 4A, shard
430B can be pushed or provided by producer 410A. In
certain 1implementations, such a second shard can be pro-
vided/pushed as an update within the data stream in lieu of
another update (e.g., the update provided at operation 516).
For example, such a push operation can include conditions
that reflect particular shard version attributes. Accordingly,
in a scenario i which the shard version changes, push
operations that do not correspond to the updated shard
version attribute can be rejected. In doing so, updated
shard(s) can be provided/pushed, thereby enabling more
cilicient operation of the system and/or consumers. By way
of further example, such an update can be, for example, an
atomic update that includes multiple updates, operations,
etc., that are to be performed collectively. In doing so, either
all of the updates, operations, etc., are to be performed or the
atomic update 1s rejected and none of the updates, opera-
tions, etc., are to be performed (e.g., 1n a scenario i which
certain updates cannot be completed).

FIG. 3B is a flow chart 1llustrating a method 330, accord-
ing to an example embodiment, for stateless stream handling
and resharding. The method i1s performed by processing
logic that can comprise hardware (circuitry, dedicated logic,
etc.), software (such as 1s run on a computing device such as
those described herein), or a combination of both. In one
implementation, the method 530 1s performed by one or
more elements depicted and/or described 1n relation to FIG.
4A (including but not limited to server 120 and/or stream
management engine 124), while in some other implemen-
tations, the one or more blocks of FIG. 3B can be performed
by another machine or machines.

At operation 532, a first shard 1s received, e.g., from a
device (e.g., producer 410A as shown i FIG. 4A and
described herein. In certain implementations, such a shard
(e.g., shard 430A) can include various message(s) 432 and
attribute(s) such as a shard version attribute 458A. As
described herein, such a shard version attribute can retlect,
for example, a number or value that corresponds to the
version of the shard.

At operation 534, a current shard version 1s requested,
¢.g., from the device (e.g., producer 410A as shown 1n FIG.
4A). For example, as described herein, though producer
410A may have pushed/provided shard 430A within stream
440A, the producer may have subsequently re-sharded the
shard (e.g., by generating shards 4308, 430C, etc.). Accord-
ingly, prior to processing, handling, etc. operation(s) asso-
ciated with shard 430A, the current shard version can be
requested (e.g., from producer 410A). In doing so, it can be
determined/confirmed (e.g., based on a comparison of the
current shard version provided by the producer and the shard
version attribute of the recerved shard) whether the recerved
shard 1s still the current version, or whether subsequent
shard versions have been generated (and should be handled
in lieu of the previous shard).

At operation 536, an operation, transformation, etc. 1s
performed with respect to the first shard (e.g., the shard
received at operation 532). In certain implementations, such
an operation (e.g., providing the first shard to a consumer,
etc.), can be performed based on a determination that the
current shard version (e.g., as received from producer 410A
and/or 1dentified within stream 440A) 1s consistent with the
first shard version attribute (e.g., the shard attribute associ-
ated with the shard as received at operation 332).

At operation 338, performance of the operation with
respect to the first shard can be canceled. In certain 1mple-
mentations, such operation can be canceled based on a
determination that the current shard version (e.g., as

5

10

15

20

25

30

35

40

45

50

55

60

65

20

requested/received at operation 534) 1s not consistent with
the first shard version attribute (e.g., the shard attribute
associated with the shard as received at operation 532). For
example, 1n the scenario depicted in FIG. 4A, system 120
can determine (e.g., based on an 1nput, attribute, etc., origi-
nating from producer 410A) that the current shard version
(e.g., as reflected 1n shards 4308, 430C, etc.) 1s version ‘2.
Accordingly, operations (e.g., processing, handling, etc.)
associated with shard 430A (which corresponds to shard
version ‘1”) can be canceled (as such a shard has since been
re-sharded, as described herein). In doing so, those shards
that are up-to-date/current can be processed while those that
are not current can be avoided, dropped, canceled, etc. It
should be understood that the messages within the refer-
enced shards (*M1°-°‘M4’) are processed ‘exactly once,’
without necessitating multiple redundant processing
istances for the same messages.

Additionally, as noted above, 1n certain implementations,
a shard that 1s resharded (e.g., shard 430A as shown in FIG.
4A), can include/be associated with an attribute reflecting a
point or location within the shard or stream that corresponds
to the resharding operation. For example, attribute 458N can
be associated with shard 430A (which 1s being resharded),
reflecting the point/location within the shard/stream that
corresponds to the resharding operation (e.g., prior to/at the
pushing and/or processing of message ‘M1°). Accordingly,
in certain implementations, operations associated with/di-
rected to such a shard/stream can be performed up to the
point/location reflected 1in the referenced attribute. Opera-
tions associated with points/locations within such a shard/
stream that are subsequent to the referenced point/location
(e.g., within a sequence) can be canceled or rejected (as such
operations are to be performed with respect to the subse-
quent version(s) of the shard, as described herein). Doing so
can enable multiple consumers to synchronize their opera-
tions, €.g., to ensure that messages from the referenced
shard/stream are only processed once.

At operation 540, a second shard 1s received, e.g., from
the referenced producer (e.g., producer 410A as shown in
FIG. 4A). In certain implementations, such a second shard
(c.g., shard 430B) can include a second shard version
attribute (e.g., attribute 458B, as shown in FIG. 4A and
described herein).

At operation 542, an operation 1s performed with respect
to the second shard (e.g., shard 430B as received at opera-
tion 540). In certain implementations, such an operation
(e.g., an update or other such processing operation) can be
performed with respect to the second shard (e.g., shard 4308
as received at operation 540) 1n lieu of performing such an
operation with respect to the first shard (e.g., shard 430A as
received at operation 532). In certain implementations, such
an operation can be performed (e.g., with respect to shard
430B) based on a determination that the current shard
version (e.g., of the producer 410A) 1s consistent with the
second shard version attribute (e.g., “VERSION: 27).

FIG. 5C 1s a tlow chart illustrating a method 550, accord-
ing to an example embodiment, for stateless stream handling
and resharding. The method 1s performed by processing
logic that can comprise hardware (circuitry, dedicated logic,
etc.), software (such as 1s run on a computing device such as
those described herein), or a combination of both. In one
implementation, the method 5350 1s performed by one or
more elements depicted and/or described in relation to FIG.
4B (including but not limited to device 410B and/or stream
consumption engine 114), while 1n some other implemen-
tations, the one or more blocks of FIG. 3C can be performed
by another machine or machines.




US 11,397,738 B2

21

At operation 552, a first shard 1s received (e.g., by
consumer 410B as shown 1n FIG. 4B). In certain implemen-
tations, such a shard can include various message(s) and
attribute(s) such as a shard version attribute. For example, as
shown 1n FIG. 4B, shard 430D can be received by consumer
410B. Such a shard 430D can include messages 432 (*M5’-
‘M8’) and shard version attribute 438D (*VERSION: 17). As
described herein, such a shard version attribute can reflect,
for example, a number or value that corresponds to the
version of the shard 430D.

At operation 554, a current shard version 1s requested. In
certain 1mplementations, such a current version can be
requested from system 120 and/or producer 410A (e.g., the
producer from which the shard originated). For example, as
described herein, though producer 410A may have pushed/
provided shard 430D, the producer may have subsequently
re-sharded the shard (e.g., by generating shards 430E, 430F,
ctc., as shown 1n FIG. 4B). Accordingly, prior to processing,
handling, etc. operation(s) associated with shard 430D, the
current shard version can be requested. In doing so, 1t can be
determined/confirmed whether the received shard 430D 1is
still the current version, or whether subsequent shard ver-
s1ons have been generated (and should be handled 1n lieu of
the previous shard).

At operation 356, an operation, transformation, etc. 1s
performed with respect to the first shard (e.g., the shard
received at operation 552). In certain implementations, such
an operation (e.g., analyzing, processing, etc. the first shard),
can be performed based on a determination that the current
shard version (e.g., as received from producer 410A or
system 120 and/or identified within stream 440B) 1s consis-
tent with the first shard version attribute (e.g., the shard
attribute associated with the shard as received at operation
552).

At operation 358, performance of the operation with
respect to the first shard can be canceled. In certain 1mple-
mentations, such operation can be canceled based on a
determination that the current shard version (e.g., as
requested/recerved at operation 5354) 1s not consistent with
the first shard version attribute (e.g., the shard attribute
associated with the shard as received at operation 352). For
example, 1n the scenario depicted in FIG. 4B, 1t can be
determined that the current shard version (e.g., as retlected
in shards 430E, 430F, etc.) 1s version ‘2.” Accordingly,
processing, handling, etc., of shard 430D (which corre-
sponds to shard version ‘1’) can be canceled (as such a shard
has since been re-sharded, as described herein). In doing so,
those shards that are up-to-date/current can be processed
while those that are not current can be avoided, dropped,
canceled, etc. It should be understood that the messages
within the referenced shards (‘M5’-‘M8’) are processed
‘exactly once,” without necessitating multiple redundant
processing instances for the same messages.

Additionally, as noted above, 1n certain implementations,
a shard that 1s resharded (e.g., shard 430D as shown i FIG.
4B), can 1include/be associated with an attribute reflecting a
point or location within the shard or stream that corresponds
to the resharding operation. For example, attribute 458N can
be associated with shard 430D (which 1s being resharded),
reflecting the point/location within the shard/stream that
corresponds to the resharding operation (e.g., prior to/at the
pushing and/or processing of message ‘M5’). Accordingly,
in certain implementations, operations associated with/di-
rected to such a shard/stream can be performed up to the
point/location reflected 1n the referenced attribute. Opera-
tions associated with points/locations within such a shard/
stream that are subsequent to the referenced point/location

10

15

20

25

30

35

40

45

50

55

60

65

22

(e.g., within a sequence) can be canceled or rejected (as such
operations are to be performed with respect to the subse-
quent version(s) of the shard, as described herein). Doing so
can enable multiple consumers to synchronize their opera-
tions, €.g., to ensure that messages from the referenced
shard/stream are only processed once.

At operation 3560, a resharding request i1s provided. In
certain 1implementations, such a request can be provided to
system 120 and/or producer 410A. Such a resharding
request can be provided, for example, based on a processing
capacity (and/or other aspects, resources, etc.) of the pro-
ducer 4108 (and/or other producers). By way of illustration,
upon determining that the consumer cannot efliciently or
optimally process shards with four (or more) messages, a
resharding request can be generated/provided (e.g., to sys-
tem 120 and/or producer 410A), requesting that the refer-
enced shard(s) (which may contain four or more messages)
be resharded (e.g., to include two messages, as shown).

At operation 562, a second shard 1s received (e.g., 1n
response to the request at operation 560). In certain 1mple-
mentations, such a shard can include a second shard version
attribute. Additionally, 1n certain implementations the refer-
enced shard can be received/originate from system 120
and/or producer 410A (as shown in FIG. 4B). In certain
implementations, such a second shard (e.g., shard 430E) can

[

include a second shard version attribute (e.g., attribute 458FE,
as shown 1n FIG. 4B and described herein).

At operation 564, an operation 1s performed with respect
to the second shard (e.g., shard 430E as received at operation
562) 1n lieu of performing an operation with respect to the
first shard (e.g., shard 430D as recerved at operation 552). In
certain 1mplementations, such an operation (e.g., with
respect to shard 430E) can be performed based on a deter-
mination that the current shard version (e.g., of the producer
410A) 1s consistent with the second shard version attribute
(e.g., “VERSION: 27).

While many of the examples described herein are 1llus-
trated with respect to single server and/or individual devices,
this 1s simply for the sake of clarity and brevity. However,
it should be understood that the described technologies can
also be implemented (in any number of configurations)
across multiple devices and/or other machines/services.

It should also be noted that while the technologies
described herein are illustrated primarily with respect to
stateless stream handling and resharding, the described
technologies can also be implemented 1 any number of
additional or alternative settings or contexts and towards any
number of additional objectives. It should be understood that
further technical advantages, solutions, and/or improve-
ments (beyond those described and/or referenced herein) can
be enabled as a result of such implementations.

Certain implementations are described herein as including
logic or a number of components, modules, or mechanisms.
Modules can constitute either software modules (e.g., code
embodied on a machine-readable medium) or hardware
modules. A “hardware module” 1s a tangible unit capable of
performing certain operations and can be configured or
arranged 1n a certain physical manner. In various example
implementations, one or more computer systems (e.g., a
standalone computer system, a client computer system, or a
server computer system) or one or more hardware modules
of a computer system (e.g., a processor or a group of
processors) can be configured by software (e.g., an appli-
cation or application portion) as a hardware module that
operates to perform certain operations as described herein.

In some implementations, a hardware module can be
implemented mechanically, electronically, or any suitable




US 11,397,738 B2

23

combination thereof. For example, a hardware module can
include dedicated circuitry or logic that 1s permanently
configured to perform certain operations. For example, a
hardware module can be a special-purpose processor, such
as a Field-Programmable Gate Array (FPGA) or an Appli-
cation Specific Integrated Circuit (ASIC). A hardware mod-
ule can also include programmable logic or circuitry that 1s
temporarily configured by software to perform certain
operations. For example, a hardware module can include
soltware executed by a general-purpose processor or other
programmable processor. Once configured by such software,
hardware modules become specific machines (or specific
components of a machine) uniquely tailored to perform the
configured functions and are no longer general-purpose
processors. It will be appreciated that the decision to imple-
ment a hardware module mechanically, in dedicated and
permanently configured circuitry, or in temporarily config-
ured circuitry (e.g., configured by software) can be driven by
cost and time considerations.

Accordingly, the phrase “hardware module” should be
understood to encompass a tangible entity, be that an entity
that 1s physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate 1n a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering imple-
mentations 1 which hardware modules are temporarily
configured (e.g., programmed), each of the hardware mod-
ules need not be configured or instantiated at any one
instance 1 time. For example, where a hardware module
comprises a general-purpose processor configured by sofit-
ware to become a special-purpose processor, the general-
purpose processor can be configured as respectively difler-
ent special-purpose processors (e.g., comprising different
hardware modules) at different times. Software accordingly
configures a particular processor or processors, for example,
to constitute a particular hardware module at one 1instance of
time and to constitute a different hardware module at a
different instance of time.

Hardware modules can provide information to, and
recetve information from, other hardware modules. Accord-
ingly, the described hardware modules can be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications can be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In implementations 1 which multiple
hardware modules are configured or instantiated at diflerent
times, communications between such hardware modules can
be achieved, for example, through the storage and retrieval
of information 1n memory structures to which the multiple
hardware modules have access. For example, one hardware
module can perform an operation and store the output of that
operation 1n a memory device to which 1t 1s communica-
tively coupled. A further hardware module can then, at a
later time, access the memory device to retrieve and process
the stored output. Hardware modules can also initiate com-
munications with input or output devices, and can operate on
a resource (e.g., a collection of information).

The various operations of example methods described
herein can be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented mod-
ules that operate to perform one or more operations or
functions described herein. As used herein, “processor-

10

15

20

25

30

35

40

45

50

55

60

65

24

implemented module” refers to a hardware module 1mple-
mented using one or more processors.

Similarly, the methods described herein can be at least
partially processor-implemented, with a particular processor
or processors being an example of hardware. For example,
at least some of the operations of a method can be performed
by one or more processors or processor-implemented mod-
ules. Moreover, the one or more processors can also operate
to support performance of the relevant operations in a “cloud
computing” environment or as a “soltware as a service”
(SaaS). For example, at least some of the operations can be
performed by a group of computers (as examples of
machines 1including processors), with these operations being
accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces (e.g., an API).

The performance of certain of the operations can be
distributed among the processors, not only residing within a
single machine, but deployed across a number of machines.
In some example implementations, the processors or pro-
cessor-implemented modules can be located in a single
geographic location (e.g., within a home environment, an
oflice environment, or a server farm). In other example
implementations, the processors or processor-implemented
modules can be distributed across a number of geographic
locations.

The modules, methods, applications, and so forth
described in conjunction with FIGS. 1A-5C are imple-
mented 1n some 1implementations 1n the context of a machine
and an associated software architecture. The sections below
describe representative soltware architecture(s) and machine
(e.g., hardware) architecture(s) that are suitable for use with
the disclosed implementations.

Software architectures are used 1n conjunction with hard-
ware architectures to create devices and machines tailored to
particular purposes. For example, a particular hardware
architecture coupled with a particular software architecture
will create a mobile device, such as a mobile phone, tablet
device, or so forth. A slightly different hardware and soft-
ware architecture can yield a smart device for use 1n the
“internet of things,” while yet another combination produces
a server computer for use within a cloud computing archi-
tecture. Not all combinations of such software and hardware
architectures are presented here, as those of skill 1n the art
can readily understand how to implement the nventive
subject matter 1 different contexts from the disclosure
contained herein.

FIG. 6 1s a block diagram illustrating components of a
machine 600, according to some example implementations,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium) and perform any
one or more ol the methodologies discussed herein. Spe-
cifically, FIG. 6 shows a diagrammatic representation of the
machine 600 1n the example form of a computer system,
within which instructions 616 (e.g., soltware, a program, an
application, an applet, an app, or other executable code) for
causing the machine 600 to perform any one or more of the
methodologies discussed herein can be executed. The
instructions 616 transform the general, non-programmed
machine into a particular machine programmed to carry out
the described and illustrated functions in the manner
described. In alternative implementations, the machine 600
operates as a standalone device or can be coupled (e.g.,
networked) to other machines. In a networked deployment,
the machine 600 can operate 1n the capacity of a server
machine or a client machine 1 a server-client network
environment, or as a peer machine 1 a peer-to-peer (or
distributed) network environment. The machine 600 can




US 11,397,738 B2

25

comprise, but not be limited to, a server computer, a client
computer, PC, a tablet computer, a laptop computer, a
netbook, a set-top box (STB), a personal digital assistant
(PDA), an entertainment media system, a cellular telephone,
a smart phone, a mobile device, a wearable device (e.g., a
smart watch), a smart home device (e.g., a smart appliance),
other smart devices, a web appliance, a network router, a
network switch, a network bridge, or any machine capable
of executing the instructions 616, sequentially or otherwise,
that specily actions to be taken by the machine 600. Further,
while only a single machine 600 1s illustrated, the term
“machine” shall also be taken to include a collection of
machines 600 that individually or jointly execute the 1nstruc-
tions 616 to perform any one or more of the methodologies
discussed herein.

The machine 600 can include processors 610, memory/
storage 630, and I/O components 650, which can be con-
figured to commumicate with each other such as via a bus
602. In an example implementation, the processors 610
(e.g., a Central Processing Unit (CPU), a Reduced Instruc-
tion Set Computing (RISC) processor, a Complex Instruc-
tion Set Computing (CISC) processor, a Graphics Process-
ing Unit (GPU), a Dagital Signal Processor (DSP), an ASIC,
a Radio-Frequency Integrated Circuit (RFIC), another pro-
cessor, or any suitable combination thereof) can include, for
example, a processor 612 and a processor 614 that can
execute the mstructions 616. The term “processor” 1s
intended to include multi-core processors that can comprise
two or more independent processors (sometimes referred to
as “‘cores”) that can execute 1nstructions contemporaneously.
Although FIG. 6 shows multiple processors 610, the
machine 600 can include a single processor with a single
core, a single processor with multiple cores (e.g., a multi-
core processor), multiple processors with a single core,
multiple processors with multiples cores, or any combina-
tion thereof.

The memory/storage 630 can include a memory 632, such
as a main memory, or other memory storage, and a storage
unit 636, both accessible to the processors 610 such as via
the bus 602. The storage unit 636 and memory 632 store the
istructions 616 embodying any one or more of the meth-
odologies or functions described herein. The instructions
616 can also reside, completely or partially, within the
memory 632, within the storage unit 636, within at least one
of the processors 610 (e.g., within the processor’s cache
memory), or any suitable combination thereof, during
execution thereof by the machine 600. Accordingly, the
memory 632, the storage unit 636, and the memory of the
processors 610 are examples of machine-readable media.

As used herein, “machine-readable medium” means a
device able to store instructions (e.g., istructions 616) and
data temporarily or permanently and can include, but 1s not
limited to, random-access memory (RAM), read-only
memory (ROM), bufler memory, tflash memory, optical
media, magnetic media, cache memory, other types of
storage (e.g., Erasable Programmable Read-Only Memory
(EEPROM)), and/or any suitable combination thereof. The
term “machine-readable medium” should be taken to include
a single medium or multiple media (e.g., a centralized or
distributed database, or associated caches and servers) able
to store the instructions 616. The term “machine-readable
medium”™ shall also be taken to include any medium, or
combination of multiple media, that 1s capable of storing
instructions (e.g., instructions 616) for execution by a
machine (e.g., machine 600), such that the instructions,
when executed by one or more processors of the machine
(e.g., processors 610), cause the machine to perform any one

10

15

20

25

30

35

40

45

50

55

60

65

26

or more of the methodologies described herein. Accordingly,
a “machine-readable medium™ refers to a single storage
apparatus or device, as well as “cloud-based” storage sys-
tems or storage networks that include multiple storage
apparatus or devices. The term “machine-readable medium”™
excludes signals per se.

The I/O components 650 can include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture
measurements, and so on. The specific I/O components 6350
that are included 1n a particular machine will depend on the
type of machine. For example, portable machines such as
mobile phones will likely include a touch mput device or
other such input mechanisms, while a headless server
machine will likely not include such a touch input device. It
will be appreciated that the I/O components 650 can include
many other components that are not shown 1n FIG. 6. The
I/O components 650 are grouped according to functionality
merely for simplifying the following discussion and the
grouping 1s in no way limiting. In various example 1mple-
mentations, the I/O components 650 can include output
components 652 and mmput components 634. The output
components 652 can include visual components (e.g., a
display such as a plasma display panel (PDP), a light
emitting diode (LED) display, a liquid crystal display
(LCD), a projector, or a cathode ray tube (CRT)), acoustic
components (e.g., speakers), haptic components (e.g., a
vibratory motor, resistance mechanisms), other signal gen-
erators, and so forth. The mput components 654 can include
alphanumeric 1input components (e.g., a keyboard, a touch
screen configured to receive alphanumeric mput, a photo-
optical keyboard, or other alphanumeric input components),
point based mput components (e.g., a mouse, a touchpad, a
trackball, a joystick, a motion sensor, or another pointing
instrument), tactile mput components (e.g., a physical but-
ton, a touch screen that provides location and/or force of
touches or touch gestures, or other tactile mput compo-
nents ), audio imput components (e.g., a microphone), and the
like.

In further example implementations, the I'O components
650 can 1nclude biometric components 656, motion compo-
nents 658, environmental components 660, or position com-
ponents 662, among a wide array of other components. For
example, the biometric components 656 can include com-
ponents to detect expressions (e.g., hand expressions, facial
expressions, vocal expressions, body gestures, or eye track-
ing), measure biosignals (e.g., blood pressure, heart rate,
body temperature, perspiration, or brain waves), identily a
person (e.g., voice 1dentification, retinal identification, facial
identification, fingerprint identification, or electroencepha-
logram based 1dentification), and the like. The motion com-
ponents 638 can include acceleration sensor components
(e.g., accelerometer), gravitation sensor components, rota-
tion sensor components (e.g., gyroscope), and so forth. The
environmental components 660 can include, for example,
1llumination sensor components (e.g., photometer), tempera-
ture sensor components (€.g., one or more thermometers that
detect ambient temperature), humidity sensor components,
pressure sensor components (e.g., barometer), acoustic sen-
sor components (e.g., one or more microphones that detect
background noise), proximity sensor components (e.g.,
inirared sensors that detect nearby objects), gas sensors
(e.g., gas detection sensors to detect concentrations of haz-
ardous gases for salfety or to measure pollutants in the
atmosphere), or other components that can provide 1ndica-
tions, measurements, or signals corresponding to a surround-
ing physical environment. The position components 662 can




US 11,397,738 B2

27

include location sensor components (e.g., a Global Position
System (GPS) receiver component), altitude sensor compo-
nents (e.g., altimeters or barometers that detect air pressure
from which altitude can be derived), orientation sensor
components (e.g., magnetometers), and the like.

Communication can be implemented using a wide variety
of technologies. The I/O components 650 can include com-
munication components 664 operable to couple the machine
600 to a network 680 or devices 670 via a coupling 682 and
a coupling 672, respectively. For example, the communica-
tion components 664 can include a network interface com-
ponent or other suitable device to interface with the network
680. In further examples, the communication components
664 can include wired communication components, wireless
communication components, cellular communication com-
ponents, Near Field Communication (NFC) components,
Bluetooth® components (e.g., Bluetooth® Low Energy),
Wi-Fi® components, and other communication components
to provide communication via other modalities. The devices
670 can be another machine or any of a wide variety of
peripheral devices (e.g., a peripheral device coupled via a
USB).

Moreover, the communication components 664 can detect
identifiers or include components operable to detect 1denti-
fiers. For example, the communication components 664 can
include Radio Frequency Identification (RFID) tag reader
components, NFC smart tag detection components, optical
reader components (e.g., an optical sensor to detect one-
dimensional bar codes such as Universal Product Code
(UPC) bar code, multi-dimensional bar codes such as Quick
Response (QR) code, Aztec code, Data Matrix, Dataglyph.,
Maxi1Code, PDF417, Ultra Code, UCC RSS-2D bar code,

and other optical codes), or acoustic detection components
(e.g., microphones to identily tagged audio signals). In
addition, a variety of mformation can be derived via the
communication components 664, such as location via Inter-
net Protocol (IP) geolocation, location via Wi-Fi® signal
triangulation, location via detecting an NFC beacon signal
that can indicate a particular location, and so forth.

In various example implementations, one or more por-

tions of the network 680 can be an ad hoc network, an
intranet, an extranet, a virtual private network (VPN), a local
area network (LAN), a wireless LAN (WLAN), a WAN, a
wireless WAN (WWAN), a metropolitan area network
(MAN), the Internet, a portion of the Internet, a portion of
the Public Switched Telephone Network (PSTN), a plain old
telephone service (POTS) network, a cellular telephone
network, a wireless network, a Wi-Fi® network, another
type of network, or a combination of two or more such
networks. For example, the network 680 or a portion of the
network 680 can include a wireless or cellular network and
the coupling 682 can be a Code Division Multiple Access
(CDMA) connection, a Global System for Mobile commu-
nications (GSM) connection, or another type of cellular or
wireless coupling. In this example, the coupling 682 can
implement any of a variety of types of data transfer tech-
nology, such as Single Carrier Radio Transmission Technol-
ogy (1xRTT), Evolution-Data Optimized (EVDO) technol-
ogy, General Packet Radio Service (GPRS) technology,
Enhanced Data rates for GSM Evolution (EDGE) technol-
ogy, third Generation Partnership Project (3GPP) including
3G, fourth generation wireless (4G) networks, Universal
Mobile Telecommunications System (UMTS), High Speed
Packet Access (HSPA), Worldwide Interoperability for
Microwave Access (WIMAX), Long Term Evolution (LTE)

5

10

15

20

25

30

35

40

45

50

55

60

65

28

standard, others defined by various standard-setting organi-
zations, other long range protocols, or other data transfer
technology.

The mstructions 616 can be transmitted or received over
the network 680 using a transmission medium via a network
interface device (e.g., a network interface component
included in the communication components 664) and uti-
lizing any one of a number of well-known transfer protocols
(e.g., HT'TP). Similarly, the instructions 616 can be trans-
mitted or recerved using a transmission medium via the
coupling 672 (e.g., a peer-to-peer coupling) to the devices
670. The term “transmission medium”™ shall be taken to
include any intangible medium that i1s capable of storing,
encoding, or carrving the instructions 616 for execution by
the machine 600, and includes digital or analog communi-
cations signals or other intangible media to facilitate com-
munication of such software.

Throughout this specification, plural instances can imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations can be
performed concurrently, and nothing requires that the opera-
tions be performed 1n the order illustrated. Structures and
functionality presented as separate components 1n example
configurations can be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component can be implemented as sepa-
rate components. These and other variations, modifications,
additions, and improvements fall within the scope of the
subject matter herein.

Although an overview of the inventive subject matter has

been described with reference to specific example 1mple-
mentations, various modifications and changes can be made
to these implementations without departing from the broader
scope ol implementations of the present disclosure. Such
implementations of the inventive subject matter can be
referred to herein, individually or collectively, by the term
“invention” merely for convenience and without mtending
to voluntarily limait the scope of this application to any single
disclosure or inventive concept if more than one 1s, 1n fact,
disclosed.
The implementations 1illustrated herein are described 1n
suilicient detail to enable those skilled 1n the art to practice
the teachings disclosed. Other implementations can be used
and derived therefrom, such that structural and logical
substitutions and changes can be made without departing
from the scope of this disclosure. The Detailed Description,
therefore, 1s not to be taken 1n a limiting sense, and the scope
of various implementations 1s defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

As used herein, the term “or” can be construed in either
an 1clusive or exclusive sense. Moreover, plural mstances
can be provided for resources, operations, or structures
described herein as a single instance. Additionally, bound-
aries between various resources, operations, modules,
engines, and data stores are somewhat arbitrary, and par-
ticular operations are illustrated 1 a context of specific
illustrative configurations. Other allocations of functionality
are envisioned and can fall within a scope of various
implementations of the present disclosure. In general, struc-
tures and functionality presented as separate resources in the
example configurations can be implemented as a combined
structure or resource. Similarly, structures and functionality
presented as a single resource can be implemented as
separate resources. These and other variations, modifica-




US 11,397,738 B2

29

tions, additions, and improvements fall within a scope of
implementations of the present disclosure as represented by
the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

What i1s claimed 1s:

1. A system comprising:

a processing device; and

a memory coupled to the processing device and storing

instructions that, when executed by the processing

device, cause the system to perform operations com-

prising;:

generating a first shard comprising one or more mes-
sages;

associating the first shard with a first shard version
attribute;

providing the first shard and the first shard version
attribute as a first atomic update within a data stream:;

receiving a first state attribute that retlects a processing
capacity of a streaming system;

based on the first state attribute that reflects the pro-
cessing capacity of the streaming system, initiating a
resharding of the first shard into at least a second
shard that comprises at least one of the one or more
messages from the first shard;

associating the second shard with a second shard ver-
sion attribute; and

providing the second shard and the second shard ver-
sion attribute as a second atomic update within the
data stream.

2. The system of claim 1, wherein resharding the first
shard comprises generating the second shard based on the
first shard.

3. The system of claim 1, wherein the second shard
comprises at least one of the one or more messages from the
first shard.

4. The system of claim 1, wherein the first state attribute
reflects a processing capacity of a streaming system.

5. The system of claim 1, wherein the first state attribute
reflects a processing capacity of a consumer.

6. The system of claim 1, wherein the memory further
stores 1structions to cause the system to perform operations
comprising generating a third shard 1n accordance with the
resharding.

7. A method comprising:

receiving, from a device, a first shard comprising one or

more messages and a first shard version attribute;
requesting, from the device, a current shard version;
based on a determination that the current shard version 1s

consistent with the first shard version attribute, per-

forming an operation with respect to the first shard; and

10

15

20

25

30

35

40

45

50

30

based on a determination that the current shard version 1s
consistent with the second shard wversion attribute,
performing an operation with respect to the second
shard in lieu of the operation with respect to the first
shard.

8. The method of claim 7, further comprising based on a
determination that the current shard version 1s not consistent
with the first shard version attribute, canceling performance
of the operation with respect to the first shard.

9. The method of claim 7, further comprising receiving,

from the device, a second shard comprising a second shard
version attribute.

10. The method of claim 7, wherein performing an
operation comprises providing the first shard to a consumer.

11. A non-transitory computer readable medium having
instructions stored thereon that, when executed by a pro-
cessing device, cause the processing device to perform
operations comprising:

recerving a first shard comprising one or more messages

and a first shard version attribute;

requesting a current shard version;

based on a determination that the current shard version 1s

consistent with the first shard version attribute, per-
forming an operation with respect to the first shard;
based on a determination that the current shard version 1s
consistent with the second shard version attribute,
performing an operation with respect to the second
shard 1n lieu of the operation with respect to the first
shard.

12. The computer-readable medium of claim 11, wherein
the 1nstructions further cause the processing device to per-
form operations comprising providing a resharding request.

13. The computer-readable medium of claim 12, wherein
the resharding request 1s provided based on a processing
capacity of a device that recerved the first shard.

14. The computer-readable medium of claim 12, wherein
the resharding request 1s provided based on a processing
capacity of another device.

15. The computer-readable medium of claim 11, wherein
the 1nstructions further cause the processing device to per-
form operations comprising based on a determination that
the current shard version 1s not consistent with the first shard
version attribute, canceling performance of the operation
with respect to the first shard.

16. The computer-readable medium of claim 11, wherein
the 1nstructions further cause the processing device to per-
form operations comprising receiving a second shard com-
prising a second shard version attribute.

17. The computer-readable medium of claim 16, wherein
receiving a second shard comprises receiving the second
shard 1n response to a resharding request.

G o e = x



	Front Page
	Drawings
	Specification
	Claims

